Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Broader source: Energy.gov [DOE]

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

2

Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

3

Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

2013-11-19T23:59:59.000Z

4

Fossil Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Energy Fossil Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fossil Energy Bookmark and Share Conceptual designs of advanced coal-fired combustion systems require furnaces and heat transfer surfaces that operate at much higher temperatures than those in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates the development and application of ceramic materials in these designs.

5

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

6

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

7

Suez SNC-Lavalin Nuclear to replace US steam generator  

Science Journals Connector (OSTI)

SNC-Lavalin Nuclear (USA) has signed a contract with Xcel Energy to replace the Unit #2 steam generators at the Prairie Island Nuclear Generating Plant (PINGP) in Welch, Minnesota.

2010-01-01T23:59:59.000Z

8

Boiler and steam generator corrosion: Fossil-fuel power plants. March 1977-December 1989 (A Bibliography from the NTIS data base). Report for March 1977-December 1989  

SciTech Connect (OSTI)

This bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. Hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 88 citations fully indexed and including a title list.)

Not Available

1990-05-01T23:59:59.000Z

9

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect (OSTI)

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

10

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect (OSTI)

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

11

Acoustic monitoring and signature analysis in nuclear and fossil energy generation  

Science Journals Connector (OSTI)

Acoustic monitoring and analysis in nuclear and fossil energy plants has been accompanied by transducer development for the hot environment. The Nuclear Regulatory Commission requires acoustic monitoring systems on nuclear reactors for detecting potential failures. Accelerometers are attached at critical points and their output is automatically analyzed to give warnings of loose parts or excessive vibration. In addition to providing a warning the system can monitor arrival time to be used for fault location. For use as a potential boiling detector of breeder reactors the acoustic signature of the sodium coolant boiling has been compared with background noise level. High temperature sodium?immersible microphones and waveguides for smooth energy transfer were developed for this investigation. High?temperature acoustic sensors have been used in a coal gasification plant. The presence of solids in a steam?char line has been automatically determined using passive monitoring of relative sound intensities of different frequency bands.

Henry B. Karplus

1982-01-01T23:59:59.000Z

12

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

13

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

14

Synergistic energy conversion processes using nuclear energy and fossil fuels  

Science Journals Connector (OSTI)

This paper reviews the methods of producing energy carriers, such as electricity, hydrocarbons and hydrogen, by utilising both nuclear energy and fossil fuels synergistically. There are many possibilities for new, innovative, synergistic processes, which combine chemical and nuclear systems for efficient, clean and economical production of energy carriers. Besides the individual processes by each form of energy to produce the energy carriers, the synergistic processes which use two primary energies to produce the energy carriers will become important with the features of resource saving, CO2 emission reduction and economic production, due to the higher conversion efficiency and low cost of nuclear heat. The synergistic processes will be indispensable to the 21st century, when efficient best-mixed supplies of available primary energies are crucial.

Masao Hori

2009-01-01T23:59:59.000Z

15

The nuclear heated steam reformer Design and semitechnical operating experiences  

Science Journals Connector (OSTI)

Good operating experiences of the EVA I- and EVA II-plant have been described. Therin the comparison of the different catalyst concepts has been given. Further the behaviour of the bundle of EVA II plant by isolation of individual reformer tubes as well as the performance of the bundle under transient conditions have been explained. Different design concepts for a nuclear heated steam reformer based on the concentric tubes and baffles have been given. Main points of studies are constructional details, thermohydraulic of the bundle and stress analysis. It can be shown that the present standard of knowledge allows the application of the steam reformer for coal refinement with nuclear heat.

J. Singh; H.F. Niessen; R. Harth; H. Fedders; H. Reutler; W. Panknin; W.D. Mller; H.G. Harms

1984-01-01T23:59:59.000Z

16

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

17

The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach  

Science Journals Connector (OSTI)

Given the global energy trend to substitute fossil fuel, the nuclear power has known an important ... degrees of uncertainties related to nuclear and fossil fuel. The higher uncertainty of fossil fuel prices make...

Mohamed Ben Abdelhamid; Chaker Aloui; Corinne Chaton

2010-04-01T23:59:59.000Z

18

Removal of deposited copper from nuclear steam generators  

SciTech Connect (OSTI)

A review of the copper-removal process implemented during the cleaning of the NPD nuclear steam generator in Ontario revealed that major shortcomings in the process were depletion of the strong ammonia solution and relatively poor copper removal. Tests have shown that the concentration of the ammonia solution can be preserved close to its initial value, and high concentrations of complexed copper obtained, by sparging the ammonia solution with oxygen recirculating through a gas recirculation loop. Using recirculating oxygen for sparging at ambient air temperature, approximately 11 g/l of copper were dissolved by 100 g/l ammonia solution while the gaseous ammonia content of the recirculating gas remained well below the lower flammability limit. The corrosion rates of mild steel and commonly used nuclear steam generator tube materials in oxygenated ammonia solution were less than 30 mil/yr and no intergranular attack of samples was observed during tests. A second technique studied for the removal of copper is to ammoniate the spent iron-removal solvent to approximately pH 9.5 and sparge with recirculating oxygen. Complexed ferric iron in the spent iron-removal solvent was found to be the major oxidizing agent for metallic copper. The ferric iron can be derived from oxidation of dissolved ferrous iron to the ferric state or from dissolved oxides of iron directly. To extract copper from the secondary sides of nuclear steam generators, strong ammonia solution sparged with recirculating oxygen is recommended as the first stage, while ammoniated spent iron-removal solvent sparged with recirculating oxygen may be used to remove the copper freshly exposed during the removal of iron.

McSweeney, P.

1982-05-01T23:59:59.000Z

19

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

20

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental  

SciTech Connect (OSTI)

Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a -SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

2013-01-01T23:59:59.000Z

22

Nuclear Engineering and Design 189 (1999) 757 Lower head integrity under steam explosion loads  

E-Print Network [OSTI]

Nuclear Engineering and Design 189 (1999) 7­57 Lower head integrity under steam explosion loads T Engineering, Building 208, Argonne National Laboratory, 9700 South Cass A6enue, Argonne, IL 60439, USA Received 24 August 1998; accepted 24 November 1998 Abstract Lower head integrity under steam explosion

Yuen, Walter W.

23

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel3 of HEALTH AND SAFETY IMPACTS OF FOSSIL-FUEL NUCLEAR,HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

24

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

25

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Rosen, L.C.

2010-01-01T23:59:59.000Z

26

High Temperature Materials for Nuclear Fast Fission and Fusion Reactors and Advanced Fossil Power Plants  

Science Journals Connector (OSTI)

Development of materials plays a crucial role in the economic feasibility of fast nuclear fission and fusion power plant. In order to meet this objective, one of the methods is to extend the fuel burnup and decreasing doubling time. The burnup is largely limited by the void swelling and creep resistances of the fuel cladding and wrapping materials. India's 500 \\{MWe\\} Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are alloy D9 as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup further, titanium, phosphorous and silicon contents in alloy D9 have been optimized for better swelling and creep resistances to develop modified version of alloy D9 as IFAC-1. Creep resistance of inherently void swelling resistance 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long- term creep strength, similar to D9, for increasing the fuel burnup. Development of modified 9Cr-1Mo steel clad tube and 9Cr-1Mo steel wrapper for future metallic fuel reactors being developed for reducing the doubling time are in progress. Extensive studies on resistance of this new generation core materials to void swelling are also under progress along with material development. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt.% having higher creep strength to increase the life of fast reactor and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator are other developments. India's participation in ITER programme necessitates the development of India-specific RAFM steel for Test Blanket Module (TBM). A comprehensive research programme is being carried out to develop India-specific 9Cr-W-Ta RAFM steel with the optimization of tungsten and tantalum contents for better combination of strength and toughness. Based of the extensive mechanical tests including impact, tensile, creep and fatigue on four heats of RAFM steels having tungsten in the range 1 2 wt. % and tantalum in the range 0.06 -.014 wt., the RAFM steel having 1.4 wt. % tungsten with 0.06 wt. % tantalum is found to possess better combination of strength and toughness. This steel is considered as India-specific RAFM steel and TBM is being manufactured by this RAFM steel. To limit the emission of green house gases, a research and development programme has been initiated to develop advanced ultra super critical fossil fuel fired thermal power plants working at temperature of around 973 K and pressure of 300 bar. High temperature creep strength super 304H austenitic steel and Inconel 617 superalloy tubes are indigenously developed for this purpose.

T. Jayakumar; M.D. Mathew; K. Laha

2013-01-01T23:59:59.000Z

27

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

of the health and safety impact of fossil fuel emissions.to public health and safety, of any fossil fuel plant areHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

28

Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation  

Science Journals Connector (OSTI)

A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation.

Ralph E.H. Sims; Hans-Holger Rogner; Ken Gregory

2003-01-01T23:59:59.000Z

29

Locating hot and cold-legs in a nuclear powered steam generation system  

DOE Patents [OSTI]

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

Ekeroth, D.E.; Corletti, M.M.

1993-11-16T23:59:59.000Z

30

A comparative analysis of accident risks in fossil, hydro, and nuclear energy chains  

SciTech Connect (OSTI)

This study presents a comparative assessment of severe accident risks in the energy sector, based on the historical experience of fossil (coal, oil, natural gas, and LPG (Liquefied Petroleum Gas)) and hydro chains contained in the comprehensive Energy-related Severe Accident Database (ENSAD), as well as Probabilistic Safety Assessment (PSA) for the nuclear chain. Full energy chains were considered because accidents can take place at every stage of the chain. Comparative analyses for the years 1969-2000 included a total of 1870 severe ({>=} 5 fatalities) accidents, amounting to 81,258 fatalities. Although 79.1% of all accidents and 88.9% of associated fatalities occurred in less developed, non-OECD countries, industrialized OECD countries dominated insured losses (78.0%), reflecting their substantially higher insurance density and stricter safety regulations. Aggregated indicators and frequency-consequence (F-N) curves showed that energy-related accident risks in non-OECD countries are distinctly higher than in OECD countries. Hydropower in non-OECD countries and upstream stages within fossil energy chains are most accident-prone. Expected fatality rates are lowest for Western hydropower and nuclear power plants; however, the maximum credible consequences can be very large. Total economic damages due to severe accidents are substantial, but small when compared with natural disasters. Similarly, external costs associated with severe accidents are generally much smaller than monetized damages caused by air pollution.

Burgherr, P.; Hirschberg, S. [Paul Scherrer Institute, Villigen (Switzerland)

2008-07-01T23:59:59.000Z

31

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect (OSTI)

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

32

Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577  

SciTech Connect (OSTI)

Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M. [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)] [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)

2013-07-01T23:59:59.000Z

33

An Overview of Nuclear vs. Non-Nuclear Design Code Requirements for a Candidate Steam Supply System for Commercial Applications  

SciTech Connect (OSTI)

The objective is to identify (mostly for industrial end-users) the difference between a Section III nuclear steam generator (classified as Structures, Systems and Components (SSC)) and a Section VIII steam generator in the same general conditions, but used in a conventional application. Specifically, applicable temperature and pressure ranges and a more quantitative description of how materials change, design margins change and required design rigor changes are of interest. This overview focuses on the steam generator pressure boundary but the downstream piping will also be considered. Within the designations of Section III and Section VIII there are subcategories with their specific regions of applicability. Each of these subcategories has evolved their own unique features with respect to design rules and their implementation. A general overview of the various design codes will be provided in sufficient detail to illustrate the major differences; however, a detailed discussion of the various design requirements and their implementation is beyond the scope of this discussion. References (1) and (2) are sources of more detailed information. Also, example wall sizing calculations will be provided to illustrate the application of the relevant design codes under the candidate design conditions. The candidate steam supply Design Conditions are 600C (1112F) and 24MPa (3,480psi). The Operating Conditions or Service Levels will be somewhat lower and the difference shows up in some of the various design methodologies employed.

Robert Jetter

2011-04-01T23:59:59.000Z

34

Flow Noise Prediction and Control in Steam Piping Systems for Nuclear Power Plants  

Science Journals Connector (OSTI)

The flow noise of steam in pipe lines particularly in power plants is a major noise source and contributor to OSHA noise problems. The ability to predict flow noise levels is vital to efficient and economical noise control. Octave?band measurements of flow noise in the main steam piping system of a nuclear power plant were made. To determine the effect of velocity measurements were conducted for a wide range of velocities during plant start?up. Results in the form of plots of measured flow noise as a function of velocity were compared with limited data that have been recently published. An empirical formula for prediction of flow noise and corresponding design techniques for control of noise by proper pipe sizing have been developed. Alternate methods of noise control are reviewed.

F. H. Brittain; S. W. Giampapa

1973-01-01T23:59:59.000Z

35

Study on The Effect of Regenerative System on Power Type Relative Internal Efficiency of Nuclear Steam Turbine  

Science Journals Connector (OSTI)

Nuclear steam turbine use wet steam as working medium, which is unable to determine the enthalpy drop type relative internal efficiency through exhaust enthalpy of steam, but the power type relative internal efficiency avoids this question. This paper introduced the calculate method of power type relative internal efficience, and then took a 900MW nuclear steam turbine for example, calculated the power type relative internal efficiency when the factors of regenerative system are changed. The result shows that when the factors of regenerative system are changed in a large range, the power type relative internal efficiency is nearly changeless, so the effect of regenerative system on relative internal efficiency can be neglected. At last, the independence between relative internal efficiency and ideal cycle heat efficiency is calculated and analyzed.

Yong Li; Chao Wang

2012-01-01T23:59:59.000Z

36

Decommissioning of Large Components as an Example of Steam Generator from PWR Nuclear Power Plants  

SciTech Connect (OSTI)

This paper describes the procedure for the qualification of large components (Steam Generators) as an IP-2 package, the ship transport abroad to Sweden and the external treatment of this components to disburden the Nuclear Power Plant from this task, to assure an accelerated the deconstruction phase and to minimize the amount of waste. In conclusion: The transport of large components to an external treatment facility is linked with many advantages for a Nuclear Power Plant: - Disburden of the Nuclear Power Plant from the treatment of such components, - no timely influence on the deconstruction phase of the power reactor and therewith an accelerated deconstruction phase and - minimization of the waste to be returned and therewith less demand of required waste storage capacity. (authors)

Beverungen, M. [GNS Gesellschaft fur Nuklear-Service mbH, Hollestrabe 7A (Germany)

2008-07-01T23:59:59.000Z

37

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

38

Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants  

SciTech Connect (OSTI)

The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

1998-07-01T23:59:59.000Z

39

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

40

Steam System Improvements at a Manufacturing Plant  

E-Print Network [OSTI]

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents [OSTI]

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

42

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

43

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

44

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

45

Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels  

Science Journals Connector (OSTI)

Depletion of fossil fuels resources and the gradual increase in cost of their extraction and transportation to the places of their consumption put forward into a line of the most urgent tasks the problem of rational and economical utilization of fuel and energy resources, as well as introduction of new energy sources into various sectors of the national economy. The nuclear energy sources which are widely spread in power engineering have not yet been used to a proper extent in the sectors of industrial technologies and residentidal space heating, which are the most energy consuming sectors in the national economy. The most effective way of solving this problem can be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes and those involved in chemico-thermal systems of distant heat transmission demand the temperature of a heat carrier generated by nuclear reactors and assimilated by the above processes to be in the range from 900 to 1000C.

E.K. Nazarov; A.T. Nikitin; N.N. Ponomarev-Stepnoy; A.N. Protsenko; A.Ya. Stolyarevskii; N.A. Doroshenko

1990-01-01T23:59:59.000Z

46

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

47

NPO Turboatom steam turbine design features and modifications  

SciTech Connect (OSTI)

Since its foundation in 1934, the Kharkov Turbine Works, parent of Turboatom has developed, manufactured, adjusted and operated steam turbine plants for thermal and nuclear power stations. More than 300 steam turbines for thermal power stations with a total capacity over 100,000 MW have been manufactured. Steam turbines rated 25 to 500 MW for pressures of 2.9 to 23.5 MPa for stations operating on fossil fuel and turbines rated 30 to 1100 MW for nuclear power stations (NPS) have been produced. unique experience was gained during building and operation of the SKR-100 turbine rated 100 MW for initial steam conditions of 29.4 MPa, 650{sup o}C with steam cooling and minimum use of high-temperature materials. In addition to the turbine plants made for the power stations of the former USSR, Turboatom has manufactured 95 steam turbines for export. These are installed at 7 nuclear and 16 thermal power stations throughout the world, including Bulgaria, China, Cuba, Finland, Germany, Hungary, Korea and Rumania. Turboatom produces turbines operating at 25; 50 or 60 l/s speed of rotation.

Levchenko, E.V. [NPO Turboatom, Kharkov (Ukraine)

1995-06-01T23:59:59.000Z

48

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

49

Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study  

Science Journals Connector (OSTI)

Abstract Waste biomass is always generated during the production process in industries. The ordinary way to get rid of the waste biomass is to send them to landfill or burn it in the open field. The waste may potentially be used for co-firing with coal to save fossil fuel consumption and also reduce net carbon emissions. In this case study, the bio-waste from a Nicotiana Tabacum (NT) pre-treatment plant is used as the biomass to co-fire with coal. The samples of NT wastes were analysed. It was found that the wastes were of the relatively high energy content which were suitable for co-firing with coal. To investigate the potential and benefits for adding NT wastes to a Fluidised Bed Combustion (FBC) boiler in the plant, detailed modelling and simulation are carried out using the European Coal Liquefaction Process Simulation and Evaluation (ECLIPSE) process simulation package. The feedstock blending ratios of NT waste to coal studied in this work are varied from 0% to 30%. The results show that the addition of NT wastes may decrease the emissions of CO2 and \\{SOx\\} without reducing the boiler performance.

Hongyan Gu; Kai Zhang; Yaodong Wang; Ye Huang; Neil Hewitt; Anthony P Roskilly

2013-01-01T23:59:59.000Z

50

Fossil Energy  

Broader source: Energy.gov (indexed) [DOE]

Research and Development Fossil Energy Research and Development Table of Contents Page Appropriation Language .................................................................................................................... FE-3 Overview ............................................................................................................................................ FE-4 Coal .................................................................................................................................................. FE-13

51

New technology for purging the steam generators of nuclear power plants  

SciTech Connect (OSTI)

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

52

Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province  

Science Journals Connector (OSTI)

A method is investigated for increasing the utilization efficiency of energy resources and reducing environmental emissions, focusing on utility-scale cogeneration and the contributions of nuclear energy. A case study is presented for Ontario using the nuclear and fossil facilities of the main provincial electrical utility. Implementation of utility-based cogeneration in Ontario or a region with a similar energy system and attributes is seen to be able to reduce significantly annual and cumulative uranium and fossil fuel use and related emissions, provide economic benefits for the province and its electrical utility, and substitute nuclear energy for fossil fuels. The reduced emissions of greenhouse gases are significant, and indicate that utility-based cogeneration can contribute notably to efforts to combat climate change. Ontario and other regions with similar energy systems and characteristics would benefit from working with the regional electrical utilities and other relevant parties to implementing cogeneration in a careful and optimal manner. Implementation decisions need to balance the interests of the stakeholders when determining which cogeneration options to adopt and barriers to regional utility-based cogeneration need to be overcome.

