Sample records for nuclear fossil steam

  1. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  2. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

    1992-01-01T23:59:59.000Z

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  3. Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

    2013-11-19T23:59:59.000Z

    Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

  4. RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES

    SciTech Connect (OSTI)

    Gorensek, M; Charles W. Forsberg, C

    2008-08-04T23:59:59.000Z

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

  5. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  6. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect (OSTI)

    Nelson, C.

    1995-08-01T23:59:59.000Z

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  7. Nuclear steam-generator transplant total rises

    SciTech Connect (OSTI)

    Smock, R.

    1982-09-01T23:59:59.000Z

    Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

  8. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

    2007-09-01T23:59:59.000Z

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

  9. Nuclear Engineering and Design 189 (1999) 757 Lower head integrity under steam explosion loads

    E-Print Network [OSTI]

    Yuen, Walter W.

    Nuclear Engineering and Design 189 (1999) 7­57 Lower head integrity under steam explosion loads T Received 24 August 1998; accepted 24 November 1998 Abstract Lower head integrity under steam explosion is `physically unreasonable'. © 1999 Elsevier Science S.A. All rights reserved. Keywords: Steam explosions

  10. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  11. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR. GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  12. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  13. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    SciTech Connect (OSTI)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

    2013-01-01T23:59:59.000Z

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a -SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

  14. Westinghouse Small Modular Reactor nuclear steam supply system design

    SciTech Connect (OSTI)

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01T23:59:59.000Z

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam generator, and eight reactor coolant pumps (RCP). The containment vessel is 27.1 m (89 ft) long and 9.8 m (32 ft) in diameter, and is designed to withstand pressures up to 1.7 MPa (250 psi). It is completely submerged in a pool of water serving as a heat sink and radiation shield. Housed within the containment are four combined core makeup tanks (CMT)/passive residual heat removal (PRHR) heat exchangers, two in-containment pools (ICP), two ICP tanks and four valves which function as the automatic depressurization system (ADS). The PRHR heat exchangers are thermally connected to two different ultimate heat sink (UHS) tanks which provide transient cooling capabilities. (authors)

  15. Long-term tradeoffs between nuclear- and fossil-fuel burning

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1996-12-31T23:59:59.000Z

    A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

  16. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

  17. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01T23:59:59.000Z

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  18. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF FOSSIL-FUEL NUCLEAR, GEOTHERMAL, AND ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  19. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  20. A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Rosen, L.C.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  1. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16T23:59:59.000Z

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  2. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA); Corletti, Michael M. (New Kensington, PA)

    1993-01-01T23:59:59.000Z

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  3. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Removal Equipment (nuclear plant) Turbine Building ClosedCooling Water System (nuclear plant) SteamReheater (nuclear plant) Inspection Water Induction

  4. HIGH-EFFICIENCY STEAM ELECTROLYZER Ai-Quoc Pham, Ervin See, Dave Lenz, Peter Martin and Robert Glass

    E-Print Network [OSTI]

    from fossil fuels, i.e., by steam reforming of natural gas and by coal gasification. However, most, electricity is not a primary energy but must be produced using fossil fuels, nuclear fuels, or renewable of the first electrolyzer stack. Introduction Currently, most hydrogen demand is met by hydrogen production

  5. Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577

    SciTech Connect (OSTI)

    Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M. [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)] [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)

    2013-07-01T23:59:59.000Z

    Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

  6. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01T23:59:59.000Z

    As described in the Department of Energy Office of Nuclear Energys Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, Produce hydrogen for industrial processes and transportation fuels, and Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nations energy security through more effective utilization of our countrys resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  7. An Overview of Nuclear vs. Non-Nuclear Design Code Requirements for a Candidate Steam Supply System for Commercial Applications

    SciTech Connect (OSTI)

    Robert Jetter

    2011-04-01T23:59:59.000Z

    The objective is to identify (mostly for industrial end-users) the difference between a Section III nuclear steam generator (classified as Structures, Systems and Components (SSC)) and a Section VIII steam generator in the same general conditions, but used in a conventional application. Specifically, applicable temperature and pressure ranges and a more quantitative description of how materials change, design margins change and required design rigor changes are of interest. This overview focuses on the steam generator pressure boundary but the downstream piping will also be considered. Within the designations of Section III and Section VIII there are subcategories with their specific regions of applicability. Each of these subcategories has evolved their own unique features with respect to design rules and their implementation. A general overview of the various design codes will be provided in sufficient detail to illustrate the major differences; however, a detailed discussion of the various design requirements and their implementation is beyond the scope of this discussion. References (1) and (2) are sources of more detailed information. Also, example wall sizing calculations will be provided to illustrate the application of the relevant design codes under the candidate design conditions. The candidate steam supply Design Conditions are 600C (1112F) and 24MPa (3,480psi). The Operating Conditions or Service Levels will be somewhat lower and the difference shows up in some of the various design methodologies employed.

  8. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector

    SciTech Connect (OSTI)

    Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

    2006-07-01T23:59:59.000Z

    Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)

  9. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

  10. Analysis of a Main Steam Line Break in Asco Nuclear Power Plant

    SciTech Connect (OSTI)

    Cuadra, Arantxa; Gago, Jose Luis; Reventos, Francesc

    2001-06-17T23:59:59.000Z

    A comprehensive analysis of a double-ended main steam line break (MSLB) accident assumed to occur in the Asco nuclear power plant was carried out using the RELAP/PARCS coupled code. The general results of the benchmark provide a certain qualification of tools and methodologies used. Applying such methodologies to other plant models can be useful to extend conclusions and to identify areas where further analysis is needed. The calculations showed the capability of the control rod to recover the accident. However, one stuck control rod caused some recriticality or return to power (RTP), whose magnitude is heavily affected by the initial and boundary conditions. This paper identifies similarities and discrepancies between the benchmark calculation on the TMI-1 model and the Westinghouse three-loop calculation on the Asco model. The use of an integral plant model was helpful in showing the importance on the RTP of different plant systems that are modeled in detail. The high-pressure injection system and feedwater lines as well as the broken steam line model are the most significant.

  11. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1996-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  12. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Power Plant Reliability-Availability and State Regulation,"Report on Equipment Availability: Fossil and NuclearBasic Definitions* Availability: Reliability: Base Loading:

  13. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  14. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15T23:59:59.000Z

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  15. Proceedings: Sixth International Conference on Fossil Plant Cycle Chemistry

    SciTech Connect (OSTI)

    None

    2001-04-01T23:59:59.000Z

    The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These conference proceedings address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for control of corrosion and water preparation and purification.

  16. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  17. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  18. analyzing steam generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  19. advanced steam generators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  20. asco steam generators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  1. New Y-12 Steam Plant On Line | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports|7/%2A en NevadaSteam Plant On

  2. Fossil Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Fuels A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals...

  3. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

    2013-11-15T23:59:59.000Z

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  4. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    average value for nuclear plants) aFinal Envir. Statement (Statement, Koshkonong Nuclear Plant, August 1976. U. S.rem; operation of the nuclear plants themselves only *Other

  5. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    SciTech Connect (OSTI)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27T23:59:59.000Z

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

  6. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.

    SciTech Connect (OSTI)

    Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

    2005-06-03T23:59:59.000Z

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 ???????????????????????????????? September 2004. ???????????????????????????????· Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. ???????????????????????????????· Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. ???????????????????????????????· Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. ???????????????????????????????· Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. ???????????????????????????????· Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. ???????????????????????????????· Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

  7. Iron oxide aerosol experiments in steam-air atmospheres: NSPP (Nuclear Safety Pilot Plant) tests 501-505 and 511: Data record report

    SciTech Connect (OSTI)

    Adams, R.E.; Tobias, M.L.

    1987-02-01T23:59:59.000Z

    This data record report summarizes the results from five tests involving Fe/sub 2/O/sub 3/ test aerosol in a steam-air environment and one test in a dry air environment. This research sponsored by the US Nuclear Regulatory Commission was conducted in the Nuclear Safety Pilot Plant at the Oak Ridge National Laboratory. The purpose of this project is to provide a data base on the behavior of aerosols in containment under conditions assumed to occur in postulated LWR accident sequences; this data base will provide experimental validation of aerosol behavioral codes under development. In the report a brief description is given of each test together with the results in the form of tables and graphs. Included are data on aerosol mass concentration, aerosol fallout and plateout rates, total mass fallout and plateout, aerosol particle size, vessel atmosphere pressure, vessel atmosphere temperatures, temperature gradients near the vessel wall, and steam condensation rates on the vessel wall.

  8. Limestone concrete aerosol experiments in steam-air atmospheres: NSPP (Nuclear Safety Pilot Plant) Tests 521, 522, and 531: Data record report

    SciTech Connect (OSTI)

    Tobias, M.L.; Adams, R.E.

    1987-10-01T23:59:59.000Z

    This data record report summarizes the results from two tests involving limestone concrete test aerosol in a steam-air environment and one test in a dry air environment. This research sponsored by the US Nuclear Regulatory Commission was conducted in the Nuclear Safety Pilot Plant at the Oak Ridge National Laboratory. The purpose of this project is to provide a data base on the behavior of aerosols in containment under conditions assumed to occur in postulated LWR accident sequences; this data base will provide experimental validation of aerosol behavioral codes under development. In the report a brief description is given of each test together with the results in the form of tables and graphs. Included are data on aerosol mass concentration, aerosol fallout and plateout rates, total mass fallout and plateout, aerosol particle size, vessel atmosphere pressure, vessel atmosphere temperatures, temperature gradients near the vessel wall, and steam condensation rates on the vessel wall.

  9. Fossil Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE HydrogenPlans |Formerof Fossil Energy

  10. Fossil Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43andPropertyForPlans FactFortFossil

  11. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOE Patents [OSTI]

    Tokarz, R.D.

    1981-10-27T23:59:59.000Z

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  12. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

  13. Proceedings: 7th International Conference on Cycle Chemistry in Fossil Plants

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These proceedings of EPRI's Seventh International Conference on Cycle Chemistry in Fossil Plants address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for corrosion control and water preparation and purification.

  14. Steam Quality

    E-Print Network [OSTI]

    Johnston, W.

    between the water level and the steam in a boiler, some water vapor will always tend to pass through the system with the steam. Hence, a continuing problem. If steam does carry water vapor past the separators it will tend to coalesce as a liquid...

  15. Ultra-High Temperature Steam Corrosion of Complex Silicates for Nuclear Applications: A Computational Study

    SciTech Connect (OSTI)

    Rashkeev, Sergey N. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Center for Advanced Modeling and Simulation; Glazoff, Michael V. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Advanced Process and Decision Systems; Tokuhiro, Akira [Univ. of Idaho, Idaho Falls, ID (United States). Dept. of Nuclear Engineering

    2014-01-01T23:59:59.000Z

    Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimated the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time at least 100 h is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.

  16. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Specific Considerations Fossil Fuel Coal r. a. b. Normalliquid dominated) and fossil-fuel fired (either coal, oil,Specific Cons iderations Fossil Fuel Coal Oil 1. 1. 3. L 1

  17. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01T23:59:59.000Z

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Todays high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  18. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

  19. Steam Pricing

    E-Print Network [OSTI]

    Jones, K. C.

    . But he uses it to drive a steam turbine which in turn drives a pump. The turbine expands the steam to a lower pressure where it is then condensed and the condensate returned to the boiler house. Let's find out what the steam is worth to this user. His... while the 15 psig condensing turbine is a good candidate to be replaced with an electric motor. But, whatever the case is, the cost of the steam has nothing to do with its value. The point of the above is that this paper is about COST...

  20. Thomas Reddinger Director, Steam

    E-Print Network [OSTI]

    Raina, Ramesh

    Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

  1. Thomas Reddinger Director, Steam

    E-Print Network [OSTI]

    Mather, Patrick T.

    Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Bourdon Steam Plant Operator Vincent Massara Steam Plant Operator Cliff Lescenski Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley Equipment Maintenance Robert Earle Equipment

  2. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Valves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESthe gases exiting from the turbine generate steam todrive a steam turbine, giving rise to the term "com- on

  3. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

  4. Steam Path Audits on Industrial Steam Turbines

    E-Print Network [OSTI]

    Mitchell, D. R.

    in sellable power output as a result of improved turbine efficiency. The Lyondell facility is a combined cycle power plant where a gas turbine: heat recovery system supplies steam to the steam turbine. Since this steam is a bypropuct of the gas turbine...steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits...

  5. Wet-steam erosion of steam turbine disks and shafts

    SciTech Connect (OSTI)

    Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

    2011-01-15T23:59:59.000Z

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  6. Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  7. Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  8. Cycling operation of fossil plants

    SciTech Connect (OSTI)

    Devendorf, D.; Kulczycky, T.G. (Niagara Mohawk Power Corp., Syracuse, NY (USA))

    1991-05-01T23:59:59.000Z

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  9. 55Home Power #21 February / March 1991 ALTERNATIVES TO FOSSIL FUELED

    E-Print Network [OSTI]

    55Home Power #21 February / March 1991 BioGas ALTERNATIVES TO FOSSIL FUELED ENGINE among letters from Home Power readers. I would like to share some perspectives on steam power and its! Producing steam requires heating water to above boiling temperature under pressure. Water boils at 212 F

  10. Fossil | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    7, 2014 Funds Awarded to Historically Black Colleges and Universities for Fossil Energy Research The U.S. Department of Energy has selected four research projects that will...

  11. Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility

    E-Print Network [OSTI]

    Barner, Robert Buckner

    2007-04-25T23:59:59.000Z

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold: 1) efficient low cost...

  12. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01T23:59:59.000Z

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  13. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

    1994-01-01T23:59:59.000Z

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  14. COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR USING DOMAIN DECOMPOSITION AND LOCAL ZOOM METHODS Abstract We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator, Zoom, Domain Decomposition

  15. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . . . . .

  16. Y-12 Steam Plant Project Received National Recognition for Project...

    National Nuclear Security Administration (NNSA)

    Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  17. Thomas Reddinger Director, Steam

    E-Print Network [OSTI]

    McConnell, Terry

    Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

  18. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  19. Steam and Condensate Systems

    E-Print Network [OSTI]

    Yates, W.

    1979-01-01T23:59:59.000Z

    efficiency and profit. Some important factors to consider in steam and condensate systems are: 1) Proper steam pressure 2) Adequate sized steam lines 3) Adequate sized condensate return lines 4) Utilization of flash steam 5) Properly sized... ! can cause system inefficiency. i Adequate sized steam lines assure the process will be furnished with sufficiertt i quantities of steam at the proper pressure. Adequate sized condensate return lines are essential to overall efficiency. lhese...

  20. Steam System Optimization

    E-Print Network [OSTI]

    Aegerter, R. A.

    flanges, control valves, steam turbines, manways, sections of piping, heads on vessels, etc. are uninsulated. If steam is in demand at the steam pressure level of the uninsulated piping and equipment, then the piping and equipment should be insulated... been developed, it is an excellent tool to identify the steam sources. Areas to first look for possible waste are steam turbines and steam let down stations. 161 ESL-IE-98-04-26 Proceedings from the Twentieth National Industrial Energy Technology...

  1. Steam System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    2004-01-01T23:59:59.000Z

    opportunities. Often flanges, control valves, steam turbines, man ways, sections of piping, heads on vessels, etc. are bare and can significantly increase the steam demand. An insulation survey should be conducted of the steam, condensate... is being let down. Some projects are independent of the steam balance, such as eliminating high-pressure (HP) steam leaks, insulating HP steam piping, optimizing the boiler operation, and improving the performance of condensing turbines...

  2. Steam Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurringSteam Systems Steam Systems Many

  3. Steam Path Audits on Industrial Steam Turbines

    E-Print Network [OSTI]

    Mitchell, D. R.

    1992-01-01T23:59:59.000Z

    The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set...

  4. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    DENSITIES AROUND CALIFORNIA NUCLEAR POWER PLANT. le Iil _. .AROUND CALIFORNIA NUCLEAR POWER PLANTS Miles San OnofreIN CALIFORNIA The California Nuclear Power Plant Emergency

  5. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    from the Rancho Seco nuclear plant was simulated, A total ofdistributions around the nuclear plant sites based on thegrowth surrounding nuclear plants after the issuance of the

  6. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    surrounding a nuclear plant, and they are stronglylocation for a nuclear plant, but it is the measures thatand consequences of nuclear plant accidents and would match

  7. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    S. Commercial Nuclear Power Plants. WASH-1400. October 1975.Content of for Nuclear Power Plants. Regulatory Guide 1.101.PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSING PROCESS

  8. SteamMaster: Steam System Analysis Software

    E-Print Network [OSTI]

    Wheeler, G.

    2003-01-01T23:59:59.000Z

    recommendations to increase steam system effic iency. Steam System Opportunities ]n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a O.4-year payback. 75...

  9. Circumferential cracking of steam generator tubes

    SciTech Connect (OSTI)

    Karwoski, K.J.

    1997-04-01T23:59:59.000Z

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

  10. Evaluating Steam Trap Performance

    E-Print Network [OSTI]

    Fuller, N. Y.

    EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data... that live steam loss is the heaviest contributor to the annual operating cost of any steam trap and that maintenance frequency and repair cost are also more important than a trap's first cost. INTRODUCTION Steam traps used on distribution line drip...

  11. Fossil | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ProgramsFIRSTCleanFossil Fossil For

  12. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01T23:59:59.000Z

    out both nuclear energy and fossil fuels at the same timeis the most-used non-fossil fuel energy source in the US,sources of energy without resorting to fossil fuel sources.

  13. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

  14. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

  15. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

  16. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01T23:59:59.000Z

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  17. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08T23:59:59.000Z

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  18. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01T23:59:59.000Z

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  19. Flash Steam Recovery Project

    E-Print Network [OSTI]

    Bronhold, C. J.

    2000-01-01T23:59:59.000Z

    /condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a...

  20. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19T23:59:59.000Z

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  1. Flash Steam Recovery Project

    E-Print Network [OSTI]

    Bronhold, C. J.

    organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam...

  2. Steam Digest 2001

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  3. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  4. SteamMaster: Steam System Analysis Software

    E-Print Network [OSTI]

    Wheeler, G.

    tool to facilitate the process. SteamMaster is based on an Excel spreadsheet with a Visual Basic interface to simplify system modeling and analysis. SteamMaster has many features and capabilities, including energy and cost savings calculations for five...

  5. Steam Trap Management

    E-Print Network [OSTI]

    Murphy, J. J.; Hirtner, H. H.

    problemA of water hammer and high back pressure. ? Exorbitantly hi~h percentage of cold trapA. ? External steam leaks within the steam trap stations, bypasA valves and/or strainer blowdown valvefl open, blowin~ steam. ! I ? Dirt nssociated... Trapping 2 Trap Installed Backwards 1 Misapplication of Technology 1 Strainer Blowdown Connections Capped 285 (*b) Test Tee Connections Capped 11 Trap Inlet Connected to Steam Line Strainer Blowdown Connection 3 Water Logged Coils (Vacuum Present) 7...

  6. HP Steam Trap Monitoring

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01T23:59:59.000Z

    STEAM MONITORING HP Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption... Steam Trap Monitoring ? Real-time monitoring for high-pressure critical traps (>15 PSIG) ? Average total system cost $25K - $50K ? Web-Based or Modbus/BMS Integration Basic Installation Wireless Signal Transmitter Receiver Repeater...

  7. Steam System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    2004-01-01T23:59:59.000Z

    Refinery and chemical plant steam systems are complex and the fuel required to produce the steam represents a major expense. The incremental cost for generating a 1,000 lb./hr. of steam is typically $45,000 - $60,000/year. Most plants have...

  8. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    Vol. 16, No.1, January- Power-Plant Sites. 1i February 1975,~ ties Surrounding Nuclear Power Plants. LBlr5921, LawrenceS. Commercial Nuclear Power Plants. WASH-1400. October 1975.

  9. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    of electric generating plants usefully begins with anmatters, a plant's position within the generating networkthe plant may be divided into a steam generating system and

  10. Steam System Optimization

    E-Print Network [OSTI]

    Aegerter, R. A.

    1998-01-01T23:59:59.000Z

    been developed, it is an excellent tool to identify the steam sources. Areas to first look for possible waste are steam turbines and steam let down stations. 161 ESL-IE-98-04-26 Proceedings from the Twentieth National Industrial Energy Technology... Conference, Houston, TX, April 22-23, 1998 The easiest solution to eliminating excess steam is to shut down steam turbines that exhaust into the header and start up the motor driven spare equipment. Often times this step will be enough to eliminate...

  11. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, M.J.

    1987-05-04T23:59:59.000Z

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  12. Fossil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2 Fossil Energy Today -

  13. Low chemical concentrating steam generating cycle

    DOE Patents [OSTI]

    Mangus, James D. (Greensburg, PA)

    1983-01-01T23:59:59.000Z

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  14. Fossil turbulence and fossil turbulence waves can be dangerous

    E-Print Network [OSTI]

    Carl H Gibson

    2012-11-25T23:59:59.000Z

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales where vorticity is created to larger scales where turbulence fossilizes. Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbulence patterns and fossil turbulence waves preserve and propagate energy and information about previous turbulence. Ignorance of fossil turbulence properties can be dangerous. Examples include the Osama bin Laden helicopter crash and the Air France 447 Airbus crash, both unfairly blamed on the pilots. Observations support the proposed definitions, and suggest even direct numerical simulations of turbulence require caution.

  15. Automated Diagnosis and Classification of Steam Generator Tube Defects

    SciTech Connect (OSTI)

    Dr. Gabe V. Garcia

    2004-10-01T23:59:59.000Z

    A major cause of failure in nuclear steam generators is tube degradation. Tube defects are divided into seven categories, one of which is intergranular attack/stress corrosion cracking (IGA/SCC). Defects of this type usually begin on the outer surface of the tubes and propagate both inward and laterally. In many cases these defects occur at or near the tube support plates. Several different methods exist for the nondestructive evaluation of nuclear steam generator tubes for defect characterization.

  16. Predicting Steam Turbine Performance

    E-Print Network [OSTI]

    Harriz, J. T.

    ," PREDICTING STEAM TURBINE PERFORMANCE James T. Harriz, EIT Waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT Tracking the performance of extraction, back pressure and condensing steam turbines is a crucial part... energy) and test data are presented. Techniques for deriving efficiency curves from each source are described. These techniques can be applied directly to any steam turbine reliability study effort. INTRODUCTION As the cost of energy resources...

  17. Steam System Data Management

    E-Print Network [OSTI]

    Roberts, D.

    2013-01-01T23:59:59.000Z

    Steam System Data Management What Does It Include Safety In Motion Wal?Tech?Valve,?Inc. 251?438?2203 The Real Genius Behind Technology Is People ESL-IE-13-05-35 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New... ? Fabrication Training (Six Year Training) ? Welding Certifications ?Retired From Chevron After 25 Years ? Established A Steam System Program ? Planner For Routine Maintenance Work ? Planner For Steam System Improvements ? Wal-Tech Valve, Inc. ? Purchased...

  18. Integrating Nuclear Energy to Oilfield Operations Two Case Studies

    SciTech Connect (OSTI)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01T23:59:59.000Z

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

  19. Steam reforming analyzed

    SciTech Connect (OSTI)

    Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

    1992-07-01T23:59:59.000Z

    This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

  20. Downhole steam injector

    DOE Patents [OSTI]

    Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

    1983-01-01T23:59:59.000Z

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  1. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    ABBREVIATIONS AAB Accident Analysis Branch (NRC) ApplicationF, Nischan, US NRC. Accident Analysis Branch, U. S. Nuclear2. L 2 is placed in the Accident Analysis Branch (AAB); with

  2. Options for Generating Steam Efficiently

    E-Print Network [OSTI]

    Ganapathy, V.

    This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

  3. Case studies on recent fossil-fired plants

    SciTech Connect (OSTI)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-12-31T23:59:59.000Z

    The article summarises the findings of case studies on fossil-fired power plants carried out by the IEA Clean Coal Centre for the IEA at the request of world leaders at the Gleneagles G8 Summit in July 2005. The studies compared the cost, efficiency and emissions of eight recently constructed coal-fired plants using pulverized coal combustion with subcritical, supercritical or ultra-supercritical steam turbine cycles. Also included was a review of IGCC developments. A case study of a natural gas combined-cycle plant was included for comparison. The full report has been published by the IEA. 1 tab.

  4. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    entry are u Table 4-6 GAS TURBINE FOR 1965-1974 (OUTAGES)AVERAGE utage Cause Code GAS TURBINE GENERATOR FORCED OUTAGEof fossil units, and for gas turbine units, the basic data

  5. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  6. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Charges Relating to Nuclear Reactor Safety," 1976, availableissues impor tant to nuclear reactor safety. This report wasstudies of overall nuclear reactor safety have been

  7. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    for sabotage of nuclear plants or the potential forAccidents in Large Nuclear Plants" (AEC Report, WASH-/40),YEAR FROM POTENTIAL NUCLEAR PLANT ACCIDENTS(a) Consequence

  8. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Charges Relating to Nuclear Reactor Safety," 1976, availablestudies of light-water nuclear reactor safety, emphasizingstudies of overall nuclear reactor safety have been

  9. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:May 2015 All Issues submit Greening up fossil fuels with carbon...

  10. Streams of Steam The Steam Boiler Specification Case Study

    E-Print Network [OSTI]

    Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

  11. Fossil-Based Hydrogen Production

    E-Print Network [OSTI]

    Fuel Processing Using Micro-channel Steam Reforming & Advanced Separations Technology ITM Syngas & ITM H2: Ceramic Membrane Reactor Systems for Converting Natural Gas to H2 & Syngas for Liquid

  12. Ukraine Steam Partnership

    SciTech Connect (OSTI)

    Gurvinder Singh

    2000-02-15T23:59:59.000Z

    The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

  13. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, Michael J. (Plainfield, IL)

    1988-01-01T23:59:59.000Z

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  14. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01T23:59:59.000Z

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  15. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

    2011-09-07T23:59:59.000Z

    Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

  16. Schewel and Schipper 1 FOSSIL FREIGHT: HOW MUCH FOSSIL FUEL DOES IT TAKE TO MOVE FOSSIL1

    E-Print Network [OSTI]

    Kammen, Daniel M.

    understanding of the full cost of5 fossil fuel reliance, and help create the foundation for models to analyzeSchewel and Schipper 1 FOSSIL FREIGHT: HOW MUCH FOSSIL FUEL DOES IT TAKE TO MOVE FOSSIL1 FUEL?2.schewel@berkeley.edu)13 UC Berkeley Energy and Resources Group14 310 Barrows Hall15 UC Berkeley16 Berkeley CA 9470917 Cell

  17. Fossil energy materials needs assessment

    SciTech Connect (OSTI)

    King, R.T.; Judkins, R.R. (comps.)

    1980-07-01T23:59:59.000Z

    An assessment of needs for materials of construction for fossil energy systems was prepared by ORNL staff members who conducted a literature search and interviewed various individuals and organizations that are active in the area of fossil energy technology. Critical materials problems associated with fossil energy systems are identified. Background information relative to the various technologies is given and materials research needed to enhance the viability and improve the economics of fossil energy processes is discussed. The assessment is presented on the basis of materials-related disciplines that impact fossil energy material development. These disciplines include the design-materials interface, materials fabrication technology, corrosion and materials compatibility, wear phenomena, ceramic materials, and nondestructive testing. The needs of these various disciplines are correlated with the emerging fossil energy technologies that require materials consideration. Greater emphasis is given to coal technology - particularly liquefaction, gasification, and fluidized bed combustion - than to oil and gas technologies because of the perceived inevitability of US dependence on coal conversion and utilization systems as a major part of our total energy production.

  18. Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)

    SciTech Connect (OSTI)

    Williams, W.C.

    2002-08-01T23:59:59.000Z

    The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft{sup 2}, the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft{sup 2}-degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation.

  19. Email To Friend Steam Electricity Generator

    E-Print Network [OSTI]

    . keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshoppingBack One Email To Friend Steam Electricity Generator Need Steam Electricity Generator? See Steam Electricity Generator. greenshieldsindustrial.com Steam Generators Deals on Steam Generators Find what you

  20. Predicting Steam Turbine Performance

    E-Print Network [OSTI]

    Harriz, J. T.

    1985-01-01T23:59:59.000Z

    Tracking the performance of extraction, back-pressure and condensing steam turbines is a crucial part of minimising energy and maintenance costs for large process industries. A thorough understanding of key equipment performance characteristics...

  1. Steam System Losses

    E-Print Network [OSTI]

    Buchanan, M. G.; Sneary, M. L.

    energy into the air. You might say that many of us are increasing the relative humidity of our respective cities. Before a conventional pump package can handle steam condensate, that fluid must be cooled to somewhere below 180 0 ? This cooling... are increasing the relative humidity of our respective cities. Before a conventional pump package can handle steam condensate, that fluid must be cooled to somewhere below 180 0 . This cooling is accomplished by venting the receiver to the atmosphere...

  2. Steam System Tool Suite Introduction Guide

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Steam System Tool Suite Introduction Guide Alternate Text Narratives and Graphic.............................................................................................................................6 Modules Steam System Scoping Tool (SSST)........................................................................................8 Steam System Assessment Tool (SSAT

  3. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

  4. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    W NA C C OK/W NA C C OK/W PWR secondary-to- B. Metalwaterfrom core binding OK(WDB) 3. PWR steam a. b. c. Pump Ap S(C Post-CHF heat transfer PWR reflood heat transfer OK (CUP)/

  5. Cheng Cycle Brings Flexibility to Steam Plant

    E-Print Network [OSTI]

    Keller, D. C.; Bynum, D.; Kosla, L.

    true for decreased gas rates, which yield reductions in net fuel costs and electric revenues. Other economic factors include operation and maintenance. Frito-Lay plans to contract all major maintenance directly to International Power Technology... to the increased mass flow and specific heat of the steam/air mixture. Electrical output ranges from 3.5 KW without injection to a theoretical 6.0 KW at maximum injection. Despite the volatility of nuclear power in California, project risk was low because...

  6. Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants

    SciTech Connect (OSTI)

    Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-01-01T23:59:59.000Z

    Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

  7. Steam generator tube rupture study

    E-Print Network [OSTI]

    Free, Scott Thomas

    1986-01-01T23:59:59.000Z

    This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

  8. Deaerators in Industrial Steam Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  9. Reduction in Unit Steam Production

    E-Print Network [OSTI]

    Gombos, R.

    2004-01-01T23:59:59.000Z

    In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

  10. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

  11. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

  12. Economics of Steam Pressure Reduction

    E-Print Network [OSTI]

    Sylva, D. M.

    Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

  13. Inspect and Repair Steam Traps

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

  15. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

  16. Progress of fossil fuel science

    SciTech Connect (OSTI)

    Demirbas, M.F.

    2007-07-01T23:59:59.000Z

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  17. Steam Condensation Induced Waterhammer

    E-Print Network [OSTI]

    Kirsner, W.

    ,200 foot steam line to begin wanning it up. He'd been energizing the G-line for 3 weeks now at the end ofthe asbestos worker's shift and had never had the system warm up this quickly. It usually took from 30 to 45 minutes. When the handwheel spun... at Fort Wainwright, Alaska, the G and H Lines ran underground in narrow utilidors 2 filled with pipe. Originally, the contractor had tried to abate the steam main with the lines energized. This proved to be near impossible for the workers. Utilidor...

  18. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  19. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  20. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Steam Generation Efficiency Module Shell Losses - 1 8/27/2010 Steam End-User Training Steam Generation Efficiency Module Shell Losses-Section: Shell Losses] Banner: DOE's BestPractices Steam End User Training Steam Generation Efficiency Efficiency

  1. Steam Plant, 6% Irrigation,

    E-Print Network [OSTI]

    Zhou, Pei

    Steam Plant, 6% School of Medicine, 17% Irrigation, 3% Hospital, 22% Athletics, 2% Housing, 5 Rainwater Cisterns Reducing the number of once through cooling systems in labs Expediting the connection for Irrigation ~15 million gallons Percent of Water Used for Irrigation that is Non-Potable ~10-15% Number

  2. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Nuclear Power Reactors PROTECTION AGAINST SABOTAGE Protection Against Industrial Sabotage I1C-4 Decominarion and Decommissioning

  3. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  4. Clustering Fossils in Solid Inflation

    E-Print Network [OSTI]

    Mohammad Akhshik

    2014-09-10T23:59:59.000Z

    In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tensor perturbation induces observable clustering fossils in the form of quardupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with Planck constraints. Specializing to this allowed range of model parameter, we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum of scalar perturbations. We argue that imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.

  5. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  6. Steam Trap Application

    E-Print Network [OSTI]

    Murphy, J. J.

    1982-01-01T23:59:59.000Z

    Equipment Collecting leg, same size as equip ment connection but not less than Install a Yarway Process Trap below be drained. Install a Provide vacuum strainer with a blow down valve. Use and Yarway Aldrain valves full ported stop valves, (gate... and Corrosion Problems Like any critical control device the steam trap should be protected from dirt and scale if optimum operation and adequate service life are to be attained. Strainers should be equipped with blowdown valves to provide an effective...

  7. Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships

    E-Print Network [OSTI]

    Jones, T.

    1997-01-01T23:59:59.000Z

    been great advances in boiler control technology as older pneumatic and analog electronic control systems have given way to digital, computer-based distributed control systems. These systems are more reliable and can extend boiler life. Modem... Several software tools are now available for individual steam technologies, such as steam traps, insulation, and boiler controls. The Partnership should investigate linking these software tools together and incorporating other steam "modules" (i...

  8. Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2005-11-01T23:59:59.000Z

    A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

  9. Constant-Pressure Measurement of Steam-

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-169 Constant-Pressure Measurement of Steam- Water Relative Permeability Peter A. O by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative

  10. Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections

    SciTech Connect (OSTI)

    None

    2002-10-01T23:59:59.000Z

    Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

  11. Steam condensate leakage

    SciTech Connect (OSTI)

    Midlock, E.B.; Thuot, J.R.

