Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Project Management Guidance when Upgrading Steam Turbines at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

Many power producers upgrade steam turbines to gain megawatts (MW) instead of installing new capacity for a variety of reasons. The engineering challenges encounteredwhen managing procurement and adequately analyzing plant support systems affected by this upgradeare becoming more pronounced.

2007-01-15T23:59:59.000Z

2

Productivity Improvement for Fossil Steam Power Plants, 2008  

Science Conference Proceedings (OSTI)

EPRI's Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these have been described in the other EPRI publications: Productivity Improvement for Fossil Steam Power Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fossil Steam Power Plants, 2006, (1014598), and Productivity Improvement for Fossil Steam Power Plants, 2007 (10154...

2008-12-24T23:59:59.000Z

3

Productivity Improvement for Fossil Steam Power Plants, 2010  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fosiil Steam Power Plants 2006, (101459), Productivity Improvement for Fossil Steam Power Plants 2007 (1015445), Productivity Impro...

2011-01-31T23:59:59.000Z

4

Productivity Improvement for Fossil Steam Power Plants, 2007  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098) and in Productivity Improvement for Fossil Steam Power Plants 2006 (1014598). Since then, further productivity improvement case studies have been reviewed on the Prod...

2007-12-21T23:59:59.000Z

5

Productivity Improvement Handbook for Fossil Steam Power Plants  

Science Conference Proceedings (OSTI)

This handbook discusses how to inspect, maintain, and repair major equipment in fossil-fired generating plants. It provides guidance for those involved in renovating and preparing fossil steam plants for operating in a competitive generation market.

1998-10-29T23:59:59.000Z

6

Compilation of Results and Feedback Regarding Turbine Upgrades at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

This report compiles results and feedback and draws a number of conclusions and lessons learned regarding steam turbine generator upgrades at nuclear and fossil power plants.

2008-11-24T23:59:59.000Z

7

Productivity Improvement for Fossil Steam Power Plants, 2006  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (EPRI report 1006315), now in its third edition, includes many descriptions of advanced techniques and products successfully applied and tested. Many of these were described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098). Since then, many productivity improvement case studies have been reviewed on the website of the Productivity Improvement User Group. These improvements have b...

2006-12-18T23:59:59.000Z

8

Productivity Improvement Handbook for Fossil Steam Power Plants: Third Edition  

Science Conference Proceedings (OSTI)

This handbook discusses how to inspect, maintain, and repair major equipment in fossil-fired generating plants. It provides guidance for those involved in renovating and preparing fossil steam plants for operation in a competitive generation market. The first two editions of this handbook in 1998 and 2000 quickly found application in fossil plants, and were broadly distributed within generating companies worldwide. Since then, the book and its regular updates have been available through an epri.com websi...

2002-11-12T23:59:59.000Z

9

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

10

Productivity Improvement for Fossil Steam Power Plants, 2009  

Science Conference Proceedings (OSTI)

This report assembles case studies on productivity improvement taken from the webside of Productivity Improvement Expert Reviews (PIER) on subjects spanning the power plant from the boiler to the steam turbine, and including the plant auxiliaries and the environmental control equipment. These studies have been critically assessed by technical experts who have discussed the improvements with the power plant staff and judged their potential for future use in the fossil industry. This 2009 report also looks...

2010-01-15T23:59:59.000Z

11

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam ...  

U.S. Energy Information Administration (EIA)

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

12

NUCLEAR FLASH TYPE STEAM GENERATOR  

DOE Patents (OSTI)

A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

1962-09-01T23:59:59.000Z

13

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

which steam is raised. nuclear fuel generates heat that isattention to nuclear and fossil-fuel plants, and these areFor all the fossil-fuel and nuclear (However, categories,

Nero, A.V.

2010-01-01T23:59:59.000Z

14

Repowering Fossil Steam Plants with Gas Turbines and Heat Recovery Steam Generators: Design Considerations, Economics, and Lessons L earned  

Science Conference Proceedings (OSTI)

This report describes repowering fossil steam plants using gas turbines (GTs) and heat recovery steam generators (HRSGs) in combined-cycle mode. Design considerations and guidance, comparative economics, and lessons learned in the development of such projects are included. Various other methods of fossil plant repowering with GTs are also briefly discussed. The detailed results and comparisons that are provided relate specifically to a generic GT/HRSG repowering. Design parameters, limitations, schedulin...

2012-08-08T23:59:59.000Z

15

Technical considerations in repowering a nuclear plant for fossil fueled operation  

SciTech Connect

Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

Patti, F.J.

1996-03-01T23:59:59.000Z

16

Productivity Improvement for Fossil Steam Power Plants 2005: One Hundred Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants" (EPRI report 1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these were described in the 2003 publication "Productivity Improvement for Fossil Steam Plants: Industry Case Studies" (1009239). Since 2001, more than one hundred productivity improvement case studies have been described in some detail on the website of the Productivity Improvement User...

2005-08-01T23:59:59.000Z

17

Steam Reheat in Nuclear Power Plants.  

E-Print Network (OSTI)

??In this work, reheating steam from a commercial nuclear power plant is explored in order to increase efficiency and power output. A thermal source in… (more)

Marotta, Paul John

2012-01-01T23:59:59.000Z

18

STEAM GENERATOR FOR NUCLEAR REACTOR  

DOE Patents (OSTI)

The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

Kinyon, B.W.; Whitman, G.D.

1963-07-16T23:59:59.000Z

19

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

20

ORCENT2. Nuclear Steam Turbine Cycle Analysis  

SciTech Connect

ORCENT2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine-generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram.

Fuller, L.C. [Oak Ridge National Lab, TN (United States)

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Applicability of Nanotechnology to Fossil Plant Water-Steam Cycles: Literature Review  

Science Conference Proceedings (OSTI)

The control of water purity, even to part per billion (ppb) levels, is vital to the energy efficiency and economic performance of fossil power stations. Failure to control levels of potentially aggressive impurities in the water-steam cycle can cause corrosion and even catastrophic failures. There is also a need to find and explore filtration technologies for power plants to improve reduction in metal oxides transport to vulnerable components. This report presents the findings of an investigation of the ...

2009-04-30T23:59:59.000Z

22

Structural changes between models of fossil-fuel demand by steam-electric power plants  

SciTech Connect

A consumption function for multi-fuel steam-electric power plants is used to investigate fossil-fuel demand behavior. The input consumption equations for a plant's primary and alternate fossil fuels are derived by Shepard's lemma from a generalized Cobb-Douglas cost function reflecting average variable cost minimization constrained by technology and the demand for electricity. These equations are estimated by primary and alternate fuel subsets with ordinary least squares and seemingly unrelated regression techniques for 1974, 1977, and 1980. The results of the regression analysis show the importance of consumer demand in the fossil fuel consumption decision; it has the only significant parameter in all of the estimated equations. The estimated own- and cross-price elasticities are small, when they are statistically significant. The results for the primary fuel equations are better than those for the alternate fuel equations in all of the fuel pair subsets.

Gerring, L.F.

1984-01-01T23:59:59.000Z

23

Fossil Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Fossil Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fossil Energy Bookmark and Share Conceptual designs of advanced coal-fired combustion systems require furnaces and heat transfer surfaces that operate at much higher temperatures than those in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates the development and application of ceramic materials in these designs.

24

Propellant actuated nuclear reactor steam depressurization valve  

DOE Patents (OSTI)

A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

1992-01-01T23:59:59.000Z

25

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

26

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

Science Conference Proceedings (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

27

POWER PLANT USING A STEAM-COOLED NUCLEAR REACTOR  

SciTech Connect

A method of providing efficient and economic means for obtaining reheat from nuclear heat is described. A steamcooled steam-moderated reactor produces high-pressure, high-temperature steam. A multi-stage steam turbine partially expands the high-pressure steam, which is then withdrawn and reheated, and then further expanded for producing useful power. The saturated steam is superheated by leading it through tubular passages provided in the fuel assemblies of a nuclear reactor, leading the useful part of the superheated steam into a steam turbine in which it expands to a predetermined intermediate pressure, leading the steam at that reduced pressure from the turbine back into the reactor where it is reheated by flowing through other tubular passages in the fuel assemblies, and returning the reheated steam to the turbine for further expansion. (M.C.G.)

Nettel, F.; Nakanishi, T.

1963-10-29T23:59:59.000Z

28

Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems  

SciTech Connect

The purpose of this paper is twofold: to report industrial experience with process energy system reliability, and to assess the reliability of multiunit nuclear and fossil-fired energy systems in an industrial setting. Reliability here refers to the percentage of clock time that sufficient amounts of steam energy were available to permit desired production quotas to be met at a particular plant. A nationwide survey was conducted to obtain data relative to energy system reliabilities during 1973--74, and these data for 29 plants from chemicals and allied products (S.I.C. 28), petroleum refining and related industries (S.I.C. 29) and primary metals industries (S.I.C. 33) are reported here. A simulation model in which various operating characteristics of the energy systems were taken into account was developed to obtain estimates of reliabilities of proposed multiunit nuclear and fossil-fired systems. Based on several example problems evaluated with the simulation model, study results indicated that multiple nuclear units or a combination of nuclear and fossil-fired units could provide adequate reliability to meet large-scale industrial requirements for continuity of service.

Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

1978-01-01T23:59:59.000Z

29

Steam electric plant factors, 1978. [48 states  

SciTech Connect

Fossil-fuel steam electric generation increased 5.8% in 1977 to 1,612.2 million MWh as compared to 1976. Thirty-four new fossil-fuel steam electric units and 7 new nuclear units became operational in 1977. Detailed data are reported for 748 plants, accounting for more than 99% of the total steam generation capacity, in the contiguous US.

1978-01-01T23:59:59.000Z

30

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Fossil-Fuel-Fired Steam Generators," U.S. Environmentalbasin Boiler or PWR Steam Generator Blowdown Transmissionreactor coolant pumps, steam generators, piping, main stream

Nero, A.V.

2010-01-01T23:59:59.000Z

31

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

32

U.S. Steam Turbine Valve Actuator Condition Assessment  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators.

2008-12-23T23:59:59.000Z

33

U.S. Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the metallurgical aspects of the steam turbine valve components used in U.S. power plants.

2009-03-30T23:59:59.000Z

34

Relative Economic Incentives for Hydrogen from Nuclear, Renewable, and Fossil Energy Sources  

DOE Green Energy (OSTI)

The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

Forsberg, Charles W [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL)

2007-01-01T23:59:59.000Z

35

RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES  

SciTech Connect

The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

Gorensek, M; Charles W. Forsberg, C

2008-08-04T23:59:59.000Z

36

RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES  

SciTech Connect

The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

Gorensek, M; Charles W. Forsberg, C

2008-08-04T23:59:59.000Z

37

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

38

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

39

Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater  

SciTech Connect

An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

Luongo, M.C.

1975-08-12T23:59:59.000Z

40

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear steam-generator transplant total rises  

Science Conference Proceedings (OSTI)

Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

Smock, R.

1982-09-01T23:59:59.000Z

42

Work for the DOE Office of Fossil Energy - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Applications > DOE Office of Fossil Energy Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE...

43

Emission Factors Handbook: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Plants  

Science Conference Proceedings (OSTI)

The "Emission Factors Handbook" provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and Department of Energy (DOE) field measurements conducted at over 50 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2002-04-10T23:59:59.000Z

44

Introduction to Nuclear Plant Steam Turbine Control Systems  

Science Conference Proceedings (OSTI)

Since Nuclear Power Plants produce their power through the use of Steam Turbine Generators, any problems associated with the Turbine Control System has a direct effect on power generation. Although considerable effort has been expended in improving control system reliability, failures resulting in lost generation and high maintenance cost still plague the industry. On an individual basis, improvements have been made through maintenance techniques, modifications and upgrades. Unfortunately, this informati...

1995-03-02T23:59:59.000Z

45

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

DOE Green Energy (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

46

Regional comparison of nuclear and fossil electric power generation costs  

SciTech Connect

Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures.

Bowers, H.I.

1984-01-01T23:59:59.000Z

47

High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental  

SciTech Connect

Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

2013-01-01T23:59:59.000Z

48

SOME SPECIAL APPLICATIONS OF WELDING IN STEAM, GAS TURBINE, AND NUCLEAR POWER PLANTS  

SciTech Connect

Six special applications of welding in steam, gasturbine, and nuclear power plants are described. Experiences are quoted of: the welding of austenittc steel gas-turbine rotors; the butt welding of heat-exchanger tubes in dissimilar metals; the welding of steam pipes for advanced steam conditions; welding in relation to feedwater heaters; the construction of expansion bellows in alloy steels; and the attachment of fins to heat-exchanger tubes. (auth)

Robertson, J.M.

1961-10-01T23:59:59.000Z

49

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-and RelatedStandards for Fossil-Fuel and Geothermal Power

Nero, jA.V.

2010-01-01T23:59:59.000Z

50

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

prevent serious damage to the nuclear fuel, since it is thetransportation: for nuclear plants, fuel handling is carriedSpecific Fossil Fuel Geothermal Nuclear Solid Waste Disposal

Nero, A.V.

2010-01-01T23:59:59.000Z

51

Mathematical model of steam generator feed system at power unit of nuclear plant  

Science Conference Proceedings (OSTI)

A mathematical model of a steam generator feed system at a power unit of a nuclear plant with variable values of transfer function coefficients is presented. The model is realized in the MATLAB/Simulink/Stateflow event-driven simulation.

E. M. Raskin; L. A. Denisova; V. P. Sinitsyn; Yu. V. Nesterov

2011-05-01T23:59:59.000Z

52

Long-term tradeoffs between nuclear- and fossil-fuel burning  

SciTech Connect

A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

Krakowski, R.A.

1996-12-31T23:59:59.000Z

53

Proceedings: Ninth International Conference on Cycle Chemistry in Fossil and Combined Cycle Plants with Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Proper selection, application, and optimization of cycle chemistry have long been recognized as integral to ensuring the highest possible levels of component availability and reliability in fossil-fired generating plant units. These proceedings of the Ninth EPRI International Conference on Cycle Chemistry in Fossil Plants address state-of-the-art practices in conventional and combined-cycle plants. The content provides a worldwide perspective on cycle chemistry practices and insight on industry issues an...

2010-01-22T23:59:59.000Z

54

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

Nero, A.V.

2010-01-01T23:59:59.000Z

55

Modeling of a horizontal steam generator for the submerged nuclear power station concept  

SciTech Connect

A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube`s inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

Palmrose, D.E.; Herring, J.S.

1993-05-01T23:59:59.000Z

56

Modeling of a horizontal steam generator for the submerged nuclear power station concept  

Science Conference Proceedings (OSTI)

A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube's inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

Palmrose, D.E.; Herring, J.S.

1993-01-01T23:59:59.000Z

57

Emission Factors Handbook Addendum 2: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Power Plan ts  

Science Conference Proceedings (OSTI)

This handbook provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and U.S. Department of Energy (DOE) field measurements conducted at 51 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2000-12-22T23:59:59.000Z

58

Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect

Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

2011-01-01T23:59:59.000Z

59

Locating hot and cold-legs in a nuclear powered steam generation system  

DOE Patents (OSTI)

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

Ekeroth, D.E.; Corletti, M.M.

1993-11-16T23:59:59.000Z

60

Locating hot and cold-legs in a nuclear powered steam generation system  

SciTech Connect

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

Ekeroth, Douglas E. (Delmont, PA); Corletti, Michael M. (New Kensington, PA)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A comparative analysis of accident risks in fossil, hydro, and nuclear energy chains  

Science Conference Proceedings (OSTI)

This study presents a comparative assessment of severe accident risks in the energy sector, based on the historical experience of fossil (coal, oil, natural gas, and LPG (Liquefied Petroleum Gas)) and hydro chains contained in the comprehensive Energy-related Severe Accident Database (ENSAD), as well as Probabilistic Safety Assessment (PSA) for the nuclear chain. Full energy chains were considered because accidents can take place at every stage of the chain. Comparative analyses for the years 1969-2000 included a total of 1870 severe ({>=} 5 fatalities) accidents, amounting to 81,258 fatalities. Although 79.1% of all accidents and 88.9% of associated fatalities occurred in less developed, non-OECD countries, industrialized OECD countries dominated insured losses (78.0%), reflecting their substantially higher insurance density and stricter safety regulations. Aggregated indicators and frequency-consequence (F-N) curves showed that energy-related accident risks in non-OECD countries are distinctly higher than in OECD countries. Hydropower in non-OECD countries and upstream stages within fossil energy chains are most accident-prone. Expected fatality rates are lowest for Western hydropower and nuclear power plants; however, the maximum credible consequences can be very large. Total economic damages due to severe accidents are substantial, but small when compared with natural disasters. Similarly, external costs associated with severe accidents are generally much smaller than monetized damages caused by air pollution.

Burgherr, P.; Hirschberg, S. [Paul Scherrer Institute, Villigen (Switzerland)

2008-07-01T23:59:59.000Z

62

Proceedings: Steam Turbine Stress Corrosion Workshop  

Science Conference Proceedings (OSTI)

A recent survey of utilities commissioned by EPRI indicated that cracking of steam turbine disk rims by stress corrosion was a pervasive problem in both fossil and nuclear power plants. There is a clear need to document industry experience in this area so that guidelines can be provided to utilities on managing the problem.

1997-11-03T23:59:59.000Z

63

Steam Turbine Mechanical Hydraulic Control System - Operation, Inspection, Setup, Troubleshooting, and Maintenance Guide, Revision 1  

Science Conference Proceedings (OSTI)

This report describes the components of General Electric and Westinghouse steam turbine mechanical hydraulic control systems and provides typical drawings. It focuses on systems located on the front standards and valve enclosures of utility-sized fossil and nuclear steam turbines manufactured by General Electric and Westinghouse. The report is intended to assist in maintaining, calibrating, and troubleshooting these systems.

2009-06-25T23:59:59.000Z

64

Electrostatic Charge and Its Influence on the Condensation of Steam in a Turbine  

Science Conference Proceedings (OSTI)

Some major contributors to efficiency loss in a fossil or nuclear plant are associated with nucleation of moisture from superheated steam, formation and release of liquid films on turbine surfaces, and flow of moist steam into the turbine exhaust and condenser. This document provides a state-of-knowledge report on the various electrostatic processes involved.

2001-09-28T23:59:59.000Z

65

Modular Modeling System (MMS): A Code for the Dynamic Simulation of Fossil and Nuclear Power Plants, Volume 2: Programmer's Manual  

Science Conference Proceedings (OSTI)

Now complete and fully documented, the MMS code is available for the dynamic simulation of both fossil-fired and nuclear power plants. The broad range of applications, from troubleshooting new designs to analysis of startup tests, has made this easy-to use code a utility standard since its first-stage release in 1983.

1987-05-01T23:59:59.000Z

66

Modular Modeling System (MMS): A Code for the Dynamic Simulation of Fossil and Nuclear Power Plants, Volume 1: Theory Manual  

Science Conference Proceedings (OSTI)

Now complete and fully documented, the MMS code is available for the dynamic simulation of both fossil-fired and nuclear power plants. The broad range of applications, from troubleshooting new designs to analysis of startup tests, has made this easy-to use code a utility standard since its first-stage release in 1983.

1987-04-01T23:59:59.000Z

67

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

DOE Green Energy (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

68

An Overview of Nuclear vs. Non-Nuclear Design Code Requirements for a Candidate Steam Supply System for Commercial Applications  

SciTech Connect

The objective is to identify (mostly for industrial end-users) the difference between a Section III nuclear steam generator (classified as Structures, Systems and Components (SSC)) and a Section VIII steam generator in the same general conditions, but used in a conventional application. Specifically, applicable temperature and pressure ranges and a more quantitative description of how materials change, design margins change and required design rigor changes are of interest. This overview focuses on the steam generator pressure boundary but the downstream piping will also be considered. Within the designations of Section III and Section VIII there are subcategories with their specific regions of applicability. Each of these subcategories has evolved their own unique features with respect to design rules and their implementation. A general overview of the various design codes will be provided in sufficient detail to illustrate the major differences; however, a detailed discussion of the various design requirements and their implementation is beyond the scope of this discussion. References (1) and (2) are sources of more detailed information. Also, example wall sizing calculations will be provided to illustrate the application of the relevant design codes under the candidate design conditions. The candidate steam supply Design Conditions are 600C (1112F) and 24MPa (3,480psi). The Operating Conditions or Service Levels will be somewhat lower and the difference shows up in some of the various design methodologies employed.

Robert Jetter

2011-04-01T23:59:59.000Z

69

Program on Technology Innovation: Manufacture of Large Nuclear and Fossil Components Using Powder Metallurgy and Hot Isostatic Processing Technologies  

Science Conference Proceedings (OSTI)

An alternative manufacturing method, powder metallurgy coupled with hot isostatic processing (PM/HIP), is being explored for the manufacture of large, pressure-retaining components that will be required to meet the demanding needs of nuclear, fossil, combined cycle, ultra-supercritical, and oxy-combustion power applications over the next few decades. This report provides an in-depth review of the new manufacturing process, discusses why the PM/HIP technology is ripe for the power industry to consider, hi...