Marc A. Rosen

2009-01-01T23:59:59.000Z

53

Model of sludge behavior in nuclear plant steam generators. Final report  

SciTech Connect (OSTI)

The accumulation of large amounts of sludge in pressurized water reactor steam generators is thought to be a cause of accelerated corrosion by trace impurities which concentrate in such deposits. Based on fundamental principles, this study develops a mathematical model for predicting the behavior (e.g., deposition and reentrainment) of sludge in steam generators. The calculated sludge behavior shows good agreement with the limited amount of experimental data available. The results suggest that the continued accumulation of sludge on the tubesheet might be preventable, and that if it could be, the incoming sludge would be removed by blowdown. An analysis of the uncertainties in the model led to suggested priorities for further analytical and experimental work to gain a better understanding of sludge behavior. 29 refs., 12 figs., 15 tabs.

Beal, S.K.; Chen, J.H.

1986-06-01T23:59:59.000Z

54

Steam generator support system  

DOE Patents [OSTI]

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

55

Steam generator support system  

DOE Patents [OSTI]

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

56

Boiler and steam generator corrosion. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

57

Boiler and steam generator corrosion. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

58

Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water  

SciTech Connect (OSTI)

An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

2013-11-15T23:59:59.000Z

59

Ediacaran Fossils  

Science Journals Connector (OSTI)

...organisms are fossilized they are typically flattened. What is of interest is that the evident quilted structure of many of the Edia-caran fauna indicates that these orga-nisms were also of a generally flattened appearance in life. Hence, at least in part...

KENNETH E. CASTER

1984-03-16T23:59:59.000Z

60

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

On other hand, accidents at nuclear facilities could nott ed expos ur e from a nuclear accident which would warrantresulting from accidents at nuclear facilities. Average

Nero, A.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fossil Energy Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Energy, the DOE National Energy Technology Laboratory, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Strategic Petroleum Reserve, and...

62

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.  

SciTech Connect (OSTI)

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 ???????????????????????????????? September 2004. ???????????????????????????????· Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. ???????????????????????????????· Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. ???????????????????????????????· Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. ???????????????????????????????· Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. ???????????????????????????????· Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. ???????????????????????????????· Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

2005-06-03T23:59:59.000Z

63

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect (OSTI)

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

64

Fossil Energy  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Fossil Energy Natural gas production from "shale" formations (fine-grained sedimentary rocks with relatively low permeability that can be rich sources of petroleum and natural gas) is one of the most rapidly-growing trends in U.S. domestic energy exploration and production. In some cases, this fast expansion has resulted in natural gas drilling and production activity in parts of the country that have seen little or no activity of this type in the recent past. "Natural Gas from Shale" explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Also included are a list of frequently asked questions, a glossary of major terms, and a list of

65

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

66

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

U. S. Conunercial Nuclear Power Plants", Report WASH-1400 (Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

67

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

68

FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP  

SciTech Connect (OSTI)

Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

Jantzen, C; Michael Williams, M

2008-01-11T23:59:59.000Z

69

Proceedings: 7th International Conference on Cycle Chemistry in Fossil Plants  

SciTech Connect (OSTI)

The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These proceedings of EPRI's Seventh International Conference on Cycle Chemistry in Fossil Plants address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for corrosion control and water preparation and purification.

None

2004-02-01T23:59:59.000Z

70

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

71

Superheated steam power plant with steam to steam reheater. [LMFBR  

SciTech Connect (OSTI)

A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

Silvestri, G.J.

1981-06-23T23:59:59.000Z

72

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect (OSTI)

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

73

Studies on steam condensation with non-condensable gases in a horizontal condenser tube for advanced nuclear reactors using RELAP5  

Science Journals Connector (OSTI)

Horizontal heat exchangers are used in advanced light water nuclear reactors in their passive cooling systems, such as Residual Heat Removal System (RHRS) and Passive Containment Cooling System (PCCS). Horizontal condensation studies of steam with non-condensable gases mixtures in these heat exchangers are very important. This work presents a comparison between simulation results and experimental data in steady state conditions for some inlet pressure, steam and non-condensable gases (air) inlet mass fractions. The test section was modelled and the simulations were performed with the RELAP5 code. Experimental tests were carried out for 200??400 kPa inlet pressure and 5%, 10%, 15% and 20% of inlet air mass fractions. Comparisons between experimental data and simulation results are presented for 200 kPa and 400 kPa pressure conditions and showed good agreement. New correlations for heat transfer coefficients in these steam-air conditions must be theoretically and experimentally studied and implemented in the RELAP5 code.

L.A. Macedo; W.M. Torres

2011-01-01T23:59:59.000Z

74

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network [OSTI]

turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

75

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

76

Fossil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fossil Fossil Fossil December 12, 2013 Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects The Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases December 12, 2013 The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory.

77

Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Broader source: Energy.gov (indexed) [DOE]

93 93 Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration August 2007 Final Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject - August 2007 i TABLE OF CONTENTS List of Acronyms and Abbreviations............................................................................................. vi Chemicals and Units of Measure ................................................................................................. ix Conversion Chart ......................................................................................................................... xi Metric Prefixes .............................................................................................................................xii

78

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect (OSTI)

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

79

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

80

Achieve Steam System Excellence- Steam Overview  

Broader source: Energy.gov [DOE]

This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently.

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

HP Steam Trap Monitoring  

E-Print Network [OSTI]

Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ... Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ...

Pascone, S.

2011-01-01T23:59:59.000Z

82

Engineering assessment of condenser deaeration retrofits for cycling fossil plants: Final report  

SciTech Connect (OSTI)

High dissolved oxygen levels in the condensate feedwater system contribute significantly to corrosion problems in steam generators, turbine rotor and blading, feedwater piping, feedwater heaters, and other plant equipment. While ingress of oxygen and oxidizing species into the condensate feedwater system cannot be completely eliminated due to a large number of potential air inleakage paths including air in-leakage into the condensate in the hotwell section of the condenser, oxygen levels could be kept to a minimum even at partial and no-load operation by improved condensate deaeration. The corrosion problems encountered in PWR plants, as well as those causing increased maintenance requirements and plant deterioration in cycling fossil plants are growing concerns to utilities. These concerns have motivated EPRI to investigate the causes and to seek remedies for the high dissolved oxygen levels that occur at start-up, low operating loads and shutdown. The purpose of this project was to develop the design, install and test three independent systems that could serve to reduce and maintain the low, dissolved oxygen content in the condensate of a peaking fossil unit under all operating conditions. If the results of the tests are favorable, the devices could be used at other peaking fossil plants and nuclear plants. 5 refs., 28 figs., 7 tabs.

Oliker, I.; Silaghy, F.; Lessley, R.

1988-01-01T23:59:59.000Z

83

Department of Energy - Fossil  

Broader source: Energy.gov (indexed) [DOE]

61 en Department of Energy Releases $8 61 en Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects http://energy.gov/articles/department-energy-releases-8-billion-solicitation-advanced-fossil-energy-projects fossil-energy-projects" class="title-link">Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects

84

Steam System Survey Guide  

Broader source: Energy.gov [DOE]

This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam system, and (5) investigating energy losses in the steam distribution system.

85

Nuclear Nonproliferation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Nonproliferation As more countries embrace nuclear power as a cost-effective and clean alternative to fossil fuels, the need exists to ensure that the nuclear fuel cycle is...

86

Steam Path Audits on Industrial Steam Turbines  

E-Print Network [OSTI]

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

87

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

88

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR  

E-Print Network [OSTI]

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR USING DOMAIN DECOMPOSITION AND LOCAL ZOOM METHODS Abstract We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator, Zoom, Domain Decomposition

Paris-Sud XI, Université de

89

Operating experience of single cylinder steam turbine with 40 inch last blade applied for combined cycle plant  

SciTech Connect (OSTI)

Inquiries and orders for combined cycle plant have increased recently because of the better efficiency of combined cycle plant in comparison with the usual fossil fuel power plant. The typical features of the steam turbine for combined cycle plant are the lower inlet steam conditions and the more driving steam flow quantity compared with the steam turbine for usual fossil fuel plants. This paper introduces the design and results of operation about 122 MW single cylinder steam turbine. Furthermore, the results of periodical overhaul inspection carried out after one year`s commercial operation is also presented.

Kishimoto, Masaru; Yamamoto, Tetsuya [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Yokota, Hiroshi [Mitsubishi Heavy Industries, Ltd., Nagasaki (Northern Mariana Islands); Umaya, Masahide [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)

1994-12-31T23:59:59.000Z

90

Thomas Reddinger Director, Steam  

E-Print Network [OSTI]

Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

91

Fossil Algae in India  

Science Journals Connector (OSTI)

... TWENTY-FIVE years ago, I reported in Nature J. the discovery of abundant fossil algae in the Cretaceous rocks of South India, especially in one of the limestones belonging ... associated flints and cherts which are their silicified representatives yielded a rich harvest of fossil algae of various kinds; these were studied and described by me in collaboration with Dr. ...

L. RAMA RAO

1958-02-22T23:59:59.000Z

92

Fossil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fossil Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Fossil energy sources, including oil, coal and natural gas, are non-renewable resources that formed when prehistoric plants and animals died and were gradually buried by layers of rock. Over millions of years, different types of fossil fuels formed -- depending on what combination of organic matter was present, how long it was buried and what temperature and pressure conditions existed as time passed.

93

Development of knowledge bases for large steam turbine transients  

SciTech Connect (OSTI)

At this time, a number of high-qualified expert teams in different countries have accumulated significant experience in working up and introducing proficient algorithms of automated control, diagnostics, monitoring, on-line informative support, and off-line analysis for large steam turbines of fossil-fired and nuclear power plant units at their transients. In particular, such works were carried out at All-Russia Thermal Engineering Research Institute in Moscow. When put into effect, these developments do improve plant unit operation and maintenance. The creation of these algorithms is based on deep technological research of turbine transients with the use of their mathematical modeling. Currently, the central problem becomes a reiteration and adaptation of these developments to other objects which differ in design, scheme, and operation features. This problem is to be solved at the least cost. For certain complex tasks, it seems to be expedient to use expert system methodology with special knowledge bases. Along with the selection of such tasks, the creation of more or less general knowledge bases requires us to stratify the potential objects according to their principle features. The proposed forms of a knowledge presentation, including the mathematical models and logical rules, should correspond to the considered tasks and objects, as well as to the program tools to be applied. Such developments have been carried out for some tasks of the operating informative support and post-operating analysis of large steam turbine transients as well as their mathematical modeling.

Leyzerovich, A. [Washington Univ., St. Louis, MO (United States)

1995-09-01T23:59:59.000Z

94

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

emergencies, Le. , accidents at nuclear facilities, there isas a result of nuclear accidents; these are the Protectiveassociated with a nuclear accident is of greater importance

Nero, A.V.

2010-01-01T23:59:59.000Z

95

Crop production without fossil fuel.  

E-Print Network [OSTI]

??With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this (more)

Ahlgren, Serina

2009-01-01T23:59:59.000Z

96

SteamMaster: Steam System Analysis Software  

E-Print Network [OSTI]

STEAMMASTER: STEAM SYSTEM ANALYSIS SOFTW ARE Greg Wheeler Associate Professor Oregon State University Corvallis, OR 9733 I ABSTRACT As director of Oregon's ]ndustrial Assessment Center, [ have encountered many industrial steam systems during... plant visits. We analyze steam systems and make recommendations to improve system efficiency. [n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a...

Wheeler, G.

97

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California",and Related Standards for Nuclear Power Plants", Lawrencejected lifetime for a nuclear power plant is 40 years, a

Nero, jA.V.

2010-01-01T23:59:59.000Z

98

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Nuclear Regulatory Commission Standard Review Plan for LightRegulatory Commission. Office of Nuclear Reactor Licens- ing. Standard Review Plan.

Nero, jA.V.

2010-01-01T23:59:59.000Z

99

Evaluation of fossil plants versus hydro plants for load frequency control  

SciTech Connect (OSTI)

The economics of using hydroplants with Francis turbines or fossil plants for load frequency control are evaluated. Using data from the TVA Gallatin steam plant and the TVA Cherokee, Wilson, and Fontana hydroplants, a cost comparison of different modes of operation for load frequency control was performed considering two plants at a time. The results showed that when the fossil plant was used for load frequency control instead of a hydro plant a lower system generation cost was incurred. Dynamic responses of fossil and hydro units, improved controls for fossil plants, and maneuvering costs of the Gallatin plant are also considered.

Broadwater, R.P.; Johnson, R.L.; Duckett, F.E.; Boston, W.T.

1985-01-01T23:59:59.000Z

100

Methane-steam reforming  

SciTech Connect (OSTI)

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fossil Energy FY 2009 Budget  

Broader source: Energy.gov [DOE]

Fossil Energy's FY 2009 budget, including request, House and Senate marks, and Omnibus appropriation.

102

Reducing emissions by addressing steam turbine inefficiencies  

SciTech Connect (OSTI)

This paper reports that inefficient steam turbines increase fossil plant emissions because additional fuel must be burned to meet the power output requirements. During a turbine outage, plant performance and maintenance staff make and prioritize repair decisions within tight time and budget constraints. This paper describes how Georgia Power identifies performance losses of degraded components in the steam path and determines their impact on heat rate. Turbine performance is assessed by a steam path audit program that Encotech has developed and make available to utilities. Georgia Power has conducted several operating tests that give good correlation with audit results. Georgia Power uses the audit information to make the most cost-effective repairs to maintain a low heat rate and to reduce emissions. The Clean Air Act presents electric utilities with the challenge of reducing emissions from fossil plants in the most cost-effective way possible. Meeting the stack emissions limitations often translates to large capital expenditures and increased cycle heat rate. One resource the electric utilities have to reduce the costly impact of compliance with the Clean Air Act is control over the efficiency of their steam turbines.

Harris, J.C. (Georgia Power Co., Atlanta, GA (United States)); Cioffi, D.H. (Encotech, Inc., Schenectady, NY (United States))

1992-01-01T23:59:59.000Z

103

Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Broader source: Energy.gov (indexed) [DOE]

93 93 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy Oak Ridge Y-12 Site Office National Nuclear Security Administration August 2007 DOE/EA-1593 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration

104

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

105

Steam Systems | Department of Energy  

Office of Environmental Management (EM)

Reduction: Opportunities and Issues How to Calculate the True Cost of Steam Industrial Heat Pumps for Steam and Fuel Savings Industrial Steam System Heat-Transfer Solutions...

106

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect (OSTI)

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

107

Steam atmosphere drying exhaust steam recompression system  

DOE Patents [OSTI]

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

108

Quantitative description of steam channels after steam flooding  

Science Journals Connector (OSTI)

Steam channeling is one of the main barriers for EOR after steam flooding. In order to enhance the oil recovery in steam flooded reservoirs, steam channel volumes should be precisely known. In ... methods has bee...

Qiang Zheng; HuiQing Liu; Fang Li; Qing Wang

2013-05-01T23:59:59.000Z

109

FOSSIL-FUEL COSTS  

Science Journals Connector (OSTI)

FOSSIL-FUEL-BASED energy production, mostly from coal and oil, causes $120 billion worth of health and other non-climate-related damages in the U.S. each year that are not figured into the price of energy, says a National Research Council report ...

JEFF JOHNSON

2009-10-26T23:59:59.000Z

110

Waste Steam Recovery  

E-Print Network [OSTI]

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

111

Downhole steam quality measurement  

DOE Patents [OSTI]

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

112

Steam Digest 2001  

SciTech Connect (OSTI)

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

113

Fossil Energy Advanced Technologies (2008 - 2009) | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) Amendment: Energy and...

114

Sequential steam; An engineered cyclic steaming method  

SciTech Connect (OSTI)

Cyclic steam injection has been the most widely used EOR method in areas of the Potter sand in the Midway-Sunset field, Kern County, CA. This paper discusses the field pilot and the statistical and theoretical studies leading to the design of a sequential steaming process,plus the implementation of this process on three leases.

Jones, J. (Santa Fe Energy Resources Inc., Bakersfield, CA (US)); Cawthon, J. (Groundwater Resources Inc. (US))

1990-07-01T23:59:59.000Z

115

Hydrocarbon steam reforming using series steam superheaters  

SciTech Connect (OSTI)

In a process for steam reforming of a hydrocarbon gas feedstream wherein: the hydrocarbon gas feedstream is partially reformed at elevated temperatures in indirect heat exchange with hot combustion gases in a direct fired primary reforming furnace provided with a convection section for recovery of excess heat from said combustion gases; and the partially reformed feedstream is then further reformed in the presence of an oxygen-containing gas and steam in a secondary reformer to form a secondary reformer gaseous effluent; the improvement which comprises recovering waste heat from said secondary reformer effluent gas and from said primary reforming combustion products by heating a high pressure saturated steam in a first steam superheating zone by indirect heat exchange with at least a portion of said secondary reformer effluent gas to form a first superheated steam stream; and further heating said first superheated steam in a second steam superheating zone by indirect heat exchange with at least a portion of said primary reformer hot combustion gases for form a second superheated steam stream.

Osman, R. M.