    1996-07-01T23:59:59.000Z

    Argonne National Laboratory (ANL) is a multi-program research and development center owned by the United States Department of Energy and operated by the University of Chicago. The majority of the buildings on site use steam for heating and other purposes. Steam is generated from liquid water at the site`s central boiler house and distributed around the site by means of large pipes both above and below the ground. Steam comes into each building where it is converted to liquid condensate, giving off heat which can be used by the building. The condensate is then pumped back to the boiler house where it will be reheated to steam again. The process is continual but is not perfectly efficient. A substantial amount of condensate is being lost somewhere on site. The lost condensate has both economic and environmental significance. To compensate for lost condensate, makeup water must be added to the returned condensate at the boiler house. The water cost itself will become significant in the future when ANL begins purchasing Lake Michigan water. In addition to the water cost, there is also the cost of chemically treating the water to remove impurities, and there is the cost of energy required to heat the water, as it enters the boiler house 1000 F colder than the condensate return. It has been estimated that only approximately 60% of ANL`s steam is being returned as condensate, thus 40% is being wasted. This is quite costly to ANL and will become significantly more costly in the future when ANL begins purchasing water from Lake Michigan. This study locates where condensate loss is occurring and shows how much money would be saved by repairing the areas of loss. Shortly after completion of the study, one of the major areas of loss was repaired. This paper discusses the basis for the study, the areas where losses are occurring, the potential savings of repairing the losses, and a hypothesis as to where the unaccounted for loss is occurring.

  12. Fossil Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 201422

  13. Fossil Energy | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms & News 2008Fossil Energy

  14. Process for purifying geothermal steam

    DOE Patents [OSTI]

    Li, Charles T. (Richland, WA)

    1980-01-01T23:59:59.000Z

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  15. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Steam Generation Efficiency Module Efficiency Definition - 1 8/30/2010 Steam End-User Training Steam Generation Efficiency Module will be discussed. [Slide Visual Contents of Module Sections] Banner: DOE's BestPractices Steam End User Training

  16. DOE's BestPractices Steam End-User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End-User Training Steam End User Training Steam Generation Module Stack Losses 1 June 28, 2010 Steam EndUser Training Steam Generation Efficiency Module Stack Losses loss is almost always the largest boiler loss. [Slide Visual ­ Stack Loss Title Page] Steam

  17. FLASH predictions of the MB-2 steam line break tests

    SciTech Connect (OSTI)

    Lincoln, F.W.; Coffield, R.D.; Johnson, E.G.

    1992-12-31T23:59:59.000Z

    If a main steam line from a pressurized water reactor (PWR) steam generator were to rupture, the effect would be a depressurization of the secondary side and a consequential overcooling transient on the primary side. Analyses must accurately predict the effects of the rapid cooldown of the reactor vessel coolant on positive nuclear-kinetic reactivity feedback to the core plus thermal shock to the reactor vessel and other primary system components. Many early studies of the steam line break (SLB) transient made extremely conservative assumptions to maximize the primary to secondary heat transfer which in turn maximized the reactor vessel cooldown rate. Among the more significant of these assumptions was that flow from the break was pure steam and that the tube bundle remained covered until the secondary mass inventory was significantly reduced. The Model F commercial PWR steam generator testing performed in the Model Boiler No. 2 (MB-2) facility located at the Westinghouse Engineering Test Facility in Tampa, Florida provided data to better qualify the actual variation in these key parameters. A conclusion of this analysis is that the MB-2 steam line break data base is accurate and of sufficient detail to provide a valuable basis for making comparisons relative to code predictions. Results obtained using the FLASH transient safety analysis code were found to be in excellent agreement with the data.

  18. Steam Generator Group Project. Annual report, 1982

    SciTech Connect (OSTI)

    Clark, R.A.; Lewis, M.

    1984-02-01T23:59:59.000Z

    The Steam Generator Group Project (SGGP) is an NRC program joined by additional sponsors. The SGGP utilizes a steam generator removed from service at a nuclear plant (Surry 2) as a vehicle for research on a variety of safety and reliability issues. This report is an annual summary of progress of the program for 1982. Information is presented on the Steam Generator Examination Facility (SGEF), especially designed and constructed for this research. Loading of the generator into the SGEF is then discussed. The report then presents radiological field mapping results and personnel exposure monitoring. This is followed by information on field reduction achieved by channel head decontaminations. The report then presents results of a secondary side examination through shell penetrations placed prior to transport, confirming no change in generator condition due to transport. Decontamination of the channel head is discussed followed by plans for eddy current testing and removal of the plugs placed during service. Results of a preliminary profilometry examination are then provided.

  19. Fossil energy program. Summary document

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    This program summary document presents a comprehensive overview of the research, development, and demonstration (RD and D) activities that will be performed in FY 1981 by the Assistant Secretary for Fossil Energy (ASFE), US Department of Energy (DOE). The ASFE technology programs for the fossil resources of coal, petroleum (including oil shale) and gas have been established with the goal of making substantive contributions to the nation's future supply and efficienty use of energy. On April 29, 1977, the Administration submitted to Congress the National Energy Plan (NEP) and accompanying legislative proposals designed to establish a coherent energy policy structure for the United States. Congress passed the National Energy Act (NEA) on October 15, 1978, which allows implementation of the vital parts of the NEP. The NEP was supplemented by additional energy policy statements culminating in the President's address on July 15, 1979, presenting a program to further reduce dependence on imported petroleum. The passage of the NEA-related energy programs represent specific steps by the Administration and Congress to reorganize, redirect, and clarify the role of the Federal Government in the formulation and execution of national energy policy and programs. The energy technology RD and D prog4rams carried out by ASFE are an important part of the Federal Government's effort to provide the combination and amounts of energy resources needed to ensure national security and continued economic growth.

  20. Steam System Improvement: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Leigh, N.

    . For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

  1. Steam System Survey Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpringoutAPBF-DEC NOxBestPractices SteamOffice of1/263

  2. Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

    2011-08-01T23:59:59.000Z

    A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

  3. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  4. Steam Basics: Use Available Data to Lower Steam System Cost

    E-Print Network [OSTI]

    Risko, J. R.

    2011-01-01T23:59:59.000Z

    of the 2011 Industrial Energy Technology Conference New Orleans, Louisiana, May 17-19, 2011 13. Is there never enough time or resource to periodically blow down strainers / drip pockets? 14. Is there a ?one size fits all? approach towards steam trap... selection; using the same model for all drip and tracer applications? 15. Does the site remove strainer screens from steam traps to prevent blockage? 16. Is at least the same amount of steam produced today as 4 years ago? 17. In the past 3 years, has...

  5. Repowering of the Midland Nuclear Station

    E-Print Network [OSTI]

    Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

    1988-01-01T23:59:59.000Z

    The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The existing nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create the largest cogeneration facility...

  6. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12; Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12; UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal Constructed in 1964, provides steam for

  7. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  8. Steam Load Reduction Guidance Emergency Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Steam Load Reduction Guidance Emergency Management Program v October 2014 Steam_Load_Reduction_Guidance_DSRDSR 1.0 PurposeandScope Utilities provides steam to the campus community for space heating, hot water in the steam distribution system or the Central Energy Plant, the preservation of building infrastructure

  9. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8/27/2010 Steam End User Training Welcome Module Slide 1 Steam End User Training Welcome to the Department of Energy's Industrial Technologies Program BestPractices Steam End-User Training. The Department of Energy

  10. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Condensate recovery o Fuel unit cost o Total fuel consumption o Steam production Slide 6 Boiler o PRV steam flows o o Steam consumers Turbine efficiencies Electrical unit cost o o CondensateDOE's BestPractices Steam End User Training Steam End User Training Conclusion Module 1 June 28

  11. Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships

    E-Print Network [OSTI]

    Jones, T.

    The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green...

  12. Steam reformer with catalytic combustor

    DOE Patents [OSTI]

    Voecks, Gerald E. (La Crescenta, CA)

    1990-03-20T23:59:59.000Z

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  13. Steam Cracker Furnace Energy Improvements

    E-Print Network [OSTI]

    Gandler, T.

    & challenges in steam cracking ? Energy efficiency improvements Overview Baytown Olefins Plant Page 3 Baytown Complex ?One of world?s largest integrated, most technologically advanced petroleum/petrochemical complexes ?~3,400 acres along Houston Ship... wall temperatures Furnace tube hydrocarbon + steam 0 0.2 0.4 0.6 0.8 1 1.2 1 2 time C o k e l a y e r Page 8 Steam Cracker Furnace Energy Efficiency ? Overall energy efficiency of furnace depends on ? Run length or % of time...

  14. Energy Department Releases Draft Advanced Fossil Energy Solicitation...

    Broader source: Energy.gov (indexed) [DOE]

    fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII...

  15. antarctic fossil record: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He said the fossils have been Machel, Hans 465 Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities1 Chemistry Websites Summary: Dirty...

  16. 2012 Annual Planning Summary for Fossil Energy, National Energy...

    Office of Environmental Management (EM)

    Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning Summary for Fossil Energy, National Energy Technology...

  17. Cost and Performance Baseline for Fossil Energy Plants Volume...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revision 3 July 6, 2015 DOENETL-20151723 OFFICE OF FOSSIL ENERGY National Energy Technology Laboratory Cost and Performance Baseline for Fossil Energy Plants Volume 1: Revision...

  18. Molecules and fossils reveal punctuated diversification in Caribbean "faviid" corals

    E-Print Network [OSTI]

    Schwartz, Sonja A; Budd, Ann F; Carlon, David B

    2012-01-01T23:59:59.000Z

    punctuated diversification in Caribbean faviid corals. BMCRanges of the Fossil Caribbean Faviidae. Compiled firstand notes for all Caribbean fossil faviid species. Competing

  19. DOE Leverages Fossil Energy Expertise to Develop And Explore...

    Office of Environmental Management (EM)

    DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources...

  20. Energy Department's Fossil Energy Chief to Tour Western Michigan...

    Office of Environmental Management (EM)

    Department's Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable Energy Department's Fossil Energy Chief to Tour...

  1. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

  2. Computer Optimization of Steam Production

    E-Print Network [OSTI]

    Todd, C. H.

    1982-01-01T23:59:59.000Z

    As fuel costs continued to rise sharply during the 1970' s, the staff at Exxon's Benicia Refinery realized there was a growing economic incentive to optimize the production of high pressure steam. A significant percentage of the Refinery's total...

  3. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    2000-01-01T23:59:59.000Z

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  4. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  5. Steam Coal Import Costs - EIA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34...

  6. Steam System Forecasting and Management

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01T23:59:59.000Z

    '. This and the complex and integrated nature of the plants energy balance makes steam system forecasting and management essential for optimum use of the plant's energy. This paper discusses the method used by Union carbide to accomplish effective forecasting...

  7. An air-Brayton nuclear-hydrogen combined-cycle peak-and base-load electric plant

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL

    2008-01-01T23:59:59.000Z

    A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900 C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.

  8. Potential for travertine formation: Fossil Creek, Arizona

    E-Print Network [OSTI]

    Fossil Springs and at full baseflow during turbine maintenance. Analyses resulted in a rate of 11,923 kg with the soil zone, carbonate aquifers, organic material, or regional geothermal activity to produce H2CO3

  9. Fossil energy program. Progress report, July 1980

    SciTech Connect (OSTI)

    McNeese, L. E.

    1980-10-01T23:59:59.000Z

    This report - the seventy-second of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process and program analysis, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, fossil energy applications assessments, performance assurance system support for fossil energy projects, international assessment of atmospheric fluidized bed combustion technology, and PFBC systems analysis.

  10. Proceedings: 1990 fossil plant cycling conference

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities, vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.

  11. Hybrid solar-fossil fuel power generation

    E-Print Network [OSTI]

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01T23:59:59.000Z

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  12. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

  13. Steam vacuum cleaning. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. The baseline technology currently used for washing debris is a high-pressure water cleaning (HPWC) system. The system used at the FEMP is the Hotsy{reg_sign} Model 550B HPWC. Although the HPWC technology has functioned satisfactorily, improvements are being sought in areas related to reduced liquid waste volume, increased productivity, increased washing effectiveness, and decreased airborne contamination. An innovative technology that offers potential improvements in these areas is a steam vacuum cleaning (SVC) system that integrates high-pressure steam cleaning with a vacuum recovery sub-system that simultaneously collects dislodged contaminants thereby reducing airborne contamination. The SVC system selected for demonstration at the FEMP was the Kelly{trademark} Decontamination System shown. This report provides comparative performance and cost analyses between the Hotsy HPWC system and the Kelly Decontamination System. Both technologies were demonstrated at the FEMP site located at Fernald, Ohio from July 29, 1996 through August 15, 1996. The demonstrations were conducted at the FEMP Plant 1 as part of the LSTD project sponsored by the Deactivation and Decommissioning Focus Area (DDFA) of the US DOE`s Office of Science and Technology.

  14. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    SciTech Connect (OSTI)

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01T23:59:59.000Z

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  15. Evolution of Marine Invertebrates and the Burgess Shale Fossils

    E-Print Network [OSTI]

    Kammer, Thomas

    Evolution of Marine Invertebrates and the Burgess Shale Fossils Geology 331, Paleontology #12 #12;Burgess Shale Fossils · Most are soft-bodied fossils, a very rare kind of fossilization. · Of today's 32 living phyla, 15 are found in the Burgess Shale. The other 17 are microscopic or too delicate

  16. Steam systems in industry: Energy use and energy efficiency improvement potentials

    SciTech Connect (OSTI)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-07-22T23:59:59.000Z

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

  17. Humidification Steam vs. Water-Spray

    E-Print Network [OSTI]

    Gidwani, B. N.; Weston, R. F.

    1984-01-01T23:59:59.000Z

    Currently the HVAC systems which require winter humidification at Goddard Space Flight Center (GSFC) utilize an economizer cycle with steam as the source for humidification. Due to the continuously increasing cost of producing steam, a feasibility...

  18. Steam Conservation and Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

  19. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  20. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  1. The Economics of Steam Electric Generation

    E-Print Network [OSTI]

    Ophaug, R. A.; Birget, C. D.

    1980-01-01T23:59:59.000Z

    The economics of combining steam and electric generation for companies requiring both steam and electric services develop a challenge which few engineers and economists can realize. This paper outlines the general approach to this challenge...

  2. Training: Steam Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Steam Systems Training: Steam Systems April 16, 2014 - 6:31pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who...

  3. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8/27/2010 Steam End User Training Navigational Tutorial Module Slide 1 Introduction Hello, and welcome to the Steam End User Training. I would like to take a few minutes to show you how to navigate through

  4. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome to the Steam System End User training. In this training, we will investigate how to assess, evaluate

  5. Identifying Steam Opportunity "Impact" Inputs for the Steam System Assessment Tool (SSAT)

    E-Print Network [OSTI]

    Harrell, G.; Jendrucko, R.; Wright, A.

    2004-01-01T23:59:59.000Z

    The U.S. DOE BestPractices Steam "Steam System Assessment Tool" (SSAT) is a powerful tool for quantifying potential steam improvement opportunities in steam systems. However, all assessment tools are only as good as the validity of the modeling...

  6. Optimisation of Fuel Usage and Steam Availability in the Power and Steam

    E-Print Network [OSTI]

    Cambridge, University of

    the medium pressure manifold (nominally operated at 14 bar), through a steam turbine that can be usedOptimisation of Fuel Usage and Steam Availability in the Power and Steam Plant of a Paper Mill KEYWORDS: Model Predictive Control, Improved Efficiency, Optimisation, Power and Steam Supply System

  7. Capturing Energy Savings with Steam Traps

    E-Print Network [OSTI]

    Bockwinkel, R. G.; French, S. A.

    , it's important to select and install the correct type and size steam trap for each application. This means a corruninnent must be made to training those who select, install, test and maintain steam traps on a. daily Scott A. French Application... generated. This paper will review each of these topics and then explore some of the new services, products, practices and technology available to help you maintain or improve the efficiency of your steam system. COSTLY STEAM LEAKS ENERGY RESOURCES...

  8. ProSteam- A Structured Approach to Steam System Improvement

    E-Print Network [OSTI]

    Eastwood, A.

    and of any operational constraints. It can also be used to determine the true cost of improvement projects, relating any changes in steam demand back to purchased utilities (fuel, power, and make-up water) at the site boundary. Example projects could include...