2012-05-10T23:59:59.000Z

70

Drum Screen Filtration of Cooling Water in Fossil-Fired and Nuclear Power Plants: The Electricite de France (EDF) Experience  

Science Conference Proceedings (OSTI)

This document presents a summary of the lessons learned from operating the drum screen filtration systems used for the last three decades in Èlectricité de France’s (EDF’s) nuclear and fossil-fired power plants, both in terms of the technological aspects of filtration and with regard to the prevention of clogging risks and the prevention of damage to the living organisms impinged on the drum screens and entrained into the cooling ...

2012-11-21T23:59:59.000Z

71

DOE Hydrogen and Fuel Cells Program: Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Fossil Energy Printable Version Fossil...

72

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector  

SciTech Connect

Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)

Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

73

Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 1. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California  

DOE Green Energy (OSTI)

This report presents an overview of a project on the health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. In addition to presenting an executive summary of the project, it sets forth the main results of the four tasks of the project: to review the health impacts (and related standards) of these forms of power generation, to review the status of standards related to plant safety (with an emphasis on nuclear power), to consider the role of the California Energy Resources Conservation and Development Commission in selection of standards, and to set forth methodologies whereby that Commission may review the health and safety aspects of proposed sites and facilities.

Nero, A.V. Jr.

1977-01-01T23:59:59.000Z

74

Proceedings: Eighth International Conference on Cycle Chemistry in Fossil and Combined Cycle Plants with Heat Recovery Steam Generators, June 20-22, 2006, Calgary, Alberta Canada  

Science Conference Proceedings (OSTI)

Proper selection, application, and optimization of the cycle chemistry have long been recognized as integral to ensuring the highest possible levels of component availability and reliability in fossil-fired generating plant units. These proceedings of the Eighth EPRI International Conference on Cycle Chemistry in Fossil Plants address state-of-the-art practices in conventional and combined cycle plants. The content provides a worldwide perspective on cycle chemistry practices, and insight as to industry ...

2007-03-20T23:59:59.000Z

75

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (9) System Outline and Endurance Test of Low-Pressure Steam Injectors  

Science Conference Proceedings (OSTI)

A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. We are developing technology for 'Innovative Simplified Nuclear Power Plants' in order to further improve the economy and safety of nuclear power plants. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying 'High-Efficiency SI', which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feedwater heaters and Emergency Core Cooling Systems (ECCS) of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). The innovative-simplified nuclear power plant consists of a simplified feedwater heating system, a passive core injection system and a passive containment cooling system. This report describes the results of the endurance and performance tests of low-pressure SIs for feedwater heaters with Jet-deaerator and core injection system. A part of this report are fruits of research which is carried out by Tokyo Electric Power Company (TEPCO), Toshiba, and 7 Universities in Japan, funded from the Ministry of Economy, Trade and Industry (METI) of Japan as the national public research-funded program. (authors)

Shuichi Ohmori; Michitsugu Mori; Shoji Goto [Tokyo Electric Power Company (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Chikako Iwaki; Yutaka Asanuma [Toshiba Corporation (Japan)

2006-07-01T23:59:59.000Z

76

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

SciTech Connect

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

77

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

78

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Power Plant Reliability-Availability and State Regulation,"Report on Equipment Availability: Fossil and NuclearBasic Definitions* Availability: Reliability: Base Loading:

Nero, A.V.

2010-01-01T23:59:59.000Z

79

Nuclear plant design and modification guidelines for PWR steam generator reliability  

Science Conference Proceedings (OSTI)

Operating experience gathered from PWR plant operation during the 1960's and 1970's has been incorporated into a series of design guidelines for secondary plant systems and steam generators. Specific guidelines included in this volume are: plant design for PWR steam generator inspection and nondestructive testing, revision 1; guidelines for design of steam generator blowdown systems, revision 1; plant design guidelines for layup and cleanup of steam, feedwater, and condensate systems, revision 1; design guidelines for plant secondary systems, revision 1 and plant design for steam generator replaceability, revision 1. The guidelines are intended to address those aspects of new plant design which will minimize corrosion damage to steam generators by controlling impurity ingress, facilitate steam generator nondestructive testing and provide for eventual replacement of steam generator if necessary. The guidelines, last revised in 1986, are primarily applicable to new plant construction, however, some of the guidelines may also be applicable to major backfits to existing plants.

Not Available

1991-09-01T23:59:59.000Z

80

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

MISCELLAN £OUS LlOUID STEAM GENERATOR ORAIH OE .. ,N[PALIZEAon the steam system and turbine generator units, as d~fined

Nero, A.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

82

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

83

Destructive Examination of Tube R31C66 From the Ginna Nuclear Plant Steam Generator  

Science Conference Proceedings (OSTI)

Like some other PWR steam generators, the Ginna plant has experienced loss of steam pressure for several years. Deposits of up to 8 mils thick have been found and may explain the steam pressure loss. In addition, destructive and nondestructive examinations found a through-wall crack in the roll transition of a hot leg tube removed from this plant as well as shallow intergranular attack (IGA) in the tubesheet crevice region.

1991-07-01T23:59:59.000Z

84

Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel  

SciTech Connect

The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

2006-02-01T23:59:59.000Z

85

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

Science Conference Proceedings (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

86

Proceedings: Condensate Polishing and Water Purification in the Steam Cycle  

Science Conference Proceedings (OSTI)

A workshop on Condensate Polishing and Water Purification in the Steam Cycle was held on March 20-22, 1995. The EPRI-sponsored workshop addressed the challenges that deregulation and increased competition within the electric power industry has placed on the operators of nuclear and fossil plants. Research results and operational experiences that can help utility personnel optimize their use of condensate polishers were presented in these proceedings. The goal was to help meet the demands of lowering oper...

1995-06-06T23:59:59.000Z

87

Steam Turbine Valve Actuator Condition Assessment: 2013 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators. It covers the actuators that are typically found on the turbines of the two major U.S. original equipment manufacturers (OEMs), as well as those of several non-U.S. OEMs. The scope encompasses both mechanical hydraulic control (MHC) and electronic hydraulic control (EHC) types of hydraulic ...

2013-07-25T23:59:59.000Z

88

Human Performance - Fossil Operations  

Science Conference Proceedings (OSTI)

All humans make errors. Industrial human errors can result in a loss of life and can significantly impact the productivity and cost effectiveness of any facility or company. Several industries in which human error has had a significant impact (for example, airline, medical, military, nuclear power, aviation, and chemical) have implemented human performance programs with excellent results. Human errors by fossil plant operators can easily challenge plant safety and production. In the fossil operations are...

2007-02-28T23:59:59.000Z

89

Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report  

SciTech Connect

A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Quality Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.

Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

1978-12-01T23:59:59.000Z

90

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

Science Conference Proceedings (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

91

Field Guide: Turbine Steam Path Damage  

Science Conference Proceedings (OSTI)

Steam path damage, particularly of blades, has long been recognized as a leading cause of steam turbine unavailability for large fossil fuel plants. Damage to steam path components by various mechanisms continues to result in significant economic impact domestically and internationally. Electric Power Research Institute (EPRI) Report TR-108943, Turbine Steam Path Damage: Theory and Practice, Volumes 1 and 2, was prepared to compile the most recent knowledge about turbine steam path damage: identifying th...

2011-12-12T23:59:59.000Z

92

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Fossil Energy Research and Development Table of Contents Page Appropriation Language .................................................................................................................... FE-3 Overview ............................................................................................................................................ FE-4 Coal .................................................................................................................................................. FE-13

93

Proceedings: Sixth International Conference on Fossil Plant Cycle Chemistry  

Science Conference Proceedings (OSTI)

The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These conference proceedings address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for control of corrosion and water preparation and purification.

None

2001-04-01T23:59:59.000Z

94

Proceedings: Sixth International Conference on Fossil Plant Cycle Chemistry  

Science Conference Proceedings (OSTI)

The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These conference proceedings address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for control of corrosion and water preparation and purification.

2001-03-30T23:59:59.000Z

95

Nuclear Plant Design and Modification Guidelines for PWR Steam Generator Reliability  

Science Conference Proceedings (OSTI)

Operating and maintenance experience relative to PWR steam generator reliability has produced a variety of "lessons learned." This information has been incorporated in a series of guidelines to aid utilities in major plant modifications and new plant construction.

1991-09-25T23:59:59.000Z

96

Steam Generator Management Program  

Science Conference Proceedings (OSTI)

The 24th EPRI Steam Generator NDE Workshop took place in San Diego, California, July 1113, 2005. It covered one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE iss...

2005-12-08T23:59:59.000Z

97

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

98

Review of air quality modeling techniques. Volume 8. [Assessment of environmental effects of nuclear, geothermal, and fossil-fuel power plants  

DOE Green Energy (OSTI)

Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each.

Rosen, L.C.

1977-01-01T23:59:59.000Z

99

New technology for purging the steam generators of nuclear power plants  

Science Conference Proceedings (OSTI)

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

100

ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients  

SciTech Connect

ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core.

Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

1977-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A STEAM POWER INSTALLATION FOR NUCLEAR POWER PLANT WITH GAS-COOLED REACTORS  

SciTech Connect

A steam power plant is designed for use with gas-cooled power reactors. In this plant, the turbine is divided into two sections, one high pressure and the other low pressure, the low-pressure turbine being the condensing turbine. The feed water from the condensing turbine is divided into two streams, one of which is brought to a higher pressure than the other. The high-pressure feed water is evaporated and superheated in the heat exchanger and then supplied to the high-pressure turbine, while the low-pressure feed water is evaporated and mixed with the exhaust steam of the highpressure turbine before superhenting and then passing to the low-pressure condensing turbine. Circulation of the reactor coolant is effected by a blower driven by a series turbine with no regulating devices and arranged in the steam plant circuit upstream of the low-pressure turbine; such a turbine works with constant efficiency over its whole load range. (D.L.C.)

1961-03-01T23:59:59.000Z

102

State-of-Knowledge on Deposition, Part 2: Assessment of Deposition Activity in Fossil Plant Units  

Science Conference Proceedings (OSTI)

Over the last 20 years, substantial advances have been made in the understanding and control of fossil plant cycle chemistry. In spite of these advances, deposition activity, most notably in boilers and steam turbines, remains an issue of concern to many organizations that operate fossil units. The underlying science of deposition in fossil unit components has not, with the exception of steam turbines, been studied extensively under the EPRI Boiler and Turbine Steam and Cycle Chemistry Program. This repo...

2003-12-08T23:59:59.000Z

103

A New Mixed Fossil/Nuclear Energy System for the Production of Electricity with Zero Emission of Carbon Dioxide  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Economic

W. Seifritz

104

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB)...

105

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Dose Commitments from Nuclear Tests carried out beforeDose Commitments from Nuclear Tests carried out before 1968,of the dose from nuclear weapons test fallout. As indicated

Nero, A.V.

2010-01-01T23:59:59.000Z

106

Steam generator support system  

SciTech Connect

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

107

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

108

[en] THERMOHIDRAULIC MODEL FOR A TYPICAL STEAM GENERATOR OF PWR NUCLEAR POWER PLANTS.  

E-Print Network (OSTI)

??[pt] Muitas centrais nucleares do tipo PWR utilizam vapor produzido em geradores de vapor do tipo tubos em U invertido, com recirculação interna natural, nos… (more)

CARLOS VALOIS MACIEL BRAGA

2011-01-01T23:59:59.000Z

109

Reliability Assessment of North American Steam Turbines  

Science Conference Proceedings (OSTI)

This survey provides statistics related to the reliability and maintenance of fossil-fueled steam turbines in the continental United States. The analysis focuses primarily on active turbines larger than 200 MW.

2002-04-24T23:59:59.000Z

110

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Natural gas production from "shale" formations (fine-grained sedimentary rocks with relatively low permeability that can be rich sources of petroleum and natural gas) is one of the most rapidly-growing trends in U.S. domestic energy exploration and production. In some cases, this fast expansion has resulted in natural gas drilling and production activity in parts of the country that have seen little or no activity of this type in the recent past. "Natural Gas from Shale" explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Also included are a list of frequently asked questions, a glossary of major terms, and a list of

111

Fossil Power Plant Cost and Performance Trends  

Science Conference Proceedings (OSTI)

This report is one of two companion studies that describe trends in operating costs and reliability of fossil steam plants since 1970. The studies are a foundation for more sophisticated statistical studies aimed at modeling and predicting the impacts of cycling. This report summarizes results for coal-fired steam generating units, contrasting performance across 112 baseload plants, 68 load-following/cycling plants, and 118 plants that varied their operations for at least three years. Annual trends are p...

2006-08-31T23:59:59.000Z

112

Assessment of Amines for Fossil Plant Applications  

Science Conference Proceedings (OSTI)

The purity and proper chemical treatment of water and steam are central to ensuring fossil and heat recovery steam generator (HRSG) plant component availability and reliability, which are critical to the overall economic performance and profitability of plant unit operations. This report provides a technical assessment of neutralizing amines for application in plant cycles to improve the pH conditions in the low pressure (LP) evaporators and economizers of HRSGs, the phase transition zone (PTZ) of the LP...

2010-03-31T23:59:59.000Z

113

Steam Generator Replacement and Power Up-rating on Tihange 2 Nuclear Plant Safety Study Analyses  

SciTech Connect

The Tihange2 900 MWe 3-L PWR NPP, operated by the Belgian utility Electrabel, was first commissioned in 1982 with a design core power of 2775 MWth. Following an initial core power up-rating by 4,5% in 1995, Electrabel has since replaced the Steam Generators which has allowed a further core power increase by roughly 5% (total 10%) in 2001. For both of each projects, licensing and implementation studies were successfully performed by Tractebel Energy Engineering and Framatome ANP. The demanding new operating conditions required a complete review of the plant design basis for which advanced methods were applied and licensed through a continuous process of discussions with the client and the Belgian Safety Authorities AVN. The licensing process required flexibility in the methods application in order to meet the specific requirements of the S.A., which was achieved within the time schedule and without jeopardising the technical objectives of the utility. (authors)

Malaval, Andre; Marin-Lafleche, Pascale; Forgeot d'Arc, Myriam; Collin, Celine [Framatome ANP (France)

2002-07-01T23:59:59.000Z

114

Steam Generator Management Program: Alloy 800 Steam Generator Tubing Experience  

Science Conference Proceedings (OSTI)

Nuclear grade (NG) Alloy 800 has been used for steam generator tubing since 1972 in over 50 nuclear power plants worldwide. The operational performance of this alloy has been very good, although some degradation modes have recently been observed. This report describes worldwide operating experience for Alloy 800 steam generator tubing along with differences in tubing material, plant design, and operating conditions that can affect tube degradation. The various types of plants with Alloy 800 steam generat...

2012-06-26T23:59:59.000Z

115

Fossil Plant High Energy Piping Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Condition assessment programs for high-energy piping systems are often a major aspect of a fossil utility's inspection and maintenance program. In the past 30 years, a number of major failures of fossil high-energy piping have been associated with flow-accelerated corrosion of feedwater piping, creep failures of longitudinal seam-welded hot reheat and main steam piping, and corrosion fatigue failures of cold reheat steam piping. In addition to these well-documented failures, most utilities experience fai...

2007-11-29T23:59:59.000Z

116

Fossil Plant High-Energy Piping Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Condition assessment programs for high-energy piping systems are often a major aspect of a fossil utility's inspection and maintenance program. In the past 30 years, a number of major failures of fossil high-energy piping have been associated with flow-accelerated corrosion of feedwater piping, creep failures of longitudinal seam-welded hot reheat and main steam piping, and corrosion fatigue failures of cold reheat steam piping. In addition to these well-documented failures, most utilities experience fai...

2007-06-26T23:59:59.000Z

117

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

U. S. Conunercial Nuclear Power Plants", Report WASH-1400 (for Light-Water Cooled Nuclear Power Plants to Assess PlantStandards for Nuclear Power Plants," by A.V. Nero and Y.C.

Nero, A.V.

2010-01-01T23:59:59.000Z

118

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

applies, not only to the nuclear reactor, but also to otherdetailed de- sign of nuclear reactor power s tations is vgreat importance in nuclear reactor accidents. 3.2 Increase

Nero, A.V.

2010-01-01T23:59:59.000Z

119

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

refabrication. through which nuclear fuel passes. Fusion.with the experience at the Nuclear Fuel Services Plant (seecommitment from the nuclear fuel cycle; see Section 3.2.3. )

Nero, A.V.

2010-01-01T23:59:59.000Z

120

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR  

DOE Patents (OSTI)

This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

Tokarz, R.D.

1981-10-27T23:59:59.000Z

122

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

123

Guidelines for New High Reliability Fossil Plants  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. New plants should have the optimum cycle chemistry features designed in, and the guidelines provided in this report will assist owners and operators of new plants in specifying these features during the design phase.

2007-02-26T23:59:59.000Z

124

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Specific Considerations Fossil Fuel Coal r. a. b. Normalliquid dominated) and fossil-fuel fired (either coal, oil,Specific Cons iderations Fossil Fuel Coal Oil 1. 1. 3. L 1

Nero, A.V.

2010-01-01T23:59:59.000Z

125

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

without steam gen. ) Steam generator Control Rods Refuelingcooling system, steam generator, and auxiliary coolingcooling system and steam generator. A brief look at tables

Nero, A.V.

2010-01-01T23:59:59.000Z

126

Steam generator replacement overview  

Science Conference Proceedings (OSTI)

Since nuclear power began to be widely used for commercial purposes in the 1960s, unit operators have experienced a variety of problems with major components. Although many of the problems have diminished considerably, those associated with pressurized water reactor (PWR) steam generators persist. Steam generator problems rank second, behind refueling outages, as the most significant contributor to lost electricity generation. As of December 31, 1995, 38 steam generators had been replaced in 13 of the 72 operating PWRs, and three units had been shut down prematurely, due primarily (or partially) to degradation of their steam generators: Portland General Electric`s Trojan unit, located in Prescott, OR, in 1992; Southern California Edison`s San Onofre 1, located in San Clemente, CA, in 1992; and Sacramento Municipal Utility District`s Rancho Seco unit in 1989. In the coming years, operators of PWRs in the US with degraded steam generators will have to decide whether to make annual repairs (with eventual derating likely), replace the generators or shut the plants down prematurely. To understand the issues and decisions utility managers face, this article examines problems encountered at steam generators over the past few decades and identifies some of the remedies that utility operators and the nuclear community have employed, including operational changes, maintenance, repairs and steam generator replacement.

Chernoff, H. [Science Applications International Corp., McLean, VA (United States); Wade, K.C. [USDOE Energy Information Administration, Washington, DC (United States)

1996-01-01T23:59:59.000Z

127

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A nuclear power plant is designed using a heavy-watermoderated, steam- cooled reactor. In this plant, feed water is heated by the moderator and reactor steam to form feed steam, which is then superheated by superheated reactor steam and expanded through a nozzle. The feed steam issuing from the nozzie has added to it the superheated reactor steam, and the resulting steam is compressed, heated further in the reactor, and part of it passed to the turbine. (D.L.C.)

Bauer, S.G.; Jubb, D.H.

1962-10-10T23:59:59.000Z

128

Ultra-High Temperature Steam Corrosion of Complex Silicates for Nuclear Applications: A Computational Study  

SciTech Connect

Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimated the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time – at least 100 h – is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 °C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.

Sergey N. Rashkeev; Michael V. Glazoff; Akira Tokuhiro

2014-01-01T23:59:59.000Z

129

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

Nero, A.V.

2010-01-01T23:59:59.000Z

130

Steam Quality  

E-Print Network (OSTI)

"STEAM QUALITY has been generally defined as the amount of moisture/vapor (or lack thereof) contained within steam produced from some form of boiler. It has long been used as the standard term for the measurement of ""wet or dry"" steam and as a means of measuring enthalpy. Totally dry steam is said to be ""saturated"" steam. It is sometimes defined as the ""dryness faction"". The term in its historical denotation refers to a physical attribute of the steam. That attribute being ""what is the percentage water vapor content of the steam"" as compared to the amount of steam. Dry saturated steam is steam which carries no water vapor with it and is defined as having a quality of 1.00 (100%). Since water vapor is always present at the interface between the water level and the steam in a boiler, some water vapor will always tend to pass through the system with the steam. Hence, a continuing problem. If steam does carry water vapor past the separators it will tend to coalesce as a liquid, and in doing so it also will carry boiler chemicals with it."

Johnston, W.

1989-09-01T23:59:59.000Z

131

Nuclear steam turbines for power production in combination with district heating and desalination  

SciTech Connect

The optimization of the turbine plant of a nuclear power station in combination with heat production is dependent upon many factors, the most important being the heat requirements, full-load equivalent operating time, and the heat transport distance, i.e., the trunk mains' costs. With hot-water-based heat transport, this usually results in a large temperature difference between supply and return water and heating in two or three stages. The turbine can consist of a back-pressure turbine, a back-pressure turbine with condensing tail, or a condensing turbine with heat extractions. The most attractive solution from technical as well as economic points of view is the condensing turbine with extraction for district heating or desalination as appropriate. The turbines can be of conventional design, with only minor modifications needed to adapt them to the operating conditions concerned.