1985-10-08T23:59:59.000Z

116

www.fossil.energy.gov  

Broader source: Energy.gov (indexed) [DOE]

The Office of Fossil Energy (FE) programs are focused on The Office of Fossil Energy (FE) programs are focused on activities related to the reliable, efficient, affordable and en- vironmentally sound use of fossil fuels which are essential to our Nation's security and economic prosperity. FE manages DOE's Fossil Energy Research and Development Program, which includes the CCS Dem- onstration Programs; Carbon Capture and Storage and Power Systems Program; and

117

Fossil-Based Hydrogen Production  

E-Print Network [OSTI]

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

118

Review of High Temperature Water and Steam Cooled Reactor Concepts  

SciTech Connect (OSTI)

This review summarizes design concepts of supercritical-pressure water cooled reactors (SCR), nuclear superheaters and steam cooled fast reactors from 1950's to the present time. It includes water moderated supercritical steam cooled reactor, SCOTT-R and SC-PWR of Westinghouse, heavy water moderated light water cooled SCR of GE, SCLWR and SCFR of the University of Tokyo, B-500SKDI of Kurchatov Institute, CANDU -X of AECL, nuclear superheaters of GE, subcritical-pressure steam cooled FBR of KFK and B and W, Supercritical-pressure steam cooled FBR of B and W, subcritical-pressure steam cooled high converter by Edlund and Schultz and subcritical-pressure water-steam cooled FBR by Alekseev. This paper is prepared based on the previous review of SCR2000 symposium, and some author's comments are added. (author)

Oka, Yoshiaki [Nuclear Engineering Research Laboratory, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku (Japan)

2002-07-01T23:59:59.000Z

119

Fossil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 15, 2012 August 15, 2012 Alex-andra "Ale" Hakala is an award-winning geoscientist at DOE's National Energy Technology Laboratory. | Photo from the National Energy Technology Laboratory. Energy Department Lab Researcher Wins HENAAC Award for Outstanding Achievement One of the Energy Department's own talented scientists is recognized with a Great Minds in STEM award. July 26, 2012 Ohio State University (OSU) Professor Liang-Shih Fan shows Assistant Secretary for Fossil Energy Charles McConnell OSU's coal direct chemical looping reactor. | Photo by Niranjani Deshpande Making Carbon Capture and Storage Efficient and Cost Competitive Assistant Secretary for Fossil Energy Charles McConnell visited Ohio State University to highlight new Energy Department investments in carbon capture

120

Office of Fossil Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Fossil Energy Office of Fossil Energy Detection and Production of Methane Hydrate Semi-annual Progress Report Reporting Period: November, 2008-April, 2009 Submitted by: Rice University and University of Houston George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Houston May, 2009 DOE Award No.: DE-FC26-06NT42960 Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu University of Houston Department of Chemical Engineering 4800 Calhoun Street Houston, TX 77204-4004 Prepared for: United States Department of Energy National Energy Technology Laboratory Oil & Natural Gas Technology

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fossil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 28, 2010 July 28, 2010 DOE Collaboration with National Geographic's JASON Project Yields Three CODiE Awards The JASON Project's multimedia energy curriculum has earned three CODiE Awards from the Software & Information Industry Association. July 23, 2010 Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving Two Energy Department-funded projects are helping save energy and save money. Find out more here. July 23, 2010 Cool Roofs Lead to Cooler Cities Want to know more about one of the quickest and lowest cost ways we can reduce our carbon footprint and slow climate change? Read this. February 1, 2010 President Requests $760.4 Million for Fossil Energy Programs President Obama's FY 2011 budget seeks $760.4 million for the Office of Fossil Energy to support improved energy security and rapid development of

122

Experience in the repair of steam generator auxiliary feedwater nozzle  

SciTech Connect (OSTI)

The auxiliary feedwater nozzle is quite often subjected to more thermal stress cycles and other loading mechanisms during their service life than the material was designed and fabricated for at the nozzle of the earlier steam generators in many nuclear plants. During plant operation, the auxiliary feedwater nozzle outlet is exposed to the hot steam from the generator side, while the auxiliary feedwater piping which contains subcooled water from the inlet often induces water hammer as a result of the steam-water mixing phenomena. The thermal cycles and the steam bubble collapse at the nozzle may cause cracking in the nozzle liner and interior surface of the nozzle, and subsequently results in structural damage to the steam generator. This presentation is intended to share the lessons learned from the evaluation of the nozzle condition and the subsequent modification and repair made to the auxiliary feedwater nozzle at the Palisades Nuclear Plant. Other nuclear plant owners may benefit from this experience.

Chao, K.K.N. [Consumers Power Co., Jackson, MI (United States)

1996-12-01T23:59:59.000Z

123

Combating global warming via non-fossil fuel energy options  

Science Journals Connector (OSTI)

Non-fossil fuel energy options can help reduce or eliminate the emissions of greenhouse gases and are needed to combat climate change. Three distinct ways in which non-fossil fuel options can be used in society are examined here: the capture/production of non-fossil fuel energy sources, their conversion into appropriate energy carriers and increased efficiency throughout the life cycle. Non-fossil fuel energy sources are insufficient to avoid global warming in that they are not necessarily readily utilisable in their natural forms. Hydrogen energy systems are needed to facilitate the use of non-fossil fuels by converting them to two main classes of energy carriers: hydrogen (and hydrogen-derived fuels) and electricity. High efficiency is needed to allow the greatest benefits to be attained from energy options in terms of climate change and other factors. A case study is considered involving the production of hydrogen from non-fossil energy sources via thermochemical water decomposition. Thermochemical water decomposition provides a realistic future non-fossil fuel energy option, which can be driven by non-fossil energy sources (particularly nuclear or solar energy) and help combat global warming.

Marc A. Rosen

2009-01-01T23:59:59.000Z

124

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

quality assurance Standard Review Plan totally dissolvedmore fully in the Standard Review Plan (see Stage 3). Seenuclear power plants: the Standard Review Plan The Nuclear

Nero, A.V.

2010-01-01T23:59:59.000Z

126

Steam Generator Tube Integrity Program [Corrosion and Mechanics of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steam Generator Tube Steam Generator Tube Integrity Program Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

127

Nuclear cheap?  

Science Journals Connector (OSTI)

... account of the fact that if there had been no nuclear contribution the additional fossil fuel supplies would have had to come from expanded output at the marginal and most expensive ... a perfectly proper accountancy basis, including allowance for costs yet to be incurred, the price we would be paying for electricity would be higher now had fossil stations been preferred ...

P.M.S. JONES

1980-12-18T23:59:59.000Z

128

Bond Graph Model of a Vertical U-Tube Steam Condenser Coupled with a Heat Exchanger  

E-Print Network [OSTI]

level. Steam condensers are integral part of any nuclear and thermal power plant utilising steam A simulation model for a vertical U-tube steam condenser in which the condensate is stored at the bottom well and thus the bottom well acts as a heat exchanger. The storage of hydraulic and thermal energies

Paris-Sud XI, Université de

129

A Methodology for Estimating the Parameters of Steam Turbine Generator Shaft Systems for Subsynchronous Resonance Studies .  

E-Print Network [OSTI]

??The increase of coal and nuclear power steam turbines over the past few decades combined with transmission line series capacitors creates a potential drawback known (more)

Sambarapu, Krishna

2012-01-01T23:59:59.000Z

130

Geothermal steam quality testing  

SciTech Connect (OSTI)

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

131

The Invisibility of Steam  

Science Journals Connector (OSTI)

Almost everyone knows that steam is visible. After all one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature falls below 100 C (under standard conditions).

Thomas B. Greenslade Jr.

2014-01-01T23:59:59.000Z

132

Calculation of the Limiting CESSAR Steam Line Break Transients  

Science Journals Connector (OSTI)

Argonne National Laboratory (ANL), under contract to the Nuclear Regulatory Commission, performed audit calculations of the limiting and Steam Line Break (SLB) [1] transient presented in the CESSAR FSAR. The r...

G. B. Peeler; D. L. Caraher; J. Guttmann

1984-01-01T23:59:59.000Z

133

Steam reforming analyzed  

SciTech Connect (OSTI)

This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

1992-07-01T23:59:59.000Z

134

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

135

Options for Generating Steam Efficiently  

E-Print Network [OSTI]

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

136

Diagnostics based on thermodynamic analysis of performance of steam turbines: case histories  

SciTech Connect (OSTI)

The purpose of this paper is to describe some types of failures which have occurred with the ENEL stock of fossil-fuel steam turbines over the last 5--7 years. This paper also presents the corresponding thermodynamic analysis of turbine parameters which permitted failure diagnosis and pre-scheduled opening of the turbine. The examined failures concern: in-service rupture of the bell seal retainer nut between the SH steam inlet sleeves and the inner HP/IP cylinder, on turbines with a main steam inlet system with bell seals; incorrect assembly of pressure seal rings between steam inlet sleeves and the inner cylinder on turbines with a main steam inlet system with pressure seal rings during a scheduled outage; and steam flow path restriction in IP turbine inlet. Thermodynamic failure analysis and the subsequent analysis of turbine damage (mechanical and financial) enabled condition-based maintenance operations to be carried out.

Tirone, G.; Arrighi, L.; Bonifacino, L.

1996-12-31T23:59:59.000Z

137

Publications [Corrosion and Mechanics of Materials] - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Selection of Publications Bookmark and Share Journal Articles Manufacturing of representative axial stress corrosion cracks in tube specimens for eddy current testing C.B. Bahn, S. Bakhtiari, J.Y. Park, S. Majumdar Nuclear Engineering and Design, Volume 256, March 2013, Pages 38-44 Leak behavior of steam generator tube-to-tubesheet joints under

138

Integrating Nuclear Energy to Oilfield Operations Two Case Studies  

SciTech Connect (OSTI)

Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

2011-11-01T23:59:59.000Z

139

Solar Steam Nanobubbles  

Science Journals Connector (OSTI)

Solar Steam Nanobubbles ... The generated steam may also be used to drive a turbine directly for electricity generation. ... Furthermore, sputtering at gassolid and gasliquid interfaces may occur, and thermal desorption at the metalwater interface may affect the heat transfer as well. ...

Albert Polman

2013-01-02T23:59:59.000Z

140

Inspect and Repair Steam Traps  

Broader source: Energy.gov [DOE]

This tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 12, 2009 November 12, 2009 CX-000376: Categorical Exclusion Determination Boise White Paper Mill Carbon Capture and Sequestration CX(s) Applied: A1, A9, B3.1, B3.6 Date: 11/12/2009 Location(s): Richland, Washington Office(s): Fossil Energy, National Energy Technology Laboratory November 12, 2009 CX-000379: Categorical Exclusion Determination Sweeney Integrated Gasification Combined Cycle/Carbon Capture and Sequestration Project - Carbon Dioxide Pipeline and Storage CX(s) Applied: A1, A9, B3.1 Date: 11/12/2009 Location(s): Sweeney, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 12, 2009 CX-000378: Categorical Exclusion Determination Monitoring, Verification, and Analysis Feasibility Study (for Demonstration of Carbon Capture and Sequestration from Steam Methane Reforming Process

142

Case studies on recent fossil-fired plants  

SciTech Connect (OSTI)

The article summarises the findings of case studies on fossil-fired power plants carried out by the IEA Clean Coal Centre for the IEA at the request of world leaders at the Gleneagles G8 Summit in July 2005. The studies compared the cost, efficiency and emissions of eight recently constructed coal-fired plants using pulverized coal combustion with subcritical, supercritical or ultra-supercritical steam turbine cycles. Also included was a review of IGCC developments. A case study of a natural gas combined-cycle plant was included for comparison. The full report has been published by the IEA. 1 tab.

Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

2007-12-31T23:59:59.000Z

143

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,Summary of Nuclear Power Plant Operating Experience for

Nero, A.V.

2010-01-01T23:59:59.000Z

144

Steam Turbine Control Valve Noise  

Science Journals Connector (OSTI)

Although noise problems with steam turbine control valves have existed before they have become more prominent with nuclear turbines whose valves range to 20 in. in diameter. Our first?generation nuclear control valves were unacceptably noisy when operating under chocked conditions. These noise levels have been ameliorated by incorporation of a valve cage with numerous small holes. Rational design rules for this dispersive muffler have been developed from published multiple?jet noise data and improved through our own tests. However we are also evaluating other low?noise valve configurations which are consistent with turbine requirements. The approach we are developing is to investigate the internal aerodynamic noisegeneration in small air model tests and to combine this with measurements of pipe?wall transmission characteristics (being reported separately) to predict externally radiated noise. These predictions will be checked in a new steam test facility for complete scale?model valves. The small air tests show that acoustic efficiencies of throttling valve flows tend to vary with third power of Mach number when exhausting into space and with a lesser power when enclosed in a downstream pipe. At some pressure ratios narrow?band spikes appear in the spectrum and for some configurations step changes in sound power are associated with transitions in flow regimes.

Frank J. Heymann; Michael A. Staiano

1973-01-01T23:59:59.000Z

145

PIA - Fossil Energy Web System (FEWEB) | Department of Energy  

Energy Savers [EERE]

Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) More Documents & Publications...

146

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network [OSTI]

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

147

Fossil fuel furnace reactor  

DOE Patents [OSTI]

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

148

Life assessment product catalog for boilers, steam pipes, and steam turbines  

SciTech Connect (OSTI)

Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

Hoffman, S. (Hoffman (S.), Santa Clara, CA (United States))

1992-07-01T23:59:59.000Z

149

Thermodynamic investigation and environment impact assessment of hydrogen production from steam reforming of poultry tallow  

Science Journals Connector (OSTI)

Abstract In this research, various assessment tools are applied to comprehensively investigate hydrogen production from steam reforming of poultry tallow (PT). These tools investigate the chemical reactions, design and simulate the entire hydrogen production process, study the energetic performance and perform an environment impact assessment using life cycle assessment (LCA) methodology. The chemical reaction investigation identifies thermodynamically optimal operating conditions at which PT may be converted to hydrogen via the steam reforming process. The synthesis gas composition was determined by simulations to minimize the Gibbs free energy using the Aspen Plus 10.2 software. These optimal conditions are, subsequently, used in the design and simulation of the entire PT-to-hydrogen process. LCA is applied to evaluate the environmental impacts of PT-to-hydrogen system. The system boundaries include rendering and reforming along with the required transportation process. The reforming inventories data are derived from process simulation in Aspen Plus, whereas the rendering data are adapted from a literature review. The life cycle inventories data of PT-to-hydrogen are computationally implemented into SimaPro 7.3. A set of seven relevant environmental impact categories are evaluated: global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, photochemical oxidant formation, and cumulative non-renewable fossil and nuclear energy demand. The results are subject to a systematic sensitivity analysis and compared to those calculated for hydrogen production from conventional steam methane reforming. The LCA results indicate that the thermal energy production process is the main contributor to the selected environmental impact categories. Improvement actions to minimize the reforming thermal energy and the transport distance are strongly recommended as they would lead to relevant environmental improvements.

Noureddine Hajjaji

2014-01-01T23:59:59.000Z

150

FOSSIL2 energy policy model documentation: FOSSIL2 documentation  

SciTech Connect (OSTI)

This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume III lists the model equations and a one line definition for equations, in a short, readable format.

None

1980-10-01T23:59:59.000Z

151

Fossil descriptions: Private collections of fossils are a plus  

Science Journals Connector (OSTI)

... Paul Barrett and Martin Munt contend that private collections of fossil specimens hold back science because they are not readily accessible (Nature ... , but this need not be the case. The solution lies in closer collaboration between private collectors and palaeontologists. ...

Oliver W. M. Rauhut; Adriana Lpez-Arbarello; Gert Wrheide

2014-08-27T23:59:59.000Z

152

Refurbishing steam turbines  

SciTech Connect (OSTI)

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

153

Evaluating Steam Trap Performance  

E-Print Network [OSTI]

~LmT " TRIf' 1 TRIf' 2 Figure 2 It has become common practice for engineers to oversize steam traps and place more emphasis on first cost than on maintenance cost and operating 766 3 4 ESL-IE-86-06-126 Proceedings from the Eighth Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data...

Fuller, N. Y.

154

Fossil Energy FY 2015 Budget in Brief  

Broader source: Energy.gov [DOE]

Fossil Energy FY 2015 Budget in Brief document gives highlights to the budget request for the FY 2015 budget request for the Office of Fossil Energy.

155

Steam Champions in Manufacturing  

E-Print Network [OSTI]

into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills....

Russell, C.

156

Steam Trap Application  

E-Print Network [OSTI]

characteristics. 2. Understand advantages and limitations of various checking methods. 3. Use more than one checking method. 4. Understand flash condensate. 5. Condensate makes more noise than steam. 6. Trouble shoot the system. 7. Review trap... or failed steam and condensate flow~' H closed to be undetected -Not always insensitive to back ground or ambient noise -Noise in electrical system if volume too high -Head set quality important -Location of probe on trap, contact force, pressure drop...

Murphy, J. J.

1982-01-01T23:59:59.000Z

157

Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants  

Science Journals Connector (OSTI)

On-line addition of polymeric dispersants, such as poly acrylic acid (PAA), to the steam generator (SG) results in the formation of a better protective inner oxide layer that reduces subsequent corrosion of structural materials. Its dispersive action inhibits the growth of a secondary oxide layer thereby facilitating their easy removal. This paper discusses the effect of PAA on the nature of oxides formed over the surfaces of SG. In the case of carbon steel, the inner oxide layer (magnetite) formed in the presence of PAA was protective. Electrochemical studies showed a minimum concentration of 350ppb of PAA was found to be optimum. On the monel surface, in the absence of PAA, nickel ferrite was formed while in the presence of PAA, the oxide formed was a mixture of oxides of copper and nickel. A concentration of 700ppb of PAA was found to be optimum for monel. In the case of incoloy, the effect of PAA was not discernible except for the size and morphology of the crystallites formed.

Akhilesh C. Joshi; Appadurai L. Rufus; Sumathi Suresh; Palogi Chandramohan; Srinivasan Rangarajan; Sankaralingam Velmurugan

2013-01-01T23:59:59.000Z

158

The case for endurance testing of sodium-heated steam generators  

SciTech Connect (OSTI)

After operating pressurized water reactor (PWR) steam generators in U.S. nuclear plants during the past 33 years and plugging thousands of tubes and replacing numerous steam generators at immense costs, utility and steam generator designers are now confident that they can design, build, and operate PWR steam generators successfully. Deployment of liquid-metal fast breeder reactors (LMFBRs) will likely follow the same scenario if long-term testing is not performed and development completed prior to commercial deployment. A case is made for endurance testing of steam generators to be used in future LMFBRs.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Division.); Carlson, R.D. (Argonne National Lab., IL (United States)); Rodwell, E. (Electric Power Research Inst., Palo Alto, CA (United States)); Kakarala, C.R. (Babcock and Wilcox Co., Barberton, OH (United States))

1993-08-01T23:59:59.000Z

159

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

Oak Ridge National Laboratory

160

Fossil Energy Today | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog » Fossil Energy Today Blog » Fossil Energy Today Fossil Energy Today Fossil Energy Today - a free, quarterly newsletter published by the Office of Fossil Energy Fossil Energy Today - launched in January 2011 - is a free digital newsletter published quarterly by the U.S. Department of Energy's Office of Fossil Energy. Fossil Energy Today provides you with updates on important activities, progress and other developments within Fossil Energy. To subscribe, please send us an email. Issues Available for Download January 22, 2013 Fossil Energy Today - First Quarter, 2013 Here are just some of the stories featured in this issue: Carbon Storage Partner Completes First Year of CO2 Injection; Atlas Estimates 2,400 Billion Metric Tons of U.S. CO2 Storage Resource; CCUS Projects Making

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Latest advances in steam turbine design, blading, repairs, condition assessment, and condenser interaction  

SciTech Connect (OSTI)

This book contains papers presented at a conference on power generation. Topics covered include: a life extension approach for steam turbine blading in Electricite de France fossil plants, and on site 430 MW high pressure reheat turbine shell cracking and distortion repairs.

Rasmussen, D.M. (Turbine Consultants, Inc., Milwaukee, WI (US))

1989-01-01T23:59:59.000Z

162

Methane-steam reforming  

SciTech Connect (OSTI)

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

163

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network [OSTI]

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality...

Risko, J. R.

2011-01-01T23:59:59.000Z

164

Fossil Energy Research Benefits Carbon Capture and Storage  

Broader source: Energy.gov (indexed) [DOE]

Through Office of Fossil Energy (FE) Through Office of Fossil Energy (FE) research and development (R&D), the United States has become a world leader in carbon capture and storage (CCS) science and technology. CCS is a group of technologies for effectively capturing, compressing and transporting, and permanently injecting and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. It is one part of a wider portfolio strategy (including greater use of renewable and nuclear energy, and higher efficiencies) that many scientists and nations favor for achieving significant cuts in atmospheric CO 2 emissions. Fossil Energy Research Benefits Carbon Capture and Storage FE and its research facility, the National Energy Technology

165

fossil fuels | OpenEI  

Open Energy Info (EERE)

fossil fuels fossil fuels Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

166

Advanced steam parameters for pulverized coal fired boilers  

SciTech Connect (OSTI)

After the enormous efforts made in the eighties towards minimization of pollutant concentration in flue gases from power stations, public attention today has turned increasingly toward CO{sub 2} emissions from fossil fuel fired plants. This interest has, in turn, renewed interest in increasing the efficiency of thermal power plants, as this approach is by far the most practical means of reducing the specific CO{sub 2} emission rate. The Rankine steam cycle is the workhorse of the power industry. However, the steam power cycle is often regarded as having reached a maximum practical efficiency, and development effort has shifted to indirect fired cycles. In reality, Rankine cycle efficiencies equivalent to the combined Brayton/Rankine cycles are possible, and may be economically practical. The development work which would allow such steam cycle efficiencies to be realized has been limited in recent years, due to low growth rates, falling energy prices, and tying up of investment funds in environmental control equipment. This paper presents a short survey of the application for advanced steam parameters in power generation and discusses critical areas in more detail. A program undertaken by a consortium of European manufacturers and EC governments for the advancement of steam cycle efficiency is described.

