Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Nuclear Fuel Cycle Options  

SciTech Connect (OSTI)

A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

2010-06-01T23:59:59.000Z

2

Nuclear Fuel Cycle & Vulnerabilities  

SciTech Connect (OSTI)

The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

Boyer, Brian D. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

3

Modeling the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

Jacob J. Jacobson; Mary Lou Dunzik-Gougar; Christopher A. Juchau

2010-08-01T23:59:59.000Z

4

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I.W.; Patridge, M.D.

1991-05-01T23:59:59.000Z

5

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

6

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term...  

Broader source: Energy.gov (indexed) [DOE]

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of Geologic Disposal Systems Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of...

7

Nuclear Fuel Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities NuclearCycle

8

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

9

International nuclear fuel cycle fact book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.

1988-01-01T23:59:59.000Z

10

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I W; Mitchell, S J

1990-01-01T23:59:59.000Z

11

World nuclear fuel cycle requirements 1990  

SciTech Connect (OSTI)

This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

Not Available

1990-10-26T23:59:59.000Z

12

Nuclear fuel cycles for mid-century development  

E-Print Network [OSTI]

A comparative analysis of nuclear fuel cycles was carried out. Fuel cycles reviewed include: once-through fuel cycles in LWRs, PHWRs, HTGRs, and fast gas cooled breed and burn reactors; single-pass recycle schemes: plutonium ...

Parent, Etienne, 1977-

2003-01-01T23:59:59.000Z

13

Financing Strategies for Nuclear Fuel Cycle Facility  

SciTech Connect (OSTI)

To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

David Shropshire; Sharon Chandler

2005-12-01T23:59:59.000Z

14

International nuclear fuel cycle fact book. Revision 6  

SciTech Connect (OSTI)

The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1986-01-01T23:59:59.000Z

15

Nuclear fuel cycle facility accident analysis handbook  

SciTech Connect (OSTI)

The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

NONE

1998-03-01T23:59:59.000Z

16

Nuclear Fuel Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities Nuclear

17

Nuclear power generation and fuel cycle report 1996  

SciTech Connect (OSTI)

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

18

Benefits and concerns of a closed nuclear fuel cycle  

SciTech Connect (OSTI)

Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a “once-through” fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

Widder, Sarah H.

2010-11-17T23:59:59.000Z

19

Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures  

SciTech Connect (OSTI)

The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

Jacob J. Jacobson; Steven J. Piet; Gretchen E. Matthern; David E. Shropshire; Robert F. Jeffers; A. M. Yacout; Tyler Schweitzer

2010-11-01T23:59:59.000Z

20

World nuclear capacity and fuel cycle requirements, November 1993  

SciTech Connect (OSTI)

This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

Not Available

1993-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced nuclear fuel cycles - Main challenges and strategic choices  

SciTech Connect (OSTI)

A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

2013-07-01T23:59:59.000Z

22

Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads  

SciTech Connect (OSTI)

The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

NONE

2013-07-01T23:59:59.000Z

23

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network [OSTI]

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

24

International nuclear fuel cycle fact book. Revision 4  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-03-01T23:59:59.000Z

25

International Nuclear Fuel Cycle Fact Book. Revision 5  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1985-01-01T23:59:59.000Z

26

A review of nuclear fuel cycle options for developing nations  

SciTech Connect (OSTI)

A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

Harrison, R.K.; Scopatz, A.M.; Ernesti, M. [The University of Texas at Austin, Pickle Research Campus, Building 159, Austin, TX 78712 (United States)

2007-07-01T23:59:59.000Z

27

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network [OSTI]

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

28

LMFBR operation in the nuclear cycle without fuel reprocessing  

SciTech Connect (OSTI)

Substantiation is given to expediency of investigation of nuclear power (NP) development with fast reactors cooled by lead-bismuth alloy operating during extended time in the open nuclear fuel cycle with slightly enriched or depleted uranium make-up. 9 refs., 1 fig., 6 tabs.

Toshinsky, S.I. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

1997-12-01T23:59:59.000Z

29

Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts  

SciTech Connect (OSTI)

The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness.

S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

2010-09-01T23:59:59.000Z

30

Sensitivity analysis and optimization of the nuclear fuel cycle  

SciTech Connect (OSTI)

A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

Passerini, S.; Kazimi, M. S.; Shwageraus, E. [Massachusetts Inst. of Technology, Dept. of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02138 (United States)

2012-07-01T23:59:59.000Z

31

International Nuclear Fuel Cycle Fact Book. Revision 12  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

32

International nuclear fuel cycle fact book: Revision 9  

SciTech Connect (OSTI)

The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

Leigh, I.W.

1989-01-01T23:59:59.000Z

33

International nuclear fuel cycle fact book. [Contains glossary  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

1987-01-01T23:59:59.000Z

34

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect (OSTI)

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

35

Nuclear Fuel Cycle Reasoner: PNNL FY13 Report  

SciTech Connect (OSTI)

In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

Hohimer, Ryan E.; Strasburg, Jana D.

2013-09-30T23:59:59.000Z

36

Economics of nuclear fuel cycles : option valuation and neutronics simulation of mixed oxide fuels  

E-Print Network [OSTI]

In most studies aiming at the economic assessment of nuclear fuel cycles, a primary concern is to keep scenarios economically comparable. For Uranium Oxide (UOX) and Mixed Oxide (MOX) fuels, a traditional way to achieve ...

De Roo, Guillaume

2009-01-01T23:59:59.000Z

37

Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion  

SciTech Connect (OSTI)

The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

Walter, C. E., LLNL

1997-11-18T23:59:59.000Z

38

Nuclear Fuel Cycle Reasoner: PNNL FY12 Report  

SciTech Connect (OSTI)

Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

2013-05-03T23:59:59.000Z

39

Strengthening the nuclear-reactor fuel cycle against proliferation  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) conducts several research programs that serve to reduce the risks of fissile-material diversion from the nuclear-reactor fuel cycle. The objectives are to provide economical and efficient neutron or power generation with the minimum of inherent risks, and to further minimize risks by utilizing sophisticated techniques to detect attempts at material diversion. This paper will discuss the Reduced Enrichment Research and Test Reactor (RERTR) Program, the Isotope Correlation Technique (ICT), and Proliferation-Resistant Closed-Cycle Reactors. The first two are sponsored by the DOE Office of Arms Control and Nonproliferation.

Travelli, A.; Snelgrove, J.; Persiani, P. [Argonne National Lab., IL (United States). Arms Control and Nonproliferation Program

1992-12-31T23:59:59.000Z

40

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect (OSTI)

Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Financing Strategies For A Nuclear Fuel Cycle Facility  

SciTech Connect (OSTI)

To help meet the nation’s energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the government case. The uncertainty in operations, leading to lower than optimal processing rates (or annual plant throughput), is the most detrimental issue to achieving low unit costs. Conversely, lowering debt interest rates and the required return on investments can reduce costs for private industry.

David Shropshire; Sharon Chandler

2006-07-01T23:59:59.000Z

42

Fuel cycle analysis of once-through nuclear systems.  

SciTech Connect (OSTI)

Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast mixed spectrum reactor (FMSR) concept [Fisher 1979]. (3) Thermal systems for resource extensio

Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

2010-08-10T23:59:59.000Z

43

22.351 Systems Analysis of the Nuclear Fuel Cycle, Spring 2003  

E-Print Network [OSTI]

In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ...

Kazimi, Mujid S.

44

Sensitivity of economic performance of the nuclear fuel cycle to simulation modeling assumptions  

E-Print Network [OSTI]

Comparing different nuclear fuel cycles and assessing their implications require a fuel cycle simulation model as complete and realistic as possible. In this thesis, methodological implications of modeling choices are ...

Bonnet, Nicéphore

2007-01-01T23:59:59.000Z

45

EARTHQUAKE CAUSED RELEASES FROM A NUCLEAR FUEL CYCLE FACILITY  

SciTech Connect (OSTI)

The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

Charles W. Solbrig; Chad Pope; Jason Andrus

2014-08-01T23:59:59.000Z

46

Impact of alternative nuclear fuel cycle options on infrastructure and fuel requirements, actinide and waste inventories, and economics  

E-Print Network [OSTI]

The nuclear fuel once-through cycle (OTC) scheme currently practiced in the U.S. leads to accumulation of uranium, transuranic (TRU) and fission product inventories in the spent nuclear fuel. Various separation and recycling ...

Guérin, Laurent, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

47

Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation  

E-Print Network [OSTI]

The recent civil nuclear cooperation proposed by the Bush Administration and the Government of India has heightened the necessity of assessing India’s nuclear fuel cycle inclusive of nuclear materials and facilities. This agreement proposes...

Woddi, Taraknath Venkat Krishna

2009-05-15T23:59:59.000Z

48

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect (OSTI)

The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

1988-12-01T23:59:59.000Z

49

22.251 / 22.351 Systems Analysis of the Nuclear Fuel Cycle, Fall 2005  

E-Print Network [OSTI]

This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, ...

Kazimi, Mujid S.

50

A Perspective on the U.S. Nuclear Fuel Cycle  

SciTech Connect (OSTI)

There has been a resurgence of interest in the possibility of processing the US spent nuclear fuel, instead of burying it in a geologic repository. Accordingly, key topical findings from three relevant EPRI evaluations made in the 1990-1995 time-frame are recapped and updated to accommodate a few developments over the subsequent ten years. Views recently expressed by other US entities are discussed. Processing aspects thereby addressed include effects on waste disposal and on geologic repository capacity, impacts on the economics of the nuclear fuel cycle and of the overall nuclear power scenario, alternative dispositions of the plutonium separated by the processing, impacts on the structure of the perceived weapons proliferation risk, and challenges for the immediate future and for the current half-century. Currently, there is a statutory limit of 70,000 metric tons on the amount of nuclear waste materials that can be accepted at Yucca Mountain. The Environmental Impact Statement (EIS) for the project analyzed emplacement of up to 120,000 metric tons of nuclear waste products in the repository. Additional scientific analyses suggest significantly higher capacity could be achieved with changes in the repository configuration that use only geology that has already been characterized and do not deviate from existing design parameters. Conservatively assuming the repository capacity postulated in the EIS, the need date for a second repository is essentially deferrable until that determined by a potential new nuclear plant deployment program. A further increase in technical capacity of the first repository (and further and extensive delay to the need date for a second repository) is potentially achievable by processing the spent fuel to remove the plutonium (and at least the americium too), provided the plutonium and the americium are then comprehensively burnt. The burning of some of the isotopes involved would need fast reactors (discounting for now a small possibility that one of several recently postulated alternatives will prove superior overall). However, adoption of processing would carry a substantial cost burden and reliability of the few demonstration fast reactors built to-date has been poor. Trends and developments could remove these obstacles to the processing scenario, possibly before major decisions on a second repository become necessary, which need not be until mid-century at the earliest. Pending the outcomes of these long-term trends and developments, economics and reliability encourage us to stay with non-processing for the near term at least. Besides completing the Yucca Mountain program, the two biggest and inter-related fuel-cycle needs today are for a nationwide consensus on which processing technology offers the optimum mix of economic competitiveness and proliferation resistance and for a sustained effort to negotiate greater international cooperation and safeguards. Equally likely to control the readiness schedule is development/demonstration of an acceptable, reliable and affordable fast reactor. (authors)

Rodwell, Ed; Machiels, Albert [Electric Power Research Institute, Inc. - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States)

2006-07-01T23:59:59.000Z

51

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

52

Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579  

SciTech Connect (OSTI)

General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2 discharge reuse. The EM2 waste disposal profile is effectively only fission products, which reduces the mass (about 3% vs LWR), average half life, heat and long term radio-toxicity of the disposal. Widespread implementation of EM2 fuel cycle is highly significant as it would increase world energy reserves; the remaining energy in U.S. LWR SNF alone exceeds that in the U.S. natural gas reserves. Unlike many LWR SNF disposition concepts, the EM2 fuel cycle conversion of SNF produces energy and associated revenue such that the overall project is cost effective. By providing conversion of SNF to fission products the fuel cycle is closed and a non-repository LWR SNF disposition path is created and overall repository requirements are significantly reduced. (authors)

Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)] [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

2013-07-01T23:59:59.000Z

53

Sandia National Laboratories: Nuclear Energy and Fuel Cycle Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More GreenWorkshops Nuclear

54

OECD/NEA Ongoing activities related to the nuclear fuel cycle  

SciTech Connect (OSTI)

As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

Cornet, S.M. [OECD Nuclear Energy Agency, 12 Boulevard des Iles, 92130 Issy-les-Moulineaux (France); McCarthy, K. [Idaho Nat. Lab. - P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Chauvin, N. [CEA Saclay, Nuclear Energy Division, 91191 Gif/Yvette (France)

2013-07-01T23:59:59.000Z

55

Simulation of the nuclear fuel cycle with recycling : options and outcomes  

E-Print Network [OSTI]

A system dynamics simulation technique is applied to generate a new version of the CAFCA code to study the mass flow in the nuclear fuel cycle, and the impact of different options for advanced reactors and fuel recycling ...

Silva, Rodney Busquim e

2008-01-01T23:59:59.000Z

56

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

Brent W. Dixon; Steven J. Piet

2004-10-01T23:59:59.000Z

57

Sandia National Laboratories: Nuclear Fuel Cycle Options Catalog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On SeptemberNuclear Energy Videos On

58

Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program  

SciTech Connect (OSTI)

The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

2009-10-01T23:59:59.000Z

59

International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1  

SciTech Connect (OSTI)

This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

Harmon,, K. M.; Lakey,, L. T.

1983-07-01T23:59:59.000Z

60

Nuclear Fuel Cycle Options Evaluation to Inform R&D Planning  

SciTech Connect (OSTI)

An Evaluation and Screening (E&S) of nuclear fuel cycle options has been conducted in fulfilment of a Charter specified for the study by the U.S. Department of Energy (DOE) Office of Nuclear Energy. The E&S study used an objective and independently reviewed evaluation process to provide information about the potential benefits and challenges that could strengthen the basis and provide guidance for the research and development(R&D) activities undertaken by the DOE Fuel Cycle Technologies Program Office. Using the nine evaluation criteria specified in the Charter and associated evaluation metrics and processes developed during the E&S study, a screening was conducted of 40 nuclear fuel cycle evaluation groups to provide answers to the questions: (1) Which nuclear fuel cycle system options have the potential for substantial beneficial improvements in nuclear fuel cycle performance, and what aspects of the options make these improvements possible? (2)Which nuclear material management approaches can favorably impact the performance of fuel cycle options? (3)Where would R&D investment be needed to support the set of promising fuel cycle system options and nuclear material management approaches identified above, and what are the technical objectives of associated technologies?

R. Wigeland; T. Taiwo; M. Todosow; H. Ludewig; W. Halsey; J. Gehin; R. Jubin; J. Buelt; S. Stockinger; K. Jenni; B. Oakley

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of the fundamental attributes and inputs for proliferation resistance assessments of nuclear fuel cycles  

E-Print Network [OSTI]

Robust and reliable quantitative proliferation resistance assessment tools are critical to a strengthened nonproliferation regime and to the future deployment of nuclear fuel cycle technologies. Efforts to quantify proliferation resistance have thus...

Giannangeli, Donald D. J., III

2007-09-17T23:59:59.000Z

62

Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation  

E-Print Network [OSTI]

........................................................16 II.G. Current State of Indian Nuclear Program.........................................................17 III INDIAN NUCLEAR FACILITIES .................................................................18 IV FUEL CYCLE... pattern for TBR-1 .........................................100 Fig. 16. India’s proposed nuclear power production strategy........................................103 Fig. 17. Comparison for uranium utilization in electricity generation...

Woddi, Taraknath Venkat Krishna

2008-10-10T23:59:59.000Z

63

Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy - 13575  

SciTech Connect (OSTI)

A technical assessment of the current inventory [?70,150 metric tons of heavy metal (MTHM) as of 2011] of U.S.-discharged used nuclear fuel (UNF) has been performed to support decisions regarding fuel cycle strategies and research, development and demonstration (RD and D) needs. The assessment considered discharged UNF from commercial nuclear electricity generation and defense and research programs and determined that the current UNF inventory can be divided into the following three categories: 1. Disposal - excess material that is not needed for other purposes; 2. Research - material needed for RD and D purposes to support waste management (e.g., UNF storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations and advanced fuels/reactors); and 3. Recycle/Recovery - material with inherent and/or strategic value. A set of key assumptions and attributes relative to the various disposition options were used to categorize the current UNF inventory. Based on consideration of RD and D needs, time frames and material needs for deployment of alternative fuel cycles, characteristics of the current UNF inventory, and possible uses to support national security interests, it was determined that the vast majority of the current UNF inventory should be placed in the Disposal category, without the need to make fuel retrievable from disposal for reuse or research purposes. Access to the material in the Research and Recycle/Recovery categories should be retained to support RD and D needs and national security interests. This assessment does not assume any decision about future fuel cycle options or preclude any potential options, including those with potential recycling of commercial UNF. (authors)

Wagner, John C.; Peterson, Joshua L.; Mueller, Don E.; Gehin, Jess C.; Worrall, Andrew [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS-6170, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS-6170, Oak Ridge, TN 37831 (United States); Taiwo, Temitope; Nutt, Mark; Williamson, Mark A. [Argonne National Laboratory (United States)] [Argonne National Laboratory (United States); Todosow, Mike [Brookhaven National Laboratory (United States)] [Brookhaven National Laboratory (United States); Wigeland, Roald [Idaho National Laboratory (United States)] [Idaho National Laboratory (United States); Halsey, William G. [Lawrence Livermore National Laboratory (United States)] [Lawrence Livermore National Laboratory (United States); Omberg, Ronald P. [Pacific Northwest National Laboratory (United States)] [Pacific Northwest National Laboratory (United States); Swift, Peter N. [Sandia National Laboratories (United States)] [Sandia National Laboratories (United States); Carter, Joe [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

64

Analyzing the proliferation resistance of advanced nuclear fuel cycles : in search of an assessment methodology for use in fuel cycle simulations  

E-Print Network [OSTI]

A methodology to assess proliferation resistance of advanced nuclear energy systems is investigated. The framework, based on Multi-Attribute Utility Theory (MAUT), is envisioned for use within early-stage fuel cycle ...

Pierpoint, Lara Marie

2008-01-01T23:59:59.000Z

65

Nuclear power generation and fuel cycle report 1997  

SciTech Connect (OSTI)

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

NONE

1997-09-01T23:59:59.000Z

66

THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS  

SciTech Connect (OSTI)

This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies required to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.

Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.; Bathke, Charles G.; Ebbinghaus, Bartley B.; Hase, Kevin R.; Sleaford, Brad W.; Robel, Martin; Smith, Brian W.