Frilund, B.; Knudsen, K.

1978-04-01T23:59:59.000Z

132

Average effluent releases from U. S. nuclear power reactors, compared with those from fossil-fueled plants, in terms of currently applicable environmental standards  

SciTech Connect

From 3rd international congress of the International Radiation Protection Association meeting; Washington, District of Columbia, USA(9 Sep 1973). Between 1967 and 1972, eighteen second generation'' lightwater-cooled nuclear power plants, with capacities in the range of 500 to 800 MW(e) have been put into operation in the United States. These were in addition to ten smaller demonstration plants and one high-temperature gas-cooled nuclear power plant in operation at the start of this period. The reported yearly air effluent releases of radioactive gases, halogens and particulates, and liquid effluent fission and activation products and of tritium from these plants are evaluated on a Ci/10/sup 3/ MW(e) basis, and the overall yearly averages for the various types of reactors (boiling water (BWR), pressurized water (PWR) and high temperature gas-cooled (HTGR)! are compared. These and the amounts of effluents released from reference 1,000 MW(e) fossil-fueled plants are compared in terms of relative environmental concentrations and their relationship to the applicable U. S. environmental standards for the principal constituents in their respective plant air-effluent streams. 21 references. (auth)

Hull, A.P.

1973-09-19T23:59:59.000Z

133

Proceedings: 7th International Conference on Cycle Chemistry in Fossil Plants  

SciTech Connect

The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These proceedings of EPRI's Seventh International Conference on Cycle Chemistry in Fossil Plants address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for corrosion control and water preparation and purification.

None

2004-02-01T23:59:59.000Z

134

Catalytic Steam Gasification of Biomass Surrogates: A Thermodynamic and Kinetic Approach.  

E-Print Network (OSTI)

??Gasification of biomass is an environmentally important technology that offers an alternative to the direct use of fossil fuel energy. Steam gasification is getting increased… (more)

Salaices, Enrique

2010-01-01T23:59:59.000Z

135

Fossil Fuels News  

Science Conference Proceedings (OSTI)

NIST Home > Fossil Fuels News. Fossil Fuels News. (showing 1 - 5 of 5). In Natural Gas Pipelines, NIST Goes with the Flow ...

2010-10-26T23:59:59.000Z

136

DOE - Fossil Energy:  

NLE Websites -- All DOE Office Websites (Extended Search)

and Trends Button National Security Button Safety and Health Button DOE Office of Fossil Energy Web Site Fossil Energy - Clean Coal Technologies - Carbon Capture,...

137

FM12 & rus Steam - Steam Users' Forums  

U.S. Energy Information Administration (EIA)

STORE COMMUNITY ABOUT SUPPORT Steam Users' Forums > Steam Game Discussions > D - G > Football Manager series

138

Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California  

DOE Green Energy (OSTI)

This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

1977-01-01T23:59:59.000Z

139

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold: 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in their early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were modeled using the process code HYSYS; a three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor and power conversion unit by means of an intermediate heat transport loop. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative heat exchanger size and turbomachinery work were estimated for the different working fluids. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. Recommendations on the optimal working fluid for each configuration were made. The helium working fluid produced the highest overall plant efficiency for the three-shaft and reheat cycle; however, the nitrogen-helium mixture produced similar efficiency with smaller component sizes. The CO2 working fluid is recommend in the combined cycle configuration.

Barner, Robert Buckner

2006-12-01T23:59:59.000Z

140

Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. The integrity assessments are normally performed during a reactor refueling outage. Nuclear power plant licensees who follow the guidance in this report will have satisfied the requirements for degradation assessments, condition monitoring, and operational assessment as defined in the Nuclear Energy Institute (NEI) Steam Generator Program Guidelin...

2009-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

142

Steam Pricing  

E-Print Network (OSTI)

Steam is used in many plants to furnish both heat and mechanical energy. It is typically produced in several fired boilers which may operate at different pressures and with different efficiencies. It is then distributed throughout the plant to the various users in steam distribution systems, each one operating at a different pressure and temperature. This paper examines various ways to cost steam and discusses the importance of proper costing. Specifically it addresses three types of steam costs; Marginal Costs, Project Evaluation Costs and Financial Costs.

Jones, K. C.

1986-06-01T23:59:59.000Z

143

Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. This integrity assessment is normally performed during a reactor refueling outage. Nuclear power plant licensees who follow this document's guidelines will have satisfied their requirements for condition monitoring and operational assessment as defined in the Nuclear Energy Institute (NEI) initiative, Steam Generator Program Guidelines, NEI 97-06.

2006-07-25T23:59:59.000Z

144

The economics of repowering steam turbines  

SciTech Connect

Repowering is defined as displacing steam presently generated in an existing fossil fuel fired boiler with a gas turbine-heat recovery steam generator (HRSG) system. The steam generated in the HRSG is expanded in the existing steam turbine generator. Repowering advantages include a significant increase in power output at an improved heat rate relative to the base value for the existing steam turbine cycle being repowered. In addition, the reduction in emissions can be advantageous in most locations. This paper discusses application and economic considerations associated with repowering. In addition, an illustration will show how repowering coal fired steam turbine systems may prove economic relative to retrofit scrubbers and/or low sulfur coal fuel substitution that may be part of the forthcoming acid rain legislation.

Kovacik, J.M.; Stoll, H.G. (General Electric Co., Schenectady, NY (United States))

1990-01-01T23:59:59.000Z

145

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil December 12, 2013 Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects The Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases December 12, 2013 The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory.

146

Vapor generator steam drum spray head  

DOE Patents (OSTI)

A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

Fasnacht, Jr., Floyd A. (Massillon, OH)

1978-07-18T23:59:59.000Z

147

Comprehensive Cycle Chemistry Guidelines for Fossil Plants  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. These guidelines for drum and once-through units provide information on the application of all-volatile treatment (AVT), oxygenated treatment (OT), phosphate treatment (PT), and caustic treatment (CT). The guidelines will help operators reduce corrosion and deposition and thereby achieve significant operation and maintenance cost reductions and greater unit availability. This is the fourth revision t...

2011-12-16T23:59:59.000Z

148

Tests of Types 51A and 51M Steam Generators at Bugey 4 and Tricastin 1 Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report presents thermal-hydraulic and chemical sampling data obtained at various power levels from special instrumentation on Electricite de France's operating steam generators at Bugey-4 and Tricastin-1. The data include downcomer flow rates, shell temperatures, and temperatures and chemical concentrations near the secondary surface of tubesheets. These data are useful for qualifying thermal-hydraulic computer codes.

1982-10-01T23:59:59.000Z

149

Fossil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel...

150

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

151

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network (OSTI)

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality of steam is often taken for granted, even overlooked at times. When the recent global recession challenged companies to remain profitable as a first priority, the result was that maintenance budgets were cut and long term cost reduction initiatives for steam systems set aside due to more pressing issues. One of the regrettable results of such actions is that knowledgeable personnel are re-assigned, retired, or released when necessary steam system cost reduction programs are eliminated. When the time arrives to refocus on long term cost reduction by improving the steam system, some programs may have to start from the beginning and a clear path forward may not be evident. New personnel are often tasked with steam improvements when the programs restart, and they may experience difficulty in determining the true key factors that can help reduce system cost. The urgency for lowering long term fuel use and reducing the cost of producing steam is near for each plant. Population growth and resultant global demand are inevitable, so the global economy will expand, production will increase, more fossil fuel energy will be needed, and that fuel will become scarce and more costly. Although fuel prices are low now, energy costs can be expected to trend significantly upward as global production and demand increase. Now is the time for plants to make certain that they can deliver high quality steam to process equipment at lowest system cost. There are three stages to help optimize plant steam for best performance at a low system cost; Phase 1: Manage the condensate discharge locations (where the steam traps & valves are located), Phase 2: Optimize steam-using equipment, and Phase 3: Optimize the entire steam system. This presentation will focus primarily on management of the condensate discharge locations (CDLs) and show sites how to use readily available data to more efficiently achieve goals; but will also provide insight into how the three stages interact to reduce system cost and improve process performance.

Risko, J. R.

2011-01-01T23:59:59.000Z

152

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

153

Fossil Plant High-Energy Piping Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Condition assessment programs for high-energy piping systems are often a major aspect of a fossil utilitys inspection and maintenance program. In the past 30 years, a number of major failures of fossil high-energy piping have been associated with flow-accelerated corrosion (FAC) of feedwater piping, creep failures of longitudinal seam-welded hot reheat and main steam piping, and corrosion fatigue/thermal failures of cold reheat steam piping. In addition to these well-documented failures, most utilities e...

2008-03-27T23:59:59.000Z

154

Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Below are resources for Tribes on fossil energy. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper...

155

Nuclear Power and the Environment  

Reports and Publications (EIA)

This Nuclear Issue Paper discusses Nuclear Plant Wastes, Interactions of Fossil Fuel and Nuclear Power Waste Decisions, and the Environmental Position of Nuclear Power.

2013-05-30T23:59:59.000Z

156

Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration August 2007 Final Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject - August 2007 i TABLE OF CONTENTS List of Acronyms and Abbreviations............................................................................................. vi Chemicals and Units of Measure ................................................................................................. ix Conversion Chart ......................................................................................................................... xi Metric Prefixes .............................................................................................................................xii

157

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

158

Steam Generator Management Program: Steam Generator Progress Report: Revision 18  

Science Conference Proceedings (OSTI)

BackgroundSince 1985, the Electric Power Research Institute (EPRI) has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities. This document was published once a year and distributed via hardcopy. Until 1998, the method of acquiring data for this report had been to issue annual survey forms to all PWR and pressurized heavy water reactor nuclear utilities worldwide. The information included in ...

2013-11-20T23:59:59.000Z

159

IMPROVEMENTS IN OR RELATING TO STEAM-OPERATED POWER PLANT  

SciTech Connect

A nuclear power plant is designed in which the reactor is steam-cooled and radioactivity is removed from the steam before entering the turbine. The plant has a steam circuit in which the steam from the reactor is passed through one flow path of a heat exchanger and then part of this steam is passed through contact washing equipment before being reheated in a second flow path of the heat exchanger and being led to the turbine. (D.L.C.)

Bauer, S.G.; Kendon, M.H.

1962-09-19T23:59:59.000Z

160

Department of Energy - Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 en Department of Energy Releases $8 61 en Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects http://energy.gov/articles/department-energy-releases-8-billion-solicitation-advanced-fossil-energy-projects fossil-energy-projects" class="title-link">Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy.govfe Important Fossil Links Managing the Strategic Petroleum Reserve Enhanced Oil Recovery R&D National Petroleum Council Energy in Brief How Dependent Are We on...

162

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A steam generating plant for marine vessels includes a steam superheater (nuclear reactor, perhaps) from which steam is ducted to the point of use (heat exchanger, etc.). A steam generator receiving the condensed steam from the point of use uses steam from the superheater to evaporate the condensate. The superheated steam used in the evaporation is compressed by a turbo-compressor and directed into the superheater. The condensate evaporated in the generator is used to drive the turbo-compressor. (D.C.W.)

Kendon, M.H.

1963-07-03T23:59:59.000Z

163

Description of Past Research: Fossil Materials and Repair (Program 87): 2012 Update  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute’s (EPRI’s) Fossil Materials and Repair Program (Program 87) within Major Component Reliability provides integrated materials selection guidance, information about repair technology, and corrosion mitigation methods to improve equipment performance, reliability, and profitability. The program has produced numerous material and repair guidelines and handbooks for application with steam boilers, steam ...

2013-04-12T23:59:59.000Z

164

Cycling, Startup, Shutdown, and Layup Fossil Plant Cycle Chemistry Guidelines for Operators and Chemists  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. Complete optimization of cycle chemistry requires protection of the steam-water cycle during the shutdown, layup, and startup phases of operation. These guidelines will assist utilities in developing cycle chemistry guidelines for all transient operations and shutdowns.

2009-03-31T23:59:59.000Z

165

Steam Generator Management Program: Proceedings of the 26th Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This year's Steam Generator nondestructive evaluation (NDE) Workshop took place in Big Sky, Montana, on July 1618, 2007, and included one full day and two half days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE ...

2007-08-29T23:59:59.000Z

166

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

a. b. c. Pump Ap S(WDB) OK NT(NC) W(WDB) Steam generatorsuperheat Steam generator tube leaks D. Core thermaland radial models Steam generator tube leaks Critical heat

Nero, A.V.

2010-01-01T23:59:59.000Z

167

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Fossil energy sources, including oil, coal and natural gas, are non-renewable resources that formed when prehistoric plants and animals died and were gradually buried by layers of rock. Over millions of years, different types of fossil fuels formed -- depending on what combination of organic matter was present, how long it was buried and what temperature and pressure conditions existed as time passed.

168

Steam-flooding  

SciTech Connect

Steam-flooding has become an established recovery technique within the last 20 years. This overview discusses its evolution, methods for selecting and designing steam-floods, constraints, and possible improvements. The term steam-flooding is used here in a general sense. The discussion includes steam soak (cyclic steam injection) and steam drive.

Matthews, C.S.

1983-03-01T23:59:59.000Z

169

Steam-channel-expanding steam form drive  

SciTech Connect

In a viscous oil reservoir in which the stratification of the rock permeability is insufficient to confine steam within the most permeable strata, oil can be produced by forming and expanding a steam channel through which steam is flowed and oil is produced. Steam is injected and fluid is produced at rates causing a steam channel to be extended between locations that are horizontally separated. A foam-forming mixture of steam, noncondensable gas and surfactant is then injected into the steam channel to provide foam and a relatively high pressure gradient within the channel, without plugging the channel. A flow of steam-containing fluid through the steam channel is continued in a manner such that the magnitudes of the pressure gradient, the rate of oil production, and the rate of steam channel expansion exceed those which could be provided by steam alone. 10 claims, 6 figures.

Dilgren, R.E.; Hirasaki, G.J.; Hill, H.J.; Whitten, D.G.

1978-05-02T23:59:59.000Z

170

Demonstration Development Project: Solar-Fossil Hybrid Power Plants: Summary Report on Conceptual Designs  

Science Conference Proceedings (OSTI)

This document provides a high-level summary of selected EPRI research into solar-fossil hybrid power systems. It summarizes key technology results from a series of conceptual design studies that evaluated the performance of a range of solar-fossil hybrid options for existing natural gas combined cycle (NGCC) and coal-fired plants. All of the conceptual designs considered the use of solar-derived steam in conventional fossil-fired steam cycles, an approach that offsets some of the fuel required to generat...

2010-12-17T23:59:59.000Z

171

Office of Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Fossil Energy Office of Fossil Energy Fossil Energy Office of Fossil Energy More Documents & Publications DOE-Idaho Operations Office Delaware DNRECEnergy Office Bechtel...

172

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

173

Steam separator latch assembly  

SciTech Connect

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

1994-01-01T23:59:59.000Z

174

Steam separator latch assembly  

DOE Patents (OSTI)

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

Challberg, R.C.; Kobsa, I.R.

1994-02-01T23:59:59.000Z

175

Sandia National Laboratories: Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities and Equipment Bureau of Land Management Fossil Energy Liquid Natural Gas (LNG) Clean Coal Fossil Energy Program Contact David J. Borns Deputy Program Manager (505)...

176

Fossil Energy Power Plant Desk  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Power Plant Desk Reference Revision 1: Bituminous Coal and Natural Gas to Electricity October 18, 2011 DOENETL-20111516 Preliminary - Do Not Cite or Quote Fossil...

177

Crop production without fossil fuel.  

E-Print Network (OSTI)

??With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this… (more)

Ahlgren, Serina

2009-01-01T23:59:59.000Z

178

Application of Data Stream Outlier Mining Techniques in Steam Generator Safety Early Warning System of Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Mining outliers in data streams is a popular research issue in data mining field, which can help to find outliers under abnormal condition and then corresponding measures can be taken. The security guarantee of nuclear power plant is the center topic ... Keywords: safety early warning system, data stream, outlier mining, NPP

Liu Dingping, Zheng Kaitao, Yan Qiqi

2013-01-01T23:59:59.000Z

179

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

~ ties Surrounding Nuclear Power Plants. LBlr5921, Lawrencein U. S. Commercial Nuclear Power Plants. WASH-1400. Octoberand Content of for Nuclear Power Plants. Regulatory Guide

Yen, W.W.S.

2010-01-01T23:59:59.000Z

180

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Commission. Office of Nuclear Reactor Licens- ing. StandardCommission. Office of Nuclear Reactor Regula- tion.Nuclear Regulatory Commission Standard Review Plan for Light Water Reactor

Nero, jA.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Commission. Office of Nuclear Reactor Reg- ulation.Commission. Office of Nuclear Reactor Licen- sing. StandardCommission. Office of Nuclear Reactor Regulation. Standard

Yen, W.W.S.

2010-01-01T23:59:59.000Z

182

Implications of Steam Generator Fouling on the Degradation of ...  

Science Conference Proceedings (OSTI)

Corrosion products that originate from various components in the steam cycle of a nuclear power plant get pumped forward with the feed water where they ...

183

Bayesian Modeling of Pitting Corrosion in Steam Generators.  

E-Print Network (OSTI)

??Steam generators in nuclear power plants experienced varying degrees of under-deposit pitting corrosion. A probabilistic model to accurately predict pitting corrosion is necessary for effective… (more)

Mao, Dan

2007-01-01T23:59:59.000Z

184

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

population growth surrounding a nuclear power plant once thegrowth by requiring that certification of nuclear power plant

Yen, W.W.S.

2010-01-01T23:59:59.000Z

185

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Population Evaluation Emergency Planning for Nuclear PowerPotential Definition of Nuclear Emergencies Developingan Emergency Plan . . . . Regulatory Review of Utilities!

Yen, W.W.S.

2010-01-01T23:59:59.000Z

186

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

187

Fossil Energy Crossword Puzzle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crossword Puzzle Fossil Energy Crossword Puzzle Fossil Energy Crossword Puzzle (including answer key)...

188

Fossil Energy FY 2009 Budget  

Energy.gov (U.S. Department of Energy (DOE))

Fossil Energy's FY 2009 budget, including request, House and Senate marks, and Omnibus appropriation.

189

Retrofitted feedwater heat storage for steam electric power stations peaking power engineering study. Final report  

DOE Green Energy (OSTI)

The technical and economic feasibility of retrofitting existing nuclear or fossil-fueled steam power plants with feedwater thermal energy storage (TES) systems for peaking power applications was investigated. A major objective of the study was to determine if retrofitted thermal energy storage (RTES) systems could result in significant fuel savings in oil- and gas-fired peaking plants. From this study it was concluded that RTES require high capital expenditure, excessive plant downtime for installation (16 mo for fossil-fuel; 24 mo for nuclear), that retrofitting 17,000 MWe of coal and nuclear plants would result in only about 2 percent annual savings in oil consumed by the U.S. utility industry in 1974, and that the technical questions which remain could best be answered by retrofitting a relatively new reliable plant as a test facility. The utility industry is receptive to the TES concept but not to the RTES concept. It is recommended that no further effort be expended on RTES, that TES studies should concentrate on coal and nuclear plants, and that a TES Proof-of-Concept Facility should be designed and constructed. (LCL)

None

1976-10-01T23:59:59.000Z

190

Steam System Optimization  

E-Print Network (OSTI)

Most plant steam systems are complex systems. Usually the fuel required to produce the steam represents a major expense for manufacturing facilities. By properly operating and maintaining the steam system and making minor improvements, significant savings can be realized.

Aegerter, R. A.

1998-04-01T23:59:59.000Z

191

Steam Generator Reference Book, Revision 1: Volume 1  

Science Conference Proceedings (OSTI)

The Steam Generator Reference Book documents the state of the art in PWR steam generator technology, providing a comprehensive source for operators, owners, and designers of PWR nuclear power plants. The book summarizes pertinent steam generator operating issues and provides recommendations to improve operational efficiency. Information in the book represents 15 years of research and development activity over the course of several hundred research projects involving PWR steam generator issues.

1994-12-31T23:59:59.000Z

192

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

As director of Oregon's Industrial Assessment Center, I have encountered many industrial steam systems during plant visits. We analyze steam systems and make recommendations to improve system efficiency. In nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a 0.4-year payback. 75% of those recommendations have been implemented for $1.1 million annual savings with 0.3-year payback. Recently I have developed a tool to facilitate the process. SteamMaster is based on an Excel spreadsheet with a Visual Basic interface to simplify system modeling and analysis. SteamMaster has many features and capabilities, including energy and cost savings calculations for five steam recommendations. This presentation will demonstrate SteamMaster software applied to one or more industrial steam systems. Software will be made available on a national web site at no cost.

Wheeler, G.