  9. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01T23:59:59.000Z

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a hydrogen economy. The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  10. Best Management Practice #8: Steam Boiler Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  11. STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION

    E-Print Network [OSTI]

    Stanford University

    STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM Laboratory. iv #12;ABSTRACT Steam-water relative permeability curves are required for mathematical models of two-phase geothermal reservoirs. In this study, drainage steam- water relative permeabilities were

  12. Steam Sterilization Cycles for Lab Applications

    E-Print Network [OSTI]

    Farritor, Shane

    Steam Sterilization Cycles for Lab Applications Presented by Gary Butler STERIS Life Sciences August 2009 #12;Early Steam Sterilizers Koch Upright Sterilizer · First Pressurized Sterilizer · First OPERATING END (NO PRINTER) PRIMARY OPERATING END WITH PRINTER SAFETY VALVE CHAMBER PRESSURE GAUGE Steam

  13. Trace fossil assemblages in selected shelf sandstones

    E-Print Network [OSTI]

    Locke, Kathleen Ann

    1983-01-01T23:59:59.000Z

    and decreasing marine 1nfluence. Individual trace fossil types are more abundant and show a greater d1versity 1n the delta-margin facies; several large, vert1cal crab(?) burrows are P ascot a d th bi g is do 1 t d by ~Ohio o h In the shelf sequences, mostly... ~Zoo h os, f d ly i th iddl -to. outer and outer shelf sequences. Continued study of trace fossils should provide more specific information than the general shelf locations described above. ACKNOWLEDGEMENTS The completion of this thesis marks...

  14. Fossil Energy Word Find | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget FossilThird Quarter,Word

  15. Horizontal Steam Generator Thermal-Hydraulics at Various Steady-State Power Levels

    SciTech Connect (OSTI)

    Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia); Stosic, Zoran V.; Kiera, Michael; Stoll, Uwe [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany)

    2002-07-01T23:59:59.000Z

    Three-dimensional computer simulation and analyses of the horizontal steam generator thermal-hydraulics of the WWER 1000 nuclear power plant have been performed for 50% and 75% partial loads, 100% nominal load and 110% over-load. Presented results show water and steam mass flow rate vectors, steam void fraction spatial distribution, recirculation zones, swell level position, water mass inventory on the shell side, and other important thermal-hydraulic parameters. The simulations have been performed with the computer code 3D ANA, based on the 'two-fluid' model approach. Steam-water interface transport processes, as well as tube bundle flow resistance, energy transfer, and steam generation within tube bundles are modelled with {sup c}losure laws{sup .} Applied approach implies non-equilibrium thermal and flow conditions. The model is solved by the control volume procedure, which has been extended in order to take into account the 3D flow of liquid and gas phase. The methodology is validated by comparing numerical and experimental results of real steam generator operational conditions at various power levels of the WWER Novovoronezh, Unit 5. One-dimensional model of the horizontal steam generator has been built with the RELAP 5 standard code on the basis of the multidimensional two-phase flow structure obtained with the 3D ANA code. RELAP 5 and 3D ANA code results are compared, showing acceptable agreement. (authors)

  16. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    Douglas Arrell

    2006-05-31T23:59:59.000Z

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  17. New downhole steam generator tested

    SciTech Connect (OSTI)

    Bleakley, W.B.

    1981-07-01T23:59:59.000Z

    Completion of 2 field tests of a new-model down-hole steam generator paves the way for further evaluation and development of a system destined to increase California's heavy oil production. Current air pollution restrictions there prevent installation of conventional steam generators in several areas of interest to oil operators. The current series of tests, conducted by Chemical Oil Recovery Co. (CORCO) of Bakersfield, California, follows an earlier prototype operation conducted by Sandia National Laboratories in conjunction with the US Department of Energy. The CORCO tests were conducted on the surface with the generator's output going into Tenneco Oil Exploration and Production Co.'s overland-Riokern Well No. 80, located in the Kern River field 4 miles north of Bakersfield. The first test was concluded with just under 1000 bbl of steam injected, less than planned due to a higher-than-expected injection pressure. The unit operated at less than 25% capacity because of the air compressor limitation. Compressor output was only 285 psi, not enough to inject the desired volumes into the reservoir. Test data shows that injection amounted to 150 bpd of 90 to 95% quality steam at 225-psi wellhead pressure. After injection, the well was shut in for 3 days to allow soaking, then put on production. Initial production was 40 bopd at 175 F.

  18. Geismar TDI Plant Steam Optimization

    E-Print Network [OSTI]

    Baily, M.

    2013-01-01T23:59:59.000Z

    Inlet isolation valve o Outlet isolation valve o Built-in strainer o Upstream blow down o Downstream blow down (or test port) o 2-bolt connection for K port steam trap ? Valves on V2 stations are bellows sealed valves ? high integrity seal...

  19. Generating Steam by Waste Incineration

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01T23:59:59.000Z

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  20. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01T23:59:59.000Z

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

  1. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

    2002-01-01T23:59:59.000Z

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  2. Fossil Energy Materials Program conference proceedings

    SciTech Connect (OSTI)

    Judkins, R.R. (comp.)

    1987-08-01T23:59:59.000Z

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  3. Fossil fuels supplies modeling and research

    SciTech Connect (OSTI)

    Leiby, P.N.

    1996-06-01T23:59:59.000Z

    The fossil fuel supplies modeling and research effort focuses on models for US Strategic Petroleum Reserve (SPR) planning and management. Topics covered included new SPR oil valuation models, updating models for SPR risk analysis, and fill-draw planning. Another task in this program area is the development of advanced computational tools for three-dimensional seismic analysis.

  4. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01T23:59:59.000Z

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  5. The Experiential Bridge: remedial landscape for Hanford's nuclear future

    E-Print Network [OSTI]

    Kim, Yuna

    2013-01-01T23:59:59.000Z

    The groundbreaking discovery of nuclear fission opened up new possibilities for generating power and resources for people. Nuclear energy was much preferred over fossil fuel because of its efficiency in production, ...

  6. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect (OSTI)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01T23:59:59.000Z

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  7. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect (OSTI)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01T23:59:59.000Z

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  8. Steam in Distribution and Use: Steam Quality Redefined

    E-Print Network [OSTI]

    Deacon, W. T.

    in the system at regular intervals. 2) Control valves should be protected by a strainer which is free from condensate accumulation. Heat Transfer potential. 1) Use steam at the lowest possible pressure to take advantage of low pressure latent heat...) A special situation exists ahead of valves that are protected by a strainer. The strainer body is a low point and accumulates condensate naturally, reducing the effective area of the strainer screen. (See Figure 4.) KI!?: Fig. 4. Automatic...

  9. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    E-Print Network [OSTI]

    Gurney, Kevin R.

    2010-01-01T23:59:59.000Z

    interannual variations in fossil fuel emissions. J. Geophys.Treat CO 2 from fossil fuel burning: global distribution ofdioxide emissions from fossil fuel consumption and cement

  10. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

    2012-07-01T23:59:59.000Z

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  11. Coastal Microstructure: From Active Overturn to Fossil Turbulence

    E-Print Network [OSTI]

    Leung, Pak Tao

    2012-02-14T23:59:59.000Z

    Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence...

  12. Chemical filtration for steam purity

    SciTech Connect (OSTI)

    Kovalcik, F.

    1985-03-01T23:59:59.000Z

    Few industrial process systems are as vulnerable to corrosion as the steam generating loop of an electric power plant. Impurities inevitably migrate into the steam cycle, and must be removed to prevent turbine blade corrosion. It is critical to understand the behavior of the condensate polishing resins used to remove the impurities. The Electric Power Research Institute (EPRI) participated in investigations involving ion chromatography which identified chloride as a problem in studies of regeneration and polishing procedures. A modified regeneration procedure consists of ammonium sulfate treatment of the resin before and after ammonia recirculation, followed by a dilute ammonia rinse. A joint study with Southern California Edison also simulated condenser leaks to find the effect of cooling water intrusion.

  13. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18T23:59:59.000Z

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  14. Managing the Steam Trap Population

    E-Print Network [OSTI]

    Atlas, R. D.

    1983-01-01T23:59:59.000Z

    item? .However, some converts to the gospel of enlighten ed steam trap management expect to achieve the following benefits: A 95% trap performance level which is a better than 30% improvement over the industry norm. Plus, we have found a well... trained. This may six surveys per year with a guaf'8nteed performance level involve two days of training per man including of better than 9596. This program usually has the best cash classroom and field instruction plus periodic flow, and faster...

  15. Steam Turbine Materials and Corrosion

    SciTech Connect (OSTI)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01T23:59:59.000Z

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  16. Reducing Fossil Carbon Emissions and Building Environmental Awareness at

    E-Print Network [OSTI]

    of waste that is created when extracting and consuming fossil fuels. Reducing Dartmouth College's demand on the biophysical environment in the following ways: Reducing the amount of fossil fuels that are consumed. Reducing the amount of pollution that is generated from fossil fuel consumption. Reducing the amount

  17. Opportunism and competition in the non-fossil fuel obligation

    E-Print Network [OSTI]

    Watson, Andrew

    Opportunism and competition in the non-fossil fuel obligation Paolo Agnolucci July 2005 Tyndall are the responsibility of the author(s) alone and not the Tyndall Centre. #12;Summary The Non-Fossil Fuel Order (NFFO Electricity; Renewable Policy, Non-Fossil Fuel Obligation; Moral Hazard; Post-contractual Opportunism #12

  18. Yankee Ticket Prices and Fossil Fuels 10 April 2008

    E-Print Network [OSTI]

    Hansen, James E.

    higher. Eventually, sales volume will begin to decline, but fossil fuel moguls will make more money than unconventional fossil fuels such as tar shale and tar sands on a large scale. That choice cannot be left is captured and sequestered) and unconventional fossil fuels are not tapped #12;substantially. Peak CO2 can

  19. DOE BestPractices Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE BestPractices Steam End User Training Guide Alternate Text Narratives and Graphic Descriptions June 29, 2010 #12;DOE BestPractices Steam End User Training Steam End User Training Table ............................................................................................................................................................................201 #12;DOE's BestPractices Steam End User Training Welcome Module 1 June 28, 2010 Steam End

  20. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01T23:59:59.000Z

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  1. Optical steam quality measurement system and method

    DOE Patents [OSTI]

    Davidson, James R.; Partin, Judy K.

    2006-04-25T23:59:59.000Z

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  2. Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart

    E-Print Network [OSTI]

    Jones, T.; Hart, F.

    1998-01-01T23:59:59.000Z

    traps, insulation, and boiler controls. The Partnership should investigate linking these software tools together and incorporating other steam "modules" (i.e., water treatment, boiler tune-up, common steam applications) in order to estimate...

  3. Identifying Steam Opportunity "Impact" Inputs for the Steam System Assessment Tool (SSAT)

    E-Print Network [OSTI]

    Harrell, G.; Jendrucko, R.; Wright, A.

    2004-01-01T23:59:59.000Z

    IDENTIFYING STEAM OPPORTUNITY "IMPACT" INPUTS FOR THE STEAM SYSTEM ASSESSMENT TOOL (SSAT) Dr. Greg Harrell, University of Tennessee/Knoxville Dr. Richard Jendrucko, University of Tennessee/Knoxville Dr. Anthony Wright, Oak Ridge National...

  4. The Steam System Assessment Tool (SSAT): Estimating Steam System Energy, Cost, and Emission Savings

    E-Print Network [OSTI]

    Wright, A.; Bealing, C.; Eastwood, A.; Tainsh, R.; Hahn, G.; Harrell, G.

    The U. S. Department of Energy's (DOE) Industrial Technology Program BestPractices Steam effort is developing a number of software tools to assist industrial energy users to improve the efficiency of their steam system. A major new Best...

  5. Nodalization study of the Westinghouse Model E steam generator secondary side

    E-Print Network [OSTI]

    Montgomery, Robert Orval

    1987-01-01T23:59:59.000Z

    on overall nuclear reactor systems and/or individual components of these systems~. RETRAN-02 is an industry standard code which can Steam Outlet and Rcw Rosirlator Upper Desk Fy I Upon Nomw lamps Level CanneaUan Doanaom?Semi Salrl atmo Acems OPi&np...

  6. Materials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes

    E-Print Network [OSTI]

    Yildiz, Bilge

    as potential sources of hydrogen for the "hydrogen economy". One of these hydrogen production processesMaterials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis-electrochemical hydrogen production cycle that produces hydrogen from water, also using heat from a nuclear reactor

  7. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    1999-01-01T23:59:59.000Z

    for more detailed information on boiler control upgrades were initiated. While reviewing steam trap options, NNFD was contacted by Dibert Valve & Fitting Company, which was marketing a new steam trap system that allowed easier testing and repair..., a detailed workscope for the boiler control upgrades, and a quote was obtained. After review by maintenance management and mechanics, orders for both the boiler control package and the steam trap system's components were placed. BOILER CONTROLS...

  8. The Future of Steam: A Preliminary Discussion

    E-Print Network [OSTI]

    Russell, C.; Harrell, G.; Moore, J.; French, S.

    alternatives to steam turbines. Gas turbines, microturbines, and fuel cells are emerging technologies to watch in lhis regard. Greater acceptance of the CHP concept is in part related to concerns with reliability in power supply. Deregulation... monitored steam operations will give the system operator better diagnostic capabilities Periodic measures of fuel consumption, emissions content, and steam deliveries per volume of product are a few examples of operational metrics. The collection...

  9. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01T23:59:59.000Z

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  10. Steam Pressure Reduction Opportunities and Issues

    E-Print Network [OSTI]

    Berry, J.; Griffin, B.; Wright, A. L.

    2006-01-01T23:59:59.000Z

    - use, and recovery. In addition to reduced energy losses, fuel consumption can be reduced, boiler efficiency can be improved, and process energy needs can be met with a reduced steam flow rate. Changes in system parameters can vary with the design... steam trap to discharge the required flow of condensate, resulting in water- logging of steam-heated equipment (e.g., dryers, water heaters, reactors). For example, consider a makeup air unit that operates at the main system pressure...

  11. Steam reforming utilizing high activity catalyst

    SciTech Connect (OSTI)

    Setzer, H. J.

    1985-03-05T23:59:59.000Z

    High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

  12. Optimized Control Of Steam Heating Coils

    E-Print Network [OSTI]

    Ali, Mir Muddassir

    2012-02-14T23:59:59.000Z

    cooling. II. Flooding of coils with condensate and its subsequent freezing when outside air temperature falls below 32?F. III. Increased maintenance cost due to water hammer, corrosion of coils in the presence of non-condensable gases and leaking steam... monotonically as the steam pressure increases, a higher steam pressure may lead to overheating of the air and result in simultaneous heating and cooling. In addition to energy waste due to simultaneous heating and cooling, an improper operating strategy can...

  13. World launch! Hot-Steam Aerostat

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Info HeiDAS UH World launch! Hot-Steam Aerostat #12;"If you intend to view the land, if you plan Verne: "Fife weeks on a balloon". HeiDAS stands for Hei?DampfAeroStat (Hot-Steam AeroStat) and it refers to the first operable balloon ever that became buoyant by means of superheated steam. The performance of Hei

  14. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  15. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect (OSTI)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01T23:59:59.000Z

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  16. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01T23:59:59.000Z

    and incentive grants. Stand-alone projects encompass a wide range of projects. Examples include: -conversion of steam heated Air Handling Units from steam to natural gas. -Heat Recovery Projects. -Installation of RO water treatment systems.... These facilities have large Central Heating Plants. Some institutions have installed co- generation, replacing boilers with Heat Recovery Steam Generators. TABLE 2 BOILER POPULATION FOR STEAM PLANTS WITH ANNUAL FUEL CONSUMPTION GREATER THAN 70 MILLION CUBIC...

  17. Covered Product Category: Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

  18. Pre-In-Plant Training Webinar (Steam)

    Broader source: Energy.gov [DOE]

    This pre-In-Plant training webinar for the Better Plants Program covers how to find energy savings in steam systems.

  19. Achieve Steam System Excellence - Steam Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001 Energy ManagementPatriciaUCNIAchieve Steam System

  20. Achieve Steam System Excellence - Steam Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofingDepartmentAchieve Steam System

  1. DOE's BestPractices Steam End User Training Steam EndUser Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam EndUser Training Resource Utilization End User Training Resource Utilization Analysis Module 1 June 28, 2010 #12; DOE's BestPractices Steam End User Training Slide 3 Fuel Selection 1 Fuel purchases typically dominate the operating cost

  2. Steam catalysis in CaO carbonation under low steam partial pressure

    SciTech Connect (OSTI)

    Yang, S.J.; Xiao, Y.H. [Chinese Academy of Science, Beijing (China)

    2008-06-15T23:59:59.000Z

    CaO was widely used to capture CO{sub 2} in direct hydrogen production process, where steam always existed simultaneously. The effect of steam on CaO carbonation performance under low steam partial pressure was investigated using a pressurized thermogravimetric apparatus. The experimental results revealed that steam improved CaO carbonation performance significantly no matter whether Ca(OH){sub 2} was produced or not. At 823 K and 0.5 MPa of steam partial pressure, effect of steam on CaO carbonation performance could not be attributed mainly to production of Ca(OH){sub 2} because the hydration rate of CaO was very slow. The main reason was steam catalysis in CaO carbonation. Enhancement of steam on CaO carbonation performance without Ca(OH){sub 2} production could not be attributed to improvement of steam on the physical property, but to catalytic effect of steam. Effects of CaO precursors, CO{sub 2} partial pressure, steam partial pressure, and temperature with steam addition on CaO carbonation performance were also investigated.