2011-07-17T23:59:59.000Z

67

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network [OSTI]

Nuclear   Fuel”,   Nuclear  Engineering  and  Technology,  in   Engineering  -­?  Nuclear  Engineering   and  the  in  Engineering  -­?  Nuclear  Engineering   and  the  

Djokic, Denia

2013-01-01T23:59:59.000Z

68

Pilot Application to Nuclear Fuel Cycle Options | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket | DepartmentPhotoelectrochemicalInan<aPilgrimA

69

Fuel Cycle Science & Technology | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015authors Advanced

70

The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles  

SciTech Connect (OSTI)

The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs ? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R&D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

2005-09-01T23:59:59.000Z

71

Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process  

SciTech Connect (OSTI)

The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

E. R. Johnson; R. E. Best

2009-12-28T23:59:59.000Z

72

Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle  

SciTech Connect (OSTI)

The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

Sooby, Elizabeth; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Pogue, Nathaniel; Sattarov, Akhdiyor [Department of Physics and Astronomy, Texas A and M University, 4242 TAMU, College Station TX 77843 (United States); Adams, Marvin; Tsevkov, Pavel [Nuclear Engineering, Texas A and M University, Spence St., College Station TX 77843 (United States); Phongikaroon, Supathorn [Center for Advanced Energy Studies, University of Idaho, 995 University Blvd, Idaho Falls, ID 83401 (United States); Simpson, Michael; Tripathy, Prabhat [Materials Fuels Complex, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

2013-04-19T23:59:59.000Z

73

Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

2013-08-01T23:59:59.000Z

74

Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

Brett Carlsen; Emily Tavrides; Erich Schneider

2010-08-01T23:59:59.000Z

75

NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE  

SciTech Connect (OSTI)

This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.

Sleaford, B W; Collins, B A; Ebbinghaus, B B; Bathke, C G; Prichard, A W; Wallace, R K; Smith, B W; Hase, K R; Bradley, K S; Robel, M; Jarvinen, G D; Ireland, J R; Johnson, M W

2010-04-26T23:59:59.000Z

76

Nuclear Material Attractiveness: An Assessment of Material from PHWR's in a Closed Thorium Fuel Cycle  

SciTech Connect (OSTI)

This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies [ , ] that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that 233U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented.

Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.; Robel, Martin; Prichard, Andrew W.; Smith, Brian W.; Collins, Brian A.; Hase, Kevin R.; Jarvinen, G. D.; Ireland, J. R.; Johnson, M. W.; Bathke, Charles G.; Wallace, R. K.

2010-06-11T23:59:59.000Z

77

Study of feasible and sustainable multilateral approach on nuclear fuel cycle  

SciTech Connect (OSTI)

Despite the Fukushima accident it is undeniable that nuclear power remains one of the most important methods to handle global growth of economic/energy consumption and issues with greenhouse gases. If the demand for nuclear power increases, the demand for not only the generation of power but also for refining uranium (U), conversion, enrichment, re-conversion, and fuel manufacturing should increase. In addition, concerns for the proliferation of 'Sensitive Nuclear Technologies' (SNT) should also increase. We propose a demand-side approach, where nuclear fuel cycle (NFC) activities would be implemented among multiple states. With this approach, NFC services, in particular those using SNTs, are multilaterally executed and controlled, thereby preventing unnecessary proliferation of SNTs, and enabling safe and appropriate control of nuclear technologies and nuclear materials. This proposal would implement nuclear safety and security at an international level and solve transport issues for nuclear fuels. This proposal is based on 3 types of cooperation for each element of NFC: type A: cooperation for 3S only, services received; Type B: cooperation for 3S, MNA (Multilateral Nuclear Activities) without transfer of ownership to MNA; and Type C cooperation for 3S, MNA holding ownership rights. States involved in the 3 types of activity should be referred to as partner states, host states, and site states respectively. The feasibility of the proposal is discussed for the Asian region.

Kuno, Y.; Tazaki, M. [University of Tokyo, Tokyo (Japan); Japan Atomic Energy Agency - JAEA, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184 (Japan); Akiba, M.; Takashima, R.; Izumi, Y.; Tanaka, S. [University of Tokyo, Tokyo (Japan)

2013-07-01T23:59:59.000Z

78

A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377  

SciTech Connect (OSTI)

A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

Carelli, M.D.; Franceschini, F.; Lahoda, E.J. [Westinghouse Electric Company LLC., Cranberry Township, PA (United States); Petrovic, B. [Georgia Institute of Technology, Atlanta, GA (United States)

2012-07-01T23:59:59.000Z

79

Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

Murray, A.M.; Marra, J.E.; Wilmarth, W.R. [Savannah River National Laboratory, Aiken, SC 29808 (United States); McGuire, P.W.; Wheeler, V.B. [Department of Energy-Savannah River Operations Office, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

80

Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

82

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

2013-02-01T23:59:59.000Z

83

Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors  

SciTech Connect (OSTI)

The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

Shropshire, D.E.; Herring, J.S.

2004-10-03T23:59:59.000Z

84

Characterizing diamylamylphosphonate (DAAP) as an Americium Ligand for nuclear fuel cycle applications  

SciTech Connect (OSTI)

Successful deployment of the currently-envisioned advanced nuclear fuel cycle requires the development of a partitioning scheme to separate Am from the lanthanides. The Am/lanthanide separation is challenging since all the metals are normally trivalent and have similar ionic radii. Oxidation of Am to higher oxidation states is one option to achieve such a separation. Hexavalent Am has now been routinely prepared in our laboratory in strongly acidic solution using sodium bismuthate as the oxidant, and then extracted into diamylamylphosphonate/dodecane solution. Here, we have characterized this phosphonate-containing solvent with regard to the extraction of Am, the lanthanides, Cm, other fission product, and/or inert constituents expected in dissolved nuclear fuel. Additionally, the effects of irradiation on dispersion numbers and the phosphonate concentration were investigated.

Bruce J. Mincher; Nicholas C. Schmitt; Richard D. Tillotson; Gracy Elias; Byron M. White; Jack D. Law

2014-01-01T23:59:59.000Z

85

Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates the central themes of this book-  

E-Print Network [OSTI]

109 7 Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates of ignoring the social, political, and environmental dimensions of innovation - than nuclear power. Once widely seen as an energy source of almost unlimited potential, nuclear power is today expanding in just

Kammen, Daniel M.

86

THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS  

SciTech Connect (OSTI)

We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides a set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.

Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.; Sleaford, Brad W.; Hase, Kevin R.; Robel, Martin; Wallace, R. K.; Bradley, Keith S.; Ireland, J. R.; Jarvinen, G. D.; Johnson, M. W.; Prichard, Andrew W.; Smith, Brian W.

2012-08-29T23:59:59.000Z

87

Overview of the international R&D recycling activities of the nuclear fuel cycle  

SciTech Connect (OSTI)

Nuclear power has demonstrated over the last thirty years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence of the price of uranium. However the management of used nuclear fuel (UNF) remains the “Achilles’ heel of this energy source since the storage of UNF is increasing as evidenced by the following number with 2,000 to 2,300 of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 UNF assemblies stored in dry cask storage and 88,000 stored in pools. Alarmingly, more than half of US commercial reactor sites have filled their pools to capacity and have had to add dry cask storage facilities. Two options adopted by several countries will be discussed. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of UNF into a geologic formation. One has to remind that only 30% of the worldwide UNF are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-12-01T23:59:59.000Z

88

Rethinking the light water reactor fuel cycle  

E-Print Network [OSTI]

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

89

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle Basics AugustSiCNEAC

90

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle Basics

91

Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee  

SciTech Connect (OSTI)

The Fuel Cycle (FC) Subcommittee of NEAC met February 7-8, 2012 in Washington (Drs. Hoffmann and Juzaitis were unable to attend). While the meeting was originally scheduled to occur after the submission of the President’s FY 2013 budget, the submission was delayed a week; thus, we could have no discussion on balance in the NE program. The Agenda is attached as Appendix A. The main focus of the meeting was on accident tolerant fuels, an important post Fukushima issue, and on issues related to the report of the Blue Ribbon Commission on America’s Nuclear Future (BRC) as related to the responsibility for used fuel disposal which was assigned to the FC program with the end of the Office of Civilian Radioactive Waste Management. In addition we heard an update on the systems study program which is aimed at helping chose the best options for advanced reactors, and possible new study on separation and waste form relevance to used fuel disposal (these two items are only discussed in this section of the report).

Richter, Burton; Chu, Margaret; Hoffman, Darleane; Juzaitis, Ray; Mtingwa, Sekazi; Omberg, Ronald P.; Rempe, Joy L.; Warin, Dominique

2012-06-12T23:59:59.000Z

92

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14  

SciTech Connect (OSTI)

The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

Schneider, K.J.

1982-09-01T23:59:59.000Z

93

Measures of the environmental footprint of the front end of the nuclear fuel cycle  

SciTech Connect (OSTI)

Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as well as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10- 3 GJ(e)/MWh(e) of electricity and 5.9 x 10- 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10- 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up to 2.

E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

2013-11-01T23:59:59.000Z

94

Resource intensities of the front end of the nuclear fuel cycle  

SciTech Connect (OSTI)

This paper presents resource intensities, including direct and embodied energy consumption, land and water use, associated with the processes comprising the front end of the nuclear fuel cycle. These processes include uranium extraction, conversion, enrichment, fuel fabrication and depleted uranium de-conversion. To the extent feasible, these impacts are calculated based on data reported by operating facilities, with preference given to more recent data based on current technologies and regulations. All impacts are normalized per GWh of electricity produced. Uranium extraction is seen to be the most resource intensive front end process. Combined, the energy consumed by all front end processes is equal to less than 1% of the electricity produced by the uranium in a nuclear reactor. Land transformation and water withdrawals are calculated at 8.07 m{sup 2} /GWh(e) and 1.37x10{sup 5} l/GWh(e), respectively. Both are dominated by the requirements of uranium extraction, which accounts for over 70% of land use and nearly 90% of water use.

Schneider, E.; Phathanapirom, U. [The University of Texas at Austin, 1 University Station C2200, Austin TX 78712 (United States); Eggert, R.; Collins, J. [Colorado School of Mines, 1500 Illinois St., Golden CO 80401 (United States)

2013-07-01T23:59:59.000Z

95

Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

1982-10-01T23:59:59.000Z

96

A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor  

SciTech Connect (OSTI)

The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

Erighin, M. A. [Babcock and Wilcox Company, 109 Ramsey Place, Lynchburg, VA 24502 (United States)

2012-07-01T23:59:59.000Z

97

The study of material accountancy procedures for uranium in a whole nuclear fuel cycle  

SciTech Connect (OSTI)

Material accountancy procedures for uranium under a whole nuclear fuel cycle were studied by taking into consideration the material accountancy capability associated with realistic measurement uncertainties. The significant quantity used by the International Atomic Energy Agency (IAEA) for low-enriched uranium is 75 kg U-235 contained. A loss of U-235 contained in uranium can be detected by either of the following two procedures: one is a traditional U-235 isotope balance, and the other is a total uranium element balance. Facility types studied in this paper were UF6 conversion, gas centrifuge uranium enrichment, fuel fabrication, reprocessing, plutonium conversion, and MOX fuel production in Japan, where recycled uranium is processed in addition to natural uranium. It was found that the material accountancy capability of a total uranium element balance was almost always higher than that of a U-235 isotope balance under normal accuracy of weight, concentration, and enrichment measurements. Changing from the traditional U-235 isotope balance to the total uranium element balance for these facilities would lead to a gain of U-235 loss detection capability through material accountancy and to a reduction in the required resources of both the IAEA and operators.

Nakano, Hiromasa; Akiba, Mitsunori [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

1995-07-01T23:59:59.000Z

98

Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

2013-07-03T23:59:59.000Z

99

Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle  

SciTech Connect (OSTI)

Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A., E-mail: sedov@dhtp.kial.ru; Subbotin, S. A.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-12-15T23:59:59.000Z

100

Concept of development of nuclear power based on LMFBR operation in open nuclear fuel cycle  

SciTech Connect (OSTI)

The preliminary assessments performed show that it is reasonable to investigate in the future the possibilities of FBR efficient operation with the open NFC. To improve its safety it is expedient to use the lead-bismuth alloy as a coolant. In order to operate with depleted uranium make-up it is necessary to meet a number of requirements providing the reactor criticality due to plutonium build-up and BR > 1. These requirements are as follows: a large core (20--25 m{sup 3}); a high fuel volume fraction (> 60%); utilization of dense metallic fuel; a high fuel burn-up--at a level of 20% of h.a. Making use of these reactors should allow the NP fuel base to be extended more than 10 times without making NFC closed. It provides improving NP safety during a sufficiently long stage of its development.

Toshinsky, G.I. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry  

SciTech Connect (OSTI)

An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

Biegalski, S R; Whitney, S M; Buchholz, B

2005-08-24T23:59:59.000Z

102

Adapting Dismantling and Decommissioning Strategies to a Variety of Nuclear Fuel Cycle Facilities - 12237  

SciTech Connect (OSTI)

AREVA has accumulated over 20 years of experience in managing and operating fuel cycle facilities Decontamination and Decommissioning (D and D) projects of many different types and a variety of scales, both as facility owner (at La Hague for example) and as prime contractor to external customers such as the French Atomic Energy Commission (at Marcoule). A specific Business Unit was created in 2008 to capitalize on this experience and to concentrate - in one division - the specific skills required to be successful and cost effective in decommissioning projects. Indeed one of the key lessons learned in the past decades is that decommissioning is a significantly different business as compared to normal operations of a nuclear facility. Almost all the functions of a project need to be viewed from a different angle, challenged and adapted consequently in order to optimize costs and schedule. Three examples follow to illustrate the point: Safety management needs to take into account the ever changing configuration of a plant under D and D (a quite new situation for the authorities). Production of waste is significantly different in term of volume, activities, conditioning and disposal path. Technology is important but technical issues are often less critical than good management and planning. Further examples and lessons learned are developed through reviewing the projects experience basis. AREVA has a long and vast experience in the cleanup and dismantling of a number of very large and complex nuclear facilities. This effort focused initially on AREVA's own plants and is expanding now to other customers. The setup of a specific Business Unit in 2008 to takeover this business allowed concentration of the skills and the lessons learned in a dedicated division so as to provide the best means to optimize safety, performance, costs and schedules. Indeed transitioning from operations to D and D of a nuclear facility is a quantum leap. The assistance from specialized teams can bring significant cost savings. (authors)

Chambon, Frederic [AREVA Federal Services LLC (United States); Clement, Gilles [AREVA NC (France)

2012-07-01T23:59:59.000Z

103

VISION: Verifiable Fuel Cycle Simulation Model  

SciTech Connect (OSTI)

The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

2009-04-01T23:59:59.000Z

104

Sensitivity analysis and optimization of the nuclear fuel cycle : a systematic approach  

E-Print Network [OSTI]

For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon ...

Passerini, Stefano

2012-01-01T23:59:59.000Z

105

Environmental Aspects of Advanced Nuclear Fuel Cycles: Parametric Modeling and Preliminary Analysis  

E-Print Network [OSTI]

Nuclear power has the potential to help reduce rising carbon emissions, but to be considered sustainable, it must also demonstrate the availability of an indefinite fuel supply as well as not produce any significant negative environmental effects...

Yancey, Kristina D.

2010-07-14T23:59:59.000Z

106

Fuel cycles for the 80's  

SciTech Connect (OSTI)

Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

Not Available

1980-01-01T23:59:59.000Z

107

The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

Djokic, D. [Department of Nuclear Engineering, University of California, Berkeley, 3115B Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, S.; Pincock, L.; Soelberg, N. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

108

A decision analysis framework to support long-term planning for nuclear fuel cycle technology research, development, demonstration and deployment  

SciTech Connect (OSTI)

To address challenges and gaps in nuclear fuel cycle option assessment and to support research, develop and demonstration programs oriented toward commercial deployment, EPRI (Electric Power Research Institute) is seeking to develop and maintain an independent analysis and assessment capability by building a suite of assessment tools based on a platform of software, simplified relationships, and explicit decision-making and evaluation guidelines. As a demonstration of the decision-support framework, EPRI examines a relatively near-term fuel cycle option, i.e., use of reactor-grade mixed-oxide fuel (MOX) in U.S. light water reactors. The results appear as a list of significant concerns (like cooling of spent fuels, criticality risk...) that have to be taken into account for the final decision.

Sowder, A.G.; Machiels, A.J. [Electric Power Research Institute, 1300 West. W.T Harris Boulevard, Charlotte, NC 28262 (United States); Dykes, A.A.; Johnson, D.H. [ABSG Consulting Inc., 300 Commerce, Suite 200, Irvine, CA 92602 (United States)

2013-07-01T23:59:59.000Z

109

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19  

SciTech Connect (OSTI)

Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

Schneider, K.J.

1982-09-01T23:59:59.000Z

110

Categorization of Used Nuclear Fuel Inventory in Support of a...  

Broader source: Energy.gov (indexed) [DOE]

Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy Categorization of Used Nuclear Fuel Inventory in Support of a...

111

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

112

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

113

Advanced Fuel Cycle Cost Basis  

SciTech Connect (OSTI)

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

2008-03-01T23:59:59.000Z

114

Advanced Fuel Cycle Cost Basis  

SciTech Connect (OSTI)

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

2007-04-01T23:59:59.000Z

115

Development of Pillared M(IV) Phosphate Phosphonate Inorganic Organic Hybrid Ion Exchange Materials for Applications in Separations found in the Nuclear Fuel Cycle  

E-Print Network [OSTI]

This dissertation focuses on key intergroup and intragroup separations found in the back end of the nuclear fuel cycle, specifically americium from lanthanides and americium from other actinides, most importantly americium from curium. Our goal...

Burns, Jonathan

2012-10-02T23:59:59.000Z

116

Advanced Fuel Cycle Economic Sensitivity Analysis  

SciTech Connect (OSTI)

A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

David Shropshire; Kent Williams; J.D. Smith; Brent Boore

2006-12-01T23:59:59.000Z

117

Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy  

SciTech Connect (OSTI)

A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel [Dept. of Physics, Texas A and M University, College Station, TX 77843 and Dept. of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Phongikaroon, Supathorn; Simpson, Michael [Dept. of Chemical Engineering, University of Idaho, Idaho Falls ID 83402 (United States)

2013-04-19T23:59:59.000Z

118

Development of Technologies for the Simultaneous Separation of Cesium and Strontium from Spent Nuclear Fuel as Part of an Advanced Fuel Cycle  

SciTech Connect (OSTI)

As part of the Advanced Fuel Cycle Initiative, two solvent extraction technologies are being developed to simultaneously separate cesium and strontium from dissolved spent nuclear fuel. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. Countercurrent flowsheets have been designed and tested on simulated and actual spent nuclear fuel feed streams with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance. A flowsheet for treatment of spent nuclear fuel is currently being developed.