2003-05-01T23:59:59.000Z

193

Heat Recovery Steam Generator (HRSG) Chemical Cleaning Guidelines  

Science Conference Proceedings (OSTI)

Combined cycle units with heat recovery steam generators (HRSGs) represent a substantial fraction of the new fossil generating capacity installed around the world since the 1990s. One of the goals of the EPRI HRSG Dependability Program is to make availability losses due to tube failures very low, no more than one per year. An earlier guideline, "Interim Cycle Chemistry Guidelines for Combined Cycle Heat Recovery Steam Generators" (EPRI Report TR-110051), shows organizations how to set up chemistry progra...

2003-12-03T23:59:59.000Z

194

Japan is the second largest net importer of fossil fuels in ...  

U.S. Energy Information Administration (EIA)

Japan ranked as the second largest net importer of fossil fuels in the world in 2012, trailing only China. This follows the Fukushima nuclear disaster in 2011, after ...

195

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

Nero, jA.V.

2010-01-01T23:59:59.000Z

196

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

197

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSING PROCESSPlanning for Nuclear Power Plants Determination of Accidentnuclear power plants . . . . . . . . . • . . . . .2.2.4.3.

Yen, W.W.S.

2010-01-01T23:59:59.000Z

198

Fossil energy research meeting  

DOE Green Energy (OSTI)

U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

Kropschot, R.H.; Phillips, G.C.

1977-12-01T23:59:59.000Z

199

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

200

Identification of hazards in non-nuclear power plants. [Public health hazards of fossil-fuel, combined cycle, combustion turbine, and geothermal power plants  

DOE Green Energy (OSTI)

Public health and safety hazards have been identified for five types of power plants: coal-fired, oil-fired steam turbine, combined cycle, combustion (gas) turbine, and geothermal. The results of the analysis show that air pollutants are the major hazard that affects the health and safety of the general public. A total of ninety plant hazards were identified for the five plant types. Each of these hazards were rated in six categories as to their affect on the general public. The criteria used in the analysis were: area/population exposed; duration; mitigation; quantity to toxicity ratio; nature of health effects; and public attitude. Even though ninety hazards were identified for the five plants analyzed, the large majority of hazards were similar for each plant. Highest ratings were given to the products of the combustion cycle or to hydrogen sulfide emissions from geothermal plants. Water pollution, cooling tower effects and noise received relatively low ratings. The highest rated of the infrequent or hypothetical hazards were those associated with potential fires, explosions, and chlorine releases at the plant. Hazards associated with major cooling water releases, water pollution and missiles received the lowest ratings. Since the results of the study clearly show that air pollutants are currently considered the most severe hazard, additional effort must be made to further understand the complex interactions of pollutants with man and his environment. Of particular importance is the determination of dose-response relationships for long term, low level exposure to air pollutants. (EDB)

Roman, W.S.; Israel, W.J.; Sacramo, R.F.

1978-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nondestructive Evaluation: 27th Annual EPRI Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This years Steam Generator Nondestructive Evaluation (NDE) Workshop took place in Palm Desert, California, on July 2123, 2008, and included one full day and two half days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generato...

2008-09-15T23:59:59.000Z

202

23rd EPRI Steam Generator NDE Workshop Proceedings  

Science Conference Proceedings (OSTI)

The 23rd EPRI Steam Generator NDE Workshop took place in Chicago, Illinois, July 12–14, 2004, and was made up of one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam genera...

2004-11-08T23:59:59.000Z

203

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-water cycles. Deposition in drum boilers has been identified as the area of broadest concern to the industry; therefore, an improved understanding of deposition in drum boilers is expected to represent the greatest source of benefits and value to end users. The overall objective of the modeling described here is to develop a comprehensive, integrated model for deposition process...

2011-12-16T23:59:59.000Z

204

Compilation of EPRI Fossil Plant Cycle Chemistry Guidelines  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. This compilation of the program’s ten (10) key cycle chemistry guidelines and the Integrated Boiler Tube Failure Reduction/Cycle Chemistry Improvement Program provides unique guidance to select and continually optimize feedwater and boiler water treatments. These guidelines will help operators reduce corrosion and deposition and, thereby, achieve and maintain significant operation and maintenance cos...

2007-12-20T23:59:59.000Z

205

Steam driven markets  

Science Conference Proceedings (OSTI)

The market for steam equipment has been relatively level. Looking ahead, manufacturers anticipate steady market growth worldwide. Steam equipment manufacturers share a similar view of the market for next few years - upward. The steady upward climb is being attributed to a number of factors that will benefit steam turbine and heat recovery steam generator (HRSG) makers.

Anderson, J.L.

1993-02-01T23:59:59.000Z

206

Draft Advanced Fossil Solicitation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Fossil Solicitation Federal loan guarantee solicitation announcement -- Advanced Fossil Energy Projects. Microsoft Word - Draft Advanced Fossil Solicitation Final Draft.1...

207

Steam Generator Management Program: Pressurized Water Reactor Steam Generator Examination Guidelines: Revision 7  

Science Conference Proceedings (OSTI)

This report provides requirements for examination plans and processes that are necessary to meet the performance criteria set forth in the Nuclear Energy Institute (NEI) 97-06, Steam Generator Program.

2007-10-10T23:59:59.000Z

208

"Ask Argonne" - Dave Grabaskas, Nuclear Engineer, Part 2 | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

--Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas --Nuclear energy ---Nuclear energy modeling & simulation...

209

www.fossil.energy.gov  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Fossil Energy (FE) programs are focused on The Office of Fossil Energy (FE) programs are focused on activities related to the reliable, efficient, affordable and en- vironmentally sound use of fossil fuels which are essential to our Nation's security and economic prosperity. FE manages DOE's Fossil Energy Research and Development Program, which includes the CCS Dem- onstration Programs; Carbon Capture and Storage and Power Systems Program; and

210

Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy Oak Ridge Y-12 Site Office National Nuclear Security Administration August 2007 DOE/EA-1593 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration

211

Method for improving the steam splits in a multiple steam injection process using multiple steam headers  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a primary steam header, at least one secondary steam header, a primary steam line connecting the generator to the primary header, at lease one secondary steam line connecting the primary header to the secondary steam header, and a plurality of tertiary steam lines connecting the secondary steam header to a plurality of stem injection wells. It comprises injecting a surfactant into the primary steam line, mixing the surfactant and steam in the primary steam line sufficiently so that the surfactant and the steam enter the primary steam header as a foam, and mixing the surfactant and steam in the secondary steam lines sufficiently so that the surfactant and the steam enter the secondary steam header as a foam.

Stowe, G.R.

1991-03-19T23:59:59.000Z

212

FAST 1.0 - Flow Path Analysis for Steam Turbines, Version 1.0  

Science Conference Proceedings (OSTI)

FAST Software Flow Analysis of Steam Turbines is a tool for performance engineers, designers and financial analysts. This tool is for industry use by utilities and manufacturers to evaluate thermal performance characteristics of existing and proposed turbine steam-path modifications/upgrades. Description The FAST software diagnoses performance problems and facilitates the economic evaluation of steam-path upgrade options. FAST software is used primarily by the thermal performance engineer in both fossil ...

2007-05-30T23:59:59.000Z

213

Ultrasupercritical Steam Turbines: Design and Materials Issues for the Next Generation  

Science Conference Proceedings (OSTI)

The ultrasupercritical fossil power plant is one option for high-efficiency and low-emissions electricity generation. It is based on significant increases in steam temperature and pressure, beyond those traditionally employed for supercritical plants. Such steam conditions put new demands on the steam turbine design, particularly where the new unit has to operate in a business climate that demands flexible, reliable operation of generating plants. This report reviews demands on the ultrasupercritical ste...

2002-03-14T23:59:59.000Z

214

Steam Generator Management Program: Proceedings of the 25th Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This year8217s workshop took place in Marco Island, Florida, on July 24 26, 2006, and included one full-day and two half-days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE issues and ...

2006-11-21T23:59:59.000Z

215

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

1 runoff - co;il pile Geothermal wells Waste Disposal: WaterLiquid-Dominated Fields Geothermal Nuclear Water EmissionsOil 1. 2. 3. L 3 Gas Geothermal Nuclear Section 1.3 Noise

Nero, A.V.

2010-01-01T23:59:59.000Z

216

Circumferential cracking of steam generator tubes  

SciTech Connect

On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

Karwoski, K.J.

1997-04-01T23:59:59.000Z

217

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2012 August 15, 2012 Alex-andra "Ale" Hakala is an award-winning geoscientist at DOE's National Energy Technology Laboratory. | Photo from the National Energy Technology Laboratory. Energy Department Lab Researcher Wins HENAAC Award for Outstanding Achievement One of the Energy Department's own talented scientists is recognized with a Great Minds in STEM award. July 26, 2012 Ohio State University (OSU) Professor Liang-Shih Fan shows Assistant Secretary for Fossil Energy Charles McConnell OSU's coal direct chemical looping reactor. | Photo by Niranjani Deshpande Making Carbon Capture and Storage Efficient and Cost Competitive Assistant Secretary for Fossil Energy Charles McConnell visited Ohio State University to highlight new Energy Department investments in carbon capture

218

Office of Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Fossil Energy Office of Fossil Energy Detection and Production of Methane Hydrate Semi-annual Progress Report Reporting Period: November, 2008-April, 2009 Submitted by: Rice University and University of Houston George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Houston May, 2009 DOE Award No.: DE-FC26-06NT42960 Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu University of Houston Department of Chemical Engineering 4800 Calhoun Street Houston, TX 77204-4004 Prepared for: United States Department of Energy National Energy Technology Laboratory Oil & Natural Gas Technology

219

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 28, 2010 July 28, 2010 DOE Collaboration with National Geographic's JASON Project Yields Three CODiE Awards The JASON Project's multimedia energy curriculum has earned three CODiE Awards from the Software & Information Industry Association. July 23, 2010 Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving Two Energy Department-funded projects are helping save energy and save money. Find out more here. July 23, 2010 Cool Roofs Lead to Cooler Cities Want to know more about one of the quickest and lowest cost ways we can reduce our carbon footprint and slow climate change? Read this. February 1, 2010 President Requests $760.4 Million for Fossil Energy Programs President Obama's FY 2011 budget seeks $760.4 million for the Office of Fossil Energy to support improved energy security and rapid development of

220

Program on Technology Innovation: Fossil Power Plant Cost and Performance Trends  

Science Conference Proceedings (OSTI)

This report is one of two companion studies that describe trends in operating costs and reliability of fossil steam plants since 1970. The studies are a foundation for more sophisticated statistical studies aimed at modeling and predicting the impacts of cycling. This report summarizes results for gas- and oil-fired steam generating units, contrasting two-shift or daily cycling with all other operating modes. It also includes systematic and similar data on coal plants. Chronological trends since 1982 are...

2006-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

"1. PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC...  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" "1. PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2370 "2. PSEG Linden Generating Station","Gas","PSEG Fossil LLC",1587 "3. Bergen Generating...

222

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions decrease, and maintenance expenses decrease. These benefits can be achieved by using a computer program Encotech, Inc. developed for the utility industry to perform steam path audits. With the increased emphasis on industrial turbine efficiency, and as a result of the experience with the Destec Operating Company, Encotech is adapting the computer program to respond to the needs of the industrial steam turbine community. This paper describes the results of using the STPE computer program to conduct a steam path audit at Destec Energy's Lyondell Cogeneration power plant.

Mitchell, D. R.

1992-04-01T23:59:59.000Z

223

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

224

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

225

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

1994-01-01T23:59:59.000Z

226

Development of Technologies on Innovative Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (10) Application to a Small District-Heating Reactor  

SciTech Connect

A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to use as a passive ECCS pump and also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. In order to develop a high reliability passive ECCS pump and a compact feedwater heater, it is necessary to quantify the characteristics between physical properties of the flow field. We carried out experiments to observe the internal behavior of the water jet as well as measure the velocity of steam jet using a laser Doppler velocimetry. Its performance depends on the phenomena of steam condensation onto the water jet surface and heat transfer in the water jet due to turbulence on to the phase-interface. The analysis was also conducted by using a CFD code with the separate two-phase flow models. With regard to the simplified feed-water system, size of four-stage SI system is almost the same as the model SI that had done the steam and water test that pressures were same as that of current ABWR. The authors also conducted the hot water supply system test in the snow for a district heating. With regard to the SI core cooling system, the performance tests results showed that the low-pressure SI core cooling system will decrease the PCT to almost the same as the saturation temperature of the steam pressure in a pressure vessel. As it is compact equipment, SI is expected to bring about great simplification and materials-saving effects, while its simple structure ensures high reliability of its operation, thereby greatly contributing to the simplification of the power plant for not only an ABWR power plant but also a small PWR/ BWR for district heating system. (authors)

Tadashi Narabayashi; Yoichiro Shimadu; Toshiiro Murase; Masatoshi Nagai [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

227

High performance steam development  

SciTech Connect

DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

Duffy, T.; Schneider, P.

1995-12-31T23:59:59.000Z

228

Safety and availabili of steam generator tubes affected by secondary side corrosion  

E-Print Network (OSTI)

ELSEVIER Nuclear Engimering andDesign Safety and availabili of steam generator tubes affected the dominatingageingme&mism is. steam generator tubes made 61Iw0d 600.A variety of maiuttnanGe approacheswre developadand

Cizelj, Leon

229

Development of Steam Reforming for the Solidification of the Cesium and Stronitum Separations Product from Advanced Aqueous Reprocessing of Spent Nuclear Fuel  

SciTech Connect

Steam reforming is one option currently being investigated for stabilization of the cesium/strontium strip products from spent fuel reprocessing solvent extraction processes because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach resistant aluminosilicate minerals, such as pollucite. To produce pollucite and other mineral analogs of the alkaline metals, the feeds must be mixed with aluminosilicate compounds and thermally sintered or calcined to activate solid-state crystal formation. Scoping tests completed indicated that the cesium/strontium in these organic and acid solutions can be converted into aluminosilicate materials using steam reforming.

Julia L. Tripp; T. Garn; R. Boardman; J. Law

2006-10-01T23:59:59.000Z

230

Steam Generator Management Program: Steam Generator Progress Report  

Science Conference Proceedings (OSTI)

Since 1985, EPRI has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities.

2009-10-19T23:59:59.000Z

231

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

to the nuclear power plant, the Marine Corps base, thePower Plant Emergency Response Plan, July 1975. United States Marine

Yen, W.W.S.

2010-01-01T23:59:59.000Z

232

Downhole steam quality measurement  

SciTech Connect

An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

1987-01-01T23:59:59.000Z

233

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

2002-01-01T23:59:59.000Z

234

Downhole steam quality measurement  

DOE Patents (OSTI)

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

235

Steam Champions in Manufacturing  

E-Print Network (OSTI)

Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a steam system demands the managerial expertise of a "Steam Champion," which will be described in this paper. Briefly, the steam champion is a facility professional who embodies the skills, leadership, and vision needed to maximize the effectiveness of a plant's steam system. Perhaps more importantly, the steam champion's definitive role is that of liaison between the manufacturer's boardroom and the plant floor. As such, the champion is able to translate the functional impacts of steam optimization into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills.

Russell, C.

2001-05-01T23:59:59.000Z

236

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

237

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

238

Steam Trap Application  

E-Print Network (OSTI)

The effective application of steam traps encompasses three primary areas which are the selection and sizing, the installation, and the monitoring of the steam trapping system. Proper application of steam traps will improve production rates, product quality, and reduce energy and maintenance costs.

Murphy, J. J.

1982-01-01T23:59:59.000Z

239

Steam System Optimization  

E-Print Network (OSTI)

Refinery and chemical plant steam systems are complex and the fuel required to produce the steam represents a major expense. The incremental cost for generating a 1,000 lb./hr. of steam is typically $45,000 - $60,000/year. Most plants have numerous low/

Aegerter, R.

2004-01-01T23:59:59.000Z

240

Nuclear Power Plant Emergency Diesel Generator Tanks 1  

E-Print Network (OSTI)

Nuclear power provides about 20 % of the total electricity generated in the United States. In 2005, this was about 782 Billion kWh of the total electricity generation (EIA 2006). 2 As with fossil-fueled electricity generating plants, electricity in a nuclear power plant is produced by heated steam that drives a turbine generator. In a nuclear power plant, however, nuclear fission reactions in the core produce heat that is absorbed by a liquid that flows through the system and is converted to steam. Nuclear power plants are highly efficient and have become more so over the last 25 years. Operational efficiency (also referred to as plant performance or electricity production) can be measured by the capacity factor. The capacity factor is the ratio of the actual amount of electricity generated to the maximum possible amount that could be generated in a given period of time – usually a year. Today, nuclear power plants operate at an average 90 % capacity factor (compared to 56 % in 1980) (EIA 2006a). Thus, although nuclear generating capacity has remained roughly constant since 1990, at about 99 gigawatts (or about 10 % of the total U.S. electric generating capacity), the amount of electricity produced has increased 33 % since that time because of increased capacity utilization. Nuclear plants have the highest capacity factors of

unknown authors

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

World Fossil Fuel Economics - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... World Fossil Fuel Economics ... in world energy demand, particularly in the U. S. and Europe; the consumption patterns and cost patterns of oil, ...

242

Low-Temperature Corrosion Problems in Fossil Power Plants -- State of Knowledge Report  

Science Conference Proceedings (OSTI)

In 1998, corrosion cost the electric power industry $15.4 billion. Of this amount, at least $2.3 billion can be attributed to corrosion problems in sections of fossil-fueled steam plants operating at less than 150 °C (302 °F). This state-of-knowledge report describes these low-temperature corrosion problems along with their root causes and solutions.

2003-12-02T23:59:59.000Z

243

Fossil Energy | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

resources. Research Focuses include: Developing cutting edge materials for use in boilers and turbines for Ultra-Supercritical steam power plants, Developing a suite of alloys...

244

Fossil turbulence and fossil turbulence waves can be dangerous  

E-Print Network (OSTI)

Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales where vorticity is created to larger scales where turbulence fossilizes. Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbulence patterns and fossil turbulence waves preserve and propagate energy and information about previous turbulence. Ignorance of fossil turbulence properties can be dangerous. Examples include the Osama bin Laden helicopter crash and the Air France 447 Airbus crash, both unfairly blamed on the pilots. Observations support the proposed definitions, and suggest even direct numerical simulations of turbulence require caution.

Carl H Gibson

2012-11-25T23:59:59.000Z

245

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

20555. u. S. Nuclear U. S. NRC. Reactor Safety Study: AnNUREG-75! 094, October 1975. NRC Regulatory Guide 1. 101. "Report on Current Activities NRC and the Federal Interagency

Yen, W.W.S.

2010-01-01T23:59:59.000Z

246

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Power Plants. WASH~1400 (NUREG 75/014). October 1975. S.Power Plants -LWR Edison." NUREG-75! 094, October 1975. NRCof Fixed Nuclear Facilities, NUREG-75/l1l (Reprint of WASH-

Yen, W.W.S.

2010-01-01T23:59:59.000Z

247

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

Ryan, M.J.

1987-05-04T23:59:59.000Z

248

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

249

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

world-nuclear.org/info/Nuclear-Fuel-Cycle/Nuclear- Wastes/fuel sources; the fuel used in nuclear power plants isphase out both nuclear energy and fossil fuels at the same

Melville, Jonathan

2013-01-01T23:59:59.000Z

250

Steam Generator Tube Integrity Program [Corrosion and Mechanics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam Generator Tube Steam Generator Tube Integrity Program Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

251

Steam Generator Management Program: Evaluation of Steam Generator Eddy Current Analysis Algorithms  

Science Conference Proceedings (OSTI)

As part of the U.S. Nuclear Regulatory Commissions (NRCs) International Steam Generator Tube Integrity Program, Argonne National Laboratory (ANL) evaluated algorithms for computer-aided analysis of rotating probe eddy current data. The algorithms were designed for both flaw detection and flaw sizing. Rotating probe data collected on the flawed tubes in the NRCs steam generator (SG) mockup were used to document performance of the algorithms for both detection and sizing. In the NRC program, the results of...

2011-06-30T23:59:59.000Z

252

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

entry are u Table 4-6 GAS TURBINE FOR 1965-1974 (OUTAGES)AVERAGE utage Cause Code GAS TURBINE GENERATOR FORCED OUTAGEof fossil units, and for gas turbine units, the basic data

Nero, A.V.

2010-01-01T23:59:59.000Z

253

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network (OSTI)

Fossil fuels remain the dominant source for primary energy production worldwide. In relation to this trend, energy consumption in turbomachinery has been increasing due to the scale up of both the machinery itself as well as the processing plants in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance configurations and applications / selections of steam turbines. According to the change in output demand, in some cases the original plants are modified by increasing capacity and consequently the turbines and compressors are revamped internally or replaced totally. The authors will introduce several case studies on revamping to increase efficiency and reliability as per the following cases: a) Replacement of High Pressure Section Internals b) Replacement of Low Pressure Section Internals c) Replacement of All Internals d) Internals and Casing Replacement e) Efficiency Recovery Technique Modification Finally, life cycle cost (LCC) evaluation and sensitivity due to turbomachinery performance are explained as a case study of a mega ethylene plant.