Heiermann, G.; Husemann, R.U.; Kather, A.; Knizia, M.; Hougaard, P.

1996-12-31T23:59:59.000Z

167

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network [OSTI]

to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

Jones, T.

168

FOSSIL2 energy policy model documentation: FOSSIL2 documentation  

SciTech Connect (OSTI)

This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

None

1980-10-01T23:59:59.000Z

169

Reduction in Unit Steam Production  

E-Print Network [OSTI]

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

Gombos, R.

2004-01-01T23:59:59.000Z

170

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

171

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

172

Consider Steam Turbine Drives for Rotating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

173

Liquid fossil fuel technology. Quarterly technical progress rport, April-June 1983  

SciTech Connect (OSTI)

Highlights of research activities for the quarter ending June 1983 are summarized under the following headings: liquid fossil fuel; extraction; processing; utilization; and project integration and technology transfer. BETC publications are listed. Titles of featured articles are: (1) chemical flooding field test produces 975,000 barrels of oil; (2) chemicals boost recovery in steam-drive tests; (3) North Dakota carbon dioxide minitest successful; (4) carbon dioxide EOR reports issued; and (5) BETC slated for new management and new name. (ATT)

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

174

Watt steam governor  

Science Journals Connector (OSTI)

The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

Mark Denny

2002-01-01T23:59:59.000Z

175

Steamed dinosaur eggs  

Science Journals Connector (OSTI)

... a Cretaceous hatchery shows that some dinosaurs liked their nesting sites steam-heated by geothermal vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to ... vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to geothermal fields to shape nests and deposit eggs more than 100 million years ago. ...

Rex Dalton

2010-06-29T23:59:59.000Z

176

Steam management in composite mature steam floods, Midway Sunset field  

SciTech Connect (OSTI)

Vogel noted that oil production rates in many steam floods are not predictable from steam injection rates and must be estimated on some other basis. He presented a conservative method, based on simple models assuming instantaneous steam overlay, to calculate heat requirements once the oil rate is known. By more accurately describing the reservoir being flooded and the steam flood process, Vogel`s method was refined resulting in significant steam savings for SWEPI`s leasehold in the northern part of the Midway Sunset field. Analytical expressions are presented for (1) the heat required to support a steam chest descending into an oil column, (2) the heating of a cap or base rock already partially heated by an adjacent steam flood and (3) the heating of a cap or base rock which is exposed to a uniformly growing steam zone. A method is also described to operate a mature steam flood at a constant oil steam ratio while scavenging some heat stored in the steam zone.

Dorp, J.J. van; Roach, R.H.

1995-12-31T23:59:59.000Z

177

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...oxygen, or by steam reforming of the fuel to yield...coal beds contain methane adsorbed on...oxygen, or by steam reforming of the...coal beds contain methane adsorbed on...to coal-bed methane production, these...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

178

Diagnostics based on thermodynamic analysis of performance of steam turbines: Case histories  

SciTech Connect (OSTI)

The purpose of this paper is to describe some types of failures which have occurred with the ENEL stock of fossil-fuel steam turbines over the last 5--7 years. This paper also presents the corresponding thermodynamic analysis of turbine parameters which permitted failure diagnosis and pre-scheduled opening of the turbine. The examined failures concern: (1) in-service rupture of the bell seal retainer nut between a SH steam inlet sleeve and the inner HP/IP cylinder, on turbines with a main steam inlet system with bell seals; (2) incorrect assembly of pressure seal rings between steam inlet sleeves and the inner cylinder on turbines with a main steam inlet system with pressure seal rings during a scheduled outage; (3) steam flow path restriction in IP turbine inlet; (4) steam flow path restriction in 1st HP turbine stage nozzles; and (5) steam flow path restriction in 2nd HP turbine stage vanes. Thermodynamic failure analysis and the subsequent analysis of turbine damage (mechanical and financial) enabled condition-based maintenance operations to be carried out.

Tirone, G.; Arrighi, L.; Bonifacino, L.

1998-07-01T23:59:59.000Z

179

Fossil Energy RSS Feeds | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy RSS Feeds Fossil Energy RSS Feeds Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages. RSS feeds from the Office of Fossil Energy provide updates of specific interest to the fossil fuel community. Fossil Energy RSS feeds are free of charge. RSS content can be read using software called an RSS reader, feed reader, or an aggregator, which can be web-based or desktop-based. Click on RSS button below to subscribe to Fossil Energy latest news. All Fossil Energy News Clean Coal Technology News Carbon Capture and Storage News Oil & Natural Gas News

180

Morphometric identification of fossil spiders: Comment  

Science Journals Connector (OSTI)

Kinchloe Roberts et al. (2008) proposed a technique, using outline-morphometric and linear analyses to permit identification of spider compression fossils to family level. This work focussed on fossil spiders ...

D. Penney; A. M. Langan

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Steam System Balancing and Tuning  

Broader source: Energy.gov (indexed) [DOE]

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

182

Evaluation of a moisture removal device for turbine steam piping. Final report  

SciTech Connect (OSTI)

Moisture-induced erosion and corrosion of nuclear power plant steam pipes is a significant and costly maintenance problem. By removing moisture from steam leaving the high-pressure turbines, high-velocity moisture separators can minimize this damage in a vulnerable system and improve plant thermal performance.

Anderson, R.E.; Draper, K.L.; Kadlec, R.A.; Stoudt, R.A.

1985-04-01T23:59:59.000Z

183

Materials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes  

E-Print Network [OSTI]

is water electrolysis at high temperatures using heat from a nuclear reactor, known as high temperatureMaterials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis steam electrolysis (HTSE). The feasibility of this process is currently being demonstrated at Idaho

Yildiz, Bilge

184

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

185

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

SciTech Connect (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

186

HS_FossilFuels_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

Fossil Fuels Fossil Fuels Fossil Energy Study Guide: Fossil Fuels C ontrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact, most of the fossil fuels found today were formed millions of years before the fi rst dinosaurs. Fossil fuels, however, were once alive. Th ey were formed from prehistoric plants and animals that lived hundreds of millions of years ago. Th ink about what the Earth must have looked like 300 million years or so ago. Th e land masses we live on today were just forming. Th ere were swamps and bogs everywhere. Th e climate was warmer. Trees and plants grew everywhere. Strange looking animals walked on the land, and just as weird looking fi sh swam in the rivers and seas. Tiny one-celled organisms called protoplankton fl

187

Air-cooled vacuum steam condenser  

SciTech Connect (OSTI)

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

188

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect (OSTI)

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

189

Steam Cracker Furnace Energy Improvements  

E-Print Network [OSTI]

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

190

Steam System Forecasting and Management  

E-Print Network [OSTI]

by manipulation of operating schedules to avoid steam balances that result in steam venting, off gas-flaring, excessive condensing on extraction/condensing turbines, and ineffective use of extraction turbines. For example, during the fourth quarter of 1981... minimum turndown levels. Several boilers would have oeen shut down; by-product fuel gas would have been flared; and surplus low level steam would have been vented to the atmosphere. Several scenarios were studied with SFC and evaluated based...

Mongrue, D. M.; Wittke, D. O.

1982-01-01T23:59:59.000Z

191

Deaerators in Industrial Steam Systems  

Broader source: Energy.gov [DOE]

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

192

Modeling of UO{sub 2} oxidation in steam atmosphere  

SciTech Connect (OSTI)

Nuclear fuel oxidation is an important phenomenon affecting fission product behavior. As indicated by a number of studies, uranium dioxide shows a very wide range of nonstoichiometric states. In steam, fuel oxidation produces a hyperstoichiometric composition, changing the transport properties. Variation of stoichiometry changes diffusion coefficients for oxygen, noble gases, and fission products substantially, affecting the release of fission products.

Dobrov, B.V.; Likhanskii, V.V. [Triniti Research Center, Triniti, Moscow (Russian Federation); Ozrin, V.D. [Nuclear Safety Institute IBREA, Moscow (Russian Federation)] [and others

1997-12-01T23:59:59.000Z

193

Operating experience of large ultra super critical steam turbine with latest technology  

SciTech Connect (OSTI)

In Japan, the main large capacity fossil-fuel power plant larger than 500 MW are supercritical units and the steam condition of 24.2 MPa, 538/566 C has been adopted. Through extensive development work, design and material technologies for steam turbines with a 593 C steam temperature have been established, and the steam condition of 24.2 MPa, 583/593 C was applied to the 700 MW steam turbine of Hekinan No.3 Unit, Chubu Electric Power Co., Inc. for the first time in Japan. This is also the world`s largest unit with a steam condition of 593 C. The Hekinan No. 3 Unit was designed and manufactured applying the latest technologies established for 593 C application. The unit was first rolled with steam in July 1992 and after successful trial operation and tests, the No. 3 Unit started commercial operation in April 1993. This paper introduces the latest technologies and the overhaul inspection results after about one year`s commercial operation.

Kishimoto, Masaru; Minami, Yoshihiro [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Takayanagi, Kiyoshi; Umaya, Masahide [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)

1994-12-31T23:59:59.000Z

194

17th Annual Conference on Fossil Energy Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

17th Annual Conference on Fossil Energy Materials 17th Annual Conference on Fossil Energy Materials April 22-24, 2003 Table of Contents Disclaimer Papers and Presentations SESSION I - NEW ALLOYS Materials for Advanced Steam Cycles Materials for Advanced Heat Exchangers SESSION II - FUNCTIONAL MATERIALS Gas Separation Materials Materials for Gas Clean-up Fuel Cell Materials Issues SESSION III - BREAKTHROUGHS IN MATERIALS PERFORMANCE AND RELIABILITY Temperature Capabilities Beyond Current Alloys Refractories for Increased Reliability in Gasification Reactors Smart Materials Posters Coatings and Protection of Materials New Alloys Functional Materials Breakthroughs in Materials Performance and Reliabilit Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

195

Steam System Improvement: A Case Study  

E-Print Network [OSTI]

. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

Venkatesan, V. V.; Leigh, N.

196

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear tors. for of of These studies can examine safety systems or safety research programsnuclear power plants, and at risk. to reduce population The Light-water Reactor Safety Research Program

Nero, A.V.

2010-01-01T23:59:59.000Z

197

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

198

No Fossil Fuel - Kingston | Open Energy Information  

Open Energy Info (EERE)

No Fossil Fuel - Kingston No Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner No Fossil Fuel LLC Developer No Fossil Fuel LLC Energy Purchaser Net-metered Location Kingston MA Coordinates 41.97388106°, -70.72577477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.97388106,"lon":-70.72577477,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

India Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

200

Training: Steam Systems | Department of Energy  

Office of Environmental Management (EM)

required to register. Steam End User - 1 day workshop Availability: Onsite instructor-led and online self-paced workshop This course covers the operation of typical steam...

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Benchmark the Fuel Cost of Steam Generation  

Broader source: Energy.gov [DOE]

This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

202

Steam System Modeler | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency (%) Isentropic Efficiency (%) Blowdown Rate (%) Deaerator Vent Rate (%) Heat Loss (%) Condensate Return (%) Steam Mass Flow Feedwater Mass Flow Initial HP Steam...

203

Office of Fossil Energy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

Fossil Energy Fossil Energy Search Search form Search Office of Fossil Energy Office of Fossil Energy Services Services Home Petroleum Reserves Petroleum Reserves Home Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International Cooperation Natural Gas Regulation Advisory Committees Science & Innovation Science & Innovation Home Clean Coal Clean Coal Home Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and Storage Carbon Capture and Storage Home Capture Storage Utilization MVA Regional Partnerships Oil & Gas Oil & Gas Home Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Mission About Us About Us Home News & Blog News & Blog Home FE Today Press Releases & Techlines

204

Fossil Energy Word Find | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Word Search More Documents & Publications Fossil Energy Crossword Puzzle Coal Study Guide for Elementary School Guide to Low-Emission Boiler and Combustion Equipment Selection...

205

Fossil Energy (WFP) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and in the future. Fossil Energy (WFP) Responsible Contacts Thomas Wheeler Director, Workforce Analysis & Planning Division E-mail thomas.wheeler@hq.doe.gov Phone (202)...

206

Advanced Fossil Energy Projects Solicitation | Department of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Advanced Fossil Energy Projects December 12, 2013 - Attachment C - Summary GHG Emissions Data FINAL July 9, 2014 - Supplement to Loan Guarantee Announcement November...

207

Advanced Fossil Energy Projects Solicitation | Department of...  

Broader source: Energy.gov (indexed) [DOE]

for Advanced Fossil Energy Projects December 12, 2013 - Attachment C - Summary GHG Emissions Data FINAL July 9, 2014 - Supplement to Loan Guarantee Announcement Press...

208

No Fossils in This Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

209

Three Dimensional CFD Model of a Planar Solid Oxide Electrolysis Cell for Co-Electrolysis of Steam and Carbon-Dioxide  

SciTech Connect (OSTI)

A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE). A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. An experimental study is also being performed at the INL to assess the SOE. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and syn-gas production over a range of stack operating conditions. Typical results of current density versus cell potential, cell current versus H2 and CO production, temperature, and voltage potential are all presented within this paper. Plots of mole fraction of CO2, CO, H2, H2O, O2, are presented. Currently there is strong interest in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. This process takes the carbon-neutral approach where the amount of CO2 in the atmosphere does not increase. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen. In the mean time, with the price of oil currently over $70 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis or thermochemical processes, using high-temperature nuclear process heat. In order to achieve competitive efficiencies, both processes require high-temperature operation (~850C). High-temperature electrolytic CO2 and water splitting supported by nuclear process heat and electricity has the potential to produce syn-gas with an overall system efficiency near those of the thermochemical processes. Specifically, a high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to

G. Hawkes; J. O'Brien; C. Stoots; S. Herring; R. Jones

2006-11-01T23:59:59.000Z

210

Nuclear Powers Benefits  

Science Journals Connector (OSTI)

Nuclear Powers Benefits ... Using nuclear power in place of fossil-fuel energy sources, such as coal, has prevented some 1.8 million air-pollution-related deaths and 64 gigatons of carbon emissions globally over the past four decades, a study concludes. ... These estimates suggest policymakers should continue to rely on and expand nuclear power in place of fossil fuels to mitigate climate change, the authors say (Environ. ...

MARK SCHROPE

2013-04-08T23:59:59.000Z

211

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

SciTech Connect (OSTI)

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

212

Fossil Energy Today- Second Quarter, 2012  

Broader source: Energy.gov [DOE]

Here are just some of the stories featured in this issue: NETL Share Computing Speed, Efficiency to Tackle Barriers; Global Collaboration in Clean Fossil Energy; Charles McConnell Confirmed Assistant Secretary for Fossil Energy; and, New Catalyst Technology Reduces Diesel Engine Idling.

213

GCFR steam generator conceptual design  

SciTech Connect (OSTI)

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

214

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

215

Steam System Tool Suite Introduction Guide  

E-Print Network [OSTI]

)........................................................................................8 Steam System Assessment Tool (SSAT Tool, the Steam System Assessment Tool, and the 3E Plus Insulation Tool. Each one of these trainings.S.DOE Steam Tools are designed to aid in assessing steam systems by identifying areas to investigate

Oak Ridge National Laboratory

216

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8/27/2010 Steam End User Training Welcome Module Slide 1 ­ Steam End User Training Welcome to the Department of Energy's Industrial Technologies Program BestPractices Steam End-User Training. The Department of Energy

Oak Ridge National Laboratory

217

The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices  

E-Print Network [OSTI]

system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System...

Wright, A.; Hahn, G.

218

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

219

Modelling a feed-water control system of a steam generator in the framework of the dynamic reliability  

E-Print Network [OSTI]

Modelling a feed-water control system of a steam generator in the framework of the dynamic with the exploration of an industrial complex system behaviour and its prob- abilistic safety assessment (PSA critical systems), the feed-water control system of a steam generator of a pressurised water nuclear

Paris-Sud XI, Université de

220

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Steam in the Ring Discharge  

Science Journals Connector (OSTI)

The behaviour of steam and its decomposition products in the ring discharge has been examined. Dry hydrogen is not dissociated. The production of atomic hydrogen is dependent upon the presence of steam which dissociates into hydroxyl and atomic hydrogen. A secondary source of atomic hydrogen is then afforded by the interaction of hydroxyl with molecular hydrogen. The escape from the discharge of atomic hydrogen, a long-lived species, favours the dissociation of steam. Mercury vapour, on the other hand, inhibits the formation of atomic hydrogen and thus leads to a high equilibrium steam concentration. Unlike dry hydrogen, dry oxygen is dissociated into atoms, but these have a short life as such and recombine in the discharge to form molecular oxygen and ozone. The reaction mechanisms occurring in the discharge are discussed in the light of spectrographic results.

G I Finch

1949-01-01T23:59:59.000Z

222

Managing the Steam Trap Population  

E-Print Network [OSTI]

hundred steam traps installed only 58 were working effectively -- 42% needed attention! These programs had associated cost benefits of at least 100% return on investment, a maximum six month breakeven on cash flow, and an energy cost reduction amounting...

Atlas, R. D.

1983-01-01T23:59:59.000Z

223

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

224

The steam engine and industrialization  

E-Print Network [OSTI]

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

225

Capturing Energy Savings with Steam Traps  

E-Print Network [OSTI]

Capturing Energy Savings with Steam Traps Richard C; Bockwinkel General Manager Armstrong Service? A Division of Armstrong International, Inc. Orlando, Florida ABSTRACT This paper will discuss the energy savings potential of steam... Engineer Steam Traps Armstrong International, Inc. Three Rivers, Michigan basis. Finally, it's important to recognize that a steam trap program will reduce steam waste> which will reduce the amount of fuel burned> which will reduce pollutants...

Bockwinkel, R. G.; French, S. A.

226

Review of Orifice Plate Steam Traps  

Broader source: Energy.gov [DOE]

This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight their capabilities and limitations. Finally, recommendations for using orifice plate steam traps are presented, and possible applications are identified.

227

The Elimination of Steam Traps  

E-Print Network [OSTI]

claims and misinformation gener ated by over thirty-six steam trap manufacturers in the United States alone. A PARTIAL LIST OF STEAM TRAP MANUFACTURERS AAF GESTRA ANDERSON HIROSS ARMSTRONG HOFFMAN BARNES &JONES HONEYWELL BRAUKMANN BESTOBELL... removal had been devised and these same methods, with minor variations, are employed today. The inverted bucket trap was in vented in 1910 by Otto Arner, a friend of Adam Armstrong. Armstrong began his business career by making bicycle spokes...