Jack D. Law; R. Scott HErbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson; Terry A. Todd

2005-04-01T23:59:59.000Z

119

Advanced Fuel Cycles Activities in IAEA  

SciTech Connect (OSTI)

Considerable scientific and technical progress in many areas of Partitioning and Transmutation (P and T) has been recognized as probable answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. These recent global developments such as Russian initiative on Global Nuclear Infrastructure-International Fuel Centre and the US initiative on Global Nuclear Energy Partnership (GNEP) have made advanced fuel cycles as one of the decisive influencing factor for the future growth of nuclear energy. International Atomic Energy Agency has initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) with overall objective of bringing together technology holders and technology users to consider jointly the international and national actions required achieving desired innovations in nuclear reactors and fuel cycles. One of the interesting common features of these initiatives (INPRO, GNEP and GNI-IFC) is closed fast reactor fuel cycles and proliferation resistance. Any fuel cycle that integrate P and T into it is also known as 'Advanced Fuel Cycle' (AFC) that could achieve reduction of plutonium and Minor Actinide (MA) elements (namely Am, Np, Cm, etc.). In this regard, some Member States are also evaluating alternative concepts involving the use of thorium fuel cycle, inert-matrix fuel or coated particle fuel. Development of 'fast reactors with closed fuel cycles' would be the most essential step for implementation of P and T. The scale of realization of any AFC depends on the maturity of the development of all these elemental technologies such as recycling MA, Pu as well as reprocessed uranium. In accordance with the objectives of the Agency, the programme B entitled 'Nuclear Fuel cycle technologies and materials' initiated several activities aiming to strengthen the capabilities of interested Member States for policy making, strategic planning, technology development and implementation of safe, reliable, economically efficient, proliferation resistant, environmentally sound and secure nuclear fuel cycle programmes. The paper describes some on-going IAEA activities in the area of: MA-fuel and target, thorium fuel cycle, coated particle fuel, MA-property database, inert matrix fuels, liquid metal cooled fast reactor fuels and fuel cycles, management of reprocessed uranium and proliferation resistance in fuel cycle. (authors)

Nawada, H.P.; Ganguly, C. [Nuclear Fuel Cycle and Materials Section, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna (Austria)

2007-07-01T23:59:59.000Z

120

Improving the actinides recycling in closed fuel cycles, a major step towards nuclear energy sustainability  

SciTech Connect (OSTI)

Increasing the sustainability of nuclear energy is a longstanding road that requires a stepwise approach to successively tackle the following 3 objectives. First of all, optimize the consumption of natural resource to preserve them for future generations and hence guarantee the energetic independence of the countries (no uranium ore is needed anymore). The current twice-through cycle of Pu implemented by France, UK, Japan and soon China is a first step in this direction and already allows the development and optimization of the relevant industrial processes. It also allows a major improvement regarding the conditioning of the ultimate waste in a durable and robust nuclear glass. Secondly, the recycling of americium could be an interesting option for the future with the deployment of FR fleet to save the repository resource and optimize its use by allowing a denser disposal. It would limit the burden towards the future generations and the need for additional repositories before several centuries. Thirdly, the recycling of the whole minor actinides inventory could be an interesting option for the far-future for strongly decreasing the waste long-term toxicity, down to a few centuries. It would bring the waste issue back within the human history, which should promote its acceptance by the social opinion.

Poinssot, C.; Grandjean, S.; Masson, M. [RadioChemistry and Processes Department, CEA Marcoule, 30207 Bagnols sur Ceze (France); Bouillis, B.; Warin, D. [Innovation and Industrial Support Direction, CEA Saclay, F-91191 Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle  

SciTech Connect (OSTI)

Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T. [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements (Germany)

2013-07-01T23:59:59.000Z

122

Uncertainty Analyses of Advanced Fuel Cycles  

SciTech Connect (OSTI)

The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

2008-12-12T23:59:59.000Z

123

VISION: Verifiable Fuel Cycle Simulation Model  

SciTech Connect (OSTI)

The nuclear fuel cycle consists of a set of complex components that work together in unison. In order to support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION.

Jacob Jacobson; A. M. Yacout; Gretchen Matthern; Steven Piet; David Shropshire; Tyler Schweitzer

2010-11-01T23:59:59.000Z

124

DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramof EnergyDepartmentTechnical ServicesTechnology

125

Report of the Fuel Cycle Subcommittee of the Nuclear Energy Advisory  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashesEnergy by

126

Americium/Lanthanide Separations in Alkaline Solutions for Advanced Nuclear Fuel Cycles  

SciTech Connect (OSTI)

Project goals: Can used nuclear fuel be partitioned by dissolution in alkaline aqueous solution to give a solution of uranium, neptunium, plutonium, americium and curium and a filterable solid containing nearly all of the lanthanide fission products and certain other fission products? What is the chemistry of Am/Cm/Ln in oxidative carbonate solutions? Can higher oxidation states of Am be stabilized and exploited? Conclusions: Am(VI) is kinetically stable in 0.5-2.0 M carbonate solutions for hours. Aliquat 336 in toluene has been successfully shown to extract U(VI) and Pu(VI) from carbonate solutions. (Stepanov et al 2011). Higher carbonate concentration gives lower D, SF{sub U/Eu} for = 4 in 1 M K{sub 2}CO{sub 3}. Experiments with Am(VI) were unsuccessful due to reduction by the organics. Multiple sources of reducing organics...more optimization. Reduction experiments of Am(VI) in dodecane/octanol/Aliquat 336 show that after 5 minutes of contact, only 30-40% of the Am(VI) has been reduced. Long enough to perform an extraction. Shorter contact times, lower T, and lower Aliquat 336 concentration still did not result in any significant extraction of Am. Anion exchange experiments using a strong base anion exchanger show uptake of U(VI) with minimal uptake of Nd(III). Experiments with Am(VI) indicate Am sorption with a Kd of 9 (10 minute contact) but sorption mechanism is not yet understood. SF{sub U/Nd} for = 7 and SF{sub U/Eu} for = 19 after 24 hours in 1 M K{sub 2}CO{sub 3}.

Goff, George S. [Los Alamos National Laboratory; Long, Kristy Marie [Los Alamos National Laboratory; Reilly, Sean D. [Los Alamos National Laboratory; Jarvinen, Gordon D. [Los Alamos National Laboratory; Runde, Wolfgang H. [Los Alamos National Laboratory

2012-06-11T23:59:59.000Z

127

Advanced nuclear fuel  

ScienceCinema (OSTI)

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-15T23:59:59.000Z

128

Advanced nuclear fuel  

SciTech Connect (OSTI)

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-14T23:59:59.000Z

129

Fusion transmutation of waste and the role of the In-Zinerator in the nuclear fuel cycle.  

SciTech Connect (OSTI)

The Z-Pinch fusion experiment at Sandia National Laboratories has been making significant progress in developing a high-energy fusion neutron source. This source has the potential to be used for the transmutation of nuclear waste. The goal of this research was to do a scoping-level design of a fusion-based transmuter to determine potential transmutation rates along with the fusion yield requirements. Two ''In-Zinerator'' designs have been developed to transmute the long-lived actinides that dominate the heat production in spent fuel. The first design burns up all transuranics (TRU) in spent fuel (Np, Pu, Am, Cm), and the second is focused only on burning up Am and Cm. The TRU In-Zinerator is designed for a fuel cycle requiring burners to get rid of all the TRU with no light water reactor (LWR) recycle. The Am/Cm In-Zinerator is designed for a fuel cycle with Np/Pu recycling in LWRs. Both types of In-Zinerators operate with a moderate fusion source driving a sub-critical actinide blanket. The neutron multiplication is 30, so a great deal of energy is produced in the blanket. With the design goal of generating 3,000 MW{sub th}, about 1,200 kg/yr of actinides can be destroyed in each In-Zinerator. Each TRU In-Zinerator will require a 20 MW fusion source, and it will take a total of 20 units (each producing 3,000 MWth) to burn up the TRU as fast as the current LWR fleet can produce it. Each Am/Cm In-Zinerator will require a 24 MW fusion source, and it will take a total of 2 units to burn up the Am/Cm as fast as the current LWR fleet can produce it. The necessary fusion yield could be achieved using a 200-240 MJ target fired once every 10 seconds.

Cipiti, Benjamin B.

2006-06-01T23:59:59.000Z

130

Evaluation of alternative fuel cycle strategies for nuclear power generation in the 21st century  

E-Print Network [OSTI]

The deployment of fuel recycling through either CONFU (COmbined Non-Fertile and UO2 fuel) thermal watercooled reactors (LWRs) or fast ABR (Actinide Burner Reactor) reactors is compared to the Once-Through LWR reactor system ...

Boscher, Thomas

2005-01-01T23:59:59.000Z

131

A decision analysis framework for the U.S. nuclear fuel cycle  

E-Print Network [OSTI]

If we are willing to pay a premium, we may be able to mitigate some of the long-lasting impacts of nuclear waste. Deciding how to navigate this tradeoff, between cost and waste, is a central challenge for stewards of nuclear ...

Pierpoint, Lara Marie

2011-01-01T23:59:59.000Z

132

The Economic, repository and proliferation implications of advanced nuclear fuel cycle  

SciTech Connect (OSTI)

The goal of this project was to compare the effects of recycling actinides using fast burner reactors, with recycle that would be done using inert matrix fuel burned in conventional light water reactors. In the fast reactor option, actinides from both spent light water and fast reactor fuel would be recycled. In the inert matrix fuel option, actinides from spent light water fuel would be recycled, but the spent inert matrix fuel would not be reprocessed. The comparison was done over a limited 100-year time horizon. The economic, repository and proliferation implications of these options all hinge on the composition of isotopic byproducts of power production. We took the perspective that back-end economics would be affected by the cost of spent fuel reprocessing (whether conventional uranium dioxide fuel, or fast reactor fuel), fuel manufacture, and ultimate disposal of high level waste in a Yucca Mountain like geological repository. Central to understanding these costs was determining the overall amount of reprocessing needed to implement a fast burner, or inert matrix fuel, recycle program. The total quantity of high level waste requiring geological disposal (along with its thermal output), and the cost of reprocessing were also analyzed. A major advantage of the inert matrix fuel option is that it could in principle be implemented using the existing fleet of commercial power reactors. A central finding of this project was that recycling actinides using an inert matrix fuel could achieve reductions in overall actinide production that are nearly very close to those that could be achieved by recycling the actinides using a fast burner reactor.

Mark Deinert; K.B. Cady

2011-09-04T23:59:59.000Z

133

Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S.Development Projects |Reserve |Education at

134

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartmentEnergy Industry and

135

The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios  

SciTech Connect (OSTI)

This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

Bathke, C. G.; Wallace, R. K.; Ireland, J. R.; Johnson, M. W.; Hase, Kevin R.; Jarvinen, G. D.; Ebbinghaus, B. B.; Sleaford, Brad W.; Bradley, Keith S.; Collins, Brian A.; Smith, Brian W.; Prichard, Andrew W.

2010-09-01T23:59:59.000Z

136

Environmental Impacts, Health and Safety Impacts, and Financial Costs of the Front End of the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rolling up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.

Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider; John S. Collins; Roderick G. Eggert; Brett Jordan; Bethany L. Smith; Timothy M. Ault; Alan G. Croff; Steven L. Krahn; William G. Halsey; Mark Sutton; Clay E. Easterly; Ryan P. Manger; C. Wilson McGinn; Stephen E. Fisher; Brent W. Dixon; Latif Yacout

2013-07-01T23:59:59.000Z

137

Standard guide for establishing calibration for a measurement method used to analyze nuclear fuel cycle materials  

E-Print Network [OSTI]

1.1 This guide provides the basis for establishing calibration for a measurement method typically used in an analytical chemistry laboratory analyzing nuclear materials. Guidance is included for such activities as preparing a calibration procedure, selecting a calibration standard, controlling calibrated equipment, and documenting calibration. The guide is generic and any required technical information specific for a given method must be obtained from other sources.

American Society for Testing and Materials. Philadelphia

2003-01-01T23:59:59.000Z

138

The Effectiveness of Full Actinide Recycle as a Nuclear Waste Management Strategy when Implemented over a Limited Timeframe – Part II: Thorium Fuel Cycle  

E-Print Network [OSTI]

water reactors (LWRs) or sodium-cooled fast reactors (SFRs) is considered for uranium (U) fuel cycles. With full actinide recycling, at least 6 generations of SFRs are required in a gradual phase-out of nuclear power to achieve transmutation performance...

Lindley, Benjamin A.; Fiorina, Carlo; Gregg, Robert; Franceschini, Fausto; Parks, Geoffrey T.

2014-12-06T23:59:59.000Z

139

An extended conventional fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor  

SciTech Connect (OSTI)

The B and W mPower{sup TM} reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

Scarangella, M. J. [Babcock and Wilcox Company, 109 Ramsey Place, Lynchburg, VA 24502 (United States)

2012-07-01T23:59:59.000Z

140

What is spent nuclear fuel?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is Spent Nuclear Fuel? Spent nuclear fuel (SNF) is irradiated fuel or targets containing uranium, plutonium, or thorium that is permanently withdrawn from a nuclear reactor or...

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

advanced nuclear fuels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

142

advanced nuclear fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

143

Answering Key Fuel Cycle Questions  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

2003-10-01T23:59:59.000Z

144

Nuclear Fuels: Promise and Limitations  

SciTech Connect (OSTI)

From 1950 through 1980, scientists, engineers and national leaders confidently predicted an early twenty-first century where fast breeder reactors and commercial nuclear fuel reprocessing were commonplace. Such a scenario seemed necessary for a world with the more than 1000 GWe of nuclear energy needed to meet such an ever-increasing thirst for energy. Thirty years later uranium reserves are increasing on pace with consumption, the growth of nuclear power has been slowed, commercial breeder reactors have yet to enter the marketplace, and less than a handful of commercial reprocessing plants operate. As Nobel Laureate Niels Bohr famously said, “Prediction is very difficult, especially if it’s about the future.” The programme for IChemE’s 2012 conference on the nuclear fuel cycle features a graphic of an idealized nuclear fuel cycle that symbolizes the quest for a closed nuclear fuel cycle featuring careful husbanding of precious resources while minimizing the waste footprint. Progress toward achieving this ideal has been disrupted by technology innovations in the mining and petrochemical industries, as well as within the nuclear industry.

Harold F. McFarlane

2012-03-01T23:59:59.000Z

145

Associate Deputy Assistant Secretary, Office of Fuel Cycle Technologies  

Broader source: Energy.gov [DOE]

The Associate Deputy Assistant Secretary for Fuel Cycle Technologies, Office of Nuclear Energy (NE) will provide leadership and expertise in supporting the management of national programs that...

146

Fuel Cycle Subcommittee  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014EnergyNEAC Fuel

147

Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group...  

Broader source: Energy.gov (indexed) [DOE]

Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation...

148

Fuel Cycle System Analysis Handbook  

SciTech Connect (OSTI)

This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty diagrams, which show at a glance combined uncertainty information, section 9.2 has a new set of simpler graphs that show the impact on fuel cycle costs for once through, 1-tier, and 2-tier scenarios as a function of key input parameters.

Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

2009-06-01T23:59:59.000Z

149

ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT  

SciTech Connect (OSTI)

The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.

Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

2012-04-25T23:59:59.000Z

150

Technology and apparatus for solidification of radioactive wastes from nuclear fuel cycle by high temperature adsorption of metals on inorganic matrices  

SciTech Connect (OSTI)

This study deals with the investigation of high-level waste (HLW) solidification by high-temperature adsorption of radionuclides on porous inorganic matrices. An appropriate drum-type apparatus using magnetic gear drive was designed and tested. The report contains the test results of the solidification process of high-level radioactive raffinate from the first regeneration extraction cycle of irradiated fuel elements from nuclear power plants. Industrial-scale tests of the HLW solidification process (technology and equipment) are planned.

Nardova, A.K.; Philipov, E.A.; Kudriavtsev, Y.G.; Dzekun, E.G.; Parfanovitch, B.N. [Russian Research Inst. of Chemical Technology, Moscow (Russian Federation)

1993-12-31T23:59:59.000Z

151

Spent nuclear fuel reprocessing modeling  

SciTech Connect (OSTI)

The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V. [Bochvar Institute, 5 Rogova str., Moscow 123098 (Russian Federation); Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I. [Russian Federal Nuclear Center - VNIITF E.I. Zababakhin, p.o.box 245, Snezhinsk, 456770 (Russian Federation)

2013-07-01T23:59:59.000Z

152

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description  

SciTech Connect (OSTI)

The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

Not Available

1980-06-01T23:59:59.000Z

153

Proliferation Resistant Nuclear Reactor Fuel  

SciTech Connect (OSTI)

Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

2011-02-18T23:59:59.000Z

154

Multi-cycle boiling water reactor fuel cycle optimization  

SciTech Connect (OSTI)

In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

Ottinger, K.; Maldonado, G.I. [University of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)

2013-07-01T23:59:59.000Z

155

Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.  

SciTech Connect (OSTI)

A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D. (Nuclear Engineering Division); (Univ. of Massachusetts); (Univ. of Surrey)

2011-10-06T23:59:59.000Z

156

Comprehensive Fuel Cycle - Community Perspective - 13093  

SciTech Connect (OSTI)

Should a five-county region surrounding the Department of Energy's Savannah River Site ('SRS') use its assets to help provide solutions to closing the nation's nuclear fuel cycle? That question has been the focus of a local ad hoc multi-disciplinary community task force (Tier I) that has been at work in recent months outlining issues and identifying unanswered questions to determine if assuming a leadership role in closing the nuclear fuel cycle is in the community's interest. If so, what are the terms and conditions under which we the community would agree to participate? Our starting point was the President's Blue Ribbon Commission on America's Nuclear Future ('Commission') which made a total of eight (8) recommendations in its final report. There are several recommendations that are directly relevant to the Tier I group and potential efforts of the Region. These are the 'consent-based approach', the creation of an independent nuclear waste management entity funded from the existing nuclear waste fee; the 'prompt efforts to develop one or more consolidated storage facilities', and 'continued U.S. innovation in nuclear energy technology and for workforce development'. (authors)

McLeod, Richard V. [Savannah River Community Reuse Organization, P.O. Box 696, Aiken, SC 29802 (United States)] [Savannah River Community Reuse Organization, P.O. Box 696, Aiken, SC 29802 (United States); Frazier, Timothy A. [Dickstein Shapiro LLP, 1825 Eye Street NW, Washington, DC, 20006-5403 (United States)] [Dickstein Shapiro LLP, 1825 Eye Street NW, Washington, DC, 20006-5403 (United States)

2013-07-01T23:59:59.000Z

157

Dynamic Analysis of Fuel Cycle Transitioning  

SciTech Connect (OSTI)

This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

2009-09-01T23:59:59.000Z

158

2013 Fuel Cycle Technologies Annual Review MeetingTransactions Report  

SciTech Connect (OSTI)

The Fuel Cycle Technologies (FCT) program of the Department of Energy (DOE) Office of Nuclear Energy (NE) is charged with identifying promising sustainable fuel cycles and developing strategies for effective disposition of used fuel and high-level nuclear waste, enabling policymakers to make informed decisions about these critical issues. Sustainable fuel cycles will improve uranium resource utilization, maximize energy generation while minimizing waste, improve safety, and limit proliferation risk. To achieve its mission, FCT has initiated numerous activities in each of the technical campaign areas, of which this report provides a sample.