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

254

Integrating Nuclear Energy to Oilfield Operations – Two Case Studies  

Science Conference Proceedings (OSTI)

Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

2011-11-01T23:59:59.000Z

255

PIA - Fossil Energy Web System (FEWEB) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) More Documents & Publications...

256

Fossil-Fuel CO2 Emissions - Niue  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Niue Graphics Fossil-Fuel CO2 Emissions from Niue Data graphic Data Total Fossil-Fuel CO2 Emissions from Niue image Per Capita...

257

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 12, 2009 November 12, 2009 CX-000376: Categorical Exclusion Determination Boise White Paper Mill Carbon Capture and Sequestration CX(s) Applied: A1, A9, B3.1, B3.6 Date: 11/12/2009 Location(s): Richland, Washington Office(s): Fossil Energy, National Energy Technology Laboratory November 12, 2009 CX-000379: Categorical Exclusion Determination Sweeney Integrated Gasification Combined Cycle/Carbon Capture and Sequestration Project - Carbon Dioxide Pipeline and Storage CX(s) Applied: A1, A9, B3.1 Date: 11/12/2009 Location(s): Sweeney, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 12, 2009 CX-000378: Categorical Exclusion Determination Monitoring, Verification, and Analysis Feasibility Study (for Demonstration of Carbon Capture and Sequestration from Steam Methane Reforming Process

258

Publications [Corrosion and Mechanics of Materials] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Selection of Publications Bookmark and Share Journal Articles Manufacturing of representative axial stress corrosion cracks in tube specimens for eddy current testing C.B. Bahn, S. Bakhtiari, J.Y. Park, S. Majumdar Nuclear Engineering and Design, Volume 256, March 2013, Pages 38-44 Leak behavior of steam generator tube-to-tubesheet joints under

259

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Summary of Nuclear Power Plant Operating Experience forResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, A.V.

2010-01-01T23:59:59.000Z

260

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

OUTAGES COMPONENT NUCLEAR REACTOR General Primary CoolingAsh Disposal Trouble NUCLEAR REACTOR COMPONENT OUTAGE CAUSESconsisting of a Nuclear units use a reactor in which burner

Nero, A.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Charges Relating to Nuclear Reactor Safety," 1976, availableissues impor tant to nuclear reactor safety. This report wasstudies of overall nuclear reactor safety have been

Nero, A.V.

2010-01-01T23:59:59.000Z

262

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

been restricted core. Nuclear tests are not scheduled untilnuclear NRC, the non-nuclear tests are proceedingInstitute test reactor - megawatts - megawatts - Nuclear

Nero, A.V.

2010-01-01T23:59:59.000Z

263

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

264

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

265

Flash Steam Recovery Project  

E-Print Network (OSTI)

One of the goals of Vulcan's cost reduction effort is to reduce energy consumption in production facilities through energy optimization. As part of this program, the chloromethanes production unit, which produces a wide variety of chlorinated organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam/condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a supplemental low-pressure steam supply. The project was designed and implemented at no capital cost using existing instrumentation and controls. On an annualized basis steam usage per ton of product fell by about three percent. Absolute savings were about 15,800 million Btu.

Bronhold, C. J.

2000-04-01T23:59:59.000Z

266

Case studies on recent fossil-fired plants  

Science Conference Proceedings (OSTI)

The article summarises the findings of case studies on fossil-fired power plants carried out by the IEA Clean Coal Centre for the IEA at the request of world leaders at the Gleneagles G8 Summit in July 2005. The studies compared the cost, efficiency and emissions of eight recently constructed coal-fired plants using pulverized coal combustion with subcritical, supercritical or ultra-supercritical steam turbine cycles. Also included was a review of IGCC developments. A case study of a natural gas combined-cycle plant was included for comparison. The full report has been published by the IEA. 1 tab.

Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

2007-12-31T23:59:59.000Z

267

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Carbon Emission Estimates image image Global Per Capita Carbon Emission Estimates...

268

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited)...

269

Fossil Energy Word Find | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Fossil Energy Search form Search Office of Fossil Energy Services Petroleum Reserves International Cooperation Natural Gas Regulation...

270

Downhole steam injector  

SciTech Connect

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

271

Steam Turbine Developments  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

272

Steam and Condensate Systems  

E-Print Network (OSTI)

In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from about $0.50 per 1,000# to $3.00 or more. Many see costs of $5.00 per 1,000# by 1980. These tremendous increases have caused steam systems, steam traps and condensate systems to become a major factor in overall plant efficiency and profit.

Yates, W.

1979-01-01T23:59:59.000Z

273

Steam and Condensate Systems  

E-Print Network (OSTI)

In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from $0.50 per 1,000# to today's cost of $4.00 or more. Many see costs of $6.00/$7.00 in the near future. These tremendous increases have caused steam systems, steam traps and condensate systems to become a major factor in overall plant efficiency and profit.

Yates, W.

1980-01-01T23:59:59.000Z

274

Workshop Proceedings: Pitting in Steam Generator Tubing  

Science Conference Proceedings (OSTI)

A two-day workshop focused on the probable causes of steam generator pitting at two nuclear plants and on whether pitting is a low-temperature or a high-temperature phenomenon. Participants also heard descriptions of various pit-resistant metals that are suitable for tube sleeving.

1984-10-01T23:59:59.000Z

275

Low chemical concentrating steam generating cycle  

DOE Patents (OSTI)

A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

Mangus, James D. (Greensburg, PA)

1983-01-01T23:59:59.000Z

276

Boiler steam engine with steam recovery and recompression  

SciTech Connect

A boiler type of steam engine is described which uses a conventional boiler with an external combustion chamber which heats water in a pressure chamber to produce steam. A mixing chamber is used to mix the steam from the boiler with recovered recompressed steam. Steam from the mixing chamber actuates a piston in a cylinder, thereafter the steam going to a reservoir in a heat exchanger where recovered steam is held and heated by exhaust gases from the combustion chamber. Recovered steam is then recompressed while being held saturated by a spray of water. Recovered steam from a steam accumulator is then used again in the mixing chamber. Thus, the steam is prevented from condensing and is recovered to be used again. The heat of the recovered steam is saved by this process.

Vincent, O.W.

1980-12-23T23:59:59.000Z

277

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning- steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensible gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer.

Deacon, W. T.

1989-09-01T23:59:59.000Z

278

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

"Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning - steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensable gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer."

Deacon, W.

1989-09-01T23:59:59.000Z

279

Steam Generator Management Program: Administrative Procedures, Revision 3  

Science Conference Proceedings (OSTI)

The Nuclear Energy Institute's "Guideline for the Management of Materials Issues" (NEI 03-08) is the industry's guideline for management of materials issues, and "Steam Generator Program Guidelines" (NEI 97-06) describes the fundamental elements that are included in a utility's steam generator program. With nuclear safety as the priority, these elements incorporate a balance of prevention, inspection, evaluation, repair, and leakage monitoring measures. NEI 97 06 establishes these measures with reference...

2010-12-13T23:59:59.000Z

280

Deoxygenation in Cycling Fossil Plants  

Science Conference Proceedings (OSTI)

Minimizing shutdown oxygen levels at a cycling fossil plant can reduce corrosion product transport to the boilers. In this study two forms of activated carbon were used to catalyze the oxygen/hydrazine reaction and minimize oxygen levels.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Risks From Severe Accidents Involving Steam Generator Tube Leaks or Ruptures  

Science Conference Proceedings (OSTI)

The various types of corrosion observed in PWR steam generator tubes prompted the nuclear industry to initiate a program of Steam Generator Degradation Specific Management (SGDSM). This program's objective is to develop a cost-effective means to maintain plant safety while improving steam generator reliability. Critical to this program is an assessment of the impact of steam generator tube leakage or rupture during severe accidents. This study determined the contributions of these types of severe acciden...

1998-01-02T23:59:59.000Z

282

Fossil-Based Hydrogen Production  

E-Print Network (OSTI)

Fuel Processing Using Micro-channel Steam Reforming & Advanced Separations Technology · ITM Syngas & ITM H2: Ceramic Membrane Reactor Systems for Converting Natural Gas to H2 & Syngas for Liquid

283

Steam generator designs  

SciTech Connect

A combined cycle is any one of combinations of gas turbines, steam generators or heat recovery equipment, and steam turbines assembled for the reduction in plant cost or improvement of cycle efficiency in the utility power generation process. The variety of combined cycles discussed for the possibilities for industrial applications include gas turbine plus unfired steam generator; gas turbine plus supplementary fired steam generator; gas turbine plus furnace-fired steam generator; and supercharged furnace-fired system generator plus gas turbine. These units are large enough to meet the demands for the utility applications and with the advent of economical coal gasification processes to provide clean fuel, the combined-cycle applications are solicited. (MCW)

Clayton, W.H.; Singer, J.G.

1973-07-01T23:59:59.000Z

284

Nuclear Power: a Hedge against Uncertain Gas and Carbon Prices?  

E-Print Network (OSTI)

High fossil fuel prices have rekindled interest in nuclear power. This paper identifies specific nuclear characteristics making it unattractive to merchant generators in liberalised electricity markets, and argues that non-fossil fuel technologies...

Roques, Fabien A; Nuttall, William J; Newbery, David; de Neufville, Richard

2006-03-14T23:59:59.000Z

285

Fossil Energy Today | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog » Fossil Energy Today Blog » Fossil Energy Today Fossil Energy Today Fossil Energy Today - a free, quarterly newsletter published by the Office of Fossil Energy Fossil Energy Today - launched in January 2011 - is a free digital newsletter published quarterly by the U.S. Department of Energy's Office of Fossil Energy. Fossil Energy Today provides you with updates on important activities, progress and other developments within Fossil Energy. To subscribe, please send us an email. Issues Available for Download January 22, 2013 Fossil Energy Today - First Quarter, 2013 Here are just some of the stories featured in this issue: Carbon Storage Partner Completes First Year of CO2 Injection; Atlas Estimates 2,400 Billion Metric Tons of U.S. CO2 Storage Resource; CCUS Projects Making

286

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

Cengarle, María Victoria

287

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

Ryan, Michael J. (Plainfield, IL)

1988-01-01T23:59:59.000Z

288

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally applicable to other sources of steam. The interaction of the recovery system with the plant's steam/power system has been included. Typical operating economics have been prepared. It was found that the profitability of most recovery schemes is generally dependent on the techniques used, the existing steam/power system, and the relative costs of steam and power. However, there will always be site-specific factors to consider. It is shown that direct heat exchange and thermocompression will always yield an energy profit when interacting with PRVs in the powerhouse. A set of typical comparisons between the three recovery techniques, interacting with various powerhouse and plant steam system configurations, is presented. A brief outline of the analysis techniques needed to prepare the comparison is also shown. Only operating costs are examined; capital costs are so size - and site-specific as to be impossible to generalize. The operating cost savings may be used to give an indication of investment potential.

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

289

Ukraine Steam Partnership  

SciTech Connect

The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

Gurvinder Singh

2000-02-15T23:59:59.000Z

290

Steam deflector assembly for a steam injected gas turbine engine  

SciTech Connect

A steam injected gas turbine engine is described having a combustor, a casing for the combustor and an annular manifold comprising a part of the casing, the annular manifold having an exterior port formed therein and a plurality of holes formed in the manifold leading to the interior of the combustor, the improvement comprising a steam carrying line connected to the port and a steam deflector means for protecting the casing from direct impingement by the steam from the steam line and for distributing the steam about the annular manifold, the steam deflector means being mounted adjacent the port and within the manifold.

Holt, G.A. III.

1993-08-31T23:59:59.000Z

291

The steam generator changeout at Beznau-1  

Science Conference Proceedings (OSTI)

At the Beznau-1 nuclear power plant in Switzerland, the unit's two steam generators were replaced in the second quarter of 1993. The steam generator replacement portion of the outage - the period from when contractors were given access to the containment to when the steam generators were ready for hydrostatic pressure testing - was 44 days (April 12- May 26, 1993), shorter than the 46 days gained. Total length of the outage was 99 days (April 2 - July 9). Collective radiation dose received by project personnel was 110 person-rem, much less than the planned 250 person-rem. Project cost was about $50 million, including the new SGs and the replacement work, according to Nordostschweizerische Kraftwerke AG (NOK), plant owner and operator.

Not Available

1993-11-01T23:59:59.000Z

292

Steam generator tube failures  

SciTech Connect

A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

1996-04-01T23:59:59.000Z

293

Nuclear Power Plant NDE Challenges — Past, Present, and Future  

Science Conference Proceedings (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship

S. R. Doctor

2007-01-01T23:59:59.000Z

294

Initial steam flow regulator for steam turbine start-up  

SciTech Connect

In a combined steam generator-turbine system, a drain type is provided in front of the stop valve to drain the first steam supply with the stop valve closed until the temperature of the valve and/or the temperature of the steam exceeds the temperature of saturation by a predetermined amount, and logic circuitry is provided to generate permissive signals which combine to allow successive admission of steam to the gland seal and to the steam turbine.

Martens, A.; Hobbs, M. M.

1985-12-31T23:59:59.000Z

295

fossil fuels | OpenEI  

Open Energy Info (EERE)

fossil fuels fossil fuels Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

296

Fossil Energy Research Benefits Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Through Office of Fossil Energy (FE) Through Office of Fossil Energy (FE) research and development (R&D), the United States has become a world leader in carbon capture and storage (CCS) science and technology. CCS is a group of technologies for effectively capturing, compressing and transporting, and permanently injecting and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. It is one part of a wider portfolio strategy (including greater use of renewable and nuclear energy, and higher efficiencies) that many scientists and nations favor for achieving significant cuts in atmospheric CO 2 emissions. Fossil Energy Research Benefits Carbon Capture and Storage FE and its research facility, the National Energy Technology

297

Materials Performance in USC Steam  

DOE Green Energy (OSTI)

Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

2011-09-07T23:59:59.000Z

298

An Evaluation of Time Dependent Leak Rates in Degraded Steam Generator Tubing  

Science Conference Proceedings (OSTI)

Argonne National Laboratory (ANL) has performed leak rate testing of degraded steam generator tubing for a number of years as part of the Steam Generator Tube Integrity Program, under the sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. This document describes the results of a review and evaluation of ANL time-dependent leak rate information.

2007-12-13T23:59:59.000Z

299

Fossil fuel decarbonization technology for mitigating global warming  

SciTech Connect

It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

Steinberg, M.

1998-09-01T23:59:59.000Z

300

CYCLIC STEAM STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CYCLIC STEAM STIMULATION ("Huff-and-Puff') (A well-stimulation method) This method is sometimes applied to heavy-oil reservoirs to boost recovery during the primary production...

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure.

Hopkinson, J.

1982-10-01T23:59:59.000Z

302

Economics of Steam Pressure Reduction  

E-Print Network (OSTI)

Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper will address the following. 1. Factors that determine the feasibility of reducing the plant steam operating pressure. 2. The operating advantages and disadvantages associated with the decreased steam pressure. 3. The economics of steam pressure reduction. Appropriate visual aids will be utilized as part of the discussion.

Sylva, D. M.

1985-05-01T23:59:59.000Z

303

Evaluating Steam Trap Performance  

E-Print Network (OSTI)

Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data from these tests, which determined their relative efficiencies, were used in performing economic analyses to determine their equivalent uniform annual cost (EUAC). The comparison was made using a computer program written for the Apple II computer to evaluate overall steam trap economics. This program calculates the EUAC for any steam trap based on 12 input variables including capital, maintenance and steam costs, interest rate and trap life. After determinIng the EUAC, the program will perform sensitivity analyses on any of the twelve variables. (This computer program is available from the author.) This study shows that inverted bucket traps have lower EUAC's under more conditions than other types of traps. Also, this study shows that live steam loss is the heaviest contributor to the annual operating cost of any steam trap and that maintenance frequency and repair cost are also more important than a trap's first cost.

Fuller, N. Y.

1986-06-01T23:59:59.000Z

304

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

This annual EPRI Technical Update is a compilation of several case histories of events and activities that occurred at member fossil generating stations in 2007. The purpose of this report is to share this operating experience with other member utilities so that lessons can be learned and an opportunity provided to improve overall performance across the generation fleet.

2008-03-27T23:59:59.000Z

305

Probability of Failure for Low Alloy Cr-Mo Seam Welded Piping in Fossil Power Plants  

Science Conference Proceedings (OSTI)

Managing longitudinal seam welded piping in fossil fueled power plants is an expensive challenge necessitated by the failures of a few hot reheat and main steam lines. The traditional approach involves inspections during outages that require scaffold erection, insulation removal, surface preparation, and nondestructive evaluation NDE inspection. This report strives to provide utilities with another tool to manage high energy piping systems. It investigates normal distribution of material properties, alon...

2010-12-23T23:59:59.000Z

306

Root-Cause Failure Analysis: Fossil-Fired Power Plant Draft Fans  

Science Conference Proceedings (OSTI)

This report describes the collection and analysis of fan-related outage data for 61 large fossil fuel steam power plants. The outage causes are ranked in terms of their impact on production, and a systematic search for generic root causes is described. Recommendations are made for short-term corrective measures and for longer-term research efforts to significantly improve fan system reliability.

1983-07-01T23:59:59.000Z

307

Fossil Plant Cycle Chemistry Instrumentation and Control--State-of-Knowledge Assessment  

Science Conference Proceedings (OSTI)

Effective monitoring of the purity of water and steam is an integral part of a productive cycle chemistry monitoring program. EPRI's cycle chemistry guidelines for fossil plants identify a group of core monitoring parameters that are considered the minimum requirements. Meeting the core monitoring requirement is part of EPRI's cycle chemistry benchmarking criteria for plant cycle chemistry programs. In addition to the core parameters, many other chemistry parameters may be measuredeither routinely or as ...

2007-03-22T23:59:59.000Z

308

Liquid fossil fuel technology. Quarterly technical progress rport, April-June 1983  

Science Conference Proceedings (OSTI)

Highlights of research activities for the quarter ending June 1983 are summarized under the following headings: liquid fossil fuel; extraction; processing; utilization; and project integration and technology transfer. BETC publications are listed. Titles of featured articles are: (1) chemical flooding field test produces 975,000 barrels of oil; (2) chemicals boost recovery in steam-drive tests; (3) North Dakota carbon dioxide minitest successful; (4) carbon dioxide EOR reports issued; and (5) BETC slated for new management and new name. (ATT)

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

309

Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants  

SciTech Connect

Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-01-01T23:59:59.000Z

310

Steam Heat: Winter Fountains in the City  

E-Print Network (OSTI)

Joan Brigham Steam Heat: Winter Fountains int h e City Steam is a phenomenon of the winter city. Iteven when the surging steam temporarily blinds them. When I

Brigham, Joan

1990-01-01T23:59:59.000Z

311

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.Fuel and Geo- thermal Power Plants," by G.D. Case, T.A.

Nero, A.V.

2010-01-01T23:59:59.000Z

312

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 Steam Distribution System Losses Module The steam distribution system typically consists of main steam

Oak Ridge National Laboratory

313

2013 Annual Planning Summary for the Office of Fossil Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy 2013 Annual Planning Summary for the Office of Fossil Energy 2013 Annual Planning Summary for the Office of Fossil Energy The ongoing and projected Environmental...

314

Fossil Energy's HBCU Research Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that goal. Fossil Energy's HBCU Research Activities More Documents & Publications Fossil Energy Today - Third Quarter, 2012 Fossil Energy Today - First Quarter, 2011...

315

Fossil Energy FY 2012 Budget | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Budget Fossil Energy FY 2012 Budget Fossil Energy's FY 2012 budget, including House and Senate marks. Fossil Energy FY 2012 Budget More Documents & Publications FY 2014 Budget...

316

Fossil Energy Book and Bake Sale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Fossil Energy Book and Bake Sale Fossil Energy Book and Bake Sale Fossil Energy Book and Bake Sale...

317

Fossil Energy FY 2011 Budget | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Budget Fossil Energy FY 2011 Budget Fossil Energy's FY 2011 budget request, House and Senate marks, and final appropriation. Fossil Energy FY 2011...

318

Fossil Energy FY 2013 Budget | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Budget Fossil Energy FY 2013 Budget Fossil Energy's FY 2013 Budget, including House and Senate marks. Fossil Energy FY 2013...

319

Annual Planning Summaries: Fossil Energy (FE) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy (FE) Annual Planning Summaries: Fossil Energy (FE) Document(s) Available For Download January 31, 2012 2012 Annual Planning Summary for Fossil Energy, National Energy...

320

Fossil Energy FY 2010 Budget | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Budget Fossil Energy FY 2010 Budget Fossil Energy's FY 2010 budget, including request, House and Senate marks, and final appropriation. Fossil Energy FY 2010...