  3. A possible role for stochastic radiation events in the systematic disparity between molecular and fossil dates

    E-Print Network [OSTI]

    Melott, Adrian L

    2015-01-01T23:59:59.000Z

    Major discrepancies have been noted for some time between fossil ages and molecular divergence dates for a variety of taxa. Recently, systematic trends within avian clades have been uncovered. The trends show that the disparity is much larger for mitochondrial DNA than for nuclear DNA; also that it is larger for crown fossil dates than stem fossil dates. It was argued that this pattern is largely inconsistent with incompleteness of the fossil record as the principal driver of the disparity. A case is presented that given the expected mutations from a fluctuating background of astrophysical radiation from such sources as supernovae, the rate of molecular clocks is variable and should increase into the past. This is a possible explanation for the disparity. One test of this hypothesis is to look for an acceleration of molecular clocks 2 to 2.5 Ma due to a probable moderately nearby supernova at that time. Another is to look for reduced disparity in benthic organisms of the deep ocean.

  4. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01T23:59:59.000Z

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  5. HTGR-process steam/cogeneration and HTGR-steam cycle program. Semiannual report, October 1, 1979-March 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    Progress in the design of an 1170-MW(t) High-Temperature Gas-Cooled Reactor (HTGR) Nuclear Steam Supply (NSS) is described. This NSS can integrate favorably into present petrochemical and primary metal process industries, heavy oil recovery operations, and future shale oil recovery and synfuel processes. The economics appear especially attractive in comparison with alternative coal-fired steam generation. Cost estimates for central station power-generating 2240- and 3360-MW(t) HTGR-Steam Cycle (HTGR-SC) plants are updated. The 2240-MW(t) HTGR-SC is treated to a probabilistic risk evaluation. Compared with the earlier 3000-MW(t) design, the results predict a slightly increased risk of core heatup, owing to the result of eliminating the capability of the boiler feed pump to operate at atmospheric backpressure. The differences in risk, however, are within the calculational uncertainties. Preliminary results of the ranking of safety enhancement features for the 1170-MW(t) HTGR indicate that the following modifications offer the most promise: (1) capability for main loop rundown, (2) natural circulation core auxiliary cooling, and (3) PCRV blowdown capability through the helium purification system to minimize activity release during some core heatups.

  6. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

    2009-07-15T23:59:59.000Z

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  7. Steam Field | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaStea DivisioneSteam

  8. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    of the collector, turbine, and steam accumulator arehigher efficiencies with wet steam, but turbines often see

  9. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    ?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

  10. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007...

  11. alloy n06600 steam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as...

  12. Recent Progress on Steam Hydrogasification of Carbonaceous Matter...

    Broader source: Energy.gov (indexed) [DOE]

    Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean...

  13. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Steam System Performance: A Sourcebook for Industry, Second Edition Improving Steam System Performance: A Sourcebook for Industry, Second Edition This sourcebook is...

  14. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a...

  15. Steam System Efficiency Optimized After J.R. Simplot Fertilizer...

    Broader source: Energy.gov (indexed) [DOE]

    Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives...

  16. Comparative Investigation of Benzene Steam Reforming over Spinel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts....

  17. Optimizing Steam & Condensate System: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Norris, C.

    2011-01-01T23:59:59.000Z

    for electricity). The site generates steam for its process operation from 3 gas fired boilers at 525-psig pressure. The steam is consumed at 5 process areas; Acid, Basics, Crystals, Derivatives & Hydrogen plants. All of the process areas recover condensate inside...

  18. Coreflood experimental study of steam displacement

    E-Print Network [OSTI]

    Cerutti, Andres Enrique

    1997-01-01T23:59:59.000Z

    in which steam was injected into a core or a sand pack. Liquid saturation profiles in the core or sand pack were constructed from X-ray CT scan cross-sectional images. The liquid saturation profiles indicate the presence of three zones, namely, the steam...

  19. Energy Management - Using Steam Pressure Efficiently

    E-Print Network [OSTI]

    Jiandani, N.

    1983-01-01T23:59:59.000Z

    Saturated steam contains heat in two different forms. Sensible heat and latent heat. Due to the nature of this vapor, the relative proportion of latent heat is higher at lower pressures compared to higher pressures. When steam is used for heating...

  20. Program assists steam drive design project

    SciTech Connect (OSTI)

    Mendez, A.A.

    1984-08-27T23:59:59.000Z

    A new program for the HP-41CV programmable calculator will compute all parameters required for a steam drive project design. The Marx and Langenheim model assumptions are used to solve a more advanced version of the Myhill and Stegemeier model. Also, the Mandl and Volek model assuptions are used to compute the size of the steam zone.

  1. Energy Management - Using Steam Pressure Efficiently

    E-Print Network [OSTI]

    Jiandani, N.

    1983-01-01T23:59:59.000Z

    Saturated steam contains heat in two different forms. Sensible heat and latent heat. Due to the nature of this vapor, the relative proportion of latent heat is higher at lower pressures compared to higher pressures. When steam is used for heating...

  2. System studies guiding fossil energy RD & D

    SciTech Connect (OSTI)

    NONE

    2007-12-31T23:59:59.000Z

    The article describes the following recently completed studies, all of which may be accessed on NETL's website: http://netl.doe.gov/energy-analyses/ref-shelf.html: Cost and performance baseline for fossil energy power plants - volume 1: bituminous coal and natural gas to electricity (May 2007); Increasing security and reducing carbon emissions of the US transportation sector: a transformational role for coal with biomass (August 2007); Industrial size gasification for syngas, substitute natural gas, and power production (April 2007); and Carbon dioxide capture from existing coal-fired power plants (December 2006). 2 figs.

  3. Draft Advanced Fossil Solicitation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 FederalDonnaDraft Advanced Fossil

  4. No Fossil Fuel - Kingston | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppelsource History(CTI PFAN)Fossil Fuel - Kingston

  5. Fossil energy biotechnology: A research needs assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  6. A Novel Solar-Fossil Hybrid Power Plant

    SciTech Connect (OSTI)

    Brown, Daryl R.

    2014-01-01T23:59:59.000Z

    This is a short article prepared for Power Magazine about our development of a solar-powered steam-methane reformer.

  7. Office of Fossil Energy Continues Long-Running Minority Educational...

    Broader source: Energy.gov (indexed) [DOE]

    environments of AUSC coal-fired boilers and steam and gas turbines require corrosion-resistant coatings with enhanced thermal durability and reliability. A technique for...

  8. RELAP5 modeling of the Westinghouse model D4 steam generator

    SciTech Connect (OSTI)

    Mavko, B.; Petelin, S.; Gortnar, O. (Univ. of Ljubljana (Slovenia))

    1993-02-01T23:59:59.000Z

    The steam generator is one of the most important components of a pressurized water reactor (PWR) nuclear power plant. Thus, the ability to model and predict the steam generator steady-state and transient thermal-hydraulic behavior is a prerequisite for performing safety analyses of PWR systems. A RELAP5 model of the Westinghouse D4 steam generator with a 70/30 split feedwater system has been developed, and it is tested by simulating five secondary-side-initiated transients. This study of primary-to-secondary heat transfer and the secondary coolant vaporization process has enabled the primary coolant cooldown to be maximized, as required for performing a conservative steamline break analysis. These tests were realized using the RELAP5/MOD2.36.05 and RELAP5/MOD3.5M5 computer codes.

  9. ash fossil energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration gas mixtures containing H2 developed Associated Fossil Energy Programs Carbon dioxide sequestration. 2005 2010 2013 2015 12;Barriers to Hydrogen Production from...

  10. american fossil mammals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time, in particular during Plotnick, Roy E. 424 Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities1 Chemistry Websites Summary: Dirty...

  11. advanced fossil energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reforming reaction is driven to completion with conversion of the fossil fuel energy values to the equivalent of hydrogen fuel. The fuel carbon content is recovered...

  12. agglomeration fossil energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time, in particular during Plotnick, Roy E. 309 Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities1 Chemistry Websites Summary: Dirty...

  13. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective

    E-Print Network [OSTI]

    Divakaruni, S. M.

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  14. Fossil Energy Acting Assistant Secretary Recognized at Black...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy,...

  15. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...

    Broader source: Energy.gov (indexed) [DOE]

    FOSSIL ENERGY ) FE DOCKET NO. 14-001-CIC CAMERON LNG, LLC ) FE DOCKET NO. 11-162-LNG ) FE DOCKET NO....

  16. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective

    E-Print Network [OSTI]

    Divakaruni, S. M.

    1989-01-01T23:59:59.000Z

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  17. alternative fossil fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 3 From fossil fuels to renewable energies...

  18. Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2012-09-01T23:59:59.000Z

    This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.

  19. Hydrogen's role in a nuclear renaissance Oct 22, 2007 04:30 AM

    E-Print Network [OSTI]

    Naterer, Greg F.

    a method of producing lower-cost hydrogen from the waste heat of nuclear plants. Atomic Energy of Canada the waste heat from a nearby nuclear plant to extract hydrogen from steam. What happens is the steam reacts the waste heat recovery, rising natural gas prices, higher demand and declining natural gas reserves

  20. Economic Analysis of "Steam-Shock" and "Pasteurization"

    E-Print Network [OSTI]

    Economic Analysis of "Steam-Shock" and "Pasteurization" Processes for Oyster Shucking JOHN W. BROWN Introduction "Steam-shock" is an oyster shucking process that uses steam to relax the oyster's adductor muscle of the shucking process as in integral part of the operation of an existing oyster-shucking house. The term "steam

  1. Steam reforming utilizing iron oxide catalyst

    SciTech Connect (OSTI)

    Setzer, H. T.; Bett, J. A. S.

    1985-06-11T23:59:59.000Z

    High activity steam reforming iron oxide catalysts are described. Such catalysts can be unsupported utilizing at least 90% by weight iron oxide and various modifiers (Ai/sub 2/O/sub 3/, K/sub 2/O, CaO, SiO/sub 2/) or unmodified and supported on such things as alumina, CaO impregnated alumina, and lanthanum stabilized alumina. When used in steam reformers such as autothermal and tubular steam reformers, these catalysts demonstrate much improved resistance to carbon plugging.

  2. Electrical Cost Reduction Via Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... to replace pressure reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between...

  3. Incremental costs and optimization of in-core fuel management of nuclear power plants

    E-Print Network [OSTI]

    Watt, Hing Yan

    1973-01-01T23:59:59.000Z

    This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

  4. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  5. ExxonMobile Beaumont Chemical Plant Steam Integration Project

    E-Print Network [OSTI]

    Long, T.

    ? Conventional boilers ? Gas turbine generators/ heat recovery steam generators ? Waste heat recovery boilers ? Steam is distributed and consumed at multiple locations and at various levels ? Evolution across the site can lead to isolated steam imbalances 4... the chemical plant boundaries ? The Refinery had a need for this valuable energy resource. ? A project was conceived to install piping and control systems to export the excess medium pressure steam to the adjacent Refinery where the steam could be more...

  6. Fossil Energy Fuel Cell Wayne Surdoval, SECA Coordinator

    E-Print Network [OSTI]

    National Energy Technology Laboratory Office of Fossil Energy #12;Strategic Center for Natural GasFossil Energy Fuel Cell Program Wayne Surdoval, SECA Coordinator June 3, 2003 SECA Fuel Processing. & Desulf. *Berry *Shekhawat Gardner 1.) Develop Fuel Reforming Database & Report 2.) Develop Fuel

  7. Environmental Law and Fossil Fuels: Barriers to Renewable Energy

    E-Print Network [OSTI]

    Outka, Uma

    2012-01-01T23:59:59.000Z

    This article is concerned with renewable energys too-slow transition and with how existing legal regimes work to preserve fossil energy dominance. It develops from two related claims: that an implicit support structure for fossil energy is written...

  8. EDIACARAN AND CAMBRIAN INDEX FOSSILS FROM SONORA, MEXICO

    E-Print Network [OSTI]

    Hagadorn, Whitey

    EDIACARAN AND CAMBRIAN INDEX FOSSILS FROM SONORA, MEXICO by FRANCISCO SOUR-TOVAR*, JAMES W, Facultad de Ciencias, Universidad Nacional Auto´noma de Me´xico, Ciudad Universitaria, Me´xico DF, Mexico Formation near Pitiquito, Sonora, Mexico, and new occurrences of the Neoproterozoic index fossil Cloudina

  9. Evaluation and Reliability Enhancement for ET Data of VVER Steam Generator Tubes

    SciTech Connect (OSTI)

    Kadenko, Ihor; Sakhno, Nadiya; Yermolenko, Ruslan; Anderson, Michael T.; Taylor, Tom T.

    2003-12-01T23:59:59.000Z

    Currently, there are three remote automated eddy current inspection systems supplied in Ukraine under international cooperation agreements for examination of steam generators, collectors and steam generator tubing. Since 1966 the field experience in using eddy current testing (ET) for in-service inspection of VVER designed steam generators in Ukraine has shown several advantages over the previous inspection methodology which was an air bubble leakage technique. However, the field experience in using eddy current inspection technology has also shown that inspections are not always reliable. Some nuclear power plants have experienced unplanned shutdowns due to leaks in steam generator tubes, some of which were tested by ET prior to the leak. Therefore, eddy current inspection has shown significant improvement over previous testing techniques, field experience also shows the necessity to improve the ET inspection reliability as applied at Ukraine nuclear power plants. This paper presents the status of efforts by the Ukraine Nondestructive Certification and Training Facility (NDEF) Eddy Current laboratory to improve eddy current inspection in Ukraine.

  10. Cogeneration: An Industrial Steam and Power Option

    E-Print Network [OSTI]

    Orlando, J. A.; Stewart, M. M.; Roberts, J. R.

    Industrial facilities of all sizes have the ability to reduce and better control both power and steam costs with a cogeneration system. Unlike the larger systems that sell almost all of the cogenerated power to a regulated electric utility...

  11. Extraction Steam Controls at EPLA-W

    E-Print Network [OSTI]

    Brinker, J. L.

    2004-01-01T23:59:59.000Z

    ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site...

  12. Solar steam generation by heat localization

    E-Print Network [OSTI]

    Ghasemi, Hadi

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

  13. Electrical Cost Reduction Via Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    1991-01-01T23:59:59.000Z

    years. The availability of this equipment in a packaged system form makes it feasible to replace pressure reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity...

  14. Cheng Cycle Brings Flexibility to Steam Plant

    E-Print Network [OSTI]

    Keller, D. C.; Bynum, D.; Kosla, L.

    1987-01-01T23:59:59.000Z

    Department examined several energy optimization systems for this site. It was determined that a modified gas turbine cogeneration system was the best overall option. This system is unique in that it injects superheated steam from the waste heat boiler back...

  15. Steam turbine upgrading: low-hanging fruit

    SciTech Connect (OSTI)

    Peltier, R.

    2006-04-15T23:59:59.000Z

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  16. Steam System Optimization : A Case Study

    E-Print Network [OSTI]

    Iordanova, N.; Venkatesan, V. V.; Calogero, M.

    2002-01-01T23:59:59.000Z

    to the required levels for different consumers. ABC Plant utilizes steam in two ways: ? indirect use, returning the condensate after process heating, hot water generation and comfort heating. ? direct use in XXX moisturizers, XXX steamers, XXX water tanks...

  17. Combustion Air Preheat on Steam Cracker Furnaces

    E-Print Network [OSTI]

    Kenney, W. F.

    1983-01-01T23:59:59.000Z

    Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several...

  18. World Class Boilers and Steam Distribution System

    E-Print Network [OSTI]

    Portell, V. P.

    World class is a term used to describe steam systems that rank in the top 20% of their industry based on quantitative system performance data and energy management for the facility. The rating is determined through a proceduralized assessment...

  19. Optimizing Steam & Condensate System: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Norris, C.

    2011-01-01T23:59:59.000Z

    Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel ...

  20. Steam Management- The 3M Approach

    E-Print Network [OSTI]

    Renz, R. L.

    As one of the world's leading manufacturers of innovative products, 3M is continually working to improve energy efficiency in offices, research centers, and production facilities. Steam system optimization is one of the keys to this process...

  1. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  2. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  3. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  4. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01T23:59:59.000Z

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  5. Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America

    E-Print Network [OSTI]

    Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

    2007-01-01T23:59:59.000Z

    dioxide emissions from fossil fuel consumption and cementindependent budgeting of fossil fuel CO 2 over Europe by COregional, and national fossil fuel CO 2 emissions, Carbon

  6. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Figures A typical wet steam Rankine cycle on a temperature-A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributed

  7. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    Gas Turbine Power (MWe) Steam Turbine Power (MWe) Total (for the 2015 advanced steam turbine configuration for powerthe LP section of the steam turbine set. Finally, the fuel

  8. Towards constraints on fossil fuel emissions from total column carbon dioxide

    E-Print Network [OSTI]

    Keppel-Aleks, G.; Wennberg, P. O; O'Dell, C. W; Wunch, D.