Not Listed

2013-11-01T23:59:59.000Z

159

Development Plan for the Fuel Cycle Simulator  

SciTech Connect (OSTI)

The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

Brent Dixon

2011-09-01T23:59:59.000Z

160

Nuclear Fuel Facts: Uranium | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities NuclearCycleFacts:

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Spent Fuel Program Drivers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was created to plan and coordinate the management of Department of Energy-owned spent nuclear fuel. It was established as a result of a 1992 decision to stop spent nuclear fuel...

162

National Spent Nuclear Fuel Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

need to safely and efficiently manage all DOE-owned spent nuclear fuel and high level waste and prepare it for disposal. The National Spent Nuclear Fuel Program is addressing...

163

Nuclear Weapons Life Cycle | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclearLife Cycle | National

164

Nuclear fuel electrorefiner  

DOE Patents [OSTI]

The present invention relates to a nuclear fuel electrorefiner having a vessel containing a molten electrolyte pool floating on top of a cadmium pool. An anodic fuel dissolution basket and a high-efficiency cathode are suspended in the molten electrolyte pool. A shroud surrounds the fuel dissolution basket and the shroud is positioned so as to separate the electrolyte pool into an isolated electrolyte pool within the shroud and a bulk electrolyte pool outside the shroud. In operation, unwanted noble-metal fission products migrate downward into the cadmium pool and form precipitates where they are removed by a filter and separator assembly. Uranium values are transported by the cadmium pool from the isolated electrolyte pool to the bulk electrolyte pool, and then pass to the high-efficiency cathode where they are electrolytically deposited thereto.

Ahluwalia, Rajesh K.; Hua, Thanh Q.

2004-02-10T23:59:59.000Z

165

Annotated Bibliography for Drying Nuclear Fuel  

SciTech Connect (OSTI)

Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

Rebecca E. Smith

2011-09-01T23:59:59.000Z

166

Experience from the Short Course on Introduction to Nuclear Chemistry and Fuel Cycle Separations and Future Educational Opportunities  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJusticeEnergy7249 Federal RegisterJanuary anda KeyShort

167

The Adoption of Advanced Fuel Cycle Technology Under a Single Repository Policy  

SciTech Connect (OSTI)

Develops the tools to investiage the hypothesis that the savings in repository space associated with the implementation of advanced nuclear fuel cycles can result in sufficient cost savings to offset the higher costs of those fuel cycles.

Paul Wilson

2009-11-02T23:59:59.000Z

168

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect (OSTI)

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

169

Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities  

SciTech Connect (OSTI)

Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

2014-07-01T23:59:59.000Z

170

Spent fuel storage and waste management fuel cycle optimization using CAFCA  

SciTech Connect (OSTI)

Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

Brinton, S.; Kazimi, M. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139 (United States)

2013-07-01T23:59:59.000Z

171

Fuel Cycle Research and Development Program  

Office of Environmental Management (EM)

29, 2009 Fuel Cycle Research and Development DM 195665 5 Identify the governing phenomenology Identify the governing phenomenology Develop a first-principle based model of the...

172

Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design  

SciTech Connect (OSTI)

The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.

Forsberg, C. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 24-207A Cambridge, MA 02139 (United States); Miller, W.F. [Texas A.M. University System, MS 3133 College Station, TX 77843-3133 (United States)

2013-07-01T23:59:59.000Z

173

Fuel cycle centers revisited: Consolidation of fuel cycle activities in a few countries  

SciTech Connect (OSTI)

Despite varied expressions, the general impression remains that the international fuel cycle center concept, whatever its merits, is visionary. It also is quite possibly unattainable in light of strong national pressures toward independence and self-sufficiency in all things nuclear. Is the fuel cycle center an idea that has come and gone? Is it an idea whose time has not yet come? Or is it, as this paper suggests, an idea that has already arrived on the scene, attracting little attention or even acknowledgement of its presence? The difficult in answering this questions arises, in part, from the fact that despite its long and obvious appeal, there has been very little systematic analysis of the concept itself. Such obvious questions as how many and where fuel cycle centers should be located; what characteristics should the hot country or countries possess; and what are the institutional forms or features that endow the concept with enhanced proliferation protection have rarely been seriously and systematically addressed. The title of this paper focuses on limiting the geographic spread of fuel cycle facilities, and some may suggest that doing so does not necessarily call for any type of international or multinational arrangements applicable to those that exist. It is a premise of this paper, however, that a restriction on the number of countries possessing sensitive fuel cycle facilities necessarily involves some degree of multinationalization. This is not only because in every instance a nonproliferation pledge and international or multinational safeguards, or both, will be applied to the facility, but also because a restriction on the number of countries possessing these facilities implies that those in existence will serve a multinational market. This feature in itself is an important form of international auspices. Thus, the two concepts--limitation and multinationalization--if not necessarily one and the same, are at least de facto corollaries.

Kratzer, M.B. [Kratzer (Myron B.), Annapolis, MD (United States)

1996-07-01T23:59:59.000Z

174

Physical fitness training reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials  

SciTech Connect (OSTI)

The recommendations contained throughout this NUREG are being provided to the Nuclear Regulatory Commission (NRC) as a reference manual which can be used by licensee management as they develop a program plan for the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The recommendations in this NUREG are similar in part to those contained within the Department of Energy (DOE) Medical and Fitness Implementation Guide which was published in March 1991. The guidelines contained in this NUREG are not requirements, and compliance is not required. 25 refs.

Arzino, P.A.; Caplan, C.S.; Goold, R.E. (California State Univ., Hayward, CA (United States). Foundation)

1991-09-01T23:59:59.000Z

175

Medical screening reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials  

SciTech Connect (OSTI)

The recommendations contained throughout this NUREG were provided to the Nuclear Regulatory Commission (NRC) as medical screening information that could be used by physicians who are evaluating the parameters of the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The medical recommendations in this NUREG are similar in content to the medical standards contained in 10 CFR Part 1046 which, in part, specifies medical standards for the protective force personnel regulated by the Department of Energy. The guidelines contained in this NUREG are not requirements, and compliance is not required. 3 refs.

Arzino, P.A.; Brown, C.H. (California State Univ., Hayward, CA (United States). Foundation)

1991-09-01T23:59:59.000Z

176

Regulatory cross-cutting topics for fuel cycle facilities.  

SciTech Connect (OSTI)

This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

2013-10-01T23:59:59.000Z

177

Swelling-resistant nuclear fuel  

DOE Patents [OSTI]

A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.

Arsenlis, Athanasios (Hayward, CA); Satcher, Jr., Joe (Patterson, CA); Kucheyev, Sergei O. (Oakland, CA)

2011-12-27T23:59:59.000Z

178

Physics challenges for advanced fuel cycle assessment  

SciTech Connect (OSTI)

Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

2014-06-01T23:59:59.000Z

179

Spent Nuclear Fuel Fact Sheets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

management needs. By coordinating common needs for research, technology development, and testing programs, the National Spent Nuclear Fuel Program is achieving cost efficiencies...

180

Fuel cycles and envisioned roles of fast neutron reactors and hybrids  

SciTech Connect (OSTI)

Future innovative nuclear fuel cycles will require insuring sustainability in terms of safe operation, optimal use of resources, radioactive waste minimization and reduced risk of proliferation. The present paper introduces some basic notions and fundamental fuel cycle strategies. The simulation approach needed to evaluate the impact of the different fuel cycle alternatives will also be shortly discussed.

Salvatores, Massimo [CEA-Cadarache, DEN-Dir, Bat. 101, St-Paul-Lez-Durance 13108 (France)

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles  

SciTech Connect (OSTI)

Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

2009-04-01T23:59:59.000Z

182

High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty  

SciTech Connect (OSTI)

High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

Charles Park

2006-12-01T23:59:59.000Z

183

Moving toward multilateral mechanisms for the fuel cycle  

SciTech Connect (OSTI)

Multilateral mechanisms for the fuel cycle are seen as a potentially important way to create an industrial infrastructure that will support a renaissance and at the same time not contribute to the risk of nuclear proliferation. In this way, international nuclear fuel cycle centers for enrichment can help to provide an assurance of supply of nuclear fuel that will reduce the likelihood that individual states will pursue this sensitive technology, which can be used to produce nuclear material directly usable nuclear weapons. Multinational participation in such mechanisms can also potentially promote transparency, build confidence, and make the implementation of IAEA safeguards more effective or more efficient. At the same time, it is important to ensure that there is no dissemination of sensitive technology. The Russian Federation has taken a lead role in this area by establishing an International Uranium Enrichment Center (IUEC) for the provision of enrichment services at its uranium enrichment plant located at the Angarsk Electrolysis Chemical Complex (AECC). This paper describes how the IUEe is organized, who its members are, and the steps that it has taken both to provide an assured supply of nuclear fuel and to ensure protection of sensitive technology. It also describes the relationship between the IUEC and the IAEA and steps that remain to be taken to enhance its assurance of supply. Using the IUEC as a starting point for discussion, the paper also explores more generally the ways in which features of such fuel cycle centers with multinational participation can have an impact on safeguards arrangements, transparency, and confidence-building. Issues include possible lAEA safeguards arrangements or other links to the IAEA that might be established at such fuel cycle centers, impact of location in a nuclear weapon state, and the transition by the IAEA to State Level safeguards approaches.

Panasyuk,A.; Rosenthal,M.; Efremov, G. V.

2009-04-17T23:59:59.000Z

184

Nuclear Fuels | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy Nuclear Fuels

185

Fuel Cycle Technologies Annual Review Meeting Transactions Report  

SciTech Connect (OSTI)

The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

Lori Braase; W. Edgar May

2014-11-01T23:59:59.000Z

186

Why reconsider the thorium fuel cycle?  

SciTech Connect (OSTI)

In this paper we have endeavored to present the available technical information on the potential use of Th in nuclear fuel cycle (FC) applications as compared to U without subjective evaluations. Where helpful, we have compared the technical attributes of Th-232 as a fertile isotope and U-233 as a fissile isotope with other similar isotopes (i.e., U-238, and U-235 and Pu-239, respectively). In addition, we have summarized (a) experience gained to-date with fabricating and reprocessing of Th-232/U-233 fuels, (b) factors concerning Th fuel irradiation in both test reactors and power reactors, and (c) differences in the backend of the FC with emphasis on repository risks. As might be expected, many technical aspects of Th vs. U have not changed since the sixties. However, there are some factors elaborated in this paper that have changed. Changes potentially encouraging Th use are: (a) the ability to recover large amounts of Th as a byproduct with small attendant costs and environmental impacts, (b) the potential to produce fewer minor actinides (MA) and less Pu during power production, and (c) increased concerns about proliferation which might be somewhat mitigated by the high radioactivity and amenability to isotopic dilution of U-233. Changes challenging Th utilization are: (a) obtaining sufficient experience handling Th/U-233 fuels, (b) the existence of large inventories of depleted U and continuing discovery of large U resources, and (c) recognition that the extent to which U-233 might mitigate proliferation concerns is not as large as originally hoped.

Krahn, S.; Croff, A.; Ault, T.; Wymer, R. [Vanderbilt University: 2301 Vanderbilt Place/PMB 351831, Nashville, TN, 37235 (United States)

2013-07-01T23:59:59.000Z

187

Dry Processing of Used Nuclear Fuel  

SciTech Connect (OSTI)

Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

K. M. Goff; M. F. Simpson

2009-09-01T23:59:59.000Z

188

6 Nuclear Fuel Designs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarchTHEMaterials and1663 January

189

Fuel Cycle Research and Development Presentation Title  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014Energy CycleSiC

190

Fuel Cycle Technologies | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuel Cycle Research &

191

A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors  

SciTech Connect (OSTI)

A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

Jeong, C. J.; Park, C. J.; Choi, H. [Korea Atomic Energy Research Inst., P.O. Box 150, Yuseong, Daejeon, 305-600 (Korea, Republic of)

2006-07-01T23:59:59.000Z

192

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...  

Open Energy Info (EERE)

- Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle...

193

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect (OSTI)

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

None

2011-08-17T23:59:59.000Z

194

LIFE vs. LWR: End of the Fuel Cycle  

SciTech Connect (OSTI)

The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs.

Farmer, J C; Blink, J A; Shaw, H F

2008-10-02T23:59:59.000Z

195

LIFE Materials: Fuel Cycle and Repository Volume 11  

SciTech Connect (OSTI)

The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of the repository design. (4) A simple, but arguably conservative, estimate for the dose from a repository containing 63,000 MT of spent LIFE fuel would have similar performance to the currently planned Yucca Mountain Repository. This indicates that a properly designed 'LIFE Repository' would almost certainly meet the proposed Nuclear Regulatory Commission standards for dose to individuals, even though the waste in such a repository would have produced 20-30 times more generated electricity than the reference case for Yucca Mountain. The societal risk/benefit ratio for a LIFE repository would therefore be significantly better than for currently planned repositories for LWR fuel.

Shaw, H; Blink, J A

2008-12-12T23:59:59.000Z

196

On-Going Comparison of Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) program is addressing key issues associated with critical national needs. This paper compares the major options with these major “outcome” objectives - waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety as well as “process” objectives associated with readiness to proceed and adaptability and robustness in the face of uncertainties. Working together, separation, transmutation, and fuel technologies provide complete energy systems that can improve waste management compared to the current “once-through/no separation” approach. Future work will further increase confidence in potential solutions, optimize solutions for the mixtures of objectives, and develop attractive development and deployment paths for selected options. This will allow the nation to address nearer-term issues such as avoiding the need for additional geological repositories while making nuclear energy a more sustainable energy option for the long-term. While the Generation IV Initiative is exploring multiple reactor options for future nuclear energy for both electricity generation and additional applications, the AFCI is assessing fuel cycles options for either a continuation or expansion of nuclear energy in the United States. This report compares strategies and technology options for managing the associated spent fuel. There are four major potential strategies, as follows: · The current U.S. strategy is once through: standard nuclear power plants, standard fuel burnup, direct geological disposal of spent fuel. Variants include higher burnup fuels in water-cooled power plants, once-through gas-cooled power plants, and separation (without recycling) of spent fuel to reduce the number and cost of geological waste packages. · The second strategy is thermal recycle, recycling some fuel components in thermal reactors. This strategy extends the useful life of the geologic repository, producing energy from the fissile transuranics in spent fuel while reducing plutonium. · The third strategy is thermal+fast recycle. The difference from the second strategy is that more components of spent fuel can be recycled to reduce both fissile and non-fissile transuranics, but at the cost of developing and deploying at least one fast reactor or accelerator driven system. A mix of thermal and fast reactors would implement this strategy. · The fourth strategy is pure fast recycle; fuel would not be recycled in thermal reactors, which would be phased out in favor of deploying fast spectrum power reactors.

Steven J. Piet; Ralph G. Bennett; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mark Roth; J. D. Smith; Robert Hill; James Laidler; Kemal Pasamehmetoglu

2004-10-01T23:59:59.000Z

197

NMSS handbook for decommissioning fuel cycle and materials licensees  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

1997-03-01T23:59:59.000Z

198

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

199

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by...

200

Spent nuclear fuel sampling strategy  

SciTech Connect (OSTI)

This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation.

Bergmann, D.W.

1995-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375  

SciTech Connect (OSTI)

Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)

Parker, Frank L. [Vanderbilt University (United States)

2012-07-01T23:59:59.000Z

202

Fossil fuel combined cycle power system  

DOE Patents [OSTI]

A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

2006-10-10T23:59:59.000Z

203

Estimating Externalities of Natural Gas Fuel Cycles, Report 4  

SciTech Connect (OSTI)

This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1998-01-01T23:59:59.000Z

204

Estimating Externalities of Coal Fuel Cycles, Report 3  

SciTech Connect (OSTI)

The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1994-09-01T23:59:59.000Z

205

VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model  

SciTech Connect (OSTI)

The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating “what if” scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., “reactor types” not individual reactors and “separation types” not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. We use Microsoft Excel 2003 and have not tested VISION with Microsoft Excel 2007. The VISION team uses both Powersim Studio 2005 and 2009 and it should work with either.

Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Benjamin A. Baker; Joseph Grimm

2009-08-01T23:59:59.000Z

206

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

207

Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs 2012...

208

Compositions and methods for treating nuclear fuel  

DOE Patents [OSTI]

Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

2013-08-13T23:59:59.000Z

209

Compositions and methods for treating nuclear fuel  

DOE Patents [OSTI]

Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

2014-01-28T23:59:59.000Z

210

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

of hydride fueled BWRs. Nuclear Engineering and Design, 239:Fueled PWR Cores. Nuclear Engineering and Design, 239:1489–Hydride Fueled LWRs. Nuclear Engineering and Design, 239:

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

211

Method of increasing the deterrent to proliferation of nuclear fuels  

DOE Patents [OSTI]

A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.

Rampolla, Donald S. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

212

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

213

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

214

Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from weaning the U.S. from energy imports (e.g., measures of energy self-sufficiency), and minimization of future high level waste (HLW) repositories world-wide.

David E. Shropshire

2009-05-01T23:59:59.000Z

215

Fossil fuel combined cycle power generation method  

DOE Patents [OSTI]

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

216

Used nuclear fuel storage options including implications of small modular reactors  

E-Print Network [OSTI]

This work addresses two aspects of the nuclear fuel cycle system with significant policy implications. The first is the preferred option for used fuel storage based on economics: local, regional or national storage. The ...

Brinton, Samuel O. (Samuel Otis)

2014-01-01T23:59:59.000Z

217

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents [OSTI]

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

218

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

219

Simulated nuclear reactor fuel assembly  

DOE Patents [OSTI]

An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, Victor T. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

220

Simulated nuclear reactor fuel assembly  

DOE Patents [OSTI]

An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, V.T.