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cheng Cycle Brings Flexibility to Steam Plant  

E-Print Network (OSTI)

In 1983 Frito-Lay embarked on building a new 160,000 sq. ft. manufacturing facility in Kern County California. Based upon an estimated steam load between 5,000 and 50,000 lb/hr and an electrical load of approximately 1500 KW, the Engineering Department examined several energy optimization systems for this site. It was determined that a modified gas turbine cogeneration system was the best overall option. This system is unique in that it injects superheated steam from the waste heat boiler back into the gas turbine. When steam is injected into the turbine combustor, electrical output increases due to the increased mass flow and specific heat of the steam/air mixture. Electrical output ranges from 3.5 KW without injection to a theoretical 6.0 KW at maximum injection. Despite the volatility of nuclear power in California, project risk was low because the implementation of nuclear power would increase retail rates whereas the avoidance of nuclear power would increase avoided costs (buyback rates). When Frito-Lay decided, in 1983, to build a new snack food plant in Kern County, Calif., its main concern was to minimize the plant's total energy costs. The company therefore evaluated the various cogeneration options available and, for each option, conducted an energy-cost analysis. However, plant performance was not to be sacrificed in order to reduce the overall energy costs. After technical and economic analysis had been completed, Frito-Lay chose a cogeneration system using the Cheng Cycle---a gas-turbine system using steam injection that allows for efficient thermal tracking and simultaneous electrical generation. The company began construction of the Kern County plant to produce corn, tortilla, and potato chips in October 1984. Preliminary operation began in April 1986. The plant encompasses 160,000 ft, and is located just outside the city of Bakersfield. Steam is used for space heating as well as process applications. Total steam demand is expected to vary between 5000 and 55,000 lb/hr, depending on production and seasonal variations. The electrical usage of the plant is anticipated to fall between 1000 and 2500 kW, again depending on plant operations. Current utility energy costs are on the order of 50¢/therm for natural gas and 9¢/kWh for electricity. Cogeneration technology involves the simultaneous production of thermal and electrical energy. In Frito-Lay's case, the cogeneration system supplies steam for plant process needs and generates electricity for plant consumption and sale to the local utility. The modified gas turbine used in the plant is a Cheng Cycle Series Seven, Figure 1. It is a product of International Power Technology (IPT) of Palo Alto, Calif., which has patented the steam injection and control systems. The system is unique in that it injects superheated steam from the waste heat boiler back into the gas turbine. This steam injection process increases the electrical output of the turbine and improves cycle performance compared to traditional gas turbine systems.

Keller, D. C.; Bynum, D.; Kosla, L.

1987-09-01T23:59:59.000Z

322

DOE Hydrogen and Fuel Cells Program: Office of Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Office of Nuclear Energy Printable...

323

CHLORIDE DEPOSITION FROM STEAM ONTO SUPERHEATER FUEL CLAD MATERIALS  

SciTech Connect

Experimemts using Cl/sup 36/ in a steam test loop were conducted to study the deposition behavior of chlorides on BONUS superheater fuel assembly materials. The moisture content of the steam was varied between 0 and 0.5 wt%, and superheat was added up to 15 deg F before the steam passed over the test cartridge heater. The effects of vaiiables on the chloride deposition on the heater were studied in detail. Chloride deposition from moist steam was found to result in heavy, adherent deposits which are conducive to severe chloride stress corrosion of austenitic steels, while removal of all moisture from the incoming steam reduces the chloride deposition and minimizes the chloride stress corrosion. The heater surface condition was found to be a very important variable; deposition is increased by surface defects and pits. Neither the temperature of steam or heater nor the amount of superheat had an appreciable effect on the deposition, when no moisture existed in the steam. However, low steam velocities and spacer protoberances increase the deposition. Different clad materials (Inconel and Type 304 and 347 stainless steel) with similar surface conditions did not affect the deposition, although subsequent corrosion effects do modify the deposition behavior. Recommendations are given for the control of chloride deposition in nuclear superheater reactor systems. (D.L.C.)

Bevilacqua, F.; Brown, G.M.

1963-10-18T23:59:59.000Z

324

Fossil Energy RSS Feeds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy RSS Feeds Fossil Energy RSS Feeds Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages. RSS feeds from the Office of Fossil Energy provide updates of specific interest to the fossil fuel community. Fossil Energy RSS feeds are free of charge. RSS content can be read using software called an RSS reader, feed reader, or an aggregator, which can be web-based or desktop-based. Click on RSS button below to subscribe to Fossil Energy latest news. All Fossil Energy News Clean Coal Technology News Carbon Capture and Storage News Oil & Natural Gas News

325

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these fossil-fuel CO2 emissions have occurred...

326

Los Alamos Lab: Fossil Energy & Environment, Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Jutta Kayser 505-663-5649 Program Manager Melissa Fox 505-663-5538 A New Era for Fossil Fuels The Office of Fossil Energy and Environment (FE) is the focal point for Los...

327

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Nuclear Power Reactors PROTECTION AGAINST SABOTAGE Protection Against Industrial Sabotage I1C-4 Decominarion and Decommissioning

Nero, A.V.

2010-01-01T23:59:59.000Z

328

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Geologic Strain Measurement System. Related Patents: 7,284,604

329

Method for improving the steam splits in a multiple steam injection process  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a steam header, a primary steam line connecting the generator to the header, and secondary steam lines connecting the header to steam injection wells. It comprises: injecting a surfactant into the primary steam line, and mixing the surfactant and steam sufficiently so that the surfactant and the steam enter the header as a foam.

Stowe, G.R. III.

1990-09-04T23:59:59.000Z

330

Steam Generator Management Program: Steam Generator Engineering Training Course 1  

Science Conference Proceedings (OSTI)

This technical update provides training material that was prepared for the first of three Steam Generator Engineer Training Program courses. The Steam Generator Engineer Training Program is a comprehensive training program of the Steam Generator Management Program. The content of this course is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; therefore, eight training modules will be developed over a three-year period beginni...

2009-03-25T23:59:59.000Z

331

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

332

Fossil Technology Newsletter, Summer 2007  

Science Conference Proceedings (OSTI)

The Fossil Technology News newsletter covers the activities and research for I&C and Automation for Improved Plant Operations (Program 68), Maintenance Management and Technology (Program 69), Operations Management and Technology (Program 108), and Energy Workforce Planning and Performance Interest Group (EWPPIG). The feature article for this issue is Outage Scope Management. Other features in this issue include the following: The Benefit of Equipment Risk Management On-Line Monitoring Update Contacts Wir...

2007-11-21T23:59:59.000Z

333

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

During 2005, EPRI Operations and Management Program managers and contractors have collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not...

2006-03-30T23:59:59.000Z

334

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

During 2006, EPRI Operations and Management Program managers have collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not discounting the...

2007-03-27T23:59:59.000Z

335

Fossil Generating Case Histories 2008  

Science Conference Proceedings (OSTI)

This annual Electric Power Research Institute (EPRI) report is a compilation of events and activities that occurred at member fossil generating stations in 2008. The purpose of this report is to share these operating experiences (OEs) with other member utilities so that lessons can be learned and an opportunity provided to improve overall performance across the generation fleet. The report also includes an appendix that contains four assessments that took place at plants during 2008. The focus of these a...

2009-03-31T23:59:59.000Z

336

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

337

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

Maxey, L.C.; Simpson, M.L.

1995-01-17T23:59:59.000Z

338

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

339

Deaerators in Industrial Steam Systems  

SciTech Connect

This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

340

Inspect and Repair Steam Traps  

SciTech Connect

This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Steam generator tube rupture study  

E-Print Network (OSTI)

This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

Free, Scott Thomas

1986-01-01T23:59:59.000Z

342

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

Thomas, Andrew

343

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

Thomas, Andrew

344

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

Thomas, Andrew

345

Fuzzy control of steam turbines  

Science Conference Proceedings (OSTI)

Keywords: PID control, comparison of PID and fuzzy control, fuzzy logic control, robustness, speed control, steam turbine control

N. Kiupel; P. M. Frank; O. Bux

1994-05-01T23:59:59.000Z

346

Steam Turbine Performance Engineer's Guide  

Science Conference Proceedings (OSTI)

The Steam Turbine Performance Engineer's Guide is meant to present the steam turbine performance engineer with the expected and important functions and responsibilities necessary to succeed in this position that are not necessarily taught in college. The instructions and recommendations in this guide, when properly executed, will improve the effectiveness of steam turbine performance engineers, positively affecting both the performance and reliability of the steam turbines under their care.

2010-12-23T23:59:59.000Z

347

HS_FossilFuels_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fuels Fossil Fuels Fossil Energy Study Guide: Fossil Fuels C ontrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact, most of the fossil fuels found today were formed millions of years before the fi rst dinosaurs. Fossil fuels, however, were once alive. Th ey were formed from prehistoric plants and animals that lived hundreds of millions of years ago. Th ink about what the Earth must have looked like 300 million years or so ago. Th e land masses we live on today were just forming. Th ere were swamps and bogs everywhere. Th e climate was warmer. Trees and plants grew everywhere. Strange looking animals walked on the land, and just as weird looking fi sh swam in the rivers and seas. Tiny one-celled organisms called protoplankton fl

348

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment as a function of load and operating them close to the maximum efficiency point.

Ganapathy, V.

1996-04-01T23:59:59.000Z

349

STEAM GENERATOR PRELIMINARY DESIGN  

SciTech Connect

A conceptual study on design of sodium-cooled reactor steam generators was conducted. Included is a detailed description of the preliminary design and analysis, based on the use of known materials and existing methods of fabrication. (See also APAE-41 Vols. I and III.) (J.R.D.)

1959-02-28T23:59:59.000Z

350

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion.

Hopkinson, J.; Passell, T.

1982-10-01T23:59:59.000Z

351

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Fuel and Geo­ thermal Power Plants," by G.D. Case, T.A.produces thermal energy, from the nuclear power plant, whichthermal, or the study "large" plants about one about 1000 sixth MW size of current The large nuclear power plants (

Nero, A.V.

2010-01-01T23:59:59.000Z

352

Engineering Technical Training Module Water and Steam Properties (ETTM: WSP) Version 1.0  

Science Conference Proceedings (OSTI)

The purpose of this training module is to provide a foundational understanding on the engineering principals and properties of water and steam and how they apply in nuclear power plant applications. The topics that are included are steam tables, specific heat, the energy equation and how it applies to different plant systems, and example problems for analyzing different plant equipment to understand their water/steam properties. This computer-based training (CBT) module is intended for use by new engine...

2011-09-16T23:59:59.000Z

353

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

demands, and cogeneration. The Steam Distribution System Losses module will cover steam leaks, steam traps Analysis ­ (SSAT) Fuel selection Steam demands Cogeneration Steam Distribution System Losses - (3EDOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8

Oak Ridge National Laboratory

354

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

355

Steam System Balancing and Tuning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

356

17th Annual Conference on Fossil Energy Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

17th Annual Conference on Fossil Energy Materials 17th Annual Conference on Fossil Energy Materials April 22-24, 2003 Table of Contents Disclaimer Papers and Presentations SESSION I - NEW ALLOYS Materials for Advanced Steam Cycles Materials for Advanced Heat Exchangers SESSION II - FUNCTIONAL MATERIALS Gas Separation Materials Materials for Gas Clean-up Fuel Cell Materials Issues SESSION III - BREAKTHROUGHS IN MATERIALS PERFORMANCE AND RELIABILITY Temperature Capabilities Beyond Current Alloys Refractories for Increased Reliability in Gasification Reactors Smart Materials Posters Coatings and Protection of Materials New Alloys Functional Materials Breakthroughs in Materials Performance and Reliabilit Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

357

ADVANCED STEAM GENERATORS  

SciTech Connect

Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about 1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A. (U.S. DOE National Energy Technology Laboratory); Woike, Mark R.; Willis; Brian P. (NASA Glenn Research Center)

2001-11-06T23:59:59.000Z

358

Crude oil steam distillation in steam flooding. Final report  

SciTech Connect

Steam distillation yields of sixteen crude oils from various parts of the United States have been determined at a saturated steam pressure of 200 psig. Study made to investigate the effect of steam pressure (200 to 500 psig) on steam distillation yields indicates that the maximum yields of a crude oil may be obtained at 200 psig. At a steam distillation correlation factor (V/sub w//V/sub oi/) of 15, the determined steam distillation yields range from 12 to 56% of initial oil volume for the sixteen crude oils with gravity ranging from 12 to 40/sup 0/API. Regression analysis of experimental steam distillation yields shows that the boiling temperature (simulated distillation temperature) at 20% simulated distillation yield can predict the steam distillation yields reasonably well: the standard error ranges from 2.8 to 3.5% (in yield) for V/sub w//V/sub oi/ < 5 and from 3.5 to 4.5% for V/sub w//V/sub oi/ > 5. The oil viscosity (cs) at 100/sup 0/F can predict the steam distillation yields with standard error from 3.1 to 4.3%. The API gravity can predict the steam distillation yields with standard error from 4.4 to 5.7%. Characterization factor is an unsatisfactory correlation independent variable for correlation purpose.

Wu, C.H.; Elder, R.B.

1980-08-01T23:59:59.000Z

359

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

360

No Fossil Fuel - Kingston | Open Energy Information  

Open Energy Info (EERE)

No Fossil Fuel - Kingston No Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner No Fossil Fuel LLC Developer No Fossil Fuel LLC Energy Purchaser Net-metered Location Kingston MA Coordinates 41.97388106°, -70.72577477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.97388106,"lon":-70.72577477,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

India Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

362

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

363

Steam Generator Management Program: Onset of Fatigue Cracking in Steam Generator Tubes With Through Wall Flaws  

Science Conference Proceedings (OSTI)

Leak rate tests of steam generator tubing with stress corrosion cracks and electrodischarge machining notches were conducted at Argonne National Laboratory (ANL) under the sponsorship of the U.S. Nuclear Regulatory Commission. Some test specimens displayed a significant leak rate increase under constant pressure hold. It was suspected that fatigue caused by jet–structure interaction was responsible for the increased leak rate. EPRI Reports 1015123 and 1016560 investigated the ANL test results in terms of...

2011-11-10T23:59:59.000Z

364

Steam Generator Management Program: Simulation Model for Eddy Current Steam Generator Inspection  

Science Conference Proceedings (OSTI)

BackgroundEddy current techniques are used widely to evaluate the integrity of steam generator (SG) tubes in nuclear power plants. A variety of commercial probes have been used by industry; it is well known that eddy current probe responses change as the tube condition changes. Other factors that influence the eddy current signal include deposits, loose parts, and denting. Postulated SG conditions have been mocked up in the laboratory; however, capabilities are limited ...

2013-12-19T23:59:59.000Z

365

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

366

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

367

Condensate Polishing Guidelines for Fossil Plants  

Science Conference Proceedings (OSTI)

Fossil plants employ condensate polishers to remove ionic and suspended impurities from the condensate in order to provide high purity feedwater. In the process, the polisher enhances fossil unit availability, reliability, and performance. In 1996, EPRI produced Condensate Polishing Guidelines (TR-104422), the first comprehensive guidelines for condensate polishers used in fossil units. Extensive investigations of condensate polishing technology followed. These guidelines reflect the latest thinking on t...

2006-03-15T23:59:59.000Z

368

Advanced fission and fossil plant economics-implications for fusion  

Science Conference Proceedings (OSTI)

In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

Delene, J.G.

1994-09-01T23:59:59.000Z

369

Office of Fossil Energy | Department of Energy  

NLE Websites -- All DOE Office Websites

Fossil Energy Fossil Energy Search Search form Search Office of Fossil Energy Office of Fossil Energy Services Services Home Petroleum Reserves Petroleum Reserves Home Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International Cooperation Natural Gas Regulation Advisory Committees Science & Innovation Science & Innovation Home Clean Coal Clean Coal Home Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and Storage Carbon Capture and Storage Home Capture Storage Utilization MVA Regional Partnerships Oil & Gas Oil & Gas Home Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Mission About Us About Us Home News & Blog News & Blog Home FE Today Press Releases & Techlines

370

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Catalysts for Alcohol Production from CO2 and CO. Related Patents: 7,879,749 ...

371

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Method of Liquefying a Gas. Related Patents: 6997012. Contact: David R. Anderson

372

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Liquefaction of Natural Gas. Related Patents: 6581409; 6962061; 6,886,362; ...

373

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No....

374

Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global, Regional, and National Annual Time Series (1751-2010) Latest Published Global Estimates (1751-2010) Preliminary 2011 Global & National Estimates...

375

OpenEI Community - fossil fuels  

Open Energy Info (EERE)

communityblogfour-new-publications-help-advance-renewable-energy-developmentcomments energy scenarios fossil fuels OECD OpenEI policy Renewable Energy Tue, 16 Jul 2013...

376

Fossil, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Fossil, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

377

Steam Condensation Induced Waterhammer  

E-Print Network (OSTI)

This is the type of waterhammer that kills people. It's initiating mechanism is much different than the image most engineers have of what causes waterhammer-- i.e. fast moving steam picking up a slug of condensate and hurling it downstream against an elbow or a valve. Condensation Induced Waterhammer can be 100 times more powerful than this type of waterhammer. Because it does not require flowing steam, it often occurs during relatively quiescent periods when operators least expect it. It's most often initiated by opening a valve, even a drain valve to remove condensate. The overpressure from an event can easily exceed 1000 psi. This is enough pressure to fracture a cast iron valve, blow out a steam gasket, or burst an accordion type expansion joint. And, in fact, failure of each of these components in separate condensation induced waterhammer accidents has resulted in operator fatalities. Operators and engineers need to understand this type of waterhammer so they can avoid procedures which can initiate it and designs which are susceptible to it.

Kirsner, W.

2000-04-01T23:59:59.000Z

378

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

fossil-fuel based thermal power plants. Chapter 3 exploresthermal energy to be dissipated in concentrating solar power plants.thermal energy to electricity in a natural gas, coal or nuclear power plant

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

379

Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply  

SciTech Connect

A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

Braytenbah, A.S.; Jaegtnes, K.O.

1977-02-15T23:59:59.000Z

380

Steam condensate leakage  

SciTech Connect

Argonne National Laboratory (ANL) is a multi-program research and development center owned by the United States Department of Energy and operated by the University of Chicago. The majority of the buildings on site use steam for heating and other purposes. Steam is generated from liquid water at the site`s central boiler house and distributed around the site by means of large pipes both above and below the ground. Steam comes into each building where it is converted to liquid condensate, giving off heat which can be used by the building. The condensate is then pumped back to the boiler house where it will be reheated to steam again. The process is continual but is not perfectly efficient. A substantial amount of condensate is being lost somewhere on site. The lost condensate has both economic and environmental significance. To compensate for lost condensate, makeup water must be added to the returned condensate at the boiler house. The water cost itself will become significant in the future when ANL begins purchasing Lake Michigan water. In addition to the water cost, there is also the cost of chemically treating the water to remove impurities, and there is the cost of energy required to heat the water, as it enters the boiler house 1000 F colder than the condensate return. It has been estimated that only approximately 60% of ANL`s steam is being returned as condensate, thus 40% is being wasted. This is quite costly to ANL and will become significantly more costly in the future when ANL begins purchasing water from Lake Michigan. This study locates where condensate loss is occurring and shows how much money would be saved by repairing the areas of loss. Shortly after completion of the study, one of the major areas of loss was repaired. This paper discusses the basis for the study, the areas where losses are occurring, the potential savings of repairing the losses, and a hypothesis as to where the unaccounted for loss is occurring.

Midlock, E.B.; Thuot, J.R.

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green Lights and DOE's Motor Challenge, the Steam Power Partnership program will encourage industrial energy consumers to retrofit their steam plants wherever profitable. The Alliance has organized a "Steam Team" of trade associations, consulting engineering firms, and energy efficiency companies to help develop this public- private initiative.

Jones, T.

1997-04-01T23:59:59.000Z

382

No Fossils in This Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

383

Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections  

SciTech Connect

Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

None

2002-10-01T23:59:59.000Z

384

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

385

A PROBABILISTIC MECHANISTIC APPROACH FOR ASSESSING THE RUPTURE FREQUENCY OF SMALL MODULAR REACTOR STEAM GENERATOR TUBES USING UNCERTAIN INPUTS FROM IN-SERVICE INSPECTIONS.  

E-Print Network (OSTI)

??One of the significant safety issues in nuclear power plants is the rupture of steam generator tubes leading to the loss of radioactive primary coolant… (more)

Chatterjee, Kaushik

2011-01-01T23:59:59.000Z

386

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

387

Constant-Pressure Measurement of Steam-  

E-Print Network (OSTI)

SGP-TR-169 Constant-Pressure Measurement of Steam- Water Relative Permeability Peter A. O by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative

Stanford University

388

Steam pretreatment for coal liquefaction  

SciTech Connect

Steam pretreatment is the reaction of coal with steam at temperatures well below those usually used for solubilization. The objective of the proposed work is to test the application of steam pretreatment to coal liquefaction. This quarter, a 300 ml stirred autoclave for liquefaction tests were specified and ordered, procedures for extraction tests were reestablished, and the synthesis of four model compounds was completed. Two of these compounds remain to be purified.