    2013-01-01T23:59:59.000Z

    G. Keppel-Aleks et al. : Fossil fuel constraints from X CO 2P. P. : Assess- ment of fossil fuel carbon dioxide and otherstrong localized sources: fossil fuel power plant emissions

  9. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    dioxide emissions from fossil-fuel combustion R. J. Andresdioxide emis- sions from fossil-fuel use in North America,S. : High resolution fossil fuel combustion CO 2 emission

  10. Visbreaking-enhanced thermal recovery method utilizing high temperature steam

    SciTech Connect (OSTI)

    Shu, W.R.

    1984-06-26T23:59:59.000Z

    The displacement efficiency of a steam drive process is improved and steam override reduced by rapidly injecting a predetermined amount of high temperature steam via an injection well into the formation to visbreak a portion of the oil in the formation prior to a steam drive wherein steam is injected into the formation via the injection well to displace oil to a spaced-apart production well through which oil is recovered. The visbroken oil provides a more favorable transition of mobility ratio between the phases in the formation thereby reducing viscous fingering and increasing the displacement efficiency of the steam drive. In addition, after a predetermined amount of high temperature steam has been injected into the formation, the formation may be allowed to undergo a soak period prior to the steam drive. The high temperature steam injection and soaking steps may be sequentially repeated for a plurality of cycles.

  11. Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies

    E-Print Network [OSTI]

    Hahn, G.

    A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

  12. Eddy Current Signature Classification of Steam Generator Tube Defects Using A Learning Vector Quantization Neural Network

    SciTech Connect (OSTI)

    Gabe V. Garcia

    2005-01-03T23:59:59.000Z

    A major cause of failure in nuclear steam generators is degradation of their tubes. Although seven primary defect categories exist, one of the principal causes of tube failure is intergranular attack/stress corrosion cracking (IGA/SCC). This type of defect usually begins on the secondary side surface of the tubes and propagates both inwards and laterally. In many cases this defect is found at or near the tube support plates.

  13. Roundtables Is nuclear energy different than other

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    -energy sources. Given the need to curb greenhouse-gas emissions and avoid fossil fuels, comparing nuclear power -- from real prices that are much higher than those of renewables. Why the subsidies? Partly because subsidies ($165 billion) to commercial nuclear than to wind and solar combined ($5 billion), if one counts

  14. Combining Nuclear Power With Coal-to-Gasoline Conversion

    SciTech Connect (OSTI)

    Hamel, H.J.; Jaeger, Walter; Termuehlen, Heinz

    2006-07-01T23:59:59.000Z

    With coal representing 95% and oil only 2.5% of the US fossil fuel reserves and with the abundant nuclear fuel reserves in the US, such combined plants should be built in the near future. (authors)

  15. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Gary Vine

    2010-12-01T23:59:59.000Z

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes Best Technology Available for intake structures that withdraw cooling water that is used to transfer and reject heat from the plants steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  16. Aerosol behavior in a steam-air environment

    SciTech Connect (OSTI)

    Adams, R.E.; Tobias, M.L.; Petrykowski, J.C.

    1984-01-01T23:59:59.000Z

    The behavior of aerosols assumed to be characteristic of those generated during accident sequences and released into containment is being studied in the Nuclear Safety Pilot Plant (NSPP). Observation on the behavior of U/sub 3/O/sub 8/ aerosol, Fe/sub 2/O/sub 3/ aerosol, concrete aerosol, and various mixtures of these aerosols in a dry air environment and in a steam-air environment within the NSPP vessel are reported. Under dry conditions, the aerosols are agglomerated in the form of branched chains; the aerodynamic mass median diameter (AMMD) of the U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/ and mixed U/sub 3/O/sub 8/-Fe/sub 2/O/sub 3/ aerosols ranged between 1.5 and 3..mu..m while that of the concrete aerosol was about 1 ..mu..m. A steam-air environment, which would be present in LWR containment during and following an accident, causes the U/sub 3/O/sub 8/, the Fe/sub 2/O/sub 3/, and mixed U/sub 3/O/sub 8/-Fe/sub 2/O/sub 3/ aerosols to behave differently from that in a dry atmosphere; the primary effect is an enhanced rate of removal of the aerosol from the vessel atmosphere. Steam does not have a significant effect on the removal rate of a concrete aerosol. Electron microscopy showed the agglomerated U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and mixed U/sub 3/O/sub 8/-Fe/sub 2/O/sub 3/ aerosols to be in the form of spherical clumps of particles differing from the intermingled branched chains observed in the dry air tests; the AMMD was in the range of 1 to 2 ..mu..m. Steam had a lesser influence on the physical shape of the concrete aerosol with the shape being intermediate between branched chain and spherical clumps. 9 figures.

  17. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    by electricity generation/CHP facilities by distillate fuelFossil Fuel Consumption for Electricity and Heat GenerationFossil Fuel Consumption for Electricity and Heat Generation

  18. The Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Dr. David A. Petti

    2009-01-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  19. FINDING FOSSIL GROUPS: OPTICAL IDENTIFICATION AND X-RAY CONFIRMATION

    E-Print Network [OSTI]

    Miller, Eric D.

    We report the discovery of 12 new fossil groups (FGs) of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically ...

  20. Fossil Energy Fuel Cell Wayne Surdoval, SECA Coordinator

    E-Print Network [OSTI]

    & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel CellFossil Energy Fuel Cell Program Wayne Surdoval, SECA Coordinator June 3, 2003 National Energy & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling

  1. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY OFFICE OF FOSSIL ENERGY Air Flow North America Corp. Docket No.: 14-206-LNG APPLICATION OF AIR FLOW NORTH AMERICA CORP. FOR LONG-TERM AUTHORIZATION TO EXPORT...

  2. OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project...

    Energy Savers [EERE]

    OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project LLC ) Docket No. 14-96-LNG JOINT MOTION TO INTERVENE AND COMMENTS OF THE STATE OF ALASKA AND THE ALASKA GASLINE...

  3. OFFICE OF FOSSIL ENERGY NATURAL GAS DIVISION SERVICE LIST

    Energy Savers [EERE]

    appfergasIntraAuthReport.do?queryNameserviceListPrint&docketNumber14-96-LNG 13 OFFICE OF FOSSIL ENERGY NATURAL GAS DIVISION SERVICE LIST FE DOCKET NO: 14-96-LNG ...

  4. Proceedings of the fourth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Judkins, R.R.; Braski, D.N. (comps.)

    1990-08-01T23:59:59.000Z

    The Fourth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on may 15--17, 1990. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. Individual projects are processed separately for the data bases.

  5. President Requests $881.6 Million for Fossil Energy Programs

    Broader source: Energy.gov [DOE]

    President Obama's FY 2010 budget seeks $881.6 million for the Office of Fossil Energy to support improved energy security and rapid development of climate-oriented technology.

  6. President Requests $760.4 Million for Fossil Energy Programs

    Broader source: Energy.gov [DOE]

    President Obama's FY 2011 budget seeks $760.4 million for the Office of Fossil Energy to support improved energy security and rapid development of climate-oriented technology.

  7. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    8 Table 6. Sales of fossil fuel production from federal and Indian lands by statearea, FY 2003-13 trillion Btu State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Alabama...

  8. Ichnotaxonomic assessment of Mazon Creek area trace fossils, Illinois, USA

    E-Print Network [OSTI]

    LoBue, David J.

    2010-08-12T23:59:59.000Z

    The Francis Creek Shale Member (FCSM) of the Mid-Pennsylvanian Carbondale Formation along Mazon Creek in northern Illinois is known for soft-bodied organisms preserved within siderite concretions. Trace fossils, though ...

  9. Apparatus for removing micronized coal from steam

    SciTech Connect (OSTI)

    Vlnaty, J.

    1981-12-15T23:59:59.000Z

    Micronized coal is removed from coal-bearing steam by spraying stabilized petroleum oil into the steam and directing the resultant stream at a separation surface on which a coal-oil slurry is deposited and collected. Apparatus includes conduits which direct the resultant stream downward into a housing and normal to a surface on which the slurry is deposited by impact forces. In additional apparatus disclosed, the resultant stream is directed from a horizontal conduit circumferentially along the interior wall of a horizontally disposed cylindrical chamber at the top of the chamber and the coal-oil slurry deposited on the wall by centrifugal force is collected in a trough situated below a longitudinal slot at the bottom of the chamber. In both types of apparatus, after separation of the slurry the velocity of the steam is reduced to settle out remaining oil droplets and is then discharged to the atmosphere.

  10. Integrated vacuum absorption steam cycle gas separation

    DOE Patents [OSTI]

    Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

    2011-11-22T23:59:59.000Z

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  11. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01T23:59:59.000Z

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  12. Instrumentation and control for fossil-energy processes

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The 1982 symposium on instrumentation and control for fossil energy processes was held June 7 through 9, 1982, at Adam's Mark Hotel, Houston, Texas. It was sponsored by the US Department of Energy, Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Fifty-two papers have been entered individually into EDB and ERA; eleven papers had been entered previously from other sources. (LTN)

  13. Following Where the Steam Goes: Industry's Business Opportunity

    E-Print Network [OSTI]

    Jaber, D.; Jones, T.

    Many associated benefits accrue from plant projects which comprehensively address steam systems. The DOE-Alliance to Save Energy Steam Challenge program was initiated shortly after last year's IETC on April 30, 1998 to promote awareness...

  14. Finding Benefits by Modeling and Optimizing Steam and Power Systems

    E-Print Network [OSTI]

    Jones, B.; Nelson, D.

    2007-01-01T23:59:59.000Z

    A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well...

  15. Steam boiler control specification problem: A TLA solution

    E-Print Network [OSTI]

    Merz, Stephan

    Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f Introduction We propose a solution to the steam boiler control specification problem [AS] by means of a formal

  16. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    ?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky Introduction The steam-boiler control specification problem has been proposed as a challenge for different

  17. Steam boiler control speci cation problem: A TLA solution

    E-Print Network [OSTI]

    Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur We propose a solution to the steam boiler control speci cation problem AS] by means of a formal speci

  18. An ObjectOriented Algebraic SteamBoiler Control Specification

    E-Print Network [OSTI]

    ?lveczky, Peter Csaba

    An Object­Oriented Algebraic Steam­Boiler Control Specification Peter Csaba ? Olveczky 1# , Piotr Introduction The steam­boiler control specification problem has been proposed as a challenge for di

  19. Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??

    E-Print Network [OSTI]

    Henzinger, Thomas A.

    model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models and Programming the Steam Boiler Control (J.-R. Abrial, E. Borger, and H. Langmaack, eds.), Lecture Notes

  20. Optimization of Steam Network in Tehran Oil Refinery

    E-Print Network [OSTI]

    Khodaie, H.; Nasr, M. R. J.

    2008-01-01T23:59:59.000Z

    case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating...

  1. area steam plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems to become a major factor in overall plant efficiency and profit.... Yates, W. 1980-01-01 24 SteamMaster: Steam System Analysis Software Texas A&M University - TxSpace...

  2. Finding Benefits by Modeling and Optimizing Steam and Power Systems

    E-Print Network [OSTI]

    Jones, B.; Nelson, D.

    2007-01-01T23:59:59.000Z

    A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well...

  3. The Analysis and Development of Large Industrial Steam Systems

    E-Print Network [OSTI]

    Waterland, A. F.

    1980-01-01T23:59:59.000Z

    Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

  4. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Recover Low-Pressure Waste Steam Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators...

  5. STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm

    E-Print Network [OSTI]

    STIPE STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm Thomas Koch Erik Balck stempelmotor med dampindsprjtning". English title: "Steam injected piston engine, a feasibility study...........................................................................................................................10 Gas turbine technology

  6. Steam Tracing...New Technologies for the 21st Century

    E-Print Network [OSTI]

    Pitzer, R. K.; Barth, R. E.; Bonorden, C.

    For decades, steam tracing has been an accepted practice in the heating of piping, vessels, and equipment. This paper presents recent product innovations such as "burn-safe" and "energy efficient" steam tracing products. For the many applications...

  7. Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert

    E-Print Network [OSTI]

    Albert, John

    Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert OU Mathfest, January 2009 1 professorship at age 61, but continued to work on mathematics right up to his death at age 73. 2. Steam Engines

  8. CIBO's Energy Efficiency Handbook for Steam Power Systems

    E-Print Network [OSTI]

    Bessette, R. D.

    The Council of Industrial Boiler Owners (CIBO) has developed a handbook to help boiler operators get the best performance from their industrial steam systems. This energy efficiency handbook takes a comprehensive look at the boiler and steam system...

  9. BWR ex-vessel steam explosion analysis with MC3D code

    SciTech Connect (OSTI)

    Leskovar, M. [Josef Stefan Inst., Jamova cesta 39, 1001 Ljubljana (Slovenia)

    2012-07-01T23:59:59.000Z

    A steam explosion may occur, during a severe reactor accident, when the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To resolve the open issues in steam explosion understanding and modeling, the OECD program SERENA phase 2 was launched at the end of year 2007, focusing on reactor applications. To verify the progress made in the understanding and modeling of fuel coolant interaction key phenomena for reactor applications a reactor exercise has been performed. In this paper the BWR ex-vessel steam explosion study, which was carried out with the MC3D code in conditions of the SERENA reactor exercise for the BWR case, is presented and discussed. The premixing simulations were performed with two different jet breakup modeling approaches and the explosion was triggered also at the expected most challenging time. For the most challenging case, at the cavity wall the highest calculated pressure was {approx}20 MPa and the highest pressure impulse was {approx}90 kPa.s. (authors)

  10. Reduce Steam Trap Failures at Chambers Works

    E-Print Network [OSTI]

    Kouba, C.

    Maintenance Mechanic), Rick Ragsdale (Fluor), Joyce Finkle (PC), Denis P Humphreys (Fluoroproducts), Jack Hemmert, Charlie Brown 10/20/2010 2 Steam trap failures are nothing new Steam trap programs are nothing new WHAT makes this program have such a huge... impact and How is it sustainable HOW we went about finding a solution What do you have learn from this 10/20/2010 3 Six Sigma Methodology was KEY to success Savings: $1MM annualized in only 6 months! 10/20/2010 4Define: Project CTQ?s Customer...

  11. Energy & Environmental Benefits from Steam & Electricity Cogeneration

    E-Print Network [OSTI]

    Ratheal, R.

    2004-01-01T23:59:59.000Z

    steam from two on-site powerhouses (one coal-fired and one natural gas-fired) and from gas-fired and waste heat boilers in its four hydrocarbon cracking plants. The challenge was to find a way to reduce costs and improve reliability of procuring and... the electricity required by TEX and sells excess power to wholesale customers in the region. It provides a large portion of TEX steam requirements, with sufficient reliability such that TEX decommissioned its coal-fired powerhouse and reduced operations...

  12. Steam Pressure Reduction Opportunities and Issues

    E-Print Network [OSTI]

    Berry, J.; Griffin, B.; Wright, A. L.

    2006-01-01T23:59:59.000Z

    STEAM PRESSURE REDUCTION, OPPORTUNITIES, AND ISSUES Jan Berry, CEM U.S. DOE BestPractices Steam Coordinator Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6070 berryjb@ornl.gov Phone: 865-241-1939 Bob Griffin, PE Energy... Solutions Manager Enbridge Gas Distribution, Inc. P.O. Box 650, Scarborough, ON Canada, M1K 5E3 robert.griffin@enbridge.com Phone: 416-495-5298 Fax: 416-495-5331 Anthony L. Wright, Ph.D. U.S. DOE BestPractices Coordinator Oak Ridge National...

  13. DOE's BestPractices Steam End User Training Blowdown Losses 1

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Blowdown Losses 1 June 28, 2010 Steam End User Training Steam Generation Module Steam EndUser Training Steam Generation Efficiency Module Blowdown affect on boiler efficiency. [Slide Visual ­Blowdown Losses Title Page] Steam Generation Efficiency

  14. STEAM RECEIVER MODELS FOR SOLAR DISH CONCENTRATORS: TWO MODELS COMPARED

    E-Print Network [OSTI]

    response of a parabolic dish steam cavity receiver. Both approaches are based on a heat transfer model

  15. Proceedings of the Seventh Annual Conference on Fossil Energy Materials. Fossil Energy AR and TD Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. [comps.

    1993-07-01T23:59:59.000Z

    Objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The 37 papers are arranged into 3 sessions: ceramics, new alloys/intermetallics, and new alloys/advanced austenitics. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. CHEM333: Experiment 4: Steam Distillation of Essential Oils;

    E-Print Network [OSTI]

    Taber, Douglass

    CHEM333: Experiment 4: Steam Distillation of Essential Oils; Experiments A, C, D and below. Reading: For this experiment read Chapter 10. This week you will get to use steam distillation to isolate may wait until you come to lab to find out which spice you get. Steam distillation is not a common

  18. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21T23:59:59.000Z

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  19. Industrial Steam Power Cycles Final End-Use Classification

    E-Print Network [OSTI]

    Waterland, A. F.