1993-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

On-Going Comparison of Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

This paper summarizes the current comprehensive comparison of four major fuel cycle strategies: once-through, thermal recycle, thermal+fast recycle, fast recycle. It then proceeds to summarize comparison of the major technology options for the key elements of the fuel cycle that can implement each of the four strategies - separation processing, transmutation reactors, and fuels.

Piet, S.J.; Bennett, R.G.; Dixon, B.W.; Herring, J.S.; Shropshire, D.E.; Roth, M.; Smith, J.D.; Finck, P.; Hill, R.; Laidler, J.; Pasamehmetoglu, K.

2004-10-03T23:59:59.000Z

222

Breeding nuclear fuels with accelerators: replacement for breeder reactors  

SciTech Connect (OSTI)

One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables.

Grand, P.; Takahashi, H.

1984-01-01T23:59:59.000Z

223

Fuel cycle assessment: A compendium of models, methodologies, and approaches  

SciTech Connect (OSTI)

The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

Not Available

1994-07-01T23:59:59.000Z

224

System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)  

SciTech Connect (OSTI)

This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models don’t like “TBD” as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of “modified open fuelcycles, employing “minimum fuel treatment” as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

2010-09-01T23:59:59.000Z

225

Spent Nuclear Fuel (SNF) Project Execution Plan  

SciTech Connect (OSTI)

The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

LEROY, P.G.

2000-11-03T23:59:59.000Z

226

Assessment for advanced fuel cycle options in CANDU  

SciTech Connect (OSTI)

The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

Morreale, A.C.; Luxat, J.C. [McMaster University, 1280 Main St. W. Hamilton, Ontario, L8S 4L7 (Canada); Friedlander, Y. [AMEC-NSS Ltd., 700 University Ave. 4th Floor, Toronto, Ontario, M5G 1X6 (Canada)

2013-07-01T23:59:59.000Z

227

A Technical Review of Non-Destructive Assay Research for the Characterization of Spent Nuclear Fuel Assemblies Being Conducted Under the US DOE NGSI - 11544  

E-Print Network [OSTI]

NA-24), National Nuclear Security Administration, U.S.nuclear energy together with the emergence of alternative fuel cycles. Introduction Energy security

Croft, S.

2012-01-01T23:59:59.000Z

228

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

capacity and operating efficiency of nuclear plants [31,operating efficiency of nuclear plants in the past decades.cost of the fuel Nuclear Plant Capacity Factor Nuclear

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

229

Reprocessing of nuclear fuels at the Savannah River Plant  

SciTech Connect (OSTI)

For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

Gray, L.W.

1986-10-04T23:59:59.000Z

230

THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR  

E-Print Network [OSTI]

THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR VERSUS A FAST SPECTRUM SOLID FUEL is to compare two main options dedicated to long-term energy production with Thorium: solid fuel with fast its be- haviour until it reaches the 232Th/233U equilibrium from two di erent starting fuels: 232Th

Paris-Sud XI, Université de

231

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

232

Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model  

SciTech Connect (OSTI)

The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

D. E. Shropshire; W. H. West

2005-11-01T23:59:59.000Z

233

The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes  

SciTech Connect (OSTI)

The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

Monti, S.; Toti, A. [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, PO Box 100, A-1400 Vienna (Austria)

2013-07-01T23:59:59.000Z

234

Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options  

SciTech Connect (OSTI)

Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6172 (United States)

2013-07-01T23:59:59.000Z

235

Report of the Fuel Cycle Research and Development Subcommittee...  

Energy Savers [EERE]

fuels, an important post Fukushima issue, and on issues related to the report of the Blue Ribbon Commission on America's Nuclear Future (BRC) as related to the responsibility...

236

Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502  

SciTech Connect (OSTI)

Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom)] [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)] [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

2013-07-01T23:59:59.000Z

237

Integrating repositories with fuel cycles: The airport authority model  

SciTech Connect (OSTI)

The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members appointed by the state governor, county governments, and city governments. This structure (1) enables state and local governments to work together to maximize job and tax benefits to local communities and the state, (2) provides a mechanism to address local concerns such as airport noise, and (3) creates an institutional structure with large incentives to maximize the value of the common asset, the runway. A repository site authority would have a similar structure and be the local interface to any national waste management authority. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

2012-07-01T23:59:59.000Z

238

Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options  

SciTech Connect (OSTI)

The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historical survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.

Steven J. Piet

2012-07-01T23:59:59.000Z

239

apex nuclear fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ... Kazimi, Mujid S. 19 Nuclear Waste Imaging and Spent Fuel Verification by...

240

Fuel Cycle Research and Development Presentation Title  

Broader source: Energy.gov (indexed) [DOE]

Recent characterization test results - Oxidation kinetics - Irradiation studies - Fuel-clad interactions - Elastic property measurement - Thermal properties - Failure model...

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Cycle Research and Development Presentation Title  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014Energy

242

Fuel Cycle Research and Development Program  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNG Expansion, L.P.Fuel CellResearch &

243

Fuel Cycle Technology Documents | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNG Expansion, L.P.Fuel CellResearch

244

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-07-17T23:59:59.000Z

245

Mox fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-05-15T23:59:59.000Z

246

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

Kantrowitz, M.L.; Rosenstein, R.G.

1998-10-13T23:59:59.000Z

247

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

1998-01-01T23:59:59.000Z

248

Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors  

SciTech Connect (OSTI)

Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the amount of discharged spent fuel, for a given energy production, compared with standard VVER/PWR. The total Pu production rate of RTF cycles is only 30 % of standard reactor. In addition, the isotopic compositions of the RTF's and standard reactor grade Pu are markedly different due to the very high burnup accumulated by the RTF spent fuel.

Todosow M.; Todosow M.; Raitses, G. (BNL) Galperin, A. (Ben Gurion University)

2009-07-12T23:59:59.000Z

249

FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS,  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Preparation for the AB 1007 (Pavley) Alternative Transportation Fuels Plan Proceeding Prepared For: California Energy, Project Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director

250

Optimization strategies for sustainable fuel cycle of the BR2 Reactor  

SciTech Connect (OSTI)

The objective of the present study is to achieve a sustainable fuel cycle in a long term of reactor operation applying advanced in-core loading strategies. The optimization criteria concern mainly enhancement of nuclear safety by means of reactivity margins and minimization of the operational fuel cycle cost at a given (constant) power level and same or longer cycle length. An important goal is also to maintain the same or to improve the experimental performances. Current developments are focused on optimization of control rods localization; optimization of fresh and burnt fuel assemblies in-core distribution; optimization of azimuth and axial fuel burn up strategies, including fuel assembly rotating and flipping upside down. (authors)

Kalcheva, S.; Van Den Branden, G.; Koonen, E. [SCK-CEN, BR2 Reactor, Boeretang 200, Mol, 2400 (Belgium)

2013-07-01T23:59:59.000Z

251

Composite construction for nuclear fuel containers  

DOE Patents [OSTI]

An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

Cheng, Bo-Ching (Fremont, CA); Rosenbaum, Herman S. (Fremont, CA); Armijo, Joseph S. (Saratoga, CA)

1987-01-01T23:59:59.000Z

252

Fuel Cycle Comparison for Distributed Power Technologies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

253

Comments on: Comprehensive Fuel Cycle Research Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysis of Parton

254

Comprehensive Fuel Cycle Research Study - SRSCRO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous MaterialsCompliance View ARPA-E NEPA

255

Characterization of a Stochastic Procedure for the Generation and Transport of Fission Fragments within Nuclear Fuels  

E-Print Network [OSTI]

With the ever-increasing demands of the nuclear power community to extend fuel cycles and overall core-lifetimes in a safe and economic manner, it is becoming more necessary to extend the working knowledge of nuclear fuel performance. From...

Hackemack, Michael Wayne

2013-04-15T23:59:59.000Z

256

Evaluation of fuel cycle scenarios on MOX fuel recycling in PWRs and SFRs  

SciTech Connect (OSTI)

Prospects on advanced fuel cycle scenario are considered for achieving a progressive integration of Sodium Fast Reactor (SFR) technology within the current French Pressurized Water Reactor (PWR) nuclear fleet, in a view to benefit from fissile material multi-recycling capability. A step by step process is envisioned, and emphasis is put on its potential implementation through the nuclear mass inventory calculations with the COSAC code. The overall time scale is not optimized. The first step, already implemented in several countries, the plutonium coming from the reprocessing of used Light Water Reactor (LWR) fuels is recycled into a small number of LWRs. The second step is the progressive introduction of the first SFRs, in parallel with the continuation of step 1. This second step lets to prepare the optimized multi recycling of MOX fuel which is considered in step 3. Step 3 is characterized by the introduction of a greater number of SFR and MOX management between EPR reactors and SFRs. In the final step 4, all the fleet is formed with SFRs. This study assesses the viability of each step of the overall scenario. The switch from one step to the other one could result from different constrains related to issues such as resources, waste, experience feedback, public acceptance, country policy, etc.

Carlier, B.; Caron-Charles, M.; Van Den Durpel, L. [AREVA, 1 place Jean Millier, Paris La Defense (France); Senentz, G. [AREVA, 33 rue La Lafayette, 75009 Paris (France); Serpantie, J.P. [AREVA, 10 rue Juliette Recamier, Lyon (France)

2013-07-01T23:59:59.000Z

257

Review of Used Nuclear Fuel Storage and Transportation Technical...  

Broader source: Energy.gov (indexed) [DOE]

action based on the comparison. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis More Documents & Publications Review of Used Nuclear Fuel...

258

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

259

Sustainability Indicators for Open-Cycle Thorium-Fuelled Nuclear Energy  

E-Print Network [OSTI]

to candidate countries is the “Global Nuclear Energy Partnership” (see Larry Brown’s report in Reference (IAEA2006a)). This fuel cycle involves the spent nuclear fuel being shipped back to the country which manufactured the fuel which, after reprocessing... -Cycle Stage (Fig. 1) Emissions Freshwater Aquatic Eco-Toxicity Potential FAETP kg 1,4- DCB(eq) Mn, Ml, CE, Fu, Re, SFR, DGD Marine Aquatic Eco-Toxicity Potential MAETP kg 1,4- DCB(eq) Mn, Ml, CE, Fu, Re, SFR, DGD Global Warming Potential...

Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

2012-06-28T23:59:59.000Z

260

Design and fuel management of PWR cores to optimize the once-through fuel cycle  

E-Print Network [OSTI]

The once-through fuel cycle has been analyzed to see if there are substantial prospects for improved uranium ore utilization in current

Fujita, Edward Kei

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Neutronics Design and Fuel Cycle Analysis of a High Conversion BWR with Pu-Th Fuel  

SciTech Connect (OSTI)

As part of the U.S. Department of Energy's (DOE) Nuclear Energy Research Initiative (NERI), a 'Generation IV' high conversion Boiling Water Reactor design is being investigated at Purdue University and Brookhaven National Laboratory. One of the primary innovative design features of the core proposed here is the use of Thorium as fertile material. In addition to the advantageous nonproliferation and waste characteristics of thorium fuel cycles, the use of thorium is particularly important in a tight pitch, high conversion lattice in order to insure a negative void coefficient throughout the operating life of the reactor. The principal design objective of a high conversion light water reactor is to substantially increase the conversion ratio (fissile atoms produced per fissile atoms consumed) of the reactor without compromising the safety performance of the plant. Since existing LWRs have a relatively low conversion ratio they require relatively frequent refueling which limits the economic efficiency of the plant. Also, the high volume of spent fuel can pose a burden for waste storage and the accumulation of plutonium in the uranium fuel cycle can become a materials proliferation issue. The development of Fast Breeder Reactors (FBR) as an alternative technology to alleviate some of these concerns has been delayed for various reasons. An intermediate solution has been to examine tight pitch light water reactors which can provide significant improvements in the fuel cycle performance of the existing LWRs by taking advantage of the increased conversion ratios from the harder neutron spectrum in the tight pitch lattice, as well as the by taking advantage of the waste and nonproliferation benefits of the thorium fuel cycle. Several High Conversion BWR designs have been proposed by researchers in Japan and elsewhere during the past several years. One of the more promising HCR designs is the Reduced Moderation Water Reactor (RMWR) proposed by JAERI [1]. Their design was based on a uranium fuel cycle and showed significant improvements in the fuel cycle performance compared to conventional BWRs. However, one of the drawbacks of their design was the potential for a positive void coefficient. In order to insure a negative void coefficient, the JAERI researchers designed a 'flat core' and introduced void tube assemblies in order to enhance neutron leakage in the event of core voiding. The use of thorium in the Purdue/BNL HCBWR design proposed here obviates the need for void tubes and makes it possible to increase the core height and improve neutron economy without the risk of a positive void coefficient. The principal reason for the improvement in the void coefficient is because Th-232 has a smaller fast fission cross section and resonance integral than U-238. In the design proposed here, it is possible to eliminate the void tubes in the RMWR design and replace the axial blanket with active fuel to increase the core height and further improve neutron economy. The core analyses in the work here was performed with the Purdue Fuel Management Code System [2] which is based on the Studsvik/Scandpower lattice physics code HELIOS, and the U.S. NRC core neutronics simulator, PARCS, which is coupled to the thermal-hydraulics code RELAP5. All these codes have been well assessed and benchmarked for analysis of light water reactor systems. (authors)

Xu, Yunlin; Downar, T.J. [Purdue University, West Lafayette, IN 47906-1290 (United States); Takahashi, H.; Rohatgi, U.S. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

2002-07-01T23:59:59.000Z

262

Fuel Cycle System Analysis Implications of Sodium-Cooled Metal-Fueled Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

If advanced fuel cycles are to include a large number of fast reactors (FRs), what should be the transuranic (TRU) conversion ratio (CR)? The nuclear energy era started with the assumption that they should be breeder reactors (CR > 1), but the full range of possible CRs eventually received attention. For example, during the recent U.S. Global Nuclear Energy Partnership program, the proposal was burner reactors (CR < 1). Yet, more recently, Massachusetts Institute of Technology's "Future of the Nuclear Fuel Cycle" proposed CR [approximately] 1. Meanwhile, the French company EDF remains focused on breeders. At least one of the reasons for the differences of approach is different fuel cycle objectives. To clarify matters, this paper analyzes the impact of TRU CR on many parameters relevant to fuel cycle systems and therefore spans a broad range of topic areas. The analyses are based on a FR physics parameter scan of TRU CR from 0 to [approximately]1.8 in a sodium-cooled metal-fueled FR (SMFR), in which the fuel from uranium-oxide-fueled light water reactors (LWRs) is recycled directly to FRs and FRs displace LWRs in the fleet. In this instance, the FRs are sodium cooled and metal fueled. Generally, it is assumed that all TRU elements are recycled, which maximizes uranium ore utilization for a given TRU CR and waste radiotoxicity reduction and is consistent with the assumption of used metal fuel separated by electrochemical means. In these analyses, the fuel burnup was constrained by imposing a neutron fluence limit to fuel cladding to the same constant value. This paper first presents static, time-independent measures of performance for the LWR [right arrow] FR fuel cycle, including mass, heat, gamma emission, radiotoxicity, and the two figures of merit for materials for weapon attractiveness developed by C. Bathke et al. No new fuel cycle will achieve a static equilibrium in the foreseeable future. Therefore, additional analyses are shown with dynamic, time-dependent measures of performance including uranium usage, TRU inventory, and radiotoxicity to evaluate the complex impacts of transition from the current uranium-fueled LWR system, and other more realistic impacts that may not be intuited from the time-independent steady-state conditions of the end-state fuel cycle. These analyses were performed using the Verifiable Fuel Cycle Simulation Model VISION. Compared with static calculations, dynamic results paint a different picture of option space and the urgency of starting a FR fleet. For example, in a static analysis, there is a sharp increase in uranium utilization as CR exceeds 1.0 (burner versus breeder). However, in dynamic analyses that examine uranium use over the next 1 to 2 centuries, behavior as CR crosses the 1.0 threshold is smooth, and other parameters such as the time required outside of reactors to recycle fuel become important. Overall, we find that there is no unambiguously superior value of TRU CR; preferences depend on the relative importance of different fuel cycle system objectives.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays; Gretchen E. Matthern; Jacob J. Jacobson; Ryan Clement; David W. Gerts

2013-03-01T23:59:59.000Z

263

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect (OSTI)

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K. NNL

2011-01-13T23:59:59.000Z

264

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect (OSTI)

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Boyer, B. D. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K., NNL

2010-11-24T23:59:59.000Z

265

Summary and recommendations: Total fuel cycle assessment workshop  

SciTech Connect (OSTI)

This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

NONE

1995-08-01T23:59:59.000Z

266

FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS AND ENERGY CONSUMPTION Prepared For: California to Tank, Criteria Pollutants, Multi-media impacts, EMFAC #12;#12;vii Table of Contents Acknowledgements

267

Uranium-plutonium-neptunium fuel cycle to produce isotopically denatured plutonium  

SciTech Connect (OSTI)

In view of the considerable amount of /sup 237/ Np produced as a by-product in nuclear power reactors, possible utilization of this nuclide in the nuclear fuel cycle has been studied. In particular, the performance of a gas-cooled fast breeder reactor as a neptunium burner was assessed. A strategy was developed and mass flows were computed for a denatured plutonium LWR strategy using uranium, plutonium and neptunium recycling. 10 refs.

Wydler, P.; Heer, W.; Stiller, P.; Wenger, H.U.

1980-06-01T23:59:59.000Z

268

Nuclear Fuels & Materials Spotlight Volume 4  

SciTech Connect (OSTI)

As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

2014-04-01T23:59:59.000Z

269

Proliferation resistance for fast reactors and related fuel cycles: issues and impacts  

SciTech Connect (OSTI)

The prospects for a dramatic growth in nuclear power may depend to a significant degree on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance and nuclear materials accountability. The challenges for fast reactors and related fuel cycles are especially critical. They are being explored in the Generation IV Tnternational Forum (GIF) and the Tnternational Atomic Energy Agency's (IAEA's) International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative, as well as by many states that are looking to these systems for the efficient lise of uranium resources and long-term energy security. How do any proliferation risks they may pose compare to other reactors, both existing and under development, and their fuel cycles? Can they be designed with intrinsic (technological) features to make these systems more proliferation resistant? What roles can extrinsic (institutional) features play in proliferation resistance? What are the anticipated safeguards requirements, and will new technologies and approaches need to be developed? How can safeguards be facilitated by the design process? These and other questions require a rethinking of proliferation resistance and the prospects for new technologies and other intrinsic and extrinsic features being developed that are responsive to specific issues for fast reactors and related fuel cycles and to the broader threat environment in which these systems will have to operate. There are no technologies that can wholly eliminate the risk of proliferation by a determined state, but technology and design can playa role in reducing state threats and perhaps in eliminating non-state threats. There will be a significant role for extrinsic factors, especially the various measures - from safeguards and physical protection to export controls - embodied in the international nuclear nonproliferation regime. This paper will offer an assessment of the issues surrounding, and the prospects for, efforts to develop proliferation resistance for fast reactors and related fuel cycles in the context of a nuclear renaissance. The focus of the analysis is on fast reactors.