Dickman, F.

228

Projection of world fossil fuels by country  

Science Journals Connector (OSTI)

Abstract Detailed projections of world fossil fuel production including unconventional sources were created by country and fuel type to estimate possible future fossil fuel production. Four critical countries (China, USA, Canada and Australia) were examined in detail with projections made on the state/province level. Ultimately Recoverable Resources (URR) for fossil fuels were estimated for three scenarios: Low=48.4 ZJ, Best Guess (BG)=75.7 ZJ, High=121.5 ZJ. The scenarios were developed using Geologic Resources Supply-Demand Model (GeRS-DeMo). The Low and Best Guess (BG) scenarios suggest that world fossil fuel production may peak before 2025 and decline rapidly thereafter. The High scenario indicates that fossil fuels may have a strong growth till 2025 followed by a plateau lasting approximately 50years before declining. All three scenarios suggest that world coal production may peak before 2025 due to peaking Chinese production and that only natural gas could have strong growth in the future. In addition, by converting the fossil fuel projections to greenhouse gas emissions, the projections were compared to IPCC scenarios which indicated that based on current estimates of URR there are insufficient fossil fuels to deliver the higher emission IPCC scenarios \\{A1Fl\\} and RCP8.5.

S.H. Mohr; J. Wang; G. Ellem; J. Ward; D. Giurco

2015-01-01T23:59:59.000Z

229

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

230

Monitoring of temperature-compensated conductivity in fossil power plants  

SciTech Connect (OSTI)

Specific conductivity is an inexpensive, reliable, on-line method for monitoring the overall level of contaminants and its trends in fossil plant cycles. The most important applications are the monitoring in makeup water and at the economizer inlet. In the makeup, the specific conductivity is related to the content of makeup ionic impurities and carbon dioxide. Specific conductivity at the economizer inlet is an indication of the ammonia level during normal operation, since other ionic impurity levels are relatively very low in relation to the ammonia content. Cation conductivity serves as an excellent diagnostic tool. The advantage of using strong-acid cation exchanger for the alkalizing agents elimination and for the great sensitivity improvement has already been recognized in the 1950`s. The cation conductivity is currently one of the most important {open_quotes}core parameters{close_quotes} in the Cycle Chemistry Improvement Project. In this project, the most important plant cycle locations where cation conductivity on-line monitoring is strongly advised are: condensate pump discharge; polisher outlet or economizer inlet; and hot reheat steam or main steam. An additional monitoring location is the blowdown or the downcomer of drum boilers. The cation conductivity monitoring at this location is becoming vital with the introduction of oxygenated chemistry and OH (sodium hydroxide) treatment in cycles with drum boilers. Degassed cation conductivity has been addressed. Applying this method, the effect of carbon dioxide on cation conductivity is eliminated by boiling off gaseous carbon dioxide before the actual cation conductivity monitoring. Therefore, the degassed cation conductivity reflects only the total non-volatile anionic impurity level.

Bursik, A. [Grosskraftwerk Mannheim AG (Germany)

1995-01-01T23:59:59.000Z

231

2012 Annual Planning Summary for Fossil Energy, National Energy...  

Energy Savers [EERE]

for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning Summary for Fossil Energy, National Energy...

232

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

233

Office of the Assistant General Counsel Electricity & Fossil...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Policy Office of the Assistant General Counsel Electricity & Fossil Energy Office of the Assistant General Counsel Electricity & Fossil Energy The Office of the Assistant...

234

Energy Department Releases Draft Advanced Fossil Energy Solicitation...  

Broader source: Energy.gov (indexed) [DOE]

fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII...

235

Nuclear power browning out  

SciTech Connect (OSTI)

When the sad history of nuclear power is written, April 26, 1986, will be recorded as the day the dream died. The explosion at the Chernobyl plant was a terrible human tragedy- and it delivered a stark verdict on the hope that nuclear power will one day replace fossil fuel-based energy systems. Nuclear advocates may soldier on, but a decade after Chernobyl it is clear that nuclear power is no longer a viable energy option for the twenty-first century.

Flavin, C.; Lenssen, N.

1996-05-01T23:59:59.000Z

236

Best Management Practice #8: Boiler and Steam Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop...

237

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

Broader source: Energy.gov [DOE]

This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

238

Systematic Errors in Measuring the Energy of Wet Steam with Dry-Steam Meters  

Science Journals Connector (OSTI)

Systematic errors are considered in measuring mass flow rate, specific enthalpy, thermal power, and energy for wet steam by means of meters intended for dry saturated steam.

E. G. Abarinov; K. S. Sarelo

2002-03-01T23:59:59.000Z

239

Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines  

Science Journals Connector (OSTI)

1 June 1971 research-article Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines W. A. Smeaton

1971-01-01T23:59:59.000Z

240

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect (OSTI)

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Steam Pressure Reduction, Opportunities, and Issues  

SciTech Connect (OSTI)

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

242

Global Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

243

Fossil Fuels and Carbon Capture and Storage  

Science Journals Connector (OSTI)

Reducing CO2...emissions, including those from the energy sector, presents a major challenge to the world at large. Fossil fuels provide two-thirds of the worlds electricity, with coal, in particular, the fuel ...

Keith Burnard; Sean McCoy

2012-01-01T23:59:59.000Z

244

Advanced Fossil Energy Projects Loan Guarantee Solicitation  

Energy Savers [EERE]

of production and use, including resource development, energy generation, and end use. Fossil fuels currently account for more than 80 percent of U.S. energy production and are...

245

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy Savers [EERE]

Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted...

246

Fossil energy program. Progress report, July 1980  

SciTech Connect (OSTI)

This report - the seventy-second of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process and program analysis, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, fossil energy applications assessments, performance assurance system support for fossil energy projects, international assessment of atmospheric fluidized bed combustion technology, and PFBC systems analysis.

McNeese, L. E.

1980-10-01T23:59:59.000Z

247

The Office of Fossil Energy's (FE) Clean  

Broader source: Energy.gov (indexed) [DOE]

Office of Fossil Energy's (FE) Clean Office of Fossil Energy's (FE) Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO 2 ), nitrogen oxides (NO x ) and airborne particulates (PM 10 ). The program forged cost-sharing partnerships between the U.S. Department of Energy, industry, universities and technology suppliers and users.

248

Catalytic steam reforming of hydrocarbons  

SciTech Connect (OSTI)

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

249

Solar-Augment Potential of U.S. Fossil-Fired Power Plants  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

2011-02-01T23:59:59.000Z

250

Steam systems in industry: Energy use and energy efficiency improvement potentials  

SciTech Connect (OSTI)

Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-07-22T23:59:59.000Z

251

Evaluation of steam path audits  

SciTech Connect (OSTI)

Tri-State Generation and Transmission association is the operating agent for the 1350 megawatt Craig Generating Station, located in northwestern Colorado. Tri-State has recently incorporated turbine steam path audits into their aggressive performance improvement program. The intent of the audits are to quantify and attain the most cost effective increase in turbine performance as a result of a major outage. Valuable information about performance losses in the turbine has been obtained from steam path audits conducted on the three Craig Units. However, accurate audit results often depend on the quality of measurements and the experience of the auditor. Without a second method to verify the results of a steam path audit, repairs might be performed on a non-cost effective basis, or significant performance degradations might be overlooked. In addition, an inaccurate audit may lead to erroneous expectations for performance improvements resulting from the maintenance performed during the outage.

Caudill, M.B. [Tri-State Generation and Transmission Association, Inc., Montrose, CO (United States); Griebenow, R.D. [SAIC, Huntersville, NC (United States)

1995-06-01T23:59:59.000Z

252

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

253

Applications of Nuclear Magnetic Resonance to Oil Shale Evaluation and Processing  

Science Journals Connector (OSTI)

Nuclear Magnetic Resonance (NMR) is playing an increasing role in the characterization of the organic constituents of fossil fuels. The NMR techniques that currently are being applied to fossil fuel characteri...

Francis P. Miknis; Gary E. Maciel

1982-01-01T23:59:59.000Z

254

The steam engine and what it needs  

E-Print Network [OSTI]

Simon Schaffer explains that to produce an effective steam engine you do not just need specific inventions, such as the separate condenser of James Watt, but also skills from clockworking, distillation, metal working and so on. Then the steam power...

Dugan, David

2004-08-18T23:59:59.000Z

255

Insulate Steam Distribution and Condensate Return Lines  

Broader source: Energy.gov [DOE]

This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

256

The Future of Steam: A Preliminary Discussion  

E-Print Network [OSTI]

Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade...

Russell, C.; Harrell, G.; Moore, J.; French, S.

257

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect (OSTI)

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

258

Insulate Steam Distribution and Condensate Return Lines  

SciTech Connect (OSTI)

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

259

Steam System Assessment Tool (CD-ROM)  

SciTech Connect (OSTI)

The tool will help users determine the potential energy cost and emission savings of key steam-system improvements. The tool is designed for energy operations, production, project managers, and engineers who are responsible for steam systems.

Not Available

2002-12-01T23:59:59.000Z

260

FEMP-FTA--Steam Trap Performance Assessment  

Broader source: Energy.gov (indexed) [DOE]

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

262

Improving Steam System Performance: A Sourcebook for Industry...  

Energy Savers [EERE]

in Industrial Steam Systems Insulate Steam Distribution and Condensate Return Lines Advanced Manufacturing Home Key Activities Research & Development Projects Facilities...

263

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network [OSTI]

boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank...

Smith, J. P.

2010-01-01T23:59:59.000Z

264

The Increased Expansion of Steam Attainable in Steam Trubines1  

Science Journals Connector (OSTI)

... of steam discovered by James Watt, and to endeavour to trace their application in the engines constructed by him and by the firm of Bolton and Watt, then in the ... and Watt, then in the more highly developed forms of compound, triple, and quadruple reciprocating ...

1909-02-25T23:59:59.000Z

265

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

266

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8/27/2010 Steam End User Training Navigational Tutorial Module Slide 1 ­ Introduction Hello, and welcome to the Steam End User Training. I would like to take a few minutes to show you how to navigate through

Oak Ridge National Laboratory

267

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome to the Steam System End User training. In this training, we will investigate how to assess, evaluate

Oak Ridge National Laboratory

268

Low pressure combustor for generating steam downhole  

SciTech Connect (OSTI)

A compact catalytic combustor for generating steam downhole in an oil reservoir has steam generating tubes that are attached to a metal catalyst support. The metal support comprises sheets of metal that are spaced apart and transverse to the tubes. Heat from combustion is generated on the metal sheets and is conducted to the steam generating tubes. The steam is injected into the oil reservoir. The combustion gas is vented to ground level.

Retallick, W.B.

1983-03-22T23:59:59.000Z

269

Save Energy Now in Your Steam Systems  

Broader source: Energy.gov [DOE]

This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery.

270

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network [OSTI]

of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap...

Vallery, S. J.

1982-01-01T23:59:59.000Z

271

Steam reformer study proposed by Battelle  

Science Journals Connector (OSTI)

Steam reformer study proposed by Battelle ... At a meeting held at Battelle's Columbus, Ohio, laboratories, D. B. Roach told representatives of 24 firms involved in various aspects of steam reforming that, though production of hydrogen through steam reforming has been a highly successful process, "increased plant size and more severe operating conditions have given rise to serious problems." ...

1969-01-13T23:59:59.000Z

272

Steam System Improvement: A Case Study  

E-Print Network [OSTI]

usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper...

Leigh, N.; Venkatesan, V. V.

273

Materials Performance in USC Steam  

SciTech Connect (OSTI)

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

274

Recover heat from steam reforming  

SciTech Connect (OSTI)

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

275

Generating Steam by Waste Incineration  

E-Print Network [OSTI]

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

276

Poland Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

277

Japan Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oceania » Japan Oceania » Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

278

FE - Fossil Energy - Energy Conservation Plan  

Broader source: Energy.gov (indexed) [DOE]

(1) (1) Office of Fossil Energy Energy Conservation Plan The Office of Fossil Energy (FE) strongly supports the implementation of strategies to reduce energy consumption in the Headquarters buildings. FE engaged its employees by sending an office-wide email soliciting input for this plan; the ideas were then compiled into this document. The focus of this plan is on how FE employees can change their behavior to reduce energy consumption. This plan purposefully excludes measures that would require any significant capital investment. The measures outlined below in each category can be implemented without much effort and with minimal cost and will reduce the energy used by Fossil Energy employees in the Forrestal and Germantown buildings. FE recognizes that transparency is a key element of a successful energy conservation

279

Some problems of steam turbine lifetime assessment and extension  

SciTech Connect (OSTI)

The problems of lifetime assessment and extension in reference to power equipment (including high-temperature rotors and casings of power steam turbines) and theoretical and normative grounds for these procedures, as well as some specific measures to prolong the turbine service time and diagnose the turbine components` conditions in the operation process, were covered in many published works, including the authors` ones. The present paper is to consider in more details some aspects of these problems that have not been sufficiently considered in known publications. In particular, it seems important to dwell on experimental verification of some mathematical models for calculating temperatures, stresses, and strains in the turbine casings on the basis of direct measurements at turbines in service. Another item to be discussed ia an approach to choosing the system of interrelated criteria and safety factors referring to the upper admissible values of stresses, strains, cycles, and accumulated damage, as well as crack resistance, as applied to an adopted conception of the limiting states for the rotors and casings with taking into consideration their loads and resulted stress-strain states. In this connection, it is important to arrange and use properly the continuous monitoring of temperatures, stresses, and accumulated metal damage to assess the residual lifetime of the rotors and casings more accurately. Certain design, technology, and repair measures are briefly described. They have successfully been employed at fossil power plants of the former Soviet Union to raise the steam turbine reliability and durability.

Berlyand, V.; Pozhidaev, A.; Glyadya, A. [Kharkov Central Designers Bureau (Ukraine); Plotkin, E.; Avrutsky, G. [All-Russia Thermal Engineering Research Inst., Moscow (Russian Federation); Leyzerovich, A. [Actinium Corp., Mountain View, CA (United States)

1999-11-01T23:59:59.000Z

280

Next Generation Engineered Materials for Ultra Supercritical Steam Turbines  

SciTech Connect (OSTI)

To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

Douglas Arrell

2006-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Trace fossil assemblages in selected shelf sandstones  

E-Print Network [OSTI]

with progradation of the delta. The presence of trace fossils throughout the section, as compared to the lack of burrows in the upper unit of the True Watt A-1 section, can be attributed to the marginal location of the deposits. Santa Fe 13 and Santa Fe 10... with progradation of the delta. The presence of trace fossils throughout the section, as compared to the lack of burrows in the upper unit of the True Watt A-1 section, can be attributed to the marginal location of the deposits. Santa Fe 13 and Santa Fe 10...

Locke, Kathleen Ann

2012-06-07T23:59:59.000Z

282

Airsteam gasification of biomass in fluidized bed with CO2 absorption: A kinetic model for performance prediction  

Science Journals Connector (OSTI)

Abstract Significance of decarbonized energy production in the context of a foreseeable hydrogen economy has called for the need of extensive research in biomass gasification-carbon dioxide capture technique. The feasibility of calcium oxide as a sorbent for CO2 in syngas is studied for airsteam fluidized bed (FB) gasification through a reaction kinetic modeling approach. Arrhenius rate equations are employed for primary and secondary pyrolysis, gasification and carbonation reactions. Devolatilization product yields are predicted using available correlations for FB gasification and cracking of tar is incorporated. Parametric performance analysis is carried out highlighting the significance of equivalence ratio (ER), gasification temperature, steam to biomass ratio (SBR) and sorbent to biomass ratio (SOBR). The effects of various gasifying media on H2 concentration and performance indicators such as heating value and efficiencies are analyzed. The simulation results are validated with the reported experimental results. The kinetic study reveals that airsteam gasification significantly reduces the unreacted steam but at a lower H2 concentration than steam gasification. A maximum of 53% hydrogen rich gas mixture is predicted at ER = 0.25, SBR = 1.5, SOBR = 2.7 and 1000 K. Against fossil fuel expended steam gasification, pure oxygen gasification is suggested by the study.

C.C. Sreejith; C. Muraleedharan; P. Arun

2015-01-01T23:59:59.000Z

283

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

284

Air-cooled vacuum steam condenser  

SciTech Connect (OSTI)

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms. The condensing mechanisms including: a plurality of finned tubes through which the expanded exhaust steam flows and is condensed; a plurality of bundle from headers at the lower ends of the condensing tubes for receiving exhaust steam from the turbine; a plurality of bundle divided rear headers, one for each tube row in the bundle, at the higher ends of the condensing tubes for receiving non-condensible gases; and means in the rear and last headers to remove non-condensible gasses from the rear headers along their full length.

Larinoff, M.W.

1990-03-06T23:59:59.000Z

285

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

286

Steam reformers heated by helium from high temperature reactors  

Science Journals Connector (OSTI)

The manifold possibilities of the application of helium-heated steam reformers combined with high temperature nuclear reactors are elucidated in this article. It is shown that the thermodynamic interpretation of the processes does not cause difficulties because of the good heat transfer in helium at high pressure and that helium peak temperatures of 950C are sufficient for carrying out the process. The mechanical design of the reformer tube does not lead to problems because the helium and process pressures are so chosen as to be approximately equal. The problems of hydrogen and tritium permeation as well as the contamination of the reformer tube with solid fission products seem to be solvable using the knowledge available at present. Furthermore, the various possibilities for the design arrangements of helium-heated reformer tube furnaces are shown. The status of development attained to date is outlined and in conclusion there is a survey regarding the next steps to be taken in steam reformer technology.

K. Kugeler; M. Kugeler; H.F. Niessen; K.H. Hammelmann

1975-01-01T23:59:59.000Z

287

Office of the Assistant General Counsel Electricity & Fossil Energy |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity & Fossil Energy Electricity & Fossil Energy Office of the Assistant General Counsel Electricity & Fossil Energy The Office of the Assistant General Counsel for Electricity and Fossil Energy (GC-76) provides legal support and advice, and policy guidance, to the Department on electricity, fossil energy, energy regulatory and Federal Power Marketing Administration issues. The office is the lead departmental attorney for the Assistant Secretaries for Electricity Delivery and Energy Reliability, and Fossil Energy, and provides legal advice and support on matters pertaining to the generation, transmission and distribution of electricity; natural gas production, transmission, storage, importation and exportation; oil production and storage including the Strategic Petroleum

288

Fossil Energy Materials Program conference proceedings  

SciTech Connect (OSTI)

The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

Judkins, R.R. (comp.)

1987-08-01T23:59:59.000Z

289

Fossil Gulch Wind Park | Open Energy Information  

Open Energy Info (EERE)

Fossil Gulch Wind Park Fossil Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Development Group/United Materials Developer Exergy Development Group/United Materials Energy Purchaser Idaho Power Location Northwest of Hagerman ID Coordinates 42.814261°, -114.996665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.814261,"lon":-114.996665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Steam Turbine Materials and Corrosion  

SciTech Connect (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

291

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

292

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...  

Energy Savers [EERE]

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am...

293

Implementing Agreement - U.S.-UK Collaboration in Fossil Energy...  