    1983-01-01T23:59:59.000Z

    Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

  20. Steam Trap Testing and Evaluation: An Actual Plant Case Study

    E-Print Network [OSTI]

    Feldman, A. L.

    1981-01-01T23:59:59.000Z

    With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process...

  1. Lowest Pressure Steam Saves More BTU's Than You Think

    E-Print Network [OSTI]

    Vallery, S. J.

    Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between...

  2. Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator

    E-Print Network [OSTI]

    Demirel, Melik C.

    Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

  3. Halophilic Archaea determined from geothermal steam vent aerosols

    E-Print Network [OSTI]

    Kelley, Scott

    Halophilic Archaea determined from geothermal steam vent aerosols Dean G. Ellis, Richard W. Bizzoco of fumaroles largely because of the difficulty in collect- ing sufficient numbers of cells from boiling steam analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii

  4. EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS A REPORT SUBMITTED;Abstract A set of relative permeability relations for simultaneous ow of steam and water in porous media with saturation and pressure measurements. These relations show that the relative permeability for steam phase

  5. ORNL/TM-2001/263 Steam System Survey Guide

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2001/263 Steam System Survey Guide Greg Harrell, Ph.D., P.E. #12;DOCUMENT AVAILABILITY Government or any agency thereof. #12;ORNL/TM-2001/263 STEAM SYSTEM SURVEY GUIDE Greg Harrell, Ph.D., P for the U.S. Department of Energy BestPractices Steam Program Prepared by OAK RIDGE NATIONAL LABORATORY Oak

  6. EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY A REPORT SUBMITTED TO THE DEPARTMENT calculations. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954

  7. RELIABILITY OF SAMPLING INSPECTION SCHEMES APPLIED TO REPLACEMENT STEAM GENERATORS

    E-Print Network [OSTI]

    Cizelj, Leon

    RELIABILITY OF SAMPLING INSPECTION SCHEMES APPLIED TO REPLACEMENT STEAM GENERATORS Guy Roussel the size of the random sample of tubes to be inspected in replacement steam generators is revisited in this paper. A procedure to estimate the maximum number of defective tubes left in the steam generator after

  8. High Temperature Electrolysis of Steam and Carbon Dioxide

    E-Print Network [OSTI]

    High Temperature Electrolysis of Steam and Carbon Dioxide Søren Højgaard Jensen+,#, Jens V. T. Høgh + O2 #12;Electrolysis of steam at high temperature Interesting because · Improved thermodynamic of electrolysis of steam Picture taken from E. Erdle, J. Gross, V. Meyringer, "Solar thermal central receiver

  9. Rapid Recolonisation of Agricultural Soil by Microarthropods After Steam Disinfestation

    E-Print Network [OSTI]

    Cucco, Marco

    Rapid Recolonisation of Agricultural Soil by Microarthropods After Steam Disinfestation Stefano Fenoglio Paolo Gay Giorgio Malacarne Marco Cucco ABSTRACT. Steam disinfestation of soil is attracting. In this study, we assessed the effect of steam applica- tion on the microarthropod community, a fundamental

  10. Best Management Practice #8: Boiler and Steam Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  11. Experience, Engagement and Social Interaction at a Steam Locomotive

    E-Print Network [OSTI]

    Hornecker, Eva

    Experience, Engagement and Social Interaction at a Steam Locomotive Multimodal Interactive Museum a steam- powered locomotive at the Riverside Transport Museum in Glasgow, UK. We examine the role. The exhibit has visitors making a simulation of a steam powered locomotive run by controlling coal, water

  12. Numerical Simulation of a Natural Circulation Steam Generator

    E-Print Network [OSTI]

    Weinmüller, Ewa B.

    Numerical Simulation of a Natural Circulation Steam Generator W. Linzer \\Lambda , K. Ponweiser circulation steam generator. We focus on a model with a simple geometry consisting of two vertical pipes properties of water and steam. We present a numerical algorithm based on an explicit upwind discretization

  13. Global impact of fossil fuel combustion on atmospheric NO x Larry W. Horowitz

    E-Print Network [OSTI]

    Jacob, Daniel J.

    Global impact of fossil fuel combustion on atmospheric NO x Larry W. Horowitz Advanced Study University, Cambridge, MA 02138 (email djj@io.harvard.edu) #12; Abstract. Fossil fuel combustion of fossil fuel combustion on the global distribution of NO x . In the model, we tag fossil fuel NO x and its

  14. Ethical Corporation: By Invitation -Climate change: Calling the fossil fuel abolitionists EC Newsdesk

    E-Print Network [OSTI]

    Hoffman, Andrew J.

    in a fossil fuel-based economy. Fossil fuels are our primary source of energy and support our entire wayEthical Corporation: By Invitation - Climate change: Calling the fossil fuel abolitionists EC Newsdesk 28 May 08 Where is the green Wilberforce? By Invitation: Climate change: Calling the fossil fuel

  15. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10T23:59:59.000Z

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  16. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation

    E-Print Network [OSTI]

    Jaiswal, Namit

    2007-09-17T23:59:59.000Z

    Simulation study has shown oil production is accelerated when propane is used as an additive during steam injection. To better understand this phenomenon, distillation experiments were performed using San Ardo crude oil (12oAPI). For comparison...

  17. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation

    E-Print Network [OSTI]

    Ramirez Garnica, Marco Antonio

    2004-09-30T23:59:59.000Z

    Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand...

  18. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01T23:59:59.000Z

    or refractory. Improve condensate return. Add an Oxygen trim system Repair heat exchangers to permit condensate return.. Replace or re-build the boiler control system. Fix steam leaks. Repair a defective economizer. Implement a pressurized condensate...

  19. Improved Steam Assisted Gravity Drainage (SAGD) Performance with Solvent as Steam Additive

    E-Print Network [OSTI]

    Li, Weiqiang

    2011-02-22T23:59:59.000Z

    Steam Assisted Gravity Drainage (SAGD) is used widely as a thermal recovery technique in Canada to produce a very viscous bitumen formation. The main research objectives of this simulation and experimental study are to investigate oil recovery...

  20. Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart

    E-Print Network [OSTI]

    Jones, T.; Hart, F.

    Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

  1. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Yamaguchi, N.D.; Keeville, H. [and others

    1993-12-01T23:59:59.000Z

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  2. Fossil Energy Program Annual Progress Report for April 1, 2002, Through March 31, 2003

    SciTech Connect (OSTI)

    Judkins, RR

    2003-06-19T23:59:59.000Z

    The mission of the Fossil Energy Program is to conduct research and development that contribute to the advancement of fossil energy technologies. The Oak Ridge National Laboratory Fossil Energy Program research and development activities, performed for the Department of Energy Assistant Secretary for Fossil Energy, cover the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy Office of Fossil Energy, the DOE National Energy Technology Laboratory, the DOE Fossil Energy Clean Coal Technology Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The ORNL Fossil Energy Program shares with DOE Oak Ridge Operations technical management responsibility for all activities on the DOE Fossil Energy Advanced Research Materials Program. The Advanced Research Materials Program includes research at other DOE and government laboratories, at universities, and at industrial organizations.

  3. A LABORATORY INVESTIGATION OF STEAM ADSORPTION

    E-Print Network [OSTI]

    Stanford University

    A LABORATORY INVESTIGATION OF STEAM ADSORPTION IN GEOTHERMAL RESERVOIR ROCKS OF STANFORD UNIVERSITY of Tables List of Figures 1.0 INTRODUCTION 1.1 The Adsorption Phenomenon 1.2 Vapor Dominated Geothermal.1 Background 3.1.I The Kelvin Equation 3.1.2 Langmuir-BET Type Equations 3.2 Adsorption Calculations 3

  4. Design and Performance Aspects of Steam Generators

    E-Print Network [OSTI]

    Ganapathy, V.

    generators based on standard, pre-packaged designs. A "standard" boiler has several limitations such as pre-determined furnace dimensions, tube length, surface area, tube spacings etc, which may or may not be the optimum choice for a given steam demand...

  5. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01T23:59:59.000Z

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  6. Method of removing cesium from steam

    DOE Patents [OSTI]

    Carson, Jr., Neill J. (Clarendon Hills, IL); Noland, Robert A. (Oak Park, IL); Ruther, Westly E. (Skokie, IL)

    1991-01-01T23:59:59.000Z

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  7. Natural gas-assisted steam electrolyzer

    DOE Patents [OSTI]

    Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  8. Gas turbine row #1 steam cooled vane

    DOE Patents [OSTI]

    Cunha, Frank J. (Longwood, FL)

    2000-01-01T23:59:59.000Z

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  9. Task 1Steam Oxidation (NETL-US)

    SciTech Connect (OSTI)

    G. R. Holcomb

    2010-05-01T23:59:59.000Z

    The proposed steam in let temperature in the Advanced Ultra Supercritical (AUSC) steam turbine is high enough (760C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre . A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

  10. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation

    E-Print Network [OSTI]

    Jaiswal, Namit

    2007-09-17T23:59:59.000Z

    EXPERIMENTAL AND ANALYTICAL STUDIES OF HYDROCARBON YIELDS UNDER DRY-, STEAM-, AND STEAM-WITH- PROPANE DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University...-WITH- PROPANE-DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved...

  11. Measurement of steam quality in two-phase critical flow

    E-Print Network [OSTI]

    Sinclair, John William

    1984-01-01T23:59:59.000Z

    flow orifice meter 4 Vapor-phase orifice meter 5 Steam quality adjustment valves 6 Critical flow test section 12 13 15 17 7 Two-phase mixture vent to atmosphere passage through test section 8 Fluke data logger 9 Condenser apparatus 18 21...-water 15 Steam quality as a function of vapor-phase Reynolds number for critical flow of steam-water . . . . . . . . , . . . . 48 16 Steam quality as a function of pressure measured upstream from critical flow orifice 17 Steam quality as a function...

  12. A study of steam injection in fractured media

    SciTech Connect (OSTI)

    Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

    1996-02-01T23:59:59.000Z

    Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

  13. The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12) Sheraton Station Square, Pittsburgh, Pennsylvania, U.S.A. September 30-October 4, 2007

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DOMAIN SIMULATIONS FOR THE TWO-PHASE FLOW ENERGY BALANCE OF THE CLOTAIRE STEAM GENERATOR MOCK-UP Michel computation of the energy balance equation of a nuclear component. Considering the steam generator Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Pittsburg, Pennsylvania : United States (2007

  14. Steam gasification of carbon: Catalyst properties

    SciTech Connect (OSTI)

    Falconer, J.L.

    1993-01-10T23:59:59.000Z

    Coal gasification by steam is of critical importance in converting coal to gaseous products (CO, H[sub 2], CO[sub 2], CH[sub 4]) that can then be further converted to synthetic natural gas and higher hydrocarbon fuels. Alkali and alkaline earth metals (present as oxides) catalyze coal gasification reactions and cause them to occur at significantly lower temperatures. A more fundamental understanding of the mechanism of the steam gasification reaction and catalyst utilization may well lead to better production techniques, increased gasification rates, greater yields, and less waste. We are studying the gasification of carbon by steam in the presence of alkali and alkaline earth oxides, using carbonates as the starting materials. Carbon dioxide gasification (CO[sub 2] + C --> 2CO) has been studied in some detail recently, but much less has been done on the actual steam gasification reaction, which is the main thrust of our work. In particular, the form of the active catalyst compound during reaction is still questioned and the dependence of the concentration of active sites on reaction parameters is not known. Until recently, no measurements of active site concentrations during reaction had been made. We have recently used transient isotope tracing to determine active site concentration during CO[sub 2] gasification. We are investigating the mechanism and the concentration of active sites for steam gasification with transient isotopic tracing. For this technique, the reactant feed is switched from H[sub 2]0 to isotopically-labeled water at the same concentration and tow rate. We can then directly measure, at reaction the concentration of active catalytic sites, their kinetic rate constants, and the presence of more than one rate constant. This procedure allows us to obtain transient kinetic data without perturbing the steady-state surface reactions.

  15. Computerized operating cost model for industrial steam generation

    SciTech Connect (OSTI)

    Powers, T.D.

    1983-02-01T23:59:59.000Z

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  16. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01T23:59:59.000Z

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  17. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11T23:59:59.000Z

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  18. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21T23:59:59.000Z

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  19. Response of El Centro Steam Plant equipment during the October 15, 1979 Imperial Valley earthquake

    SciTech Connect (OSTI)

    Nelson, T. A.; Murray, R. C.; Young, J. A.; Campbell, R. D.; Martore, J. A.; Levin, H. A.; Reiter, L.

    1980-09-01T23:59:59.000Z

    For the US Nuclear Regulatory Commission (NRC), Lawrence Livermore National Laboratory (LLNL) performed a dynamic seismic analysis of Unit 4 of the El Centro Steam Plant in El Centro, Calif. Built in 1968, Unit 4 is an oil- or gas-fired, steam-driven turbine-generator that was designed to resist a static lateral force equivalent to 20% of the dead and live load. The unit's structural and mechanical systems sustained only minor damage during the October 15, 1979 Imperial Valley earthquake that produced an estimated 0.5 g peak horizontal ground acceleration (0.66 g vertical) at the site. LLNL's seismic analysis was done to analytically estimate the equipment response, which, when compared to actual observation, will indicate the levels of actual equipment capacity. 15 refs., 51 figs., 11 tabs.

  20. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01T23:59:59.000Z

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  1. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01T23:59:59.000Z

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  2. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21T23:59:59.000Z

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  3. The dilemma of fossil fuel use and global climate change

    SciTech Connect (OSTI)

    Judkins, R.R.; Fulkerson, W. (Oak Ridge National Lab., TN (USA)); Sanghvi, M.K. (Amoco Corp., Chicago, IL (USA))

    1991-01-01T23:59:59.000Z

    The use of fossil fuels and relationship to climate change is discussed. As the use of fossil fuels has grown, the problems of protecting the environment and human health and safety have also grown, providing a continuing challenge to technological and managerial innovation. Today that challenge is to control atmospheric emissions from combustion, particularly those emissions that cause acidic deposition, urban pollution, and increasing concentrations of greenhouse gases. Technology for reducing acidic deposition is available and needs only to be adopted, and the remedies for urban pollution are being developed and tested. How effective or expensive these will be remains to be determined. The control of emissions of the greenhouse gas, CO{sub 2}, seems possible only be reducing the total amounts of fossil fuels used worldwide, and by substituting efficient natural gas technologies for coal. Long before physical depletion forces the transition away from fossil fuels, it is at least plausible and even likely that the greenhouse effect will impose a show-stopping constraint. If such a transition were soon to be necessary, the costs would be very high because substitute energy sources are either limited or expensive or undesirable for other reasons. Furthermore, the costs would be unevenly felt and would be more oppressive for developing nations because they would be least able to pay and, on average, their use rates of fossil fuels are growing much faster than those of many industrialized countries. It is prudent, therefore, to try to manage the use of fossil fuels as if a greenhouse constraint is an important possibility.

  4. Fossil Energy FY 2010 Budget | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf MoreRevisedProgramCostFWPActFossilStatementFossil

  5. Fossil Energy FY 2015 Budget in Brief | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget Fossil Energy's FYFossil

  6. Fossil Energy Fiscal Year 2012 Budget Request | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget Fossil Energy's

  7. Fossil Energy Research Efforts in Carbon Capture and Storage | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget Fossil Energy'sof

  8. Fossil Fuels Study Guide - High School | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget FossilThird

  9. Fossil Energy Today - Fourth Quarter, 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 20142 Fossil

  10. Fossil Energy Today - Second Quarter, 2011 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 20142 Fossil1

  11. Fossil Energy Today - Second Quarter, 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 20142 Fossil12

  12. Fossil Energy Today - Third Quarter, 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 201422 Fossil

  13. Deposition of seed and slag in MHD steam plants (Work done under the auspices of the U. S. Department of Energy)

    SciTech Connect (OSTI)

    Smyk, E.B.; Chow, L.S.H.; Johnson, T.R.; Klinger, J.G.; Staffon, J.D.

    1983-08-01T23:59:59.000Z

    At Argonne National Laboratory (ANL), the deposition rates of seed, K/sub 2/SO/sub 4/, and slag on cooled tubes, which represent the steam and air heaters in an MHD steam plant, are being measured and the characteristics of these fouling deposits studied. Some of the seed vapor condenses on the cooled surfaces but most of it condenses on entrained, submicron slag particles as the combustion gas cools. Thermophoresis is the most important deposition mechanism for the slag-seed particles. Particles larger than several micrometers, which occur as unvaporized slag particles entrained in the combustor exhaust gas, deposit mostly by inertial impaction. The effects of seed- and slag-laden flue gas on the convective sections of an MHD steam plant are simulated in the Fossil Energy Users Laboratory at ANL. Particulate measurements have shown that most of the K/sub 2/SO/sub 4/ particles have a diameter of about 0.3 ..mu..m in good agreement with theory. Seed vapor condensation rates of 1.2 to 1.5 kg/m/sup 2/ X h have been measured for a K/sub 2/SO/sub 4/ loading of 1.7 wt % in rough agreement with mass transfer theory. Measured deposition rates of submicron particles were also in rough agreement with the predictions of a thermophoretic deposition model. Tests completed to date support the premise that the convective sections of the MHD steam plant can be designed to operate efficiently and reliably.