Pilat, Joseph F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

270

Fuel cycle optimization of thorium and uranium fueled PWR systems  

E-Print Network [OSTI]

The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

Garel, Keith Courtnay

1977-01-01T23:59:59.000Z

271

idaho Accelerator Center Advanced Fuel Cycle Research  

SciTech Connect (OSTI)

The technical effort has been in two parts called; Materials Science and Instrumentation Development. The Materials Science technical program has been based on a series of research and development achievements in Positron-Annihilation Spectroscopy (PAS) for defect detection in structural materials. This work is of particular importance in nuclear power and its supporting systems as the work included detection of defects introduced by mechanical and thermal phenomena as well as those caused by irradiation damage. The second part of the program has focused on instrumentation development using active interrogation techniques supporting proliferation resistant recycling methodologies and nuclear material safeguards. This effort has also lead to basic physics studies of various phenomena relating to photo-fission. Highlights of accomplishments and facility improvement legacies in these areas over the program period include

Wells, Douglas; Dale, Dan

2011-10-20T23:59:59.000Z

272

Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project  

SciTech Connect (OSTI)

Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

Brent Dixon

2012-09-01T23:59:59.000Z

273

Dry Transfer Systems for Used Nuclear Fuel  

SciTech Connect (OSTI)

The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

Brett W. Carlsen; Michaele BradyRaap

2012-05-01T23:59:59.000Z

274

Fusion fuel cycle: material requirements and potential effluents  

SciTech Connect (OSTI)

Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

1980-10-01T23:59:59.000Z

275

SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT IN THE U.S. FUEL CYCLE PROGRAM  

SciTech Connect (OSTI)

Treatment or processing of used nuclear fuel to recycle uranium and plutonium has historically been accomplished using the well known PUREX process. The PUREX process has been used on an industrial scale for over 60 years in the nuclear industry. Research is underway to develop advanced separation methods for the recovery of other used fuel components, such as the minor actinides (Np, Am, Cm) for possible transmutation in fast spectrum reactors, or other constituents (e.g. Cs, Sr, transition metals, lanthanides) to help facilitate effective waste management options. This paper will provide an overview of new solvent extraction processes developed for advanced nuclear fuel cycles, and summarize recent experimental results. This will include the utilization of new extractants for selective separation of target metals and new processes developed to selectively recover one or more elements from used fuel.

Terry A. Todd

2011-10-01T23:59:59.000Z

276

Fuel Cycle Research & Development | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuel Cycle Research & Development

277

Initial concepts on energetics and mass releases during nonnuclear explosive events in fuel cycle facilities  

SciTech Connect (OSTI)

Non-nuclear explosions are one of the initiating events (accidents) considered in the US Nuclear Regulatory Commission study of formal methods for estimating the airborne release of radionuclides from fuel cycle facilities. Methods currently available to estimate the energetics and mass airborne release from the four types of non-nuclear explosive events (fast and slow physical explosions and fast and slow chemical explosions) are reviewed. The likelihood that fast physical explosions will occur in fuel cycle facilities appears to be remote and this type of explosion is not considered. Methods to estimate the consequences of slow physical and fast chemical explosions are available. Methods to estimate the consequences of slow chemical explosions are less well defined.

Halverson, M.A.; Mishima, J.

1986-09-01T23:59:59.000Z

278

Computational Design of Advanced Nuclear Fuels  

SciTech Connect (OSTI)

The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

2014-06-03T23:59:59.000Z

279

Double-clad nuclear fuel safety rod  

DOE Patents [OSTI]

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, William H. (Los Altos, CA); Atcheson, Donald B. (Cupertino, CA); Vaidyanathan, Swaminathan (San Jose, CA)

1984-01-01T23:59:59.000Z

280

Surrogate Spent Nuclear Fuel Vibration Integrity Investigation  

SciTech Connect (OSTI)

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear fuel elements made from nanophase materials  

DOE Patents [OSTI]

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

Heubeck, Norman B. (Schenectady, NY)

1998-01-01T23:59:59.000Z

282

Nuclear fuel elements made from nanophase materials  

DOE Patents [OSTI]

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

Heubeck, N.B.

1998-09-08T23:59:59.000Z

283

Potential synergy: the thorium fuel cycle and rare earths processing  

SciTech Connect (OSTI)

The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

Ault, T.; Wymer, R.; Croff, A.; Krahn, S. [Vanderbilt University: 2301 Vanderbilt Place/PMB 351831, Nashville, TN 37235 (United States)

2013-07-01T23:59:59.000Z

284

The FIT Model - Fuel-cycle Integration and Tradeoffs  

SciTech Connect (OSTI)

All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros

2010-09-01T23:59:59.000Z

285

Spent Nuclear Fuel (SNF) Project Product Specification  

SciTech Connect (OSTI)

This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

PAJUNEN, A.L.

2000-01-20T23:59:59.000Z

286

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

287

Summary of Off-Normal Events in US Fuel Cycle Facilities for AFCI Applications  

SciTech Connect (OSTI)

This report is a collection and review of system operation and failure experiences for facilities comprising the fission reactor fuel cycle, with the exception of reactor operations. This report includes mines, mills, conversion plants, enrichment plants, fuel fabrication plants, transportation of fuel materials between these centers, and waste storage facilities. Some of the facilities discussed are no longer operating; others continue to produce fuel for the commercial fission power plant industry. Some of the facilities discussed have been part of the military’s nuclear effort; these are included when the processes used are similar to those used for commercial nuclear power. When reading compilations of incidents and accidents, after repeated entries it is natural to form an opinion that there exists nothing but accidents. For this reason, production or throughput values are described when available. These adverse operating experiences are compiled to support the design and decisions needed for the Advanced Fuel Cycle Initiative (AFCI). The AFCI is to weigh options for a new fission reactor fuel cycle that is efficient, safe, and productive for US energy security.

L. C. Cadwallader; S. J. Piet; S. O. Sheetz; D. H. McGuire; W. B. Boore

2005-09-01T23:59:59.000Z

288

Comparative Fuel Cycle Analysis of Critical and Subcritical Fast Reactor Transmutation Systems  

SciTech Connect (OSTI)

Fuel cycle analyses are performed to evaluate the impacts of further transmutation of spent nuclear fuel on high-level and low-level waste mass flows into repositories, on the composition and toxicity of the high-level waste, on the capacity of high-level waste repositories, and on the proliferation resistance of the high-level waste. Storage intact of light water reactor (LWR) spent nuclear fuel, a single recycle in a LWR of the plutonium as mixed-oxide fuel, and the repeated recycle of the transuranics in critical and subcritical fast reactors are compared with the focus on the waste management performance of these systems. Other considerations such as cost and technological challenges were beyond the scope of this study. The overall conclusion of the studies is that repeated recycling of the transuranics from spent nuclear fuel would significantly increase the capacity of high-level waste repositories per unit of nuclear energy produced, significantly increase the nuclear energy production per unit mass of uranium ore mined, significantly reduce the radiotoxicity of the waste streams per unit of nuclear energy produced, and significantly enhance the proliferation resistance of the material stored in high-level waste repositories.

Hoffman, Edward A.; Stacey, Weston M. [Georgia Institute of Technology (United States)

2003-10-15T23:59:59.000Z

289

Locking support for nuclear fuel assemblies  

DOE Patents [OSTI]

A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.

Ledin, Eric (San Diego, CA)

1980-01-01T23:59:59.000Z

290

Spent Nuclear Fuel Alternative Technology Decision Analysis  

SciTech Connect (OSTI)

The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

291

Letter Report: Looking Ahead at Nuclear Fuel Resources  

SciTech Connect (OSTI)

The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energy community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.

J. Stephen Herring

2013-09-01T23:59:59.000Z

292

Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel  

SciTech Connect (OSTI)

We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G. [Texas A and M University, College Station, TX 77845 (United States); Mann, T. [Argone National Laboratory, Argone, IL (United States)

2013-04-19T23:59:59.000Z

293

PHYSOR 2004 -The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments Chicago, Illinois, April 25-29, 2004, on CD-ROM, American Nuclear Society, Lagrange Park, IL. (2004)  

E-Print Network [OSTI]

cells by stainless steel/sodium cells (see Figure 1). Several complementary configurations were obtained and the expected ones, from a near criticality configuration down to very deep subcritical levels. The second part to neutronic studies of fast reactor lattices. All the MUSE-4 configurations are based on fuel cell assemblies

Paris-Sud XI, Université de

294

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network [OSTI]

Standard and the US Renew- able Fuel Standard use Life Cycle Assessment (LCA) to estimate greenhouse gas analysis . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3. Life cycle assessmentLife Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications by Richard J

Kammen, Daniel M.

295

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Office of Environmental Management (EM)

Nuclear Fuel Storage and Transportation Planning Project Overview DOE Office of Nuclear Energy Task Force for Strategic Developments to Blue Ribbon Commission Recommendations...

296

The benefits of an advanced fast reactor fuel cycle for plutonium management  

SciTech Connect (OSTI)

The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium and long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.

Hannum, W.H.; McFarlane, H.F.; Wade, D.C.; Hill, R.N.

1996-12-31T23:59:59.000Z

297

Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview  

SciTech Connect (OSTI)

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

298

Estimating Externalities of Hydro Fuel Cycles, Report 6  

SciTech Connect (OSTI)

There are three major objectives of this hydropower study: (1) to implement the methodological concepts that were developed in the background document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles and, by so doing, to demonstrate their application to the hydroelectric fuel cycle (different fuel cycles have unique characteristics that need to be addressed in different ways); (2) to develop, given the time and resources, the best range of estimates of externalities associated with hydroelectric projects, using two benchmark projects at two reference sites in the US; and (3) to assess the state of the information that is available to support the estimation of externalities associated with the hydroelectric fuel cycle and, by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The main consideration in defining these objectives was a desire to have more information about externalities and a better method for estimating them. As set forth in the agreement between the US and the EC, the study is explicitly and intentionally not directed at any one audience. This study is about a methodology for estimating externalities. It is not about how to use estimates of externalities in a particular policy context.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1994-12-01T23:59:59.000Z

299

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: · Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage · Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

300

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network [OSTI]

radiative forcing from bio- fuel and gasoline GHG emissions,directly to additional bio- fuel feedstocks. The averagelife cycle GHGs from bio- fuels highlights the limitations

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fuel-cycle assessment of selected bioethanol production.  

SciTech Connect (OSTI)

A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

Wu, M.; Wang, M.; Hong, H.; Energy Systems

2007-01-31T23:59:59.000Z

302

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Energy Savers [EERE]

Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization Used...

303

Analysis of multi-recycle thorium fuel cycles in comparison with once-through fuel cycles.  

E-Print Network [OSTI]

??The purpose of this research is to develop a methodology for a thorium fuel recycling analysis that provides results for isotopics and radio-toxicity evaluation and… (more)

Huang, Lloyd Michael

2013-01-01T23:59:59.000Z

304

Spent Nuclear Fuel (SNF) Project Design Basis Capacity Study  

SciTech Connect (OSTI)

This study of the design basis capacity of process systems was prepared by Fluor Federal Services for the Spent Nuclear Fuel Project. The evaluation uses a summary level model of major process sub-systems to determine the impact of sub-system interactions on the overall time to complete fuel removal operations. The process system model configuration and time cycle estimates developed in the original version of this report have been updated as operating scenario assumptions evolve. The initial document released in Fiscal Year (FY) 1996 varied the number of parallel systems and transport systems over a wide range, estimating a conservative design basis for completing fuel processing in a two year time period. Configurations modeling planned operations were updated in FY 1998 and FY 1999. The FY 1998 Base Case continued to indicate that fuel removal activities at the basins could be completed in slightly over 2 years. Evaluations completed in FY 1999 were based on schedule modifications that delayed the start of KE Basin fuel removal, with respect to the start of KW Basin fuel removal activities, by 12 months. This delay resulted in extending the time to complete all fuel removal activities by 12 months. However, the results indicated that the number of Cold Vacuum Drying (CVD) stations could be reduced from four to three without impacting the projected time to complete fuel removal activities. This update of the design basis capacity evaluation, performed for FY 2000, evaluates a fuel removal scenario that delays the start of KE Basin activities such that staffing peaks are minimized. The number of CVD stations included in all cases for the FY 2000 evaluation is reduced from three to two, since the scenario schedule results in minimal time periods of simultaneous fuel removal from both basins. The FY 2000 evaluation also considers removal of Shippingport fuel from T Plant storage and transfer to the Canister Storage Building for storage.

CLEVELAND, K.J.

2000-08-17T23:59:59.000Z

305

Seawater Enhances the Corrosion of Nuclear Fuel Rods | Photosynthetic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seawater Enhances the Corrosion of Nuclear Fuel Rods April 19, 2012 Seawater Enhances the Corrosion of Nuclear Fuel Rods PARC Post Doc Anne-Marie Carey is featured in DOE Frontiers...

306

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Office of Environmental Management (EM)

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

307

Summary of nuclear fuel reprocessing activities around the world  

SciTech Connect (OSTI)

This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied.

Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

1984-11-01T23:59:59.000Z

308

Effect of fuel properties on the first cycle fuel delivery in a Port Fuel Injected Spark Ignition Engine  

E-Print Network [OSTI]

Achieving robust combustion while also yielding low hydrocarbon (HC) emissions is difficult for the first cycle of cranking during the cold start of a Port Fuel Injected (PFI) Spark Ignition (SI) engine. Cold intake port ...

Lang, Kevin R., 1980-

2004-01-01T23:59:59.000Z

309

Full fuel-cycle comparison of forklift propulsion systems.  

SciTech Connect (OSTI)

Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-11-05T23:59:59.000Z

310

Life-cycle analysis of alternative aviation fuels in GREET  

SciTech Connect (OSTI)

The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

2012-07-23T23:59:59.000Z

311

Selection of Isotopes and Elements for Fuel Cycle Analysis  

SciTech Connect (OSTI)

Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

Steven J. Piet

2009-04-01T23:59:59.000Z

312

Crosscutting Requirements in the International Project on Innovative Reactors and Fuel Cycles (INPRO)  

SciTech Connect (OSTI)

There are two categories of requirements: (i) user requirements that need to be met by the designers and manufacturers of innovative reactors and fuel cycles, and (ii) a wide spectrum of requirements that need to be met by countries, willing to successfully deploy innovative nuclear reactors for energy production. This part of the International Project on Innovative Reactors and Fuel Cycles will mainly deal with the second category of requirements. Both categories of requirements will vary depending on the institutional development, infrastructure availability and social attitude in any given country. Out of the need for sustainable development requirements will also more specific in the future. Over a 50-year time frame both categories of requirements will evolve with social and economic development as nuclear technology develops further. For example, the deployment of innovative reactors in countries with marginal or non-existing nuclear infrastructures would be possible only if the reactors are built, owned and operated by an international nuclear utility or if they are inherently safe and can be delivered as a 'black box - nuclear battery'. A number of issues will need to be addressed and conditions and requirements developed if this is going to become a reality. One general requirement for wider utilization of innovative nuclear power will be the public and environmental considerations, which will play a role in the decision making processes. Five main clusters of topics will be handled: - Infra-structural aspects, typology and consequences for nuclear development. - Industrial requirements for the different innovative concepts. - Institutional developments and requirements for future deployment of nuclear energy. (National as well as international) - Socio-political aspects, a.o. public acceptance and role of governments. - Sustainability: requirements following the need for sustainability Analysis will be made of the evolution of national and international social, institutional and infrastructure requirements for the deployment of innovative nuclear technology through 2050 and beyond and requirements will be identified following the need for (authors)

Steur, Ronald; Lyubenov Yaven, Yanko; Gueorguiev, Boris; Mahadeva, Rao; Shen, Wenquan [International Atomic Energy Agency - IAEA, P.O. Box 100, Wagramer Strasse 5, A-1400 Vienna (Austria)

2002-07-01T23:59:59.000Z

313

Pyroprocess for processing spent nuclear fuel  

DOE Patents [OSTI]

This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

2002-01-01T23:59:59.000Z

314

Method and apparatus for close packing of nuclear fuel assemblies  

DOE Patents [OSTI]

The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

Newman, D.F.

1993-03-30T23:59:59.000Z

315

Method and apparatus for close packing of nuclear fuel assemblies  

DOE Patents [OSTI]

The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

Newman, Darrell F. (Richland, WA)

1993-01-01T23:59:59.000Z

316

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

SciTech Connect (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

317

Nuclear Nonproliferation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Nonproliferation As more countries embrace nuclear power as a cost-effective and clean alternative to fossil fuels, the need exists to ensure that the nuclear fuel cycle is...