Broader source: Energy.gov (indexed) [DOE]

Implementing Agreement - U.S.-UK Collaboration in Fossil Energy R&D Implementing Agreement - U.S.-UK Collaboration in Fossil Energy R&D Implementing Agreement - U.S.-UK...

294

Memorandum of Understanding - U.S.-UK Collaboration in Fossil...  

Broader source: Energy.gov (indexed) [DOE]

Memorandum of Understanding - U.S.-UK Collaboration in Fossil Energy R&D Memorandum of Understanding - U.S.-UK Collaboration in Fossil Energy R&D Memorandum of Understanding -...

295

Nuclear power and the environment  

Science Journals Connector (OSTI)

Although nuclear power is not, in itself, the full answer to the problems of global warming and acid rain, it is true that nuclear power generation produces no carbon or nitrogen emissions. The wastes that nuclear power does produce are small in volume, and can be adequately isolated from the environment. The aim of this paper is to show that an expansion of the nuclear power industry should be one among several measures taken to reduce the world's use of fossil fuels.

Hans Blix

1990-01-01T23:59:59.000Z

296

Draft Advanced Fossil Energy Projects Solicitation Public Comments  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Loan Programs Office: Draft Advanced Fossil Energy Projects Solicitation Public Comments

297

2011 Annual Planning Summary for Fossil Energy (FE)  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Fossil Energy (FE).

298

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

299

Proceedings of design, repair, and refurbishment of steam turbines  

SciTech Connect (OSTI)

This book reports on the proceedings of design, repair and refurbishment of steam engines. Topics covered include: Advisor/Expert Systems for Steam Turbines; Moisture Effects on the Operating and Performance of Steam Turbines; Turbine Steam Path Development; Repair and Refurbishment of the Electric Generator Components; and Advanced Steam Turbine Designs.

Warnock, A.S. (Lehigh Univ., PA (United States))

1991-01-01T23:59:59.000Z

300

The Steam System Assessment Tool (SSAT): Estimating Steam System Energy, Cost, and Emission Savings  

E-Print Network [OSTI]

The U. S. Department of Energy's (DOE) Industrial Technology Program BestPractices Steam effort is developing a number of software tools to assist industrial energy users to improve the efficiency of their steam system. A major new Best...

Wright, A.; Bealing, C.; Eastwood, A.; Tainsh, R.; Hahn, G.; Harrell, G.

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance  

Science Journals Connector (OSTI)

Abstract The effects of primary steam superheating on steam condensation in nozzle and the performance of steam ejector were investigated using CFD (computational fluid dynamics) method. Using a wet steam model being proposed in our previous study, simulations based on the primary steam with five superheated levels were performed, and the results demonstrate the superheating operation of the primary steam weakens the spontaneous condensation intensity and postpones its occurrence within the nozzle vicinity. Due to the droplets nucleation refinement for the condensation of superheated steam, the mixing process between the primary and the secondary fluids is improved. Consequently, a higher entrainment ratio is achieved. However, the superheating operation may not exceed 20K, as its contribution on entrainment ratio improvement is not as significant as 0K20K superheating, and too much superheating will requires more energy as input, which is not a practical solution to further improve the steam ejector pumping performance.

Xiaodong Wang; Jingliang Dong; Ao Li; Hongjian Lei; Jiyuan Tu

2014-01-01T23:59:59.000Z

302

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect (OSTI)

This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

303

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

E-Print Network [OSTI]

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis ¨Ozge I¸slegen Graduate School excellent research assistance. #12;Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis Abstract: For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer

Silver, Whendee

304

Energy Savings Through Steam Trap Management  

E-Print Network [OSTI]

Energy Savings through Steam Trap Management Chris Gibbs, Account Manager, Armstrong International, Inc., Three Rivers, MI ESL-IE-08-05-08 Proceedings from theThirtieth Industrial Energy Technology Conference...-based steam trap management application developed by Armstrong International. The application calculates steam loss, fuel loss, dollar loss and CO 2 emission generation. The database allows for trend analysis, automatic energy report generation...

Gibbs, C.

2008-01-01T23:59:59.000Z

305

Steam reforming utilizing high activity catalyst  

SciTech Connect (OSTI)

High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

Setzer, H. J.

1985-03-05T23:59:59.000Z

306

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

307

Reduce Steam Trap Failures at Chambers Works  

E-Print Network [OSTI]

Ultrasonic Inspection At least 2 times per year Steam Trap Surveyor Submit reports to area management, energy team, and reliability engineers for each area every month Steam Trap Team Leader Control Plan ? Process Owner agrees...Reduce Steam Trap Failures at Chambers Works GB/BB Name: Cyndi Kouba Mentor/MBB: Andrew Degraff Team Members Michael Crowley(Site Energy Lead), (Charlie) Flanigan (Aramids-maintenance), Ben Snyder (Aramids-ATO), Michael Scruggs (Central...

Kouba, C.

308

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network [OSTI]

leakage is controlled by daily monitoring of make-up water volume. All recent heating water distribution projects have utilized above-ground, fiberglass insulated piping on elevated pipe support structures in order to avoid the potential corrosion...-insulated piping on elevated pipe support structures in order to avoid the potential corrosion and leakage issues associated with underground steam distribution. STEAM COST The remaining challenge was to minimize annual steam costs in order to enhance...

Fiorino, D. P.

309

Efficiently generate steam from cogeneration plants  

SciTech Connect (OSTI)

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

310

The Bending of Wood With Steam.  

E-Print Network [OSTI]

??Based on experimentation with the steam bending of wood to curved shapes, this thesis describes my involvement with three basic aspects of the process. First (more)

Cottey Jr., James H.

2008-01-01T23:59:59.000Z

311

Coreflood experimental study of steam displacement.  

E-Print Network [OSTI]

??The main objective of this study was to verify experimentally whether or not a Buckley-Leverett shock front exists when steam displaces oil in a porous (more)

Cerutti, Andres Enrique

2012-01-01T23:59:59.000Z

312

Covered Product Category: Commercial Steam Cookers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy cost with an average commercial electric steam cooker life of 12 years. Future electricity price trends and a 3% discount rate are based on Federal guidelines (NISTIR...

313

Covered Product Category: Commercial Steam Cookers  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

314

Industrial Steam System Heat-Transfer Solutions  

Broader source: Energy.gov [DOE]

This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications.

315

Office of Fossil Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Fossil Energy Office of Fossil Energy Celebrating a Decade of Carbon Storage Research Through Partnership Lessons learned from the Regional Carbon Sequestration Partnerships. Read more NETL Recognized for Sustainable Buildings A new awards program initiated by DOE recognizes NETL as a high-performance sustainable building Read more National Lab Technology Transfer Making a Difference Technology transfer making it possible to move innovations from lab to marketplace. Read more News November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas November 7, 2013 Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution September 18, 2013 DOE Awards Management and Operating Contract for DOE's Strategic

316

Fossil Biodiversity: Red Noise Plus Signal  

E-Print Network [OSTI]

We have examined the Fourier power spectrum as well as the Hurst exponent of extinction, origination, and total biodiversity in the marine fossil record, using a recently improved geologic timescale. We find all of them strongly inconsistent with past claims of self-similarity as well as inconsistent with random walk behavior. Instead, they are dominated by low-frequency power, with approximate f^-2 power over one decade in frequency. The spectrum turns over at about 10^8 y, lending plausibility to connections with galactic dynamics. Even in the background of this low-frequency dominance, a previously noted 62 My biodiversity cycle stands out with better than 99% confidence above the noise level, accounting for about 35% of the total variance in the fossil biodiversity record.

Adrian L. Melott; Bruce S. Lieberman

2006-06-14T23:59:59.000Z

317

Fossil Biodiversity: Red Noise Plus Signal  

E-Print Network [OSTI]

We have examined the Fourier power spectrum as well as the Hurst exponent of extinction, origination, and total biodiversity in the marine fossil record, using a recently improved geologic timescale. We find all of them strongly inconsistent with past claims of self-similarity as well as inconsistent with random walk behavior. Instead, they are dominated by low-frequency power, with approximate f^-2 power over one decade in frequency. The spectrum turns over at about 10^5 y, lending plausibility to connections with galactic dynamics. Even in the background of this low-frequency dominance, a previously noted 62 My biodiversity cycle stands out with better than 99% confidence above the noise level, accounting for about 35% of the total variance in the fossil biodiversity record.

Melott, A L; Melott, Adrian L.; Lieberman, Bruce S.

2006-01-01T23:59:59.000Z

318

Fossil energy waste management. Technology status report  

SciTech Connect (OSTI)

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

319

The Fossil Record of the Peronosporomycetes (Oomycota)  

E-Print Network [OSTI]

identified as a parasite. Key words: antheridium, Carboniferous, chert, coal ball, Devonian, fossil water mold, oogonium INTRODUCTION The Peronosporomycetes (also called Peronosporo- mycota, Oomycota or Oomycetes; David 2002) are heterotrophic eukaryotes... that thrive in both aquatic and terrestrial environments where they are effective as saprotrophs and disease-causative agents in plants and animals including humans (Margulis and Schwartz 1998). Within the group are economically important phytopathogens...

Krings, Michael; Taylor, Thomas N.; Dotzler, Nora

2011-01-01T23:59:59.000Z

320

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Conclusion Module 1 June 28, 2010 Steam EndUser Training Conclusion Module Slide 1 Conclusions Let's briefly examine the major items we have covered in this training. [Slide Visual ­ Contents of Module Sections

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Economics and policies in nuclear waste disposal  

Science Journals Connector (OSTI)

The controversy over the comparative merits of nuclear energy and fossil fuels has been raging ... important economic, environmental and ethical dimensions puzzling policy-makers as well as the general public...

E. Kula

1994-01-01T23:59:59.000Z

322

New tube bundle heat transfer correlations and flow regime maps for a Once Through Steam Generator  

E-Print Network [OSTI]

? hydraulic behavior of a, nuclear reactor coolant system. Therefore, extensive analytical and experimental research has been performed to investigate the thermal ? hydraulic behavior of the steam generators dur- ing operational and accident transients... light water reactor system transient analysis code for use in rule making, licensing audit calcula- tions, evaluation of operator guidelines, and as a basis for a, nuclear plant analyzer . The code is used extensively at the Idaho National Engineering...

Blanchat, Thomas Kevin

2012-06-07T23:59:59.000Z

323

Designing an ultrasupercritical steam turbine  

SciTech Connect (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

324

Geismar TDI Plant Steam Optimization  

E-Print Network [OSTI]

BASF North America 7 ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 BASF?s strategic principles A conscientious commitment to our investors, customers, employees...Geismar TDI Plant Steam Optimization May 23rd, 2013 IET Conference Meredith Bailey, PDP Engineer BASF Corporation (734) 324-5047 meredith.bailey@basf.com ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology...

Baily, M.

2013-01-01T23:59:59.000Z

325

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Office of Environmental Management (EM)

Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The...

326

Effective Steam Trap Selection/Maintenance - Its Payback  

E-Print Network [OSTI]

In oil refineries and petrochemical plants large number of steam traps are used to discharge condensate from steam mains, tracers and process equipment. Early efforts on steam traps focused almost exclusively on their selection and sizing...

Garcia, E.

1984-01-01T23:59:59.000Z

327

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determinations: Fossil Energy Categorical Exclusion Determinations: Fossil Energy Categorical Exclusion Determinations: Fossil Energy Categorical Exclusion Determinations issued by Fossil Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD February 6, 2013 CX-009797: Categorical Exclusion Determination Eni USA Gas Marketing, LLC CX(s) Applied: B5.7 Date: 02/06/2013 Location(s): Louisiana Offices(s): Fossil Energy January 15, 2013 CX-009796: Categorical Exclusion Determination Sempra Liquid Natural Gas Marketing, LLC CX(s) Applied: B5.7 Date: 01/15/2013 Location(s): Louisiana Offices(s): Fossil Energy January 15, 2013 CX-009533: Categorical Exclusion Determination Sempra LNG Marketing, Inc. CX(s) Applied: B5.7 Date: 01/15/2013 Location(s): California, Louisiana Offices(s): Fossil Energy November 29, 2012 CX-009523: Categorical Exclusion Determination

328

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Fossil Energy Categorical Exclusion Determinations: Fossil Energy Categorical Exclusion Determinations issued by Fossil Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD February 6, 2013 CX-009797: Categorical Exclusion Determination Eni USA Gas Marketing, LLC CX(s) Applied: B5.7 Date: 02/06/2013 Location(s): Louisiana Offices(s): Fossil Energy January 15, 2013 CX-009796: Categorical Exclusion Determination Sempra Liquid Natural Gas Marketing, LLC CX(s) Applied: B5.7 Date: 01/15/2013 Location(s): Louisiana Offices(s): Fossil Energy January 15, 2013 CX-009533: Categorical Exclusion Determination Sempra LNG Marketing, Inc. CX(s) Applied: B5.7 Date: 01/15/2013 Location(s): California, Louisiana Offices(s): Fossil Energy November 29, 2012 CX-009523: Categorical Exclusion Determination

329

Steam turbine materials and corrosion  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

330

Steam engines on a microscopic scale  

SciTech Connect (OSTI)

This article describes the operation of a miniature steam engine that can develop 100 times more power than existing microsystems actuated by electrostatic forces. The topics of the article include current uses for electrostatic actuators and possible applications of the miniature steam engine, the design and operation of the engine, and problems associated with increasing the operating frequency of the engine.

O'Connor, L.

1994-01-01T23:59:59.000Z

331

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network [OSTI]

high-efficiency NG/fuel oil boilers · Slight reduction in steam production capacity · Requires: Building heating Domestic hot water Lab sterilization UT's Steam Plant #12;· Powered by 5 boilers: 2 emissions standard (Boiler MACT): · For existing boilers w/ heat input capacity of 10 MMBtu/hr or greater

Dai, Pengcheng

332

Steam reforming utilizing sulfur tolerant catalyst  

SciTech Connect (OSTI)

This patent describes a steam reforming process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of: adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalyst of platinum supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. It also describes a steam process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of steam to the hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalysts consisting essentially of iridium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. In addition a steam reforming process is described for converting hydrocarbon material to hydrogen gas in the presence of sulfur comprising adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity sulfur tolerant catalysts consisting essentially of palladium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina.

Setzer, H.J.; Karavolis, S.; Bett, J.A.S.

1987-09-15T23:59:59.000Z

333

Steam System Optimization: A Case Study  

E-Print Network [OSTI]

This paper highlights the study findings in a steam system in a plant from a multinational Petrochemical giant in an European country. The steam system operates with an annual budget of $8.9 million (local currency was converted to US Dollars...

Iordanova, N.; Venkatesan, V. V.

334

The Progress of the Steam Turbine  

Science Journals Connector (OSTI)

... in pressure, and the steam expands gradually by small increments. In a moderate-sized turbo-motor there may be from thirty to eighty successive rings, and when the steam ... and relieve end pressure on the thrust bearing. Fig. 3 shows a 350 kilowatt turbo-alternator, thirteen of which size are now at work in the London stations.

1897-09-30T23:59:59.000Z

335

Program assists steam drive design project  

SciTech Connect (OSTI)

A new program for the HP-41CV programmable calculator will compute all parameters required for a steam drive project design. The Marx and Langenheim model assumptions are used to solve a more advanced version of the Myhill and Stegemeier model. Also, the Mandl and Volek model assuptions are used to compute the size of the steam zone.

Mendez, A.A.

1984-08-27T23:59:59.000Z

336

Use Vapor Recompression to Recover Low-Pressure Waste Steam  

Broader source: Energy.gov [DOE]

This tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

337

An in-line microwave steam quality sensor.  

E-Print Network [OSTI]

??Saturated steam is a widely used industrial medium for the efficient transfer of energy. The proportion of saturated vapor steam to saturated condensate of the (more)

Faulkner, Christopher D.

2014-01-01T23:59:59.000Z

338

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the...

339

Use Low-Grade Waste Steam to Power Absorption Chillers  

Broader source: Energy.gov [DOE]

This tip sheet on waste steam to power absorption chillers provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

340

Industrial Steam System Process-Control Schemes | Department...  

Broader source: Energy.gov (indexed) [DOE]

Steam System Process-Control Schemes (July 2003) More Documents & Publications Compressed Air Storage Strategies Save Energy Now in Your Steam Systems CIBO Energy Efficiency...

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Experimental study on steam plume and temperature distribution for sonic steam jet  

Science Journals Connector (OSTI)

The sonic steam jet in subcooled water was investigated experimentally over a wide range of steam mass flux and water temperature conditions. Four different steam plume shapes were observed in present test conditions, and the condensation form was mainly controlled by the steam mass flux and water temperature. Moreover, the unstable jet was observed on the condition of low steam mass flux and high water temperature. The transition criterion of unstable-stable jet was also given. The temperature fields in the steam plume and in the surrounding water were measured. Axial temperature distributions represented the four typical steam plumes, and the fluctuation of axial temperature confirmed the existence of expansion and compression waves. Additionally, the radial temperature distributions were independent of water temperature for small radial distance at nozzle exit, and further the axial location was apart from the nozzle exit, longer the radial distance affected by the momentum diffusion.

Xinzhuang Wu; Junjie Yan; Wenjun Li; Dongdong Pan; Ying Li

2009-01-01T23:59:59.000Z

342

Effect of steam injection location on syngas obtained from an airsteam gasifier  

Science Journals Connector (OSTI)

Abstract For a fluidized-bed gasifier, reaction conditions vary along the height of the reactor. Hence, the steam injection location may have a considerable effect on the syngas quality. The objective of this study was to investigate the effects of steam injection location and steam-to-biomass ratio (SBR) on the syngas quality generated from an airsteam gasification of switchgrass in a 25kg/h autothermal fluidized-bed gasifier. Steam injection locations of 51, 152, and 254mm above the distributor plate and \\{SBRs\\} of 0.1, 0.2, and 0.3 were selected. Results showed that the syngas H2 and CO yields were significantly influenced by the steam injection location (pgasifier efficiencies (cold gas efficiency of 67%, hot gas efficiency of 72%, and carbon conversion efficiency of 96%) were at the steam injection location of 254mm and SBR of 0.2.

Ashokkumar M. Sharma; Ajay Kumar; Raymond L. Huhnke

2014-01-01T23:59:59.000Z

343

Performance Assessment of Flashed Steam Geothermal Power Plant  

SciTech Connect (OSTI)

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

344

Fossil Energy Research Benefits Enhanced Oil Recovery  

Broader source: Energy.gov (indexed) [DOE]

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

345

System studies guiding fossil energy RD & D  

SciTech Connect (OSTI)

The article describes the following recently completed studies, all of which may be accessed on NETL's website: http://netl.doe.gov/energy-analyses/ref-shelf.html: Cost and performance baseline for fossil energy power plants - volume 1: bituminous coal and natural gas to electricity (May 2007); Increasing security and reducing carbon emissions of the US transportation sector: a transformational role for coal with biomass (August 2007); Industrial size gasification for syngas, substitute natural gas, and power production (April 2007); and Carbon dioxide capture from existing coal-fired power plants (December 2006). 2 figs.