  14. Artificial Intelligence Techniques for Steam Generator Modelling

    E-Print Network [OSTI]

    Wright, Sarah

    2008-01-01T23:59:59.000Z

    This paper investigates the use of different Artificial Intelligence methods to predict the values of several continuous variables from a Steam Generator. The objective was to determine how the different artificial intelligence methods performed in making predictions on the given dataset. The artificial intelligence methods evaluated were Neural Networks, Support Vector Machines, and Adaptive Neuro-Fuzzy Inference Systems. The types of neural networks investigated were Multi-Layer Perceptions, and Radial Basis Function. Bayesian and committee techniques were applied to these neural networks. Each of the AI methods considered was simulated in Matlab. The results of the simulations showed that all the AI methods were capable of predicting the Steam Generator data reasonably accurately. However, the Adaptive Neuro-Fuzzy Inference system out performed the other methods in terms of accuracy and ease of implementation, while still achieving a fast execution time as well as a reasonable training time.

  15. Cash Flow Impacts of Industrial Steam Efficiency

    E-Print Network [OSTI]

    Russell, C.

    of thermal transfer tasks within the majority of manufacturing industries, it is widely perceived as a "support" utility. In other words, steam is considered a power source subordinate to process lines that are the real focus of manufacturing activity... be directed to productive functions, enabling the plant to extend production runs or perhaps even begin new product lines. RETURN ON INVESTMENT Global competition and decentralized corporate structures provide formidable challenges for manufacturing...

  16. Materials Performance in USC Steam Portland

    SciTech Connect (OSTI)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26T23:59:59.000Z

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  17. Steam Trap Maintenance as a Profit Center

    E-Print Network [OSTI]

    Bouchillon, J. L.

    of the proper piping arrangements to all your basic equipment showing the traps, strainers, air vents, vacuum breakers, etc. These diagrams need to apply only to your plant, not to the hundreds of possibilities found in an all-purpose publication. See Fig... and rust ("dirt") E Size L Mechanical failure usually is... OJ Recommended design factor 2-3 Loud, popping condensate discharge No Renewable wlo piping disassembly No Requires strainer No Tbennal efficiency (low steam loss) Fair Condensate Wscharge...

  18. Savings in Steam Systems (A Case Study)

    E-Print Network [OSTI]

    DeBat, R.

    2001-01-01T23:59:59.000Z

    of the process or the plant. In the power industry, the term Distributed Control System (DCS) is generally applied to the system that implements boiler control and data acquisition functions of the power plant. A state-of-the-art DCS is typically composed... application in a boiler house operation typically covers the following areas: ? Boiler controls, including the combustion (firing rate), furnace draft, steam temperature, and feedwater control loops; ? Burner control; ? Control loops in the plant...

  19. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D. (Ballston Lake, NY)

    1990-01-01T23:59:59.000Z

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  20. Steam System Optimization: A Case Study

    E-Print Network [OSTI]

    Iordanova, N.; Venkatesan, V. V.

    /hr is imported from an outside power plant and 170,000 lbslhr is internally generated as waste heat recovery. The steam system analysis identified energy savings worth of $2,400,000 per year. The optimization measures were in two categories: ? no cost / low... cost that can be done through better maintenance and improvement of operating conditions. ? major improvement that requires a significant amount of investment, that includes the modification of process and major equipment. Though the findings...

  1. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    Total Hydro Steam [1] The Daya Bay nuclear power plant inTotal Hydro Steam [1] The Daya Bay nuclear power plant inPower Plants under Construction Qinshan Zhejiang Ling'ao Fossil Plants under Consturction Shang'an Steam

  2. Underground coal gasification using oxygen and steam

    SciTech Connect (OSTI)

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01T23:59:59.000Z

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  3. Measuring non-condensable gases in steam

    SciTech Connect (OSTI)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15T23:59:59.000Z

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1%) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  4. Fossil Energy Program semiannual progress report for April 1992-- September 1992

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-12-01T23:59:59.000Z

    This report covers progress made during the period April 1, 1992, through September 30, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Office of Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development.

  5. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01T23:59:59.000Z

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  6. U.S. Department of Energy Office of Fossil Energy

    E-Print Network [OSTI]

    Program Past Present Future Syngas Production Emphasis on H2 Production GTL Platform Technology) Process Overview Air Separation Syngas Generation Fischer- Tropsch Synthesis (F-T)(Carbon Monoxide + Hydrogen) Air Oxygen Jet Fuel, Diesel, Naphtha Syngas Natural Gas +/- Steam About 40% of Capital Cost

  7. Analysis of a Main-Steam-Line Break in Asco NPP

    SciTech Connect (OSTI)

    Cuadra, Arantzazu; Gago, Jose-Luis; Reventos, Francesc

    2004-04-15T23:59:59.000Z

    Culminating in the participation of the Universitat Politecnica de Catalunya in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations/Nuclear Science Committee pressurized water reactor (PWR) main-steam-line-break (MSLB) benchmark, we present the analysis with RELAP/PARCS of a double-ended MSLB assumed to occur in the Asco nuclear power plant (NPP). This Spanish NPP, a two-unit 1000-MW(electric) PWR plant of Westinghouse design, has been in normal operation since 1983. The utility uses the RELAP model developed by its analysts to study transients that occurred (or postulated), following its own procedures, giving response to operation-related issues, as well as serving licensing and training purposes. The model is well validated. The present study tests the RELAP/PARCS model of the Asco NPP and, in particular, tests the coupling between the neutronics and the thermal hydraulics; its focus is not licensing or validation.

  8. MODELING INFRASTRUCTURE FOR A FOSSIL HYDROGEN ENERGY SYSTEM

    E-Print Network [OSTI]

    energy conversion plant [scale, feedstock (e.g., coal vs. natural gas), process design, electricity co cycle emissions of both air pollutants and greenhouse gases [1]. A large-scale fossil H2 system with CO2 from electric power plants [2-4], or H2 plants [5-8], CO2 transmission [9] and storage [10], and H2

  9. Proceedings of the sixth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-07-01T23:59:59.000Z

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  10. Surface chemistry control for selective fossil resin flotation

    DOE Patents [OSTI]

    Miller, Jan D. (1886 Atkin Ave., Salt Lake City, UT 84106); Yi, Ye (2875 E. Wander Way, Salt Lake City, UT 84117); Yu, Qiang (224 University Village, Salt Lake City, UT 84108)

    1994-01-01T23:59:59.000Z

    A froth flotation method is disclosed for separating fine particles of fossil resin from by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method.

  11. Age of Neoproterozoic Bilatarian Body and Trace Fossils, White

    E-Print Network [OSTI]

    J. L. Kirschvink3 A uranium-lead zircon age for a volcanic ash interstratified with fossil seawater. The terminal Neoproterozoic interval is char- acterized by a period of supercontinent amal- gamation and dispersal (1, 2), low-latitude glaciations (3, 4), chemical perturbations of seawater (5

  12. Proceedings of the fifth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1991-09-01T23:59:59.000Z

    The Fifth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 14--16, 1991. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. This conference is held every year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B.

  13. U.S. Department of Energy Office of Fossil Energy

    E-Print Network [OSTI]

    efficiency) H2 pipeline system #12;System Analysis Comparison of Hydrogen from Coal & Natural Gas usedU.S. Department of Energy Office of Fossil Energy Cross Cutting Analysis June 3, 2003 Hydrogen and Coal Derived Hydrogen FCV System Analysis · Two scenarios were developed to estimate the impact

  14. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages Franck Lartauda,b,1 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpenti

  15. Surface chemistry control for selective fossil resin flotation

    DOE Patents [OSTI]

    Miller, J.D.; Yi, Y.; Yu, Q.

    1994-06-07T23:59:59.000Z

    A froth flotation method is disclosed for separating fine particles of fossil resin by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method. 12 figs.

  16. PALEOZOIC TRACE FOSSILS FROM THE KUFRA BASIN, LIBYA

    E-Print Network [OSTI]

    Benton, Michael

    PALEOZOIC TRACE FOSSILS FROM THE KUFRA BASIN, LIBYA BRIAN R. TURNER AND MICHAEL J. BENTONPaleozoicsuccessionin the southeastern part ofthe Kufra Basin, Libya, comprises a sequence of sedimentary facies up to 250 m thick THEK u m BASINin southeast Libya (Figure 1)occupiesan area of about 400,000km2and is filled

  17. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15T23:59:59.000Z

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  18. Introduction Fossil fuel combustion by aviation, shipping and road

    E-Print Network [OSTI]

    Haak, Hein

    fifth of the total global anthropogenic emissions of CO2. These emissions are growing more rapidly than to global CO emissions are estimated to be much smaller, likely due to more efficient fuel combustion. Road96 Introduction Fossil fuel combustion by aviation, shipping and road traffic contributes about one

  19. Fossil Energy Oil and Natural Gas Capabilities for Tribes Webinar

    Broader source: Energy.gov [DOE]

    Attend this webinar to hear from U.S. Department of Energy Fossil Energy Program staff about the Programs oil and gas portfolio, technologies, and research capabilities that may be of interest to Tribes and tribal energy resource development organizations.

  20. Comments on US LMFBR steam generator base technology

    SciTech Connect (OSTI)

    Simmons, W.R.

    1984-01-01T23:59:59.000Z

    The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects.

  1. Steam generator operating experience, update for 1989--1990

    SciTech Connect (OSTI)

    Frank, L.

    1991-12-01T23:59:59.000Z

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity. It provides: results of 1989 and 1990 steam generator inspections; highlights prevalent problem areas; improvements that have been made in nondestructive testing methods; preventive measures; repair techniques; and replacement procedures. It describes the equipment of the three (3) major suppliers and discusses recent examinations of 76 plants. Major areas of concern are the steam generator degradation mechanisms that affect tube integrity or cause tube leakage and tube failure. These include; (1) intergranular attack (IGA); (2) intergranular stress corrosion cracking (IGSCC); (3) primary water stress corrosion cracking (PWSCC); (4) pitting; and (5) vibrational wear and fatigue. Also discussed are plugging, sleeving, heat treatment, peening, chemical cleaning, and steam generator replacements. The current status of regulatory instruments and inspection guidelines for ensuring the steam generator integrity, is discussed with the highlights of steam generator research. New potential safety issues such as circumferential cracking and tube plug cracking are also discussed.

  2. Industrial Steam System Process-Control Schemes: A BestPractices Steam Technical Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers toHeat PumpsSteamSteam

  3. Effective Steam Trap Selection/Maintenance - Its Payback

    E-Print Network [OSTI]

    Garcia, E.

    1984-01-01T23:59:59.000Z

    trap location, service, manufacturer, model, steam pressures, pipe size, type of connect ion, associated valves, strainer, and insulation. The condition in which each trap was found in the plant was reported and summarized as in Table 1. Other... leaks and any unsafe situations were also noted. Of the 5,000 surveyed traps, approximately 20% had failed open or were in another failure mode where live steam was leaking, 5% were found plugged, and 10% were found not losing steam but needing...

  4. Reliability Improvement Programs in Steam Distribution and Power Generation Systems

    E-Print Network [OSTI]

    Petto, S.

    RELIABILITY IIIPROVEfWlT PROGRAMS IN STEAM DISTRIBUTION AND POVER GENERATION SYSTEItS Steve Petto Tech/Serv Corporation Blue Bell, PA Abstract This paper will present alternatives to costly corrective maintenance of the steam trap... In the reliability and efficiency of the system. Recent studies have shownt hat more than 40% of all In stalled steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems In condensate return...

  5. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01T23:59:59.000Z

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  6. Steam generator for liquid metal fast breeder reactor

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

    1985-01-01T23:59:59.000Z

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  7. Risk assessment of severe accident-induced steam generator tube rupture

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This report describes the basis, results, and related risk implications of an analysis performed by an ad hoc working group of the U.S. Nuclear Regulatory Commission (NRC) to assess the containment bypass potential attributable to steam generator tube rupture (SGTR) induced by severe accident conditions. The SGTR Severe Accident Working Group, comprised of staff members from the NRC`s Offices of Nuclear Reactor Regulation (NRR) and Nuclear Regulatory Research (RES), undertook the analysis beginning in December 1995 to support a proposed steam generator integrity rule. The work drew upon previous risk and thermal-hydraulic analyses of core damage sequences, with a focus on the Surry plant as a representative example. This analysis yielded new results, however, derived by predicting thermal-hydraulic conditions of selected severe accident scenarios using the SCDAP/RELAP5 computer code, flawed tube failure modeling, and tube failure probability estimates. These results, in terms of containment bypass probability, form the basis for the findings presented in this report. The representative calculation using Surry plant data indicates that some existing plants could be vulnerable to containment bypass resulting from tube failure during severe accidents. To specifically identify the population of plants that may pose a significant bypass risk would require more definitive analysis considering uncertainties in some assumptions and plant- and design-specific variables. 46 refs., 62 figs., 37 tabs.

  8. D.McNew/GettyIMaGes San Onofre Nuclear Generating Station, California.

    E-Print Network [OSTI]

    a cure-all, nuclear energy must have an important role in reducing the use of fossil fuels in the United--especiallywhenoneconsidersthatmanyofthetruecosts are obscured by government subsidies. Fortunately there are plenty of workable alternatives with low

  9. Seasonal and latitudinal variability of troposphere ?14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere

    E-Print Network [OSTI]

    Randerson, J. T; Enting, I. G; Schuur, E. A. G; Caldeira, K.; Fung, I. Y

    2002-01-01T23:59:59.000Z

    CO 2 Emissions From Fossil-Fuel Burning, Hydraulic Cementof seasonal variation in fossil fuel CO 2 emissions, Tellus,contributions from fossil fuels, oceans, the stratosphere,

  10. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO 2

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    dioxide emissions from fossil fuel consumption and cementannual variations in fossil fuel emissions, J. Geophys.2008 Contribution of ocean, fossil fuel, land biosphere, and

  11. Silicon carbide oxidation in high temperature steam

    E-Print Network [OSTI]

    Arnold, Ramsey Paul

    2011-01-01T23:59:59.000Z

    The commercial nuclear power industry is continually looking for ways to improve reactor productivity and efficiency and to increase reactor safety. A concern that is closely regulated by the Nuclear Regulatory Commission ...

  12. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-07-01T23:59:59.000Z

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  13. Full Steam Ahead for PV in US Homes?

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Full Steam Ahead for PV in US Homes? Mark Bolinger, Galenutility-scale photovoltaic (PV) installations in the yearsimplications for PV rebate program administrators, PV system

  14. Building America Expert Meeting: Multifamily Hydronic and Steam...

    Broader source: Energy.gov (indexed) [DOE]

    controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and...

  15. Steam System Balancing and Tuning for Multifamily Residential...

    Energy Savers [EERE]

    for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested:...

  16. a-3 chemical steam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and desirable characteristics as both a heat transfer medium and a... Waterland, A. F. 1980-01-01 12 Thomas Reddinger Director, Steam Materials Science Websites Summary: Bourdon...

  17. Steam and Condensate System Optimization in Converse College, Spartanburg, SC

    E-Print Network [OSTI]

    Cruz, A.; Iordanova, N.; Stevenson, S.

    2007-01-01T23:59:59.000Z

    STEAM AND CONDENSATE SYSTEM OPTIMIZATION IN CONVERSE COLLEGE, SPARTANBURG, SC Alberto Cruz, CEM Nevena Iordanova, CEM Susan Stevenson Energy Systems Engineer Director of Engineering Services VP for Finance...

  18. Steam generator operating experience update, 1982-1983. [PWR

    SciTech Connect (OSTI)

    Frank, L.

    1984-06-01T23:59:59.000Z

    This report is a continuation of earlier reports by the staff addressing pressurized water reactor steam generator operating experience. NUREG-0886, Steam Generator Tube Experience, published in February 1982 summarized experience in domestic and foreign plants through December 1981. This report summarizes steam generator operating experience in domestic plants for the years 1982 and 1983. Included are new problems encountered with secondary-side loose parts, sulfur-induced stress-assisted corrosion cracking, and flow-induced vibrational wear in the new preheater design steam generators. The status of Unresolved Safety Issues A3, A4, and A5 is also discussed.

  19. Recent Progress on Steam Hydrogasification of Carbonaceous Matter...

    Broader source: Energy.gov (indexed) [DOE]

    Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel Surinder P. Singh, Arun Raju, Chan Seung Park, Joe Norbeck University of California,...

  20. Steam Plant Operator (2nd Shift) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam Plant Operator (2nd Shift) Department: Facilities Supervisor(s): Willam Gervasi Staff: L&S 5 Requisition Number: 1500061 Obtain the necessary skills and theoretical knowledge...