318

Nuclear reactor fuel rod attachment system  

DOE Patents [OSTI]

A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

Christiansen, David W. (Kennewick, WA)

1982-01-01T23:59:59.000Z

319

Estimating Fuel Cycle Externalities: Analytical Methods and Issues, Report 2  

SciTech Connect (OSTI)

The activities that produce electric power typically range from extracting and transporting a fuel, to its conversion into electric power, and finally to the disposition of residual by-products. This chain of activities is called a fuel cycle. A fuel cycle has emissions and other effects that result in unintended consequences. When these consequences affect third parties (i.e., those other than the producers and consumers of the fuel-cycle activity) in a way that is not reflected in the price of electricity, they are termed ''hidden'' social costs or externalities. They are the economic value of environmental, health and any other impacts, that the price of electricity does not reflect. How do you estimate the externalities of fuel cycles? Our previous report describes a methodological framework for doing so--called the damage function approach. This approach consists of five steps: (1) characterize the most important fuel cycle activities and their discharges, where importance is based on the expected magnitude of their externalities, (2) estimate the changes in pollutant concentrations or other effects of those activities, by modeling the dispersion and transformation of each pollutant, (3) calculate the impacts on ecosystems, human health, and any other resources of value (such as man-made structures), (4) translate the estimates of impacts into economic terms to estimate damages and benefits, and (5) assess the extent to which these damages and benefits are externalities, not reflected in the price of electricity. Each step requires a different set of equations, models and analysis. Analysts generally believe this to be the best approach for estimating externalities, but it has hardly been used! The reason is that it requires considerable analysis and calculation, and to this point in time, the necessary equations and models have not been assembled. Equally important, the process of identifying and estimating externalities leads to a number of complex issues that also have not been fully addressed. This document contains two types of papers that seek to fill part of this void. Some of the papers describe analytical methods that can be applied to one of the five steps of the damage function approach. The other papers discuss some of the complex issues that arise in trying to estimate externalities. This report, the second in a series of eight reports, is part of a joint study by the U.S. Department of Energy (DOE) and the Commission of the European Communities (EC)* on the externalities of fuel cycles. Most of the papers in this report were originally written as working papers during the initial phases of this study. The papers provide descriptions of the (non-radiological) atmospheric dispersion modeling that the study uses; reviews much of the relevant literature on ecological and health effects, and on the economic valuation of those impacts; contains several papers on some of the more complex and contentious issues in estimating externalities; and describes a method for depicting the quality of scientific information that a study uses. The analytical methods and issues that this report discusses generally pertain to more than one of the fuel cycles, though not necessarily to all of them. The report is divided into six parts, each one focusing on a different subject area.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1994-07-01T23:59:59.000Z

320

Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond  

SciTech Connect (OSTI)

The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M. [Candu Energy Inc., 2285 Speakman Drive, Mississauga, ON L5K 1B1 (Canada)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles  

SciTech Connect (OSTI)

The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

R. M. Ferrer; S. Bays; M. Pope

2008-04-01T23:59:59.000Z

322

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network [OSTI]

Security of the National Nuclear Security Administration, USof Energys National Nuclear Security Administration (NNSA)

Quiter, Brian

2012-01-01T23:59:59.000Z

323

Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels  

SciTech Connect (OSTI)

Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. many mechamistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, reearch, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

2014-04-07T23:59:59.000Z

324

Spent nuclear fuel project - criteria document spent nuclear fuel final safety analysis report  

SciTech Connect (OSTI)

The criteria document provides the criteria and planning guidance for developing the Spent Nuclear Fuel (SNF) Final Safety Analysis Report (FSAR). This FSAR will support the US Department of Energy, Richland Operations Office decision to authorize the procurement, installation, installation acceptance testing, startup, and operation of the SNF Project facilities (K Basins, Cold Vacuum Drying Facility, and Canister Storage Building).

MORGAN, R.G.

1999-02-23T23:59:59.000Z

325

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network [OSTI]

Unfortunately, life cycle assessment (LCA) is as much art asFuel Standard use Life Cycle Assessment (LCA) to estimatethat rely on life cycle assessment (LCA) to quantify the

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

326

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

SciTech Connect (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

327

Determination of the proper operating range for the CAFCA IIB fuel cycle model  

E-Print Network [OSTI]

The fuel cycle simulation tool, CAFCA II was previously modified to produce the most recent version, CAFCA IIB. The code tracks the mass distribution of transuranics in the fuel cycle in one model and also projects costs ...

Warburton, Jamie (Jamie L.)

2007-01-01T23:59:59.000Z

328

Implications of Plutonium isotopic separation on closed fuel cycles and repository design  

SciTech Connect (OSTI)

Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

Forsberg, C. [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 20129 (United States)

2013-07-01T23:59:59.000Z

329

Transportation capabilities study of DOE-owned spent nuclear fuel  

SciTech Connect (OSTI)

This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1994-10-01T23:59:59.000Z

330

The Hybrid Sulfur Cycle for Nuclear Hydrogen Production  

SciTech Connect (OSTI)

Two Sulfur-based cycles--the Sulfur-Iodine (SI) and the Hybrid Sulfur (HyS)--have emerged as the leading thermochemical water-splitting processes for producing hydrogen utilizing the heat from advanced nuclear reactors. Numerous international efforts have been underway for several years to develop the SI Cycle, but development of the HyS Cycle has lagged. The purpose of this paper is to discuss the background, current status, recent development results, and the future potential for this thermochemical process. Savannah River National Laboratory (SRNL) has been supported by the U.S. Department of Energy Office of Nuclear Energy, Science, and Technology since 2004 to evaluate and to conduct research and development for the HyS Cycle. Process design studies and flowsheet optimization have shown that an overall plant efficiency (based on nuclear heat converted to hydrogen product, higher heating value basis) of over 50% is possible with this cycle. Economic studies indicate that a nuclear hydrogen plant based on this process can be economically competitive, assuming that the key component, the sulfur dioxide-depolarized electrolyzer, can be successfully developed. SRNL has recently demonstrated the use of a proton-exchange-membrane electrochemical cell to perform this function, thus holding promise for economical and efficient hydrogen production.

Summers, William A.; Gorensek, Maximilian B.; Buckner, Melvin R.

2005-09-08T23:59:59.000Z

331

New In-pile Instrumentation to Support Fuel Cycle Research and Development  

SciTech Connect (OSTI)

New and enhanced nuclear fuels are a key enabler for new and improved reactor technologies. For example, the goals of the next generation nuclear plant (NGNP) will not be met without irradiations successfully demonstrating the safety and reliability of new fuels. Likewise, fuel reliability has become paramount in ensuring the competitiveness of nuclear power plants. Recently, the Office of Nuclear Energy in the Department of Energy (DOE-NE) launched a new direction in fuel research and development that emphasizes an approach relying on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time, data are essential for characterizing the performance of new fuels during irradiation testing. A three-year strategic research program is proposed for developing the required test vehicles with sensors of unprecedented accuracy and resolution for obtaining the data needed to characterize three-dimensional changes in fuel microstructure during irradiation testing. When implemented, this strategy will yield test capsule designs that are instrumented with new sensor technologies for the Advanced Test Reactor (ATR) and other irradiation locations for the Fuel Cycle Research and Development (FC R&D) program. Prior laboratory testing, and as needed, irradiation testing, of these sensors will have been completed to give sufficient confidence that the irradiation tests will yield the required data. Obtaining these sensors must draw upon the expertise of a wide-range of organizations not currently supporting nuclear fuels research. This document defines this strategic program and provides the necessary background information related to fuel irradiation testing, desired parameters for detection, and an overview of currently available in-pile instrumentation. In addition, candidate sensor technologies are identified in this document, and a list of proposed criteria for ranking these technologies. A preliminary ranking of candidate technologies is performed to illustrate the path forward for developing real-time instrumentation that could provide the required data for the FC R&D program. This draft document is a starting point for discussion with instrumentation experts and organizations. It is anticipated that the document will be used to stimulate discussions on a wide-range of sensor technologies and to gain consensus with respect to the path forward for accomplishing the goals of this research program.

J. Rempe; H. MacLean; R. Schley; D. Hurley; J. Daw; S. Taylor; J. Smith; J. Svoboda; D. Kotter; D. Knudson; M. Guers; S. C. Wilkins

2011-01-01T23:59:59.000Z

332

Closed ThUOX Fuel Cycle for LWRs with ADTT (ATW) Backend for the 21st Century  

SciTech Connect (OSTI)

A future nuclear energy scenario with a closed, thorium-uranium-oxide (ThUOX) fuel cycle and new light water reactors (TULWRs) supported by Accelerator Transmutation of Waste (ATW) systems could provide several improvements beyond today's once-through, UO{sub 2}-fueled nuclear technology. A deployment scenario with TULWRs plus ATWs to burn the actinides produced by these LWRs and to close the back-end of the ThUOX fuel cycle was modeled to satisfy a US demand that increases linearly from 80 GWe in 2020 to 200 GWe by 2100. During the first 20 years of the scenario (2000-2020), nuclear energy production in the US declines from today's 100 GWe to about 80 GWe, in accordance with forecasts of the US DOE's Energy Information Administration. No new nuclear systems are added during this declining nuclear energy period, and all existing LWRs are shut down by 2045. Beginning in 2020, ATWs that transmute the actinides from existing LWRs are deployed, along with TULWRs and additional ATWs with a support ratio of 1 ATW to 7 TULWRs to meet the energy demand scenario. A final mix of 174 GWe from TULWRs and 26 GWe from ATWs provides the 200 GWe demand in 2100. Compared to a once-through LWR scenario that meets the same energy demand, the TULWR/ATW concept could result in the following improvements: depletion of natural uranium resources would be reduced by 50%; inventories of Pu which may result in weapons proliferation will be reduced in quantity by more than 98% and in quality because of higher neutron emissions and 50 times the alpha-decay heating of weapons-grade plutonium; actinides (and possibly fission products) for final disposal in nuclear waste would be substantially reduced; and the cost of fuel and the fuel cycle may be 20-30% less than the once-through UO{sub 2} fuel cycle.

Beller, D.E.; Sailor, W.C.; Venneri, F.

1998-10-06T23:59:59.000Z

333

THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL  

SciTech Connect (OSTI)

This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

2003-07-01T23:59:59.000Z

334

Estimating externalities of biomass fuel cycles, Report 7  

SciTech Connect (OSTI)

This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1998-01-01T23:59:59.000Z

335

Characterization plan for Hanford spent nuclear fuel  

SciTech Connect (OSTI)

Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

1994-12-01T23:59:59.000Z

336

Method of manufacturing nuclear fuel bundle spacers  

SciTech Connect (OSTI)

This patent describes a method of manufacturing nuclear fuel bundle spacers on an automated production line basis. It comprises: cutting elongated tubing stock into shorter tubular ferrules; checking the length of each ferrule and rejecting those ferrules of unacceptable lengths; cutting predetermined features in the sidewall of each ferrule; forming the sidewall of each ferrule to impart predetermined surface formations thereto; checking a critical dimension of each sidewall surface formation of each ferrule and rejecting those of unacceptable dimensions; assembling successive pairs of ferrules into subassemblies; assembling successive subassemblies into a spacer assembly fixture; assembling a peripheral band in the spacer assembly fixture; conjoining the ferrules to each other and to the peripheral band to create a structurally rigid, finished spacer; and providing a separate controller for automatically controlling and monitoring the performances of these steps.

White, D.W.; Muncy, D.G.; Schoenig, F.C. Jr.

1989-09-26T23:59:59.000Z

337

Risk and Responsibility Sharing in Nuclear Spent Fuel Management  

E-Print Network [OSTI]

With the Nuclear Waste Policy Act of 1982, the responsibility of American utilities in the long-term management of spent nuclear fuel was limited to the payment of a fee. This narrow involvement did not result in faster ...

De Roo, Guillaume

338

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network [OSTI]

of the Institute of Nuclear Material Management, Tucson, AZ,Assay, Institute of Nuclear Materials Management 51st Annual

Quiter, Brian

2012-01-01T23:59:59.000Z

339

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect (OSTI)

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

340

Implementing split-feed fuel designs at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

Energy, like many US utilities, has implemented extended (18-month) operating cycles. In addition, capacity factors have significantly improved during the past 10 yr. Both changes result in relatively high cycle energy requirements. To effectively meet these requirements, Energy has adopted Siemens Power Corporation's advanced fuel design (SNP-9 x 9-5) for use at Grand Gulf nuclear station. The implementation of this design, along with improvements in technical specifications, provide opportunities for improved fuel cycle economics. One strategy used to obtain this performance is the development of split-feed reload batch designs. A split-feed batch contains two subbatches with different batch average enrichments. Split-feed designs have been developed for the current operating cycle and the next planned cycle.

Smith, F.H.; Covington, L.J. (Entergy Operations, Jackson, MS (United States))

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents [OSTI]

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

342

Thermomechanical analysis of innovative nuclear fuel pin designs  

E-Print Network [OSTI]

One way to increase the power of a nuclear reactor is to change the solid cylindrical fuel to Internally and Externally Cooled (I&EC) annular fuel, and adjust the flow and the core inlet coolant temperature. The switch to ...

Lerch Andrew (Andrew J.)

2010-01-01T23:59:59.000Z

343

Fuel cycle analysis in a thorium fueled reactor using bidirectional fuel movement : correction to report MIT-2073-1, MITNE-51  

E-Print Network [OSTI]

This report corrects an error discovered in the code used in the study "Fuel Cycle Analysis in a Thorium Fueled Reactor Using Bidirectional Fuel Movement," MIT-2073-1, MITNE-51. The results of the correction show considerable ...

Stephen, James D.

1965-01-01T23:59:59.000Z

344

World nuclear fuel market: proceedings of the international conference on nuclear energy  

SciTech Connect (OSTI)

Thirteen papers, along with discussion and comments, are divided into four conference sessions covering: the prospect for primary markets for enriched uranium; secondary trading markets for enriched uranium; the management of irradiatied fuel and economics of reprocessing; and an evaluation of plutonium recycling in thermal reactors. The speakers address technical, economic, and political issues relating to both front-end and back-end management of the fuel cycle. The papers were presented at the 9th International Conference on Nuclear Energy in Nice, France during October, 1982. A separate abstract was prepared for each of the 13 papers selected for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis (EAPA). (DCK)

Not Available

1982-01-01T23:59:59.000Z

345

Development of alternate extractant systems for fast reactor fuel cycle  

SciTech Connect (OSTI)

Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO{sub 2}) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

2007-07-01T23:59:59.000Z

346

PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical:Rocky Mountain OTC GSS PIA -| Department

347

User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model  

SciTech Connect (OSTI)

The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters and options; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation or disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. You must use Powersim Studio 8 or better. We have tested VISION with the Studio 8 Expert, Executive, and Education versions. The Expert and Education versions work with the number of reactor types of 3 or less. For more reactor types, the Executive version is currently required. The input files are Excel2003 format (xls). The output files are macro-enabled Excel2007 format (xlsm). VISION 3.4 was designed with more flexibility than previous versions, which were structured for only three reactor types - LWRs that can use only uranium oxide (UOX) fuel, LWRs that can use multiple fuel types (LWR MF), and fast reactors. One could not have, for example, two types of fast reactors concurrently. The new version allows 10 reactor types and any user-defined uranium-plutonium fuel is allowed. (Thorium-based fuels can be input but several features of the model would not work.) The user identifies (by year) the primary fuel to be used for each reactor type. The user can identify for each primary fuel a contingent fuel to use if the primary fuel is not available, e.g., a reactor designated as using mixed oxide fuel (MOX) would have UOX as the contingent fuel. Another example is that a fast reactor using recycled transuranic (TRU) material can be designated as either having or not having appropriately enriched uranium oxide as a contingent fuel. Because of the need to study evolution in recycling and separation strategies, the user can now select the recycling strategy and separation technology, by year.

Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Wendell D. Hintze

2011-07-01T23:59:59.000Z

348

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery  

SciTech Connect (OSTI)

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

None

2011-12-19T23:59:59.000Z

349

Deployment evaluation methodology for the electrometallurgical treatment of DOE-EM spent nuclear fuel  

SciTech Connect (OSTI)

Part of the Department of Energy (DOE) spent nuclear fuel (SNF) inventory may require some type of treatment to meet acceptance criteria at various disposition sites. The current focus for much of this spent nuclear fuel is the electrometallurgical treatment process under development at Argonne National Laboratory. Potential flowsheets for this treatment process are presented. Deployment of the process for the treatment of the spent nuclear fuel requires evaluation to determine the spent nuclear fuel program need for treatment and compatibility of the spent nuclear fuel with the process. The evaluation of need includes considerations of cost, technical feasibility, process material disposition, and schedule to treat a proposed fuel. A siting evaluation methodology has been developed to account for these variables. A work breakdown structure is proposed to gather life-cycle cost information to allow evaluation of alternative siting strategies on a similar basis. The evaluation methodology, while created specifically for the electrometallurgical evaluation, has been written such that it could be applied to any potential treatment process that is a disposition option for spent nuclear fuel. Future work to complete the evaluation of the process for electrometallurgical treatment is discussed.

Dahl, C.A.; Adams, J.P.; Ramer, R.J.

1998-07-01T23:59:59.000Z

350

An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective  

SciTech Connect (OSTI)

This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled until consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.

Bathke, Charles Gary [Los Alamos National Laboratory; Wallace, Richard K [Los Alamos National Laboratory; Hase, Kevin R [Los Alamos National Laboratory; Sleaford, Brad W [LLNL; Ebbinghaus, Bartley B [LLNL; Collins, Brian W [PNNL; Bradley, Keith S [LLNL; Prichard, Andrew W [PNNL; Smith, Brian W [PNNL

2010-01-01T23:59:59.000Z

351

PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle  

SciTech Connect (OSTI)

This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

2012-07-01T23:59:59.000Z

352

Analysis of Pu-Only Partitioning Strategies in LMFBR Fuel Cycles  

SciTech Connect (OSTI)

Sodium cooled Fast Reactors (SFR) have been under consideration for production of electricity, fissile material production, and for destruction of transuranics for decades. The neutron economy of a SFR can be operated in one of two ways. One possibility is to operate the reactor in a transuranic burner mode which has been the focus of active R&D in the last 15 years. However, prior to that the focus was on breeding transuranics. This later mode of managing the neutron economy relies on ensuring the maximum fuel utilization possible in such a way as to maximize the amount of plutonium produced per unit of fission energy in the reactor core. The goal of maximizing plutonium production in this study is as fissile feed stock for the production of MOX fuel to be used in Light Water Reactors (LWR). Throughout the l970’s, this fuel cycle scenario was the focus of much research by the Atomic Energy Commission in the event that uranium supplies would be scarce. To date, there has been sufficient uranium to supply the once through nuclear fuel cycle. However, interest in a synergistic relationship Liquid Metal Fast Breeder Reactors (LMFBR) and a consumer LWR fleet persists, prompting this study. This study considered LMFBR concepts with varying additions of axial and radial reflectors. Three scenarios were considered in collaboration with a companion study on the LWR-MOX designs based on plutonium nuclide vectors produced by this study. The first scenario is a LMFBR providing fissile material to make MOX fuel where the MOX part of the fuel cycle is operated in a once-through-then-out mode. The second scenario is the same as the first but with the MOX part of the fuel cycle multi-recycling its own plutonium with LMFBR being used for the make-up feed. In these first two scenarios, plutonium partitioning from the minor actinides (MA) was assumed. Also, the plutonium management strategy of the LMFBR ensured that only the high fissile purity plutonium bred from blankets was sold to the MOX LWRs. The third scenario considered a LMFBR fuel cycle in an expansionary mode where excess bred transuranic material is accumulated for spinning off additional LMFBR cores. In this latter scenario, no plutonium partitioning was considered. After every cycle, transuranic from both driver and blankets is sold to the MOX LWRs. The MA production from LMFBR operated in a Pu-only fuel cycle is roughly only 1% that of the transuranic production rate. This is in contrast to LWR fuel cycles where the MA content in TRU is closer to 10% or more. If such a LMFBR were operated to provide fissile material to a fleet of MOX reactors, then 1 GWe of LMFBR could support between approximately 0.11 and 0.43 GWe of LWR-MOX reactors for a LMFBR conversion ratio between 1.1 and 1.5, if the MOX reactors were operated in a once-through-then out mode. If the plutonium is continuously recycled in the MOX reactors then the support ratio is approximately 1 GWe of LMFBR for between 0.13 and 0.65 GWe of LWR-MOX reactors depending on the LMFBR conversion ratio. Also, it was found that if the LMFBR fleet were operated in a purely expansionary mode, the smallest doubling time achievable would be seven years.