NONE

2007-12-31T23:59:59.000Z

346

Steam Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Steam Coal Import Costs for Selected Countries Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34 39.76 66.29 70.83 70.95 82.81 150.58 NA Denmark 40.78 31.65 50.27 56.29 61.84 59.15 75.20 113.34 NA Finland 40.83 37.08 39.99 58.45 62.80 67.65 72.64 134.21 NA France 45.36 42.59 42.63 64.08 75.23 72.92 84.49 135.53 NA Germany 41.46 36.80 39.00 61.22 72.48 70.12 81.49 138.84 NA Ireland3 45.25 47.88 50.08 80.90 74.91 101.78 125.15 143.08 NA Italy 44.83 41.25 42.45 63.54 73.20 69.16 86.00 143.68 NA Japan 37.95 36.95 34.93 51.48 62.73 63.33 70.92 125.42 NA Netherlands 40.09 35.81 37.27 55.09 68.86 68.57 79.12 133.50 NA

347

Steam turbine upgrades: A utility based approach  

SciTech Connect (OSTI)

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

348

Historically Black Colleges and Universities Receive Funds for Fossil  

Broader source: Energy.gov (indexed) [DOE]

Historically Black Colleges and Universities Receive Funds for Historically Black Colleges and Universities Receive Funds for Fossil Energy Research Historically Black Colleges and Universities Receive Funds for Fossil Energy Research August 15, 2013 - 1:18pm Addthis Washington, D.C. - Five fossil energy-related projects that will help maintain the nation's energy portfolio while also providing educational and research training opportunities for tomorrow's scientists and engineers have been selected for funding by the U.S. Department of Energy (DOE). The funding opportunity to enhance scientific and technical understanding of conversion and utilization of fossil fuels is through the Office of Fossil Energy's National Energy Technology Laboratory (NETL). The DOE program involved is the Support of Advanced Fossil Resource Utilization

349

Fossil Energy Research Efforts in Carbon Capture and Storage | Department  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage May 14, 2009 - 1:54pm Addthis Statement of Dr. Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Energy and Natural Resources Committee, United States Senate. Thank you, Mr. Chairman and members of the Committee. I appreciate this opportunity to provide testimony on the United States Department of Energy's (DOE's) research efforts in carbon capture and storage. The Department of Energy has not had an opportunity to fully analyze S. 1013, and therefore, cannot take a position on the bill at this time. Introduction Fossil fuel resources represent a tremendous national asset. An abundance of fossil fuels in North America has contributed to our Nation's economic

350

Annual Steam-Electric Plant Operation and Design Data (EIA-767 data file)  

Gasoline and Diesel Fuel Update (EIA)

Electricity data files > Form EIA-767 Electricity data files > Form EIA-767 Form EIA-767 historical data files Data Released: November 02, 2006 Next Release: None(discontinued) Annual steam-electric plant operation and design data Historical data files contain annual data from organic-fueled or combustible renewable steam-electric plants with a generator nameplate rating of 10 or more megawatts. The data are derived from the Form EIA-767 "Steam-Electric Plant Operation and Design Report." The files contains data on plant operations and equipment design (including boilers, generators, cooling systems, flue gas desulfurizations, flue gas particulate collectors, and stacks). Beginning in the data year 2001, nuclear plant data were no longer collected by the survey.

351

Steam reforming utilizing iron oxide catalyst  

SciTech Connect (OSTI)

High activity steam reforming iron oxide catalysts are described. Such catalysts can be unsupported utilizing at least 90% by weight iron oxide and various modifiers (Ai/sub 2/O/sub 3/, K/sub 2/O, CaO, SiO/sub 2/) or unmodified and supported on such things as alumina, CaO impregnated alumina, and lanthanum stabilized alumina. When used in steam reformers such as autothermal and tubular steam reformers, these catalysts demonstrate much improved resistance to carbon plugging.

Setzer, H. T.; Bett, J. A. S.

1985-06-11T23:59:59.000Z

352

Baton Rouge Complex Steam Real Time Optimization  

E-Print Network [OSTI]

Baton Rouge Complex Steam Real Time Optimization IETC 2014 New Orleans, Louisiana Tope Iyun ExxonMobil Chemical Company May 22, 2014 ESL-IE-14-05-32 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20...-23, 2014 Proprietary 2 Agenda Baton Rouge Complex Steam System Overview Energy Efficiency Improvement Strategy Site-Wide Steam System Optimization Results Benefits/Wrap-Up ESL-IE-14-05-32 Proceedings of the Thrity-Sixth Industrial Energy...

Iyun, T.

2014-01-01T23:59:59.000Z

353

Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model  

SciTech Connect (OSTI)

This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.

Wagner, M. J.; Zhu, G.

2012-09-01T23:59:59.000Z

354

Fossil Power Plant Applications of Expert Systems: An EPRI Perspective  

E-Print Network [OSTI]

the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

Divakaruni, S. M.

355

Fossil Energy Technical Assistance Topic Areas | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Office of Fossil Energy EPA Regulations - Analysis to Support Planning Contact: Jordan Kislear Storage Infrastructure Contact: Mark Ackiewicz Major Demonstrations Contact:...

356

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...  

Open Energy Info (EERE)

Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background...

357

Sales of Fossil Fuels Produced from Federal and Indian Lands...  

Gasoline and Diesel Fuel Update (EIA)

fossil fuel sales continually flow into the DOI program offices, and those programs also conduct audit activities that may result, over time, in changes in the previously reported...

358

Fossil Energy Today - First Quarter, 2011 | Department of Energy  

Office of Environmental Management (EM)

Topics In This Issue... NETL's High Speed Imaging System Welcome to Fossil Energy Today Carbon Sequestration Atlas Coal-Fired Project of the Year National Risk Assessment Program...

359

Christopher A. Smith Confirmed as Assistant Secretary for Fossil Energy  

Broader source: Energy.gov [DOE]

Christopher A. Smith was confirmed by the Senate on Tuesday, December 16th, 2014, as the Department of Energys Assistant Secretary for Fossil Energy.

360

Fossil Energy Acting Assistant Secretary Recognized at Black...  

Energy Savers [EERE]

the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy,...

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?  

SciTech Connect (OSTI)

Abstract. A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (f TC NF ) ranged from 0.37 to 0.67 at the downtown location, and from 0.50 to 0.86 at the suburban site. Substantially lower values (i.e. 0.240.49) were found for PM10 filters downtown by an independent set of measurements (Swiss team), which are inconsistent with the modeled and known differences between the size ranges, suggesting higher than expected uncertainties in the measurement techniques of 14C. An increase in the non-fossil organic carbon (OC) fraction (f OC NF ) by 0.100.15 was observed for both sets of filters during periods with enhanced wildfire activity in comparison to periods when fires were suppressed by rain, which is consistent with the wildfire impacts estimated with other methods. Model results show that the relatively high fraction of nonfossil carbon found in Mexico City seems to arise from the combination in about equal proportions of regional biogenic SOA, biomass burning POA and SOA, as well as non-fossil urban POA and SOA. Predicted spatial and temporal variations for f OC NF are similar to those in the measurements between the urban vs. suburban sites, and high-fire vs. low-fire periods. The absolute modeled values of f OC NF are consistent with the Swiss dataset but lower than the US dataset. Resolving the 14C measurement discrepancies is necessary for further progress in model evaluation. The model simulations that included secondary organic aerosol (SOA) formation from semi-volatile and intermediate volatility (S/IVOC) vapors showed improved closure for the total OA mass compared to simulations which only included SOA from VOCs, providing a more realistic basis to evaluate the fNF predictions. f OC NF urban sources of modern carbon are important in reducing or removing the difference in fNF between model and measurements, even though they are often neglected on the interpretation of 14C datasets. An underprediction of biomass burning POA by the model during some mornings also explains a part of the model-measurement differences. The fNF of urban POA and SOA precursors is an important parameter that needs to be better constrained by measurements. Performing faster ( 3 h) 14C measurements in future campaigns is critical to further progress in this area. To our knowledge this is the first time that radiocarbon measurements are used together with aerosol mass spectrometer (AMS) organic components to assess the performance of a regional model for organic aerosols.

Hodzic, Alma; Jimenez, Jose L.; Prevot, A. S. H.; Szidat, S.; Fast, Jerome D.; Madronich, Sasha

2010-11-25T23:59:59.000Z

362

Economic Analysis of "Steam-Shock" and "Pasteurization"  

E-Print Network [OSTI]

Economic Analysis of "Steam-Shock" and "Pasteurization" Processes for Oyster Shucking JOHN W. BROWN Introduction "Steam-shock" is an oyster shucking process that uses steam to relax the oyster's adductor muscle of the shucking process as in integral part of the operation of an existing oyster-shucking house. The term "steam

363

Chapter 13 - Energy Conversion of Biomass and Recycling of Waste Plastics Using Supercritical Fluid, Subcritical Fluid and High-Pressure Superheated Steam  

Science Journals Connector (OSTI)

Abstract Utilization of unused or waste biomass as fuels is receiving much attention owing to the reduction of CO2 emission and the development of alternative energy to expensive fossil fuels. On the other hand, the recycling of waste plastics is important for the prevention of the exhaustion of fossil resources. In this chapter, typical several examples of the energy conversion of biomass and the recycling of waste plastics using supercritical fluid, subcritical fluid, and high-pressure superheated steam were introduced: (1) bioethanol production from paper sludge with subcritical water, (2) hydrogen production from various biomass with high-pressure superheated steam, (3) production of composite solid fuel from waste biomass and plastics with subcritical water, (4) waste treatment and recovery of thermal energy with high-pressure superheated steam oxidation, (5) recycling of carbon fiber-reinforced plastic with high-pressure superheated steam and supercritical alcohol, (6) recycling of laminate film with subcritical water, and (7) recycling of cross-linked polyethylene with supercritical methanol.

Idzumi Okajima; Takeshi Sako

2014-01-01T23:59:59.000Z

364

Synthesis and Optimization of Steam System Networks. 2. Multiple Steam Levels  

Science Journals Connector (OSTI)

Tim Price and Thokozani Majozi * ... (6) In its simplest form, it represents the ratio of the energy content of the steam to the energy content of the fuel. ...

Tim Price; Thokozani Majozi

2010-08-20T23:59:59.000Z

365

Standard Steam Trust LLC | Open Energy Information  

Open Energy Info (EERE)

Steam Trust LLC Steam Trust LLC (Redirected from Standard Steam Trust) Jump to: navigation, search Name Standard Steam Trust LLC Place Denver, Colorado Sector Geothermal energy Product Subsidiary of Denver-based geothermal project developer, Terra Caliente. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

LNG Vaporizer Utilizing Vacuum Steam Condensing  

Science Journals Connector (OSTI)

This report concerns the field test results of a new type of peak-shaving LNG vaporizer (VSV) whose heat source is ... heat of vacuum steam to vaporize and superheat LNG within heat transfer tubes. Prior to the.....

Y. Miyata; M. Hanamure; H. Kujirai; Y. Sato

1991-01-01T23:59:59.000Z

367

Cash Flow Impacts of Industrial Steam Efficiency  

E-Print Network [OSTI]

Steam efficiency is a major opportunity for manufacturers to boost financial performance in an increasingly competitive environment. An immediate policy challenge is to raise manufacturers' awareness of these opportunities. A major barrier...

Russell, C.

368

Energy & Environmental Benefits from Steam & Electricity Cogeneration  

E-Print Network [OSTI]

the electricity required by TEX and sells excess power to wholesale customers in the region. It provides a large portion of TEX steam requirements, with sufficient reliability such that TEX decommissioned its coal-fired powerhouse and reduced operations...

Ratheal, R.

2004-01-01T23:59:59.000Z

369

Extraction Steam Controls at EPLA-W  

E-Print Network [OSTI]

ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site...

Brinker, J. L.

2004-01-01T23:59:59.000Z

370

A Multistage Steam Reformer Utilizing Solar Heat  

Science Journals Connector (OSTI)

Today a large amount of the required hydrogen or synthesis gas (mixture of hydrogen and carbonmonoxide) is won by steam reforming of low hydrocarbons, especially methane. Hereby the mixture of hydrocarbons and...

W. Jger; U. Leuchs; W. Siebert

1987-01-01T23:59:59.000Z

371

The revolutionary impact of the steam engine  

E-Print Network [OSTI]

Sitting with a model of Stephensons Rocket, Simon Schaffer reflects on the steam revolution and how it changed the world in the nineteenth century in so many different ways....

Dugan, David

2004-08-18T23:59:59.000Z

372

How did the Rocket steam engine work?  

E-Print Network [OSTI]

Simon Schaffer talks to a museum curator at the York railway museum about the way in which steam engines worked and the imagination and technical ability of George Stephenson....

Dugan, David

2004-08-17T23:59:59.000Z

373

Optimizing Steam & Condensate System: A Case Study  

E-Print Network [OSTI]

Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...

Venkatesan, V. V.; Norris, C.

2011-01-01T23:59:59.000Z

374

Steam System Optimization : A Case Study  

E-Print Network [OSTI]

The steam system optimization (generation, distribution, use and condensate return) offers a large opportunity for action to comply with the new levels of energy efficiency standards. Superior design and improved maintenance practices are the two...

Iordanova, N.; Venkatesan, V. V.; Calogero, M.

375

Steam turbine upgrading: low-hanging fruit  

SciTech Connect (OSTI)

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

376

Greenville Steam Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Greenville Steam Biomass Facility Greenville Steam Biomass Facility Jump to: navigation, search Name Greenville Steam Biomass Facility Facility Greenville Steam Sector Biomass Location Piscataquis County, Maine Coordinates 45.7049857°, -69.3375071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7049857,"lon":-69.3375071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

378

Fossil plant layup and reactivation conference: Proceedings  

SciTech Connect (OSTI)

The Fossil Plant Layup and Reactivation Conference was held in New Orleans, Louisiana on April 14--15, 1992. The Conference was sponsored by EPRI and hosted by Entergy Services, Inc. to bring together representatives from utilities, consulting firms, manufacturers and architectural engineers. Eighteen papers were presented in three sessions. These sessions were devoted to layup procedures and practices, and reactivation case studies. A panel discussion was held on the second day to interactively discuss layup and reactivation issues. More than 80 people attended the Conference. This report contains technical papers and a summary of the panel discussion. Of the eighteen papers, three are related to general, one is related to regulatory issues, three are related to specific equipment, four are related to layup procedures and practices, and seven are layup and reactivation case studies.

Not Available

1992-10-01T23:59:59.000Z

379

Oxidation of advanced steam turbine alloys  

SciTech Connect (OSTI)

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

380

Savings in Steam Systems (A Case Study)  

E-Print Network [OSTI]

Savings in Steam Systems (A Case Study) Rich DeBat Steam Systems Engineer Armstrong Service, Inc. Three Rivers, MI ABSTRACT Armstrong Service Inc. (ASI) conducted an engineered evaluation at an Ammonium Nitrate Manufacturing facility during... existing burner system after refractory repair and continue with normal operation of the existing boiler. Annstrong Service cannot guarantee any aspect of this option. Option 2. Armstrong Service, Inc. proposes to evaluate, select and install a...

DeBat, R.

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

World Class Boilers and Steam Distribution System  

E-Print Network [OSTI]

WORLD CLASS BOILERS AND STEAM DISTRIBUTION SYSTEM Vernon P. Portell, Ph.D. Manager Armstrong Service, Inc. ABSTRACT categorizing, measuring, and comparing subjects which are of interest to us is the way we identify the "World class" is a... of information can also be obtained through an independent firm that provides third-party assessment of steam systems. One of these third parties, Armstrong Energy Certification, Inc., has used data gleaned from decades of industrial experience...

Portell, V. P.

382

Cheng Cycle Brings Flexibility to Steam Plant  

E-Print Network [OSTI]

. Based upon an estimated steam load between 5,000 and 50,000 Ibjhr and an electrical load of approximately 1500 KW, the Engineering Department examined several energy optimization systems for this site. It was determined that a modified gas turbine... within the borders allows exact tracking of desired electrical and thermal outputs. The Allison engine used in the Cheng Cycle system was selected for its proved performance and its ample surge margin which permits stable steam injection...

Keller, D. C.; Bynum, D.; Kosla, L.

383

Control system for fluid heated steam generator  

DOE Patents [OSTI]

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

384

Incremental costs and optimization of in-core fuel management of nuclear power plants  

E-Print Network [OSTI]

This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

Watt, Hing Yan

1973-01-01T23:59:59.000Z

385

Steam Reforming of Methane Utilizing Solar Heat  

Science Journals Connector (OSTI)

There is a worldwide interest to use solar energy to save or substitute fossil material, which is taken as fuel or chemical feedstock in present technologies. Among the possibilities, which are studied in deta...

W. D. Mller

1987-01-01T23:59:59.000Z

386

The case for endurance testing of sodium-heated steam generators  

SciTech Connect (OSTI)

It is generally believed that a nuclear power comeback before the end of the century will be through the vehicle of the light water reactor (LWR). The newer designs, with their important technical and economic advances, should attract wide interest and result in commercial success for the manufacturers and their utility customers. To develop the liquid-metal fast breeder reactor (LMFBR), approximately $30 billion has been spent worldwide, a third of which has been spent in the US. As a result of this considerable investment, most of the technical obstacles to deployment of the LMFBR have been removed with a few exceptions, one of which is the long-term performance of sodium-heated steam generators. Of the difficulties that have beset the current vintage of nuclear power plants, the performance of steam generators in pressurized water reactors (PWRs) was the most egregious. There was very little development testing and no model testing of PWR steam generators. Development occurred in the plants themselves resulting in many outages and more than $5 billion in lost revenue and replacement power costs. As a result, the electric utility industry is certain to exercise caution regarding acquisition of the LMFBR and will demand strong objective evidence of steam generator reliability. Only long-term endurance testing of prototypic models under prototypic conditions will satisfy this demand.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Energy Technology Engineering Center, Canoga Park, CA (United States))

1992-01-01T23:59:59.000Z

387

Insect Trace Fossil Associations in Paleosols: The Coprinisphaera Ichnofacies  

Science Journals Connector (OSTI)

...Namibia Sossus Sand (Khommabes Car-bonates) Late Pleistocene...from the Pleistocene Khommabes Car-bonates of Namibia are not...1993, Trace fossils from a Car-boniferous turbiditic lake...1985, Trace fossils from the Panther Member, Star Point Formation...

JORGE F. GENISE; M. GABRIELA MNGANO; LUIS A. BUATOIS; JOS H. LAZA; MARIANO VERDE

388

Environmental Law and Fossil Fuels: Barriers to Renewable Energy  

E-Print Network [OSTI]

This article is concerned with renewable energys too-slow transition and with how existing legal regimes work to preserve fossil energy dominance. It develops from two related claims: that an implicit support structure for fossil energy is written...

Outka, Uma

2012-01-01T23:59:59.000Z

389

Fossil Energy Fiscal Year 2012 Budget Request | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fiscal Year 2012 Budget Request Fiscal Year 2012 Budget Request Fossil Energy Fiscal Year 2012 Budget Request March 30, 2011 - 2:40pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Committee on Appropriations Subcommittee on Energy and Water Development. Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2012. The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels currently provide 83 percent of U.S. energy consumption and are expected to continue to play a critical role in meeting our Nation's energy needs for the foreseeable future. Making use of these

390

Four Minority Universities Selected for Fossil Energy Research Grants |  

Broader source: Energy.gov (indexed) [DOE]

Four Minority Universities Selected for Fossil Energy Research Four Minority Universities Selected for Fossil Energy Research Grants Four Minority Universities Selected for Fossil Energy Research Grants July 28, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy has selected four universities to receive grants under the department's annual competition for fossil energy research ideas from Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). "I want to congratulate the winners of this year's competition, and thank them for their hard work," said Charles McConnell, Chief Operating Officer of DOE's Office of Fossil Energy. "Identifying the next generation of leaders and innovators is one of the keys to strengthening our economy and creating the clean energy jobs of tomorrow."