Graff, R.A.; Balogh-Nair, V.

1990-01-01T23:59:59.000Z

389

Process for purifying geothermal steam  

DOE Patents (OSTI)

Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

Li, Charles T. (Richland, WA)

1980-01-01T23:59:59.000Z

390

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

391

Degradation of Steam Generator Internals  

Science Conference Proceedings (OSTI)

Aug 1, 1999 ... Regulatory Perspective on Industry's Response to Generic Letter 97-06, " Degradation of Steam Generator Internals" by S. Coffin, M. Subudhi, ...

392

Downhole steam injector. [Patent application  

DOE Patents (OSTI)

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A.B.; Hoke, E.

1981-06-03T23:59:59.000Z

393

FE annual Report Bioprocessing of Fossil Fuels  

E-Print Network (OSTI)

FE annual Report July 2004 Bioprocessing of Fossil Fuels Abhijeet Borole, Life Sciences Division The overall objective of this research program is to develop novel technologies for processing fossil fuels energy-efficient. Processes based on oxidative as well as reductive reactions are being investigated

394

Fossil energy: From laboratory to marketplace  

Science Conference Proceedings (OSTI)

The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R D programs as part of the crosscutting enabling technology base upon which advanced systems are based.

Not Available

1992-03-01T23:59:59.000Z

395

Fossil Energy Today - Second Quarter, 2012  

Energy.gov (U.S. Department of Energy (DOE))

Here are just some of the stories featured in this issue: NETL Share Computing Speed, Efficiency to Tackle Barriers; Global Collaboration in Clean Fossil Energy; Charles McConnell Confirmed Assistant Secretary for Fossil Energy; and, New Catalyst Technology Reduces Diesel Engine Idling.

396

Steam Generator Group Project. Annual report, 1982  

SciTech Connect

The Steam Generator Group Project (SGGP) is an NRC program joined by additional sponsors. The SGGP utilizes a steam generator removed from service at a nuclear plant (Surry 2) as a vehicle for research on a variety of safety and reliability issues. This report is an annual summary of progress of the program for 1982. Information is presented on the Steam Generator Examination Facility (SGEF), especially designed and constructed for this research. Loading of the generator into the SGEF is then discussed. The report then presents radiological field mapping results and personnel exposure monitoring. This is followed by information on field reduction achieved by channel head decontaminations. The report then presents results of a secondary side examination through shell penetrations placed prior to transport, confirming no change in generator condition due to transport. Decontamination of the channel head is discussed followed by plans for eddy current testing and removal of the plugs placed during service. Results of a preliminary profilometry examination are then provided.

Clark, R.A.; Lewis, M.

1984-02-01T23:59:59.000Z

397

22nd Steam Generator NDE Workshop: June 30 - July 2, 2003, Hilton Head, South Carolina  

Science Conference Proceedings (OSTI)

This year's workshop took place in Hilton Head, South Carolina, from June 30th to July 2nd, 2003. It covered one full day and two half-days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE is...

2003-12-15T23:59:59.000Z

398

Steam Generator Management Program: Assessment of Steam Generator Tube Plugs  

Science Conference Proceedings (OSTI)

EPRI Steam Generator Management Program guidelines require that utilities perform integrity assessments of all steam generator (SG) components, including tube plugs. SG inspection outages should specifically include monitoring of degradation in tube hardware such as plugs. This report provides guidance for utility engineers to use in determining tube plug inspection requirements, including scope, technique, and periodicity.BackgroundGenerally, utilities perform ...

2013-08-28T23:59:59.000Z

399

Corrosion in Fossil and Alternative Fuel Industries  

Science Conference Proceedings (OSTI)

...coal-fired steam, industrial gas turbine, and combined-cycle power plants. The most common and widely used is the pulverized-coal-fired steam power plant. Because of the complex and corrosive environments in which power plants operate, corrosion has been a serious problem, with a significant impact on...

400

Turbocompressor downhole steam-generating system  

SciTech Connect

This patent describes a downhole steam-generating system comprising: an air compressor; a steam generating unit, including: a combustor for combusting fuel with the compressed air from the compressor producing combustor exhaust products; and steam conversion means, in indirect heat-exchange relationship with the combustor, for converting water which is fed into the steam-conversion means into steam; a turbine which is rotated by the combustor exhaust products and steam from the steam-generating unit, the rotational motion of the turbine is mechanically coupled to the air compressor to drive the air compressor; and control bypass means associated with the steam generating unit and turbine for regulating the relative amounts of the combustor exhaust product and steam delivered to the turbine from the steam generating unit. The air compressor and turbine form an integral turbocompressor unit. The turbocompressor unit, steam-generating unit and control bypass means are located downhole during operation of the steam-generating system.

Wagner, W.R.

1987-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Benchmark the Fuel Cost of Steam Generation  

DOE Green Energy (OSTI)

BestPractices Steam tip sheet regarding ways to assess steam system efficiency. To determine the effective cost of steam, use a combined heat and power simulation model that includes all the significant effects.

Papar, R. [U.S. Department of Energy (US)

2000-12-04T23:59:59.000Z

402

High Efficiency Steam Electrolyzer  

SciTech Connect

A novel steam electrolyzer has been developed. In conventional electrolyzers, oxygen produced from electrolysis is usually released in the air stream. In their novel design, natural gas is used to replace air in order to reduce the chemical potential difference across the electrolyzer, thus minimizing the electrical consumption. The oxygen from the electrolysis is consumed in either a total oxidation or a partial oxidation reaction with natural gas. Experiments performed on single cells shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. Using thin film materials and high performance cathode and anode, electrolysis could be done at temperatures as low as 700 C with electrolytic current as high as 1 A/cm{sup 2} at a voltage of 0.5 V only. The 700 C operating temperature is favorable to the total oxidation of natural gas while minimizing the need for steam that is otherwise necessary to avoid carbon deposition. A novel tubular electrolyzer stack has been developed. The system was designed to produce hydrogen at high pressures, taking advantage of the simplicity and high efficiency of the electrochemical compressors. A complete fabrication process was developed for making electrolyzer tubes with thin film coatings. A 100 W stack is being built.

Pham, A.Q.

2000-06-19T23:59:59.000Z

403

Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply  

SciTech Connect

An electric power plant having a cross compound steam turbine and a steam source that includes a high temperature gas-cooled nuclear reactor is described. The steam turbine includes high and intermediate-pressure portions which drive a first generating means, and a low-pressure portion which drives a second generating means. The steam source supplies superheat steam to the high-pressure turbine portion, and an associated bypass permits the superheat steam to flow from the source to the exhaust of the high-pressure portion. The intermediate and low-pressure portions use reheat steam; an associated bypass permits reheat steam to flow from the source to the low-pressure exhaust. An auxiliary turbine driven by steam exhausted from the high-pressure portion and its bypass drives a gas blower to propel the coolant gas through the reactor. While the bypass flow of reheat steam is varied to maintain an elevated pressure of reheat steam upon its discharge from the source, both the first and second generating means and their associated turbines are accelerated initially by admitting steam to the intermediate and low-pressure portions. The electrical speed of the second generating means is equalized with that of the first generating means, whereupon the generating means are connected and acceleration proceeds under control of the flow through the high-pressure portion. 29 claims, 2 figures.

Jaegtnes, K.O.; Braytenbah, A.S.

1977-02-15T23:59:59.000Z

404

Fossil-Fuel CO2 Emissions - American Samoa  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania American Samoa Graphics Fossil-Fuel CO2 Emissions from American Samoa Data graphic Data Total Fossil-Fuel CO2 Emissions from...

405

Fossil-Fuel CO2 Emissions - Marshall Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Marshall Islands Graphics Fossil-Fuel CO2 Emissions from the Marshall Islands Data graphic Data Fossil-Fuel CO2 Emissions from...

406

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

The results of an analytical effort to determine the cost effectiveness of hybrid geothermal/fossil-fuel electrical-power generating stations. The analysis is directed at combining hydrothermal and coal energy in a Rankine steam cycle, for electrical power generation for the City of Burbank, California. This effort develops a methodology for hybrid power-plant cost analysis so that preliminary plant designs can be optimized as a function of specific site conditions and characteristics. It also defines cost-optimized site-specific plant designs for four potential sites: Roosevelt Hot Springs, Utah, Coso Thermal Area, California, East Mesa, California, and Long Valley, California. These optimized designs are compared for the costs, geothermal-resource utilization, and fossil fuel saved. The results indicate that development of geothermal resources to support a hybrid power plant are favorable for at least two of the four sites.

Anno, G.H.; Dore, M.A.; Grijalva, R.L.; Lang, G.D.; Thomas, F.J.

1977-04-01T23:59:59.000Z

407

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects of thes

Gombos, R.

2004-01-01T23:59:59.000Z

408

Go Steam for Green Transportation  

Science Conference Proceedings (OSTI)

Railroads are very fuel-efficient in moving freight by land. The history of rail begins with steam power, moving to eventual dieselization. Some components, advantages and disadvantages of internal combustion engines (gasoline, diesel) and external combustion ... Keywords: diesel engine, steam engine, biocoal, biofuel, computer control, internal combustion, external combustion

Paul Fred Frenger

2013-04-01T23:59:59.000Z

409

Compound hybrid geothermal-fossil power plants: thermodynamic analyses and site-specific applications  

DOE Green Energy (OSTI)

The analysis of hybrid fossil-geothermal power plants is extended to compound hybrid systems which combine the features of previously analyzed systems: the geothermal-preheat and the fossil-superheat systems. Compound systems of the one- and two-stage type are considered. A compilation of working formulae from earlier studies is included for completeness. Results are given for parametric analyses of compound hybrid plants. System performance was determined for wellhead conditions of 150, 200, and 250/sup 0/C, and for steam fractions of 10, 20, 30, and 40%. For two-stage systems an additional cycle variable, the hot water flash fraction, was varied from 0 to 100% in increments of 25%. From the viewpoint of thermodynamics, compound hybrid plants are superior to individual all-geothermal and all-fossil plants, and are shown to have certain advantages over basic geothermal-preheat and fossil-superheat hybrid plants. The flexibility of compound hybrid systems is illustrated by showing how such plants might be used at six geothermal sites in the western United States. The question of the optimum match between the energy resources and the power plant is addressed, and an analysis given for a hypothetical geothermal resource.

DiPippo, R.; Avelar, E.M.

1979-06-01T23:59:59.000Z

410

Hartford Steam Co | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Hartford Steam Co Jump to: navigation, search Name Hartford Steam Co Place Connecticut Utility Id...

411

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

412

Evaluate deaerator steam requirements quickly  

Science Conference Proceedings (OSTI)

Steam plant engineers frequently have to perform energy balance calculations around the deaerator to estimate the steam required to preheat and deaerate the make-up water and condensate returns. This calculation involves solving two sets of equations, one for mass and the other for energy balance. Reference to steam tables is also necessary. However, with the help of this program written in BASIC, one can arrive at the make-up water and steam requirements quickly, without referring to steam tables. This paper shows the mass and energy balance equations for the deaerator. This paper gives the program listing. An number of condensate returns can be handled. An example illustrates the use of the program.

Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (US))

1991-02-01T23:59:59.000Z

413

Dynamic computer simulation of the Fort St. Vrain steam turbines  

SciTech Connect

A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

Conklin, J.C.

1983-01-01T23:59:59.000Z

414

Fossil energy: From laboratory to marketplace  

SciTech Connect

Fossil Energy-From Laboratory to Marketplace is a compendium of progress--progress achieved by teams of university, industrial, and government researchers working through the federal program to develop new, cleaner and more effective ways to produce and use the nation`s abundant fossil fuel resources. Generally, this report concentrates on research and development efforts conducted during the 1980s. Where necessary to provide an historical context, information is also drawn from the fossil energy research, development and demonstration programs of the 1970s.

Not Available

1991-04-01T23:59:59.000Z

415

Fossil energy: From laboratory to marketplace  

DOE Green Energy (OSTI)

Fossil Energy-From Laboratory to Marketplace is a compendium of progress--progress achieved by teams of university, industrial, and government researchers working through the federal program to develop new, cleaner and more effective ways to produce and use the nation's abundant fossil fuel resources. Generally, this report concentrates on research and development efforts conducted during the 1980s. Where necessary to provide an historical context, information is also drawn from the fossil energy research, development and demonstration programs of the 1970s.

Not Available

1991-04-01T23:59:59.000Z

416

High resolution fossil fuel combustion CO2 emission fluxes for...  

NLE Websites -- All DOE Office Websites (Extended Search)

High resolution fossil fuel combustion CO2 emission fluxes for the United States Title High resolution fossil fuel combustion CO2 emission fluxes for the United States Publication...

417

Office of the Assistant General Counsel Electricity & Fossil...  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Office of the Assistant General Counsel Electricity & Fossil Energy Office of the Assistant General Counsel Electricity & Fossil Energy Litigation and Enforcement...

418

Office of Fossil Energy Continues Long-Running Minority Educational...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Continues Long-Running Minority Educational Research Program Office of Fossil Energy Continues Long-Running Minority Educational Research Program April 19, 2012 -...

419

Fossil Energy Acting Assistant Secretary Recognized at Black...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards...

420

DOE - Fossil Energy: Selection of 1998 HBCU Winners  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy DOE FOSSIL ENERGY TECHLINE Issued on April 27, 1998 DOE Selects Historically Black, Hispanic Universities to Receive Federal Funds for Fossil Energy Research As part of its...

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Powerpoint Presentation: Fossil Energy R&D American Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects A...

422

Cost and Performance Baseline for Fossil Energy Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline for Fossil Energy Plants Volume I (May 2007) Cost and Performance Baseline for Fossil Energy Plants, Volume I Report Desk Reference Presentation Slides "Gasification Costs...

423

2012 Annual Planning Summary for Fossil Energy, National Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning Summary for Fossil Energy, National Energy Technology...

424

Office of Fossil Energy Fuel Cell Program 2012 Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

O ce of Fossil Energy Fuel Cell Program Portfolio 2012 Solid State Energy Conversion Alliance Office of Fossil Energy Fuel Cell Program 2012 Portfolio October 2012 DOE...

425

Fossil Fuels Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Study Guide - High School Fossil Fuels Study Guide - High School Fossil Fuels Study Guide - High School More Documents & Publications Coal Study Guide for Elementary School...

426

DOE - Fossil Energy: Key Publications Related to DOE's Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Trends Button National Security Button Safety and Health Button DOE Office of Fossil Energy Web Site Fossil Energy - Clean Coal Technologies - Carbon Capture,...

427

Energy Department's Fossil Energy Chief to Tour Western Michigan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department's Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable Energy Department's Fossil Energy Chief to Tour...

428

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in...

429

Solar production of industrial process steam at Ore-Ida frozen-fried-potato plant  

DOE Green Energy (OSTI)

TRW is designing a system for the demonstration of the Solar Production of Industrial Process Steam. Included, besides the Conceptual Design, is an Environmental Impact Assessment and a System Safety Analysis report. The system as proposed and conceptualized consists of an array of 9520 square feet of parabolic trough concentrating solar energy collectors which generate pressurized hot water. The pressurized water is allowed to flash to steam at 300 psi (417/sup 0/F) and fed directly into the high pressure steam lines of the Ore-Ida Foods, Inc., processing plant in Ontario, Oregon. Steam is normally generated in the factory by fossil-fired boilers and is used by means of a steam-to-oil heat exchanger for the process of frying potatoes in their frozen food processing line. The high pressure steam is also cascaded down to 125 psi for use in other food processing operations. This solar system will generate 2 x 10/sup 6/ Btu/hr during peak periods of insolation. Steam requirements in the plant for frying potatoes are: 43 x 10/sup 6/ Btu/hr at 300 psi and 52 x 10/sup 6/ Btu/hr at the lower temperatures and pressures. The Ontario plant operates on a 24 hr/day schedule six days a week during the potato processing campaigns and five days a week for the remainder of the year. The seventh day and sixth day, respectively, use steam for cleanup operations. An analysis of the steam generated, based on available annual insolation data and energy utilized in the plant, is included.

Cherne, J.M.; Gelb, G.H.; Pinkerton, J.D.; Paige, S.F.

1978-12-29T23:59:59.000Z

430

Three Dimensional CFD Model of a Planar Solid Oxide Electrolysis Cell for Co-Electrolysis of Steam and Carbon-Dioxide  

SciTech Connect

A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE). A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. An experimental study is also being performed at the INL to assess the SOE. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and syn-gas production over a range of stack operating conditions. Typical results of current density versus cell potential, cell current versus H2 and CO production, temperature, and voltage potential are all presented within this paper. Plots of mole fraction of CO2, CO, H2, H2O, O2, are presented. Currently there is strong interest in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. This process takes the carbon-neutral approach where the amount of CO2 in the atmosphere does not increase. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen. In the mean time, with the price of oil currently over $70 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis or thermochemical processes, using high-temperature nuclear process heat. In order to achieve competitive efficiencies, both processes require high-temperature operation (~850°C). High-temperature electrolytic CO2 and water splitting supported by nuclear process heat and electricity has the potential to produce syn-gas with an overall system efficiency near those of the thermochemical processes. Specifically, a high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to

G. Hawkes; J. O' Brien; C. Stoots; S. Herring; R. Jones

2006-11-01T23:59:59.000Z

431

Solar production of industrial process steam ranging in temperature from 300/sup 0/F to 550/sup 0/F (Phase I). Volume 1. Final report, September 30, 1978-June 30, 1979  

DOE Green Energy (OSTI)

This section summarizes the Foster Wheeler Development Corporation/Dow Chemical Company Phase I solar industrial process steam system and includes a system schematic, a brief system description, general specifications of the major system components, expected system performance, and a cost estimate summary for Phases II and III. The objectives of Phase I are: (1) design a cost-effective solar steam generating system, using state-of-the-art components and technology, to supply steam for Dow Chemical Company's Dalton, Georgia, plant; (2) predict the performance of the solar process steam plant; (3) conduct a safety evaluation and an environmental impact assessment of the solar steam system; (4) conduct an economic analysis to determine the potential economic benefits of a solar-augmented process steam production system compared with an existing fossil-fuel-fired steam generator; and (5) promote the project extensively to make it visible to industry and the general public.

Not Available

1979-06-30T23:59:59.000Z

432

Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.  

DOE Green Energy (OSTI)

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

Kimmell, T. A.; Veil, J. A.; Environmental Science Division

2009-04-03T23:59:59.000Z

433

BPM2.0. Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

BOILER PERFORMANCE MODEL (BPM2.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. [USDOE, Pittsburgh Energy Technology Center, Pittsburgh, PA (United States)

1988-01-01T23:59:59.000Z

434

BPM3.0. Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

The BOILER PERFORMANCE MODEL (BPM3.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. [USDOE, Pittsburgh Energy Technology Center, PA (United States)

1992-03-01T23:59:59.000Z

435

Interim consensus guidelines on fossil plant cycle chemistry. Final report  

Science Conference Proceedings (OSTI)

US utilities have been faced with a multitude of water and steam control limits disseminated by various groups and manufacturers. These have provided disparate goals for plant personnel and management in determining the operating limits for their plants. EPRI authorized the preparation of guidelines on fossil plant cycle chemistry as part of a research program, RP2712, with the goal to reduce forced outages and efficiency losses related to water chemistry, corrosion, and deposition. This report is a unified, specific, and comprehensive document that provides the guidance needed for effective and economical control of corrosion and deposition. Implementation of these Guidelines will help reduce forced outages caused by corrosion-induced failures and thereby increase unit availability. The Guidelines provide a set of target values and action levels for critical sample points throughout the water and steam cycle for drum boilers with phosphate treatment; for drum boilers with all-volatile treatment; and for once-through boilers. They are applicable to baseload and to cycling and peaking operation. Corrective actions to be taken when the Guidelines are exceeded are also discussed. More general guidelines are given on management responsibilities, layup, representative sampling, analytical methods, continuous instrumentation, data collection and management, and other considerations. The Guidelines and the results of the other phases of the EPRI Research Project 2712 should bring significant benefits to US utilities at a moderate cost. Modification of portions of the Guidelines to reflect actual, plant-specific design characteristics and local operating experience is recommended when appropriately justified. 118 refs., 88 figs., 24 tabs.

Aschoff, A.F.; Lee, Y.H.; Sopocy, D.M.; Jonas, O.

1986-06-01T23:59:59.000Z

436

SUBJECT: Insights and Implications of Steam Generator Operating, Inspecting and Maintenance Experience  

E-Print Network (OSTI)

The steam generator tube failure event at Indian Point Unit 2 and the potential issues surrounding the in-situ pressure testing of selected tubes and test specimens at Arkansas Nuclear One Unit 2, prompted industry to evaluate its generic steam generator guidelines, plant experiences, and insights gained from the periodic steam generator program review visits conducted by the Institute of Nuclear Power Operations (INPO). The purpose of this letter is to share with the NRC staff the industry conclusions and actions taken. As the NRC staff is well aware, the operation, inspection, and maintenance of steam generators are a high industry priority. Given the critical role of the steam generator in providing safe, reliable, and economic power production, steam generator performance has received broad industry attention for years. Generic industry activities, managed by EPRI, have been underway continuously since 1978. NRC staff is familiar with those efforts based on past briefings on the activities of the EPRI Steam Generator Management Program (SGMP) and attendance at selected SGMP workshops. More recently, other industry support organizations, such as NEI, INPO, and NSSS Owners Groups, have played important roles as well. Industry data indicates continual improvement in steam generator performance since the initiation of these efforts.