Samuel Bays; Gilles Youinou

2013-02-01T23:59:59.000Z

353

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect (OSTI)

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01T23:59:59.000Z

354

Fuel Cycle Scenario Definition, Evaluation, and Trade-offs  

SciTech Connect (OSTI)

This report aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, potential need for transmutation of technetium and iodine, and the value of separating cesium and strontium. It documents most of the work produced by INL, ANL, and SNL personnel under their Simulation, Evaluation, and Trade Study (SETS) work packages during FY2005 and the first half of FY2006. This report represents the first attempt to calculate a full range of metrics, covering all four AFCI program objectives - waste management, proliferation resistance, energy recovery, and systematic management/economics/safety - using a combination of "static" calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This is a technical report, not aimed at a policy-level audience. A wide range of options are studied to provide the technical basis for identifying the most attractive options and potential improvements. Option improvement could be vital to accomplish before the AFCI program publishes definitive cost estimates. Information from this report will be extracted and summarized in future policy-level reports. Many dynamic simulations of deploying those options are included. There are few "control knobs" for flying or piloting the fuel cycle system into the future, even though it is dark (uncertain) and controls are sluggish with slow time response: what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants. Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would increase our ability to pilot the fuel cycle system: (1) have a recycle strategy that could be implemented before the 2030-2050 approximate period when current reactors retire so that replacement reactors fit into the strategy, (2) establish an option such as multi-pass blended-core IMF as a downward plutonium control knob and accumulate waste management benefits early, (3) establish fast reactors with flexible conversion ratio as a future control knob that slowly becomes available if/when fast reactors are added to the fleet, and (4) expand exploration of blended assemblies and cores, which appear to have advantages and agility. Initial results suggest multi-pass full-core MOX appears to be a less effective way than multi-pass blended core IMF to manage the fuel cycle system because it requires higher TRU throughput while more slowly accruing waste management benefits. Single-pass recycle approaches for LWRs (we did not study the VHTR) do not meet AFCI program objectives and could be considered a "dead end". Fast reactors appear to be effective options but a significant number of fast reactors must be deployed before the benefit of such strategies can be observed.

Steven J. Piet; Gretchen E. Matthern; Jacob J. Jacobson; Christopher T. Laws; Lee C. Cadwallader; Abdellatif M. Yacout; Robert N. Hill; J. D. Smith; Andrew S. Goldmann; George Bailey

2006-08-01T23:59:59.000Z

355

Spent Nuclear Fuel (SNF) Project Product Specification  

SciTech Connect (OSTI)

The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major sub-system. Section 4.0--Specific technical basis description for each product specification. The scope of this product specification does not include data collection requirements to support accountability or environmental compliance activities.

PAJUNEN, A.L.

2000-12-07T23:59:59.000Z

356

Fabrication of high exposure nuclear fuel pellets  

DOE Patents [OSTI]

A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

Frederickson, James R. (Richland, WA)

1987-01-01T23:59:59.000Z

357

Preliminary study: isotopic safeguards techniques (IST) LMFBR fuel cycles  

SciTech Connect (OSTI)

This memorandum presents the preliminary results of the effort to investigate the applicability of isotope correlation techniques (ICT), formulated for the LWR system, to the LMFBR fuel cycle. The detailed isotopic compositional changes with burnup developed for the CRBR was utilized as the reference case. This differs from the usual LMFBR design studies in that the core uranium is natural uranium rather than depleted. Nevertheless, the general isotopic behavior should not differ significantly and does allow an initial insight into the expected behavior of isotopic correlations for the LMFBR power systems such as: the U.K. PFR and reprocessing plant; the French Phenix and Superphenix; and the US reference conceptual design studies (CDS) of homogeneous and heterogeneous LMFBR systems as they are developed.

Persiani, P.J.; Kroc, T.K.

1980-06-01T23:59:59.000Z

358

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

359

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network [OSTI]

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized

Patzek, Tadeusz W.

360

Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy  

SciTech Connect (OSTI)

This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

Gagnon, L.

2004-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Fuel Cycle Scenarios with AP1000 PWRs and VHTRs and Fission Spectrum Uncertainties  

E-Print Network [OSTI]

Minimization of HLW inventories and U consumption are key elements guaranteeing nuclear energy expansion. The integration of complex nuclear systems into a viable cycle yet constitutes a challenging multi-parametric optimization problem...

Cuvelier, Marie-Hermine

2012-07-16T23:59:59.000Z

362

Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative  

SciTech Connect (OSTI)

A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

2009-01-01T23:59:59.000Z

363

Spent nuclear fuel discharges from U.S. reactors 1994  

SciTech Connect (OSTI)

Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

NONE

1996-02-01T23:59:59.000Z

364

Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites  

SciTech Connect (OSTI)

This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

Maheras, Steven J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Best, Ralph E.; Ross, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River National Laboratory, Aiken, SC (United States); McConnell, Paul E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

2013-09-30T23:59:59.000Z

365

Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin  

SciTech Connect (OSTI)

Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

Mickalonis, J. I.; Murphy, T. R.; Deible, R.

2012-10-01T23:59:59.000Z

366

Spent nuclear fuel discharges from US reactors 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

Not Available

1995-02-01T23:59:59.000Z

367

Methods for making a porous nuclear fuel element  

DOE Patents [OSTI]

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L; Williams, Brian E; Benander, Robert E

2014-12-30T23:59:59.000Z

368

The fuel cycle economics of improved uranium utilization in light water reactors  

E-Print Network [OSTI]

A simple fuel cycle cost model has been formulated, tested satisfactorily (within better than 3% for a wide range of cases)

Abbaspour, Ali Tehrani

369

Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

SciTech Connect (OSTI)

The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

1997-11-01T23:59:59.000Z

370

Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement  

SciTech Connect (OSTI)

A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

2013-05-01T23:59:59.000Z

371

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect (OSTI)

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

372

Thorium–based fuel cycles : saving uranium in a 200 MWth pebble bed high temperature reactor / S.K. Gintner.  

E-Print Network [OSTI]

??The predominant nuclear fuel used globally at present is uranium which is a finite resource. Thorium has been identified as an alternative nuclear fuel source… (more)

Gintner, Stephan Konrad

2010-01-01T23:59:59.000Z

373

TEPP - Spent Nuclear Fuel | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommitteeRenewable Energy,Section 180(c)CHARTER

374

Description of Transmutation Library for Fuel Cycle System Analyses  

SciTech Connect (OSTI)

This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo-Ru-Rh-Pd-other, four other specific TM isotopes, and TM-other. Mo-Ru-Rh-Pd are separated because their content constrains the loading of waste in glass, so we have to know the mass of those elements independent of others. • Rules for collapsing long lists of isotopes (~1000) to the 81 items in the library. For each tracked isotope, we define which short-lived isotopes’ mass (at t=0) is included with the mass of the tracked isotope at t=0, which short-lived radioactive progeny must be accounted for when the tracked isotope decays, and to which of the other 80 items the mass of the tracked isotope goes when it decays. • Explanation of where raw data files can be found on the fuel cycle data portal. • Explanation of generic cross section sets • Explanation of isotope-specific parameters such as heat and dose conversion factors • Explanation of the LWR UOX burnup and FR TRU CR correlations.

Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

2010-08-01T23:59:59.000Z

375

Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels  

SciTech Connect (OSTI)

The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)

2013-10-28T23:59:59.000Z

376

Used Nuclear Fuels Storage, Transportation, and Disposal Analysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Used Nuclear Fuels Storage, Transportation, and Disposal Analysis Resource and Data System (UNF-ST&DARDS) Apr 08 2014 10:00 AM - 11:00 AM John M. Scaglione, ORNL staff, Oak Ridge...

377

Inventory of LWR spent nuclear fuel in the 324 Building  

SciTech Connect (OSTI)

This document contains the results of calculations to estimate the decay heat, neutron source term, photon source term, and radioactive inventory of light-water-reactor spent nuclear fuel in the 324 Building at Pacific Northwest National Laboratory.

Jenquin, U.P.

1996-09-01T23:59:59.000Z

378

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Broader source: Energy.gov (indexed) [DOE]

Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with...

379

Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security Overview Tanzanians living near the Udzungwa Mountains National Park have 100,000 villagers without an available fuel source. One possible solution to alleviate this crisis

Demirel, Melik C.

380

What to Expect When Readying to Move Spent Nuclear Fuel from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

Note: This page contains sample records for the topic "nuclear fuel cycles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect (OSTI)

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

382

Laser-based characterization of nuclear fuel plates  

SciTech Connect (OSTI)

Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

Smith, James A.; Cottle, Dave L.; Rabin, Barry H. [Idaho National Laboratory, Fuel Performance and Design, P.O. Box 1625, Idaho Falls, Idaho, 83415-6188 (United States)

2014-02-18T23:59:59.000Z

383

Pyroprocessing of fast flux test facility nuclear fuel  

SciTech Connect (OSTI)

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

2013-07-01T23:59:59.000Z

384

Laser-Based Characterization of Nuclear Fuel Plates  

SciTech Connect (OSTI)

Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

James A. Smith; David L. Cottle; Barry H. Rabin

2013-07-01T23:59:59.000Z

385

Cyclus fuel cycle simulation capabilities with the CYDER disposal system model  

SciTech Connect (OSTI)

An algorithm and supporting database for rapid thermal repository loading calculation was implemented in CYDER. This algorithm employs a Specific Temperature Change (STC) method and has resulted from combining detailed spent nuclear fuel composition data with a detailed thermal repository performance analysis tool from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and the Used Fuel Disposition (UFD) campaign. By abstraction of and benchmarking against these detailed thermal models, CYDER captures the dominant physics of thermal phenomena affecting repository capacity in various geologic media and as a function of spent fuel composition. Abstraction based on detailed computational thermal repository performance calculations with the LLNL semi-analytic model has resulted in implementation of the STC estimation algorithm and a supporting reference dataset. This method is capable of rapid estimation of temperature increase near emplacement tunnels as a function of waste composition, limiting radius, waste package spacing, near field thermal conductivity and near field thermal diffusivity. The sensitivity analyses and validation efforts conducted in this work demonstrate the capability of the CYDER tool to provide repository capacity and performance metrics in the context of dynamic fuel cycle.

Huff, K.D. [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); University of Wisconsin, 1500 Engineering Drive, Madison, WI 53706 (United States)

2013-07-01T23:59:59.000Z

386

Long-term tradeoffs between nuclear- and fossil-fuel burning  

SciTech Connect (OSTI)

A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

Krakowski, R.A.

1996-12-31T23:59:59.000Z

387

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

for electric power generation, and for diesel and fuel oil,for electric power generation, and for diesel and fuel oil,

Coughlin, Katie

2013-01-01T23:59:59.000Z

388

LEU fuel cycle analyses for the Belgian BR2 Research Reactor  

SciTech Connect (OSTI)

Equilibrium fuel cycle characteristics were calculated for reference HEU and two proposed LEU fuel cycles using an 11-group diffusion-theory neutron flux solution in hexagonal-Z geometry. The diffusion theory model was benchmarked with a detailed Monte Carlo core model. The two proposed LEU fuel designs increased the {sup 235}U loading 20% and the fuel meat volume 51%. The first LEU design used {sup 10}B as a burnable absorber. Either proposed LEU fuel element would provide equilibrium fuel cycle characteristics similar to those of the HEU fuel cycle. Irradiation rates of Co control followers and Ir disks in the center of the core were reduced 6 {plus minus} 1% in the LEU equilibrium core compared to reference HEU core. 11 refs., 4 figs., 5 tabs.

Deen, J.R.; Snelgrove, J.L.

1988-01-01T23:59:59.000Z

389

The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs  

SciTech Connect (OSTI)

All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.

Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske

2011-06-01T23:59:59.000Z

390

2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) |theDepartment2

391

Effect of reduced enrichment on the fuel cycle for research reactors  

SciTech Connect (OSTI)

The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel.

Travelli, A.

1982-01-01T23:59:59.000Z

392

Spent nuclear fuel discharges from US reactors 1992  

SciTech Connect (OSTI)

This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

Not Available

1994-05-05T23:59:59.000Z

393

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities

394

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&DNuclear fuel recycling in 4 minutes Share Topic

395

Sandia National Laboratories: Nuclear Energy and Fuel Systems Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More GreenWorkshops Nuclearand Fuel

396

A strategy for transition from a uranium fueled, open cycle SFR to a transuranic fueled, closed cycle sodium cooled fast reactor  

E-Print Network [OSTI]

Reactors utilizing a highly energetic neutron spectrum, often termed fast reactors, offer large fuel utilization improvements over the thermal reactors currently used for nuclear energy generation. Conventional fast reactor ...

Richard, Joshua (Joshua Glenn)

2012-01-01T23:59:59.000Z

397

University Programs of the U.S. Advanced Fuel Cycle Initiative  

SciTech Connect (OSTI)

As the Advanced Accelerator Applications (AAA) Program, which was initiated in fiscal year 2001 (FY01), grows and transitions to the Advanced Fuel Cycle (AFC) Program in FY03, research for its underlying science and technology will require an ever larger cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and even larger student populations. Because of the recognition of these current and increasing requirements, the DOE began a multi-year program to involve university faculty and students in various phases of these Projects to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. Herein I summarize the goals and accomplishments of the university programs that have supported the AAA and AFC Programs during FY02, including the involvement of 120 students at more than 30 universities in the U.S. and abroad. I also highlight contributions to academic research from LANL, which hosted students from and sponsored research at more than 18 universities by more than 50 students and 20 faculty members, investing about 10% of its AFC budget.

Beller, D. E. (Denis E.)

2003-01-01T23:59:59.000Z

398

Performance evaluation of two-stage fuel cycle from SFR to PWR  

SciTech Connect (OSTI)

One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A. [Nuclear Engineering Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States)

2013-07-01T23:59:59.000Z

399

Fuel Cycle Research & Development Technical Monthly-March 2012  

SciTech Connect (OSTI)

Several MPACT BCPs were executed in February, reflecting the shift in MPACT priorities directed late last year. Work continued on the FY2014 IPL, also bringing it in line with the new priorities. Preparations were made for the March MPACT Working Group meeting, in conjunction with Savannah River which is hosting the meeting. Steps were taken to initiate a new project with the World Institute for Nuclear Security, including discussions with WINS staff and preliminary work on the required procurement documentation. Several hardware issues were worked through. The newest detector array is working at LANL. A thorough analysis of previously collected Pu sample data using recently developed analysis code with improved spectral energy calibrations was completed. We now have a significantly better understanding of measurement uncertainties. Post-test analyses of the salt and sensor material for the first sensor test are almost complete. Sensor testing with different arrangements will continue and will be oriented based on post-test analysis of the first sensor test. Sensor materials for the next couple of tests are being fabricated. Materials with different annealing temperatures are being prepared for analysis. Fast Neutron Imaging to Quantify Nuclear Materials - The imager detectors repairs are complete and work with the imager is under way. The milestone requiring a report on LANSCE experiments was completed and submitted. Analysis of previous experiments and comparisons to simulations is near complete. Results are being compared with previous LANSCE-LSDS and RPI results. Additional data library (TENDL) is also being checked to see whether there are differences in the simulation results. The mid-year MIP Monitor project accomplishments and progress was presented at the MPACT meeting held in March at SRNL. Discussions around the meeting included inquiries into the feasibility of collecting process measurement data at H-Canyon, and it was explored further after the meeting. Kenneth Dayman, the graduate student from University of Texas, completed an initial draft of his master's thesis. His research will contribute to the multivariate classifier currently under development. Sarah Bender, the graduate student from Pennsylvania State University, presented her work on a poster and in a conference paper at the MARC IX meeting. A mass balance flowsheet for the fast reactor fuel was completed and a model simulation is scheduled to begin construction next month. The development of a mass balance flowsheet for light water reactor fuel will predict the behavior of the separation process using mathematical functions. The completed flowsheet will be utilized as the basis for constructing the model simulation for the electrochemical separations. Comments and review of the model from the MPACT Working Group meeting have been used to evaluate updates to the EChem model. A preliminary physical security layout has been developed in ATLAS. Thermal stability tests for high temperature microfluidic interconnections were completed on all compounds tested for bonding strength. An interconnection strategy was determined based on these results that we expect will allow for operation at 400C in the first generation of sampling systems. Design of the sampling system using the chosen interconnections was initiated, with handoff to an external foundry for fabrication based on ANL specified process conditions expected by the middle of the month. Monte Carlo simulations of the sampling system were conducted under conditions of realistic sampling size distributions, electrorefiner inhomogeneity distributions, and detector efficiencies. These simulations were used to establish a baseline limit of detection for system operation, assuming an on-line separation step is conducted before detection. Sensor for measuring density and depth of molten electrolyte - The procurement effort continued. 80% of the components ordered to assemble the double bubbler have arrived at the INL. Pratap Sadasivan, and his team have been working on the new metrics for proliferation a

Miller, Michael C. [Los Alamos National Laboratory

2012-05-10T23:59:59.000Z

400

Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities  

SciTech Connect (OSTI)

Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing. These can evolve in volatile species in the reprocessing facility off-gas streams, depending on the separations and reprocessing technologies that are used. Radionuclides that have been identified as “volatile radionuclides” are noble gases (most notably isotopes of Kr and Xe); 3H; 14C; and 129I. Radionuclides that tend to form volatile species that evolve into reprocessing facility off-gas systems are more challenging to efficiently control compared to radionuclides that tend to stay in solid or liquid phases. Future used fuel reprocessing facilities in the United States can require efficient capture of some volatile radionuclides in their off-gas streams to meet regulatory emission requirements. In aqueous reprocessing, these radionuclides are most commonly expected to evolve into off-gas streams in tritiated water [3H2O (T2O) and 3HHO (THO)], radioactive CO2, noble gases, and gaseous HI, I2, or volatile organic iodides. The fate and speciation of these radionuclides from a non-aqueous fuel reprocessing facility is less well known at this time, but active investigations are in progress. An Off-Gas Sigma Team was formed in late FY 2009 to integrate and coordinate the Fuel Cycle Research and Development (FCR&D) activities directed towards the capture and sequestration of the these volatile radionuclides (Jubin 2012a). The Sigma Team concept was envisioned to bring together multidisciplinary teams from across the DOE complex that would work collaboratively to solve the technical challenges and to develop the scientific basis for the capture and immobilization technologies such that the sum of the efforts was greater than the individual parts. The Laboratories currently participating in this effort are Argonne National Laboratory (ANL), Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL). This article focuses on control of volatile radionuclides that evolve during aqueous reprocessing of UNF. In particular, most of the work by the Off-gas Sigma T