391

Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Energy Acting Assistant Secretary Recognized at Black Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo Credit: Nancy Jo Brown/106FOTO Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo Credit: Nancy Jo Brown/106FOTO Dot Harris Dot Harris

392

Energy Department Releases Draft Advanced Fossil Energy Solicitation to  

Broader source: Energy.gov (indexed) [DOE]

Releases Draft Advanced Fossil Energy Releases Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas Pollution Energy Department Releases Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas Pollution July 2, 2013 - 12:42pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington, D.C. - As part of President Obama's Climate Action Plan, the U.S. Department of Energy announced today a draft loan guarantee solicitation for innovative and advanced fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII of the Energy Policy Act of 2005 through Section 1703 of the Loan Guarantee Program, does just that. The draft solicitation will be open

393

Response to several FOIA requests - Renewable Energy. Demand for Fossil  

Broader source: Energy.gov (indexed) [DOE]

Response to several FOIA requests - Renewable Energy. Demand for Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be

394

People's Republic of China Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Asia Asia » People's Republic of China People's Republic of China Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends According to reported energy statistics, coal production and use in China has increased ten-fold since the 1960s. As a result, Chinese fossil-fuel CO2 emissions have more than doubled 2000 alone. At 1.92 billion metric tons of carbon in 2008, the People's Republic of China is the world's largest emitter of CO2 due to fossil-fuel use and cement production. Even with the reported decline in Chinese emissions from 1997 to 1999, China's industrial emissions of CO2 have grown phenomenally since 1950, when China stood tenth among nations based on annual fossil-fuel CO2 emissions. From 1970 to 1997, China's fossil-fuel CO2 emissions grew at an annual rate of

395

Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Acting Assistant Secretary Recognized at Black Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo Credit: Nancy Jo Brown/106FOTO Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo Credit: Nancy Jo Brown/106FOTO Dot Harris Dot Harris

396

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Broader source: Energy.gov (indexed) [DOE]

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will support projects that avoid, reduce, or sequester air pollutants or greenhouse gas emissions, an important part of the Administration's long-term plan towards a cleaner and more secure energy future. Applications for projects and facilities include any fossil technology that is new or significantly improved, as compared to commercial technologies in service in the U.S. The Department of Energy's (DOE) Loan Programs Office is releasing a new draft loan guarantee solicitation for innovative and advanced fossil energy

397

Fossil Energy Fiscal Year 2011 Budget Request | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Fiscal Year 2011 Budget Request Energy Fiscal Year 2011 Budget Request Fossil Energy Fiscal Year 2011 Budget Request March 17, 2010 - 1:12pm Addthis Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2011 (FY 2011). The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels are anticipated to play a critical role in meeting our Nation's future energy needs. Making use of the Nation's fossil fuel assets in an environmentally responsible manner will help the United States to meet its energy requirements, minimize detrimental environmental impacts, positively contribute to energy security and compete

398

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Broader source: Energy.gov (indexed) [DOE]

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will support projects that avoid, reduce, or sequester air pollutants or greenhouse gas emissions, an important part of the Administration's long-term plan towards a cleaner and more secure energy future. Applications for projects and facilities include any fossil technology that is new or significantly improved, as compared to commercial technologies in service in the U.S. The Department of Energy's (DOE) Loan Programs Office is releasing a new draft loan guarantee solicitation for innovative and advanced fossil energy

399

Fossil Energy FY 2014 Appropriations Hearing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FY 2014 Appropriations Hearing FY 2014 Appropriations Hearing Fossil Energy FY 2014 Appropriations Hearing March 14, 2013 - 1:36pm Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee on Appropriations, Subcommittee on Energy and Water Development. Mr. Chairman, Madam Ranking Member, and Members of the Committee, it is my pleasure to appear before you today to discuss the Department of Energy's (DOE) Office of Fossil Energy's (FE) programs. Our fossil fuel resources are essential to the Nation's security and economic prosperity. The Office of Fossil Energy's primary mission is to ensure that the U.S. can continue to utilize those traditional fuel sources for clean, affordable, reliable energy. Technology development is critical to this mission. FE's Research and Development (FER&D) program

400

NETL: News Release - Four Minority Universities Selected for Fossil Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, 2006 9, 2006 Four Minority Universities Selected for Fossil Energy Research Grants Projects Advance Concepts in Fossil Fuel Conversion and Utilization WASHINGTON, DC - The Department of Energy (DOE) today awarded grants to four institutions for energy research through the Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) program. "It is indeed gratifying to see the creativity and technical expertise of our HBCU/OMI college students applied to the resolution of critical energy issues," said Assistant Secretary for Fossil Energy Jeffrey Jarrett. "The bright minds and enthusiasm that the students bring to the program are essential to fossil energy research in the 21st century." The HBCU/OMI program is carried out under DOE's Office of Fossil Energy. The program gives minority students valuable hands-on experience in developing technologies to promote the efficient and environmentally safe use of coal, oil, and natural gas. The National Energy Technology Laboratory (NETL) will manage the projects.

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Contacts for the Assistant General Counsel for Electricity and Fossil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity and Fossil Energy Electricity and Fossil Energy Contacts for the Assistant General Counsel for Electricity and Fossil Energy Office of the Assistant General Counsel for Electricity & Fossil Energy (GC-76) Steven A. Porter, Assistant General Counsel for Electricity & Fossil Energy 202-586-4219 Steven.Porter@hq.doe.gov Bettie Corey, Administrative Support Specialist 202-586-9507 bettie.corey@hq.doe.gov Subject Matter Attorney Contacts Electricity Delivery Energy Reliability Energy Emergency Lot Cooke 202-586-0503 Critical Infrastructure Protection Becca Smith 202-586-6335 International Electricity Natural Gas Imports and Exports Strategic Petroleum Reserve Mike Skinker 202-586-2793 Alaska Natural Gas Pipeline Natural Gas Including LNG Ed Myers 202-586-3397 Clean Coal Ed Myers

402

Fossil-energy program. Progress report for June 1981  

SciTech Connect (OSTI)

This report - the eighty-third of series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, coal preparation waste utilization, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, generalized equilibrium models for liquid and gaseous fuel supplies, analyses of coal production goals, and fossil energy information center.

Not Available

1981-08-01T23:59:59.000Z

403

Energy Department's Fossil Energy Chief to Tour Western Michigan  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Chief to Tour Western Michigan Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable Energy Department's Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable June 26, 2012 - 10:51am Addthis Assistant Energy Secretary for Fossil Energy Charles McConnell will join Western Michigan University President John M. Dunn and Core Energy CEO Bob Mannes to tour WMU's cutting-edge facilities at the Michigan Geological Repository for Research and Education. NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Tomorrow, Wednesday, June 27, 2012, Assistant Energy Secretary for Fossil Energy Charles McConnell will join Western Michigan University President John M. Dunn and Core Energy CEO Bob Mannes to tour

404

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

+ H 2 -41 MJ/kmol Steam methane reforming reaction CH 4 + Htechnologies such as steam methane reforming, gas shiftingand preparation, steam methane reforming and FT synthesis,

Lu, Xiaoming

2012-01-01T23:59:59.000Z

405

Development of Steam Turbine Inlet Control Valve for Supercritical Pressure at Siemens Industrial Turbomachinery AB.  

E-Print Network [OSTI]

?? The development in the steam turbine business is heading for applications with much higher steam parameters since this enables a raised efficiency. Steam parameters (more)

Sors, Felix

2010-01-01T23:59:59.000Z

406

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

407

E-Print Network 3.0 - acoustical steam silencers Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

seasonal steam demand loads... convective steam gen erating tubes, then through an economizer, and finally through a two field electrostatic... psi, 520F. superheated steam at...

408

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network [OSTI]

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

Hahn, G.

409

Work for Nuclear Regulatory Commission, Safety Related Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Regulatory Nuclear Regulatory Commission Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Safety-Related Applications Overview DOE Office of Nuclear Energy, Science, and Technology Nuclear Regulatory Commission National Aeronautics and Space Administration (NASA) Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Safety Related Applications Bookmark and Share Nuclear Regulatory Commission International Steam Generator Tube Integrity Program Key objectives of the International Steam Generator Tube Integrity Program

410

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

411

US DOE Industrial Steam BestPractices Software Tools  

Broader source: Energy.gov (indexed) [DOE]

DOW RESTRICTED For internal DOW RESTRICTED For internal use only US DOE Industrial Steam BestPractices Software Tools Riyaz Papar, PE, CEM Hudson Technologies Company Phone: (281) 298 0975 Email: rpapar@hudsontech.com - Agenda * Introduction * Steam System BP Tools Suite - SSST - SSAT - 3EPlus * Q & A 1 Steam System Management Objective: Minimize Steam Use, Energy Losses And Most Importantly STEAM COST!! Steam Market Assessment Takeaways * Fuel savings estimates - individual projects - ranged from 0.6 percent to 5.2 percent * Estimated payback periods generally very attractive - Ranged from 2 to 34 months - Most less than 2 years * Potential steam savings in target industries - over 12 percent of fuel use 2 Promising Areas To Achieve Steam Energy and Cost Savings? Use Steam System Scoping Tool (SSST) For

412

Solving chemical and mechanical problems of PWR steam generators  

SciTech Connect (OSTI)

Steam generators in power plants, based on pressurized water reactors (PWRs), transfer heat from a primary coolant system (pressurized water) to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfers heat to the secondary coolant water to make steam. The steam then drives a turbine that turns an electric generator. Steam is condensed and returned to the steam generator as feedwater. Two types of PWR steam generators are in use: recirculating steam generators (RSGs) and once-through steam generators (OTSGs). Since most of the units are vertical, only vertical units are discussed in this article. Some vertical units have operated with a minimum of problems, while others have experienced a variety of corrosion and mechanically-induced problems that have caused unscheduled outages and expensive repairs.

Green, S.J.

1987-07-01T23:59:59.000Z

413

Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments  

SciTech Connect (OSTI)

Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local heat transfer was found to be greatest at locations immediately downstream of the grid, and as the flow moved further downstream from the grid it became more developed, thus causing the heat transfer to diminish. The amount of heat transfer enhancement was found to depend not only on the spacer grid design, but also on the local Reynolds number. It was seen that decreasing Reynolds number leads to greater heat transfer enhancement. (authors)

Spring, J.P.; McLaughlin, D.M. [The Pennsylvania State University, 201 Shields Building University Park, PA 16802 (United States)

2006-07-01T23:59:59.000Z

414

Proceedings: 20th Steam Generator NDE Workshop: Orlando, Florida, July 9-11, 2001  

SciTech Connect (OSTI)

The 2001 workshop took place in Orlando, Florida, from July 9 to 11, 2001. It covered one full day and two half-days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, NSSS vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE issues and means for their resolution.

None

2003-02-01T23:59:59.000Z

415

Energy Savings with Computerized Steam Trap Maintenance Program  

E-Print Network [OSTI]

by Armstrong International, Inc. Five other manufacturers each have about a 5% share of the tmp population, and about 5 more account for the remaining steam traps. 6,430 STEAM TRAPS COLl3Il~) FIGURE 3 - Steam trap population by application. 8,430 STEAM... standardized using the inverted bucket steam trap made by Armstrong International, Inc. "or equal", with approval, wherever applicable and sensible. I believe the inverted bucket steam trap is the best one for this. The selection of a good manufacturer...

Klidzejs, A. M.

416

Antelope-Fossil Rebuild Project : Environmental Assessment.  

SciTech Connect (OSTI)

The Columbia Power Cooperative Association (CPCA), Monument, Oregon, proposes to upgrade a 69-kV transmission line in Wasco and Wheeler Counties, Oregon, between the Antelope Substation and the Bonneville Power Administration`s (BPA) Fossil Substation. The project involves rebuilding and reconductoring 23.2 miles of transmission line, including modifying it for future use at 115 kV. Related project activities will include setting new wood pole structures, removing and disposing of old structures, conductors, and insulators, and stringing new conductor, all within the existing right-of-way. No new access roads will be required. A Borrower`s Environmental Report was prepared for the 1992--1993 Work Plan for Columbia Power Cooperative Association in March 1991. This report investigated cultural resources, threatened or endangered species, wetlands, and floodplains, and other environmental issues, and included correspondence with appropriate Federal, state, and local agencies. The report was submitted to the Rural Electrification Administration for their use in preparing their environmental documentation for the project.

United States. Bonneville Power Administration.

1992-04-01T23:59:59.000Z

417

Antelope-Fossil Rebuild Project : Environmental Assessment.  

SciTech Connect (OSTI)

The Columbia Power Cooperative Association (CPCA), Monument, Oregon, proposes to upgrade a 69-kV transmission line in Wasco and Wheeler Counties, Oregon, between the Antelope Substation and the Bonneville Power Administration's (BPA) Fossil Substation. The project involves rebuilding and reconductoring 23.2 miles of transmission line, including modifying it for future use at 115 kV. Related project activities will include setting new wood pole structures, removing and disposing of old structures, conductors, and insulators, and stringing new conductor, all within the existing right-of-way. No new access roads will be required. A Borrower's Environmental Report was prepared for the 1992--1993 Work Plan for Columbia Power Cooperative Association in March 1991. This report investigated cultural resources, threatened or endangered species, wetlands, and floodplains, and other environmental issues, and included correspondence with appropriate Federal, state, and local agencies. The report was submitted to the Rural Electrification Administration for their use in preparing their environmental documentation for the project.

United States. Bonneville Power Administration.

1992-04-01T23:59:59.000Z

418

Enhancing nuclear power safety  

Science Journals Connector (OSTI)

Through its ClydeUnion Pumps brand, SPX has a long history of providing pumps to the nuclear power industry and is working to help provide solutions that enhance vital safety systems on these plants. Compared with traditional alternatives, its TWL steam turbine driven pump is designed to increase the reliability of systems that provide heat removal from pressurised water reactors and boiling water reactors during extended emergency periods.

2014-01-01T23:59:59.000Z

419

Evaluation of hybrid solar/fossil Rankine-cooling concept  

SciTech Connect (OSTI)

The hybrid solar/fossil Rankine cycle is analyzed thermodynamically to determine fuel use and efficiency. The hybrid system is briefly compared with solar organic Rankine systems with a fossil fuel auxiliary mode, and with geothermal resources. The economic evaluation compares the present value of the superheater fuel cost over the system lifetime with the first cost reduction obtained by substituting a hybrid solar/fossil Rankine engine for an organic Rankine engine. The economics analysis indicates that even if the hybrid solar/fossil Rankine cooling system were developed to the point of being a commercial product with an economic advantage over an otherwise equivalent solar organic Rankine cooling system, it would gradually lose that advantage with rising fuel costs and decreasing collector costs. From the standpoint of national fossil fuel conservation, the hybrid concept would be preferable only in applications where the operating duration in the solar/fossil mode would be substantially greater than in the fossil fuel-only auxiliary mode. (LEW)

Curran, H M

1980-11-01T23:59:59.000Z

420

COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS  

SciTech Connect (OSTI)

This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes Best Technology Available for intake structures that withdraw cooling water that is used to transfer and reject heat from the plants steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

Gary Vine

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

President Requests $711.0 Million for Fossil Energy Programs  

Broader source: Energy.gov [DOE]

President Obamas FY 2015 budget seeks $711.0 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels as well as manage the Strategic Petroleum Reserve and Northeast Home Heating oil Reserve to provide strategic and economic security against disruptions in U.S. oil supplies. The request includes $475.5 million for Fossil Energy Research and Development, $205.0 million for the Strategic Petroleum Reserve, $1.6 million for the Northeast Home Heating Oil Reserve and $19.95 million for the Naval Petroleum Reserves.

422

The breeder reactor: a fossil fuel viewpoint  

Science Journals Connector (OSTI)

... elegant and simple: to generate electricity and, at the same time, to produce additional fuel from the uranium discarded by the existing thermal reactor system. Without the breeder reactor, ... seems likely that the role of nuclear energy will begin to be constrained by the price and availability of uranium at about the turn of the century. There is, however ...

David Merrick

1976-12-16T23:59:59.000Z

423

Fossil energy use in conventional and low-external-input cropping systems.  

E-Print Network [OSTI]

??The production of fossil fuels will crest within the next decade and with reliance of modern conventional agriculture on fossil fuel energy inputs, food production (more)

Cruse, Michael James

2009-01-01T23:59:59.000Z

424

E-Print Network 3.0 - assess fossil fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology ; Geosciences 6 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: ,PgCyr Fossil Fuel Emissions Fossil Fuel - Marland...

425

E-Print Network 3.0 - atmospheric fossil fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centre de mathmatiques Collection: Mathematics 10 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: ,PgCyr Fossil Fuel Emissions Fossil Fuel - Marland...

426

Simulation of Steam Reformers for Methane  

Science Journals Connector (OSTI)

Abstract A model is developed for industrial steam reformers for both top fired and side fired furnaces. The catalyst tube model is a one-dimensional heterogeneous model with intra-particle diffusional resistances. The two point boundary value differential equations of the catalyst pellets are solved using a modified novel orthogonal collocation technique to obtain the effectiveness factor variation along the length of the reactor. The side fired furnace equations are algebraic equations, the top fired furnace equations are two-point boundary value differential equations which are solved using the orthogonal collocation technique. A recently developed more general rate expression is used. The model performance is checked against industrial steam reformers. The model is used to investigate the effect of various parameters on the behaviour of the catalyst tubes and the furnace. The effectiveness factor variation along the length of the catalyst tube is also analysed. Keywords: Steam Reforming, Reactor modeling, Digital Simulation, effectiveness factor

M.A. Soliman; S.S.E.H. El-Nashaie; A.S. Al-Ubaid; A. Adris

1988-01-01T23:59:59.000Z

427

Ultra supercritical turbines--steam oxidation  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

428

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels  

E-Print Network [OSTI]

and is followed by steam methane reforming ( SMR). The finalReaction: Steam Methane Reforming: FischerTropsch Reaction:methane and steam in steam methane reforming generates the

Suemanotham, Amornrat

2014-01-01T23:59:59.000Z

429

E-Print Network 3.0 - advanced steam generators Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THEORY AND IN PRACTICE. BY R... OF A HISTORY OF THE STEAM-EN- GINE, A MANUAL OF THE STEAM-ENGINE, A MANUAL OF STEAM-BOILERS, ETC., ETC., ETC... treatise on Steam-Boiler Explosions...

430

On water, steam, and string theory  

Science Journals Connector (OSTI)

At a pressure of 220 atm and a temperature of 374?C there is a second-order phase transition between water and steam. Understanding it requires a key concept of both condensed matter and elementary particle physics: the renormalization group. Its basic ideas are explained with images from computer simulations of the lattice gas model. Then I briefly review how the renormalization group is used to compute critical coefficients for the watersteam phase transition. The results of this calculation are in good agreement with experiment. Finally some