David J. Modeen; Dr. Brian; W. Sheron

2000-01-01T23:59:59.000Z

437

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

438

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

439

Categorical Exclusion Determinations: Fossil Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applied: A1, A9, B3.6 Date: 02152011 Location(s): Indianapolis, Indiana Office(s): Fossil Energy, National Energy Technology Laboratory February 11, 2011 CX-005227: Categorical...

440

Categorical Exclusion Determinations: Fossil Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basins CX(s) Applied: B3.1, B3.11 Date: 11052010 Location(s): Illinois Office(s): Fossil Energy, National Energy Technology Laboratory October 22, 2010 CX-004266: Categorical...

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Categorical Exclusion Determinations: Fossil Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B1.3 Date: 04152010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 15, 2010 CX-001593: Categorical...

442

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Fossil Energy Reduction of Regulated Emissions in Coal and Refuse-Derived Fuel Operations. Related Patents: 7,384,615. Contact: David R. Anderson . Phone: (208) 526-0837

443

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Fossil Energy LNG Engine Delivery. Related Patents: 6921858. Contact: David R. Anderson . Phone: (208) 526-0837 . E-mail: Send E-mail. INL has developed a patented ...

444

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Fossil Energy Production of Biodiesel using Expanded Gas Solvents. Related Patents: 7,514,575. Contact: David R. Anderson . Phone: (208) 526-0837 . E-mail: Send E-mail

445

Office of Fossil Energy | Department of Energy  

NLE Websites -- All DOE Office Websites

NETL Innovations Recognized with R&D 100 Awards More News Popular Topics LNG Exports Shale Gas 101 Blog July 30, 2013 Secretary Moniz Speaks on Future of Fossil Energy July 23,...

446

Improved Atomization Processing for Fossil Energy Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

501-032, April 2011 Benefits This project will extend the benefits of powder metallurgy within and beyond the fossil energy field. The ability to harvest high yields of...

447

fossil fuels | OpenEI Community  

Open Energy Info (EERE)

fossil fuels Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 16 July, 2013 - 14:37 Four new publications help advance renewable energy development energy...

448

Chemical Characterization of Fossil Fuel Combustion Wastes  

Science Conference Proceedings (OSTI)

Fossil fuel combustion wastes differ considerably in total composition and in the key chemical characteristics of their extracts, making leachate composition difficult to predict. A new mechanistic approach, however, shows promise for more-accurate prediction.

1987-08-26T23:59:59.000Z

449

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

450

Proceedings: 1989 Fossil Power Plant construction conference  

SciTech Connect

EPRI's First International Conference on Fossil Plant Construction was held in Cincinnati, Ohio on August 29--31, 1989. The Conference was attended by approximately 140 people representing 35 utilities, many US architect engineering companies, equipment suppliers and independent power producers. The conference covered world wide developments in fossil plant construction. Included in these proceedings are papers from the following sessions: The Challenge of Demands for New Capacity and Construction; Recent Plant Construction Experience; Construction Experience for New Technologies; Cogeneration Project Experience; Regulatory Requirements for Fossil Plant Construction; Planning, Development and Design; Modular Construction Techniques; Applications of Advanced Computer Technologies; International and Domestic Construction Advances; Management Challenges of Fossil Projects; and Retrofit and Repowering Construction Experience. Individual projects are processed separately for the data bases.

Armor, A.F.; Divakaruni, S.M. (eds.)

1991-07-01T23:59:59.000Z

451

Fossil Energy Today - First Quarter, 2011  

Energy.gov (U.S. Department of Energy (DOE))

Here are just some of the stories featured in this issue: Welcome to Fossil Energy Today; Coal-Fired Project of the Year; Geothermal Efforts in the RMOTC Oil Field; and, Recovery Act Project Highlights.

452

2012 EPRI Fossil Life Assessment Conference Proceedings  

Science Conference Proceedings (OSTI)

The International Conference on Advances in Condition and Remaining Life Assessment for Fossil Power plants – Coal, Gas and HRSG was hosted in October 2012 in Hilton Head, SC, USA.  This conference was the latest of a series of conferences addressing aging equipment in Fossil Power Plants dating back to the early 1980’s.  Condition and remaining life assessment (historically referred to as CARLA) technology has assumed great importance in the context of the reliability, ...

2013-12-23T23:59:59.000Z

453

Fossil Boiler Life News July 2008  

Science Conference Proceedings (OSTI)

Fossil Boiler Life News, published twice yearly, is the newsletter of EPRI's Boiler Life and Availability Improvement Program (P63). The July 2008 issue includes articles on upcoming meetings, new program personnel, R&D projects for 2009, a boiler drum fracture assessment guideline, protocols for manufacturing and inspecting CSEF steels, predictive FAC codes for fossil units, corrosion-resistant nanocoatings, preventive designs for eliminating boiler tube failures, and other deliverables. The newsletter ...

2008-07-28T23:59:59.000Z

454

The Office of Fossil Energy's (FE) Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Fossil Energy's (FE) Clean Office of Fossil Energy's (FE) Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO 2 ), nitrogen oxides (NO x ) and airborne particulates (PM 10 ). The program forged cost-sharing partnerships between the U.S. Department of Energy, industry, universities and technology suppliers and users.

455

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

DOE Green Energy (OSTI)

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

456

Steam reformer with catalytic combustor  

DOE Patents (OSTI)

A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

Voecks, Gerald E. (La Crescenta, CA)

1990-03-20T23:59:59.000Z

457

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

458

Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report  

DOE Green Energy (OSTI)

This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

Janes, J.

1984-06-01T23:59:59.000Z

459

A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor  

Science Conference Proceedings (OSTI)

The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

Erighin, M. A. [Babcock and Wilcox Company, 109 Ramsey Place, Lynchburg, VA 24502 (United States)

2012-07-01T23:59:59.000Z

460

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

462

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Fossil Energy; Information Technology; Manufacturing ; Materials; ... Non-Nuclear Energy Method of Producing Hydrogen. Related Patents: 7153489; 7,665,328; 7078012.

463

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Fossil Energy; Information Technology; Manufacturing ... The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ...

464

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by...

465

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network (OSTI)

Feb 17, 2012 ... voirs, fossil energy (coal, gas), atom (nuclear fission process) and to a small .... The dynamic of the stocks of fuel is clear from the differential ...

466

Steam distillation effect and oil quality change during steam injection  

SciTech Connect

Steam distillation is an important mechanism which reduces residual oil saturation during steam injection. It may be the main recovery mechanism in steamflooding of light oil reservoirs. As light components are distilled the residual (initial) oil, the residuum becomes heavier. Mixing the distilled components with the initial oil results in a lighter produced oil. A general method has been developed to compute steam distillation yield and to quantify oil quality changes during steam injection. The quantitative results are specific because the California crude data bank was used. But general principles were followed and calculations were based on information extracted from the DOE crude oil assay data bank. It was found that steam distillation data from the literature can be correlated with the steam distillation yield obtained from the DOE crude oil assays. The common basis for comparison was the equivalent normal boiling point. Blending of distilled components with the initial oil results in API gravity changes similar to those observed in several laboratory and field operations.

Lim, K.T.; Ramey, H.J. Jr.; Brigham, W.E.

1992-01-01T23:59:59.000Z

467

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

: Introduction, Steam Generation Efficiency Resource Utilization Analysis, and Steam Distribution System Losses Stack Losses Resource Utilization Analysis Steam Distribution System Losses Conclusion Quiz If youDOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8

Oak Ridge National Laboratory

468

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

horizontal runs of steam distribution piping from a common header. Steam distribution piping is insulatedDOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome

Oak Ridge National Laboratory

469

Steam turbine for geothermal power generation  

SciTech Connect

A steam turbine comprises a casing; turbine vanes rotatably set in the casing; a plurality of partition walls which extend along radial directions from the rotation center of the turbine vanes to define a plurality of steam valve chambers in the casing; steam supply pipes respectively connected to the corresponding steam valve chambers; and regulating valves which are fitted to the respective steam supply pipes to regulate respectively the flow rate of steam streams supplied to the respective steam valve chambers. At least one partition wall for dividing the interior space of the steam turbine into adjacent steam valve chambers is provided with at least one penetrating hole for causing the steam valve chambers to communicate with each other.

Tsujimura, K.; Hadano, Y.

1984-04-10T23:59:59.000Z

470

Simplify heat recovery steam generator evaluation  

SciTech Connect

Heat recovery steam generators (HRSGs) are widely used in process and power plants, refineries and in several cogeneration/combined cycle systems. They are usually designed for a set of gas and steam conditions but often operate under different parameters due to plant constraints, steam demand, different ambient conditions (which affect the gas flow and exhaust gas temperature in a gas turbine plant), etc. As a result, the gas and steam temperature profiles in the HRSG, steam production and the steam temperature differ from the design conditions, affecting the entire plant performance and economics. Also, consultants and process engineers who are involved in evaluating the performance of the steam system as a whole, often would like to simulate the performance of an HRSG under different gas flows, inlet gas temperature and analysis, steam pressure and feed water temperature to optimize the entire steam system and select proper auxiliaries such as steam turbines, condensers, deaerators, etc.

Ganapathy, V. (ABCO Industries, Abilene, TX (US))

1990-03-01T23:59:59.000Z

471

ROI Detection Using Spatial Kernel Based Filter for Steam Generator Tube Inspection in Eddy Current Nondestructive Evaluation  

Science Conference Proceedings (OSTI)

A combined image processing algorithm for ROI detection is presented for automatic analysis of eddy current data collected during the inspection of steam generator tubes in nuclear power plants. Keywords: steam generator, eddy current inspection, rotating probe coil, noise removal scheme

Jaejoon Kim; Lalita Udpa

2012-04-01T23:59:59.000Z

472

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

473

The Elimination of Steam Traps  

E-Print Network (OSTI)

How would you like to have a share of $154,000,000,000 a year? According to the Department of Energy that is roughly what was spent for creating steam in 1978. Steam generation accounts for fully one half of the industrial and commercial energy dollar. That figure could be reduced by 10-20% or more by the simple elimination of steam traps. Recent engineering developments show that steam traps can be eliminated. Documented results demonstrate that the retrofitting of existing facilities to alternative methods of condensate removal is simple and economically feasible, with paybacks of less than 12 months. Advantages obtained in the first year remain consistent for several years after conversion with virtual elimination of maintenance.

Dickman, F.

1985-05-01T23:59:59.000Z

474

Computer Optimization of Steam Production  

E-Print Network (OSTI)

As fuel costs continued to rise sharply during the 1970' s, the staff at Exxon's Benicia Refinery realized there was a growing economic incentive to optimize the production of high pressure steam. A significant percentage of the Refinery's total energy is consumed in generating high pressure steam. Recently, a computer program was implemented to optimize high pressure steam production. The first challenge in developing the program was to provide reliable analog and digital instrumentation allowing simultaneous analog header control along with effective digital steam flow control. Once appropriate instrumentation became available, the effort focused on identifying the best approach for developing the computer control program. After screening several alternatives, it became apparent that we were dealing with an allocation problem which could be effectively handled with a linear program. The control program has performed well since it was commissioned. It has experienced a service factor of greater than 95% while reducing energy consumption of the boilers by over 500 million Btu's per day.

Todd, C. H.

1982-01-01T23:59:59.000Z

475

The steam engine and industrialization  

E-Print Network (OSTI)

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

476

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs of the process plant, cogeneration or combined cycle plant. There is no need to design the HRSG per se and hence simulation is a valuable tool for anyone interested in evaluating the HRSG performance even before it is designed. It can also save a lot of time for specification writers as they need not guess how the steam side performance will vary with different gas/steam parameters. A few examples are given to show how simulation methods can be applied to real life problems.

Ganapathy, V.

1993-03-01T23:59:59.000Z

477

U. S. Department of Energy Office of Fossil Energy  

E-Print Network (OSTI)

U. S. Department of Energy Office of Fossil Energy ADVANCED RESEARCH MATERIALS PROGRAM MANAGEMENT Testing in Fossil Energy SystemsMaterials Testing in Fossil Energy Systems Improved Refractories for IGCC-505-667-5868 birdsell@lanl.gov Materials and Components in Fossil Energy Applications Newsletter MCNL-5 Ian Wright (865

478

Evolution of Marine Invertebrates and the Burgess Shale Fossils  

E-Print Network (OSTI)

Evolution of Marine Invertebrates and the Burgess Shale Fossils Geology 331, Paleontology #12 #12;Burgess Shale Fossils · Most are soft-bodied fossils, a very rare kind of fossilization. · Of today's 32 living phyla, 15 are found in the Burgess Shale. The other 17 are microscopic or too delicate

Kammer, Thomas

479

Steam Generator Management Program: Flaw Handbook Calculator  

Science Conference Proceedings (OSTI)

The EPRI Steam Generator Management Program: Steam Generator Degradation Specific Flaw Handbook v1.0 defines burst pressure equations for steam generator tubes with various degradation morphologies, and the EPRI Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines (1019038) describes a probabilistic evaluation process which can be used to account for key input parameter uncertainties. The Flaw Handbook Calculator software is an automated Microsoft Excelspreadsheet which cal...

2010-04-20T23:59:59.000Z

480

Steam turbine gland seal control system  

SciTech Connect

A high pressure steam turbine having a sealing gland where the turbine rotor penetrates the casing of the turbine. Under certain conditions the gland is sealed by an auxiliary steam supply, and under other conditions the gland is self sealed by turbine inlet steam. A control system is provided to modify the temperature of the auxiliary steam to be more compatible with the self sealing steam, so as to eliminate thermal shock to the turbine rotor.

Martin, H. F.

1985-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 11.7 Installed Nameplate Capacity of Fossil-Fuel Steam ...  

U.S. Energy Information Administration (EIA)

Cooling Towers Flue Gas Desulfurization (Scrubbers) Total 2 1985 302,056 120,591 56,955 304,706 36,054 28,895 65 62,371 338,110 149,486 57,020 367,078

482

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

483

Solar-Augment Potential of U.S. Fossil-Fired Power Plants  

DOE Green Energy (OSTI)

Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

2011-02-01T23:59:59.000Z

484

Free World Energy Resources--Petroleum, Coal, Nuclear  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... Free World Energy Resources--Petroleum, Coal, Nuclear ... William Pitt the Younger in terms of the development of steam as a source of power.

485

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

National Nuclear Security Administration (NNSA)

rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information (including information...

486

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

487

Field Guide: Visual Inspection of Steam Turbine Generators  

Science Conference Proceedings (OSTI)

Mechanical failures of generator rotors and stators in fossil and nuclear power plants represent a loss of availability for power generation suppliers worldwide. Underlying condition issues and related problems can result in efficiency losses that restrict operation, cause reduction of maximum capacity, and create significant economic disadvantage. This field guide, part of a series of EPRI guides intended for practical use at power plants and in transmission ...

2012-12-14T23:59:59.000Z

488

ProSteam- A Structured Approach to Steam System Improvement  

E-Print Network (OSTI)

Optimal operation of site utility systems is becoming an increasingly important part of any successful business strategy as environmental, legislative and commercial pressures grow. A reliable steam model allows a clear understanding of the system and of any operational constraints. It can also be used to determine the true cost of improvement projects, relating any changes in steam demand back to purchased utilities (fuel, power, and make-up water) at the site boundary. Example projects could include improved insulation, better condensate return, increased process integration, new steam turbines or even the installation of gas-turbine based cogeneration. This approach allows sites to develop a staged implementation plan for both operational and capital investment projects in the utility system. Steam system models can be taken one step further and linked to the site DCS data to provide real-time balances and improve the operation of the system, providing an inexpensive but very effective optimizer. Such a model ensures that the steam system is set in the optimum manner to react to current utility demands, emissions regulations, equipment availability, fuel and power costs, etc. This optimization approach typically reduces day-to-day utility system operating costs by between 1% and 5% at no capital cost.

Eastwood, A.

2002-04-01T23:59:59.000Z

489

DOE BestPractices Steam End User Training  

E-Print Network (OSTI)

DOE BestPractices Steam End User Training Guide Alternate Text Narratives and Graphic will discuss fuel selection, steam demands, and cogeneration. The Steam Distribution System Losses module

Oak Ridge National Laboratory

490

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

2005-09-01T23:59:59.000Z

491

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

492

Evaluation of UHT milk processed by direct steam injection and steam infusion technology.  

E-Print Network (OSTI)

??UHT direct steam injection and steam infusion are widely used; however there is no comparison of their impact on milk components. This study evaluates the… (more)

Malmgren, Bozena

2007-01-01T23:59:59.000Z

493

FE - Fossil Energy - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(1) (1) Office of Fossil Energy Energy Conservation Plan The Office of Fossil Energy (FE) strongly supports the implementation of strategies to reduce energy consumption in the Headquarters buildings. FE engaged its employees by sending an office-wide email soliciting input for this plan; the ideas were then compiled into this document. The focus of this plan is on how FE employees can change their behavior to reduce energy consumption. This plan purposefully excludes measures that would require any significant capital investment. The measures outlined below in each category can be implemented without much effort and with minimal cost and will reduce the energy used by Fossil Energy employees in the Forrestal and Germantown buildings. FE recognizes that transparency is a key element of a successful energy conservation

494

Poland Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

495

Japan Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania » Japan Oceania » Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

496

Change steam tapping to save energy  

SciTech Connect

Induction turbines are common in large plants. They use both high pressure (HP) and low pressure (LP) steam and exhaust into a surface condenser operating under vacuum. Induction turbines are especially useful since they use maximum available LP steam with a balanced amount of HP steam and thus, achieve the best overall thermodynamic efficiency. LP steam is generally available as flash steam for boiler blow down, exhausts from back pressure turbines, process waste-heat recovery, etc. Typically, an LP steam header is routed around the plant with several connections to receive and supply steam. Therefore, it is common to connect each steam user/supplier to the nearest point on the main header. The portion of the header where steam turbine exhausts are connected has superheated LP steam and the header portion which receives steam from waste heat recovery, boiler blow down, etc., has saturated LP steam. Some portion of the header has mixed steam. Thus, the temperature of LP steam in the header varies over its length.

Antony, S.M.; Joshi, G.C.

1987-07-01T23:59:59.000Z

497

Steam Pressure Reduction, Opportunities, and Issues  

Science Conference Proceedings (OSTI)

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

498

Steam Generator Management Program: Evaluation of Eddy Current Data Analysis Algorithms  

Science Conference Proceedings (OSTI)

As part of the U.S. Nuclear Regulatory Commission’s (NRC’s) International Steam Generator Tube Integrity Program, Argonne National Laboratory (ANL) was contracted to develop algorithms to assist in the analysis of rotating probe eddy current data. The algorithms were designed for both flaw detection and sizing. Rotating probe data collected on the flawed tubes in the NRC’s steam generator (SG) mockup were used to document the performance of the algorithms for both detection and ...

2012-09-28T23:59:59.000Z

499

Distribution of fluid phases within the steam zone in steam injection processes  

SciTech Connect

The saturation distribution of steam, water, and oil within the steam zone in a steam injection process at constant injection rates is examined. It is shown theoretically that for typical values of injection parameters the oil saturation in the steam zone rapidly reaches its residual value at steam zone conditions. This result, which corroborates previous experimental evidence, is a consequence of the relatively fast changes in phase saturations compared to the rate of the advance of the steam front. Explicit expressions for the steam saturation distribution are obtained. It is shown that the average steam saturation is a slightly decreasing function of time and approaches a limiting value which is a nearly constant fraction of the steam saturation at the injection point. This result provides theoretical justification for the often made assumption of constant average steam saturation in steam injection calculations.

Yortsos, Y.C.

1982-09-01T23:59:59.000Z

500

IMPROVEMENTS IN STEAM GENERATING PLANT AND AN IMPROVED METHOD OF GENERATING STEAM  

SciTech Connect

A steam generating plant, designed for heat transfer from a liquid metal (potassium, sodium, or their alloy) with reduced danger of explosion, is based on the fact that, if steam (especially superheated) rather than water contacts the liquid metal, the risk of explosion is much reduced. In this plant steam is superheated by heat transfer from liquid metal, the steam bsing generated by heat transfer between the superheated steam and water. Diagrams are given for the plant, which comprises a series of heat exchangers in which steam is superheated; part of the superheated steam is recycled to convert water into steam. Apart from the danger of a steam--liquid metal contact, the main danger is that the superheated steam might cool, coming to the saturated condition; this danger can be averted by setting up mceans for detecting low steam temperatures. (D.L.C.)

Zoller, R.E.

1960-09-01T23:59:59.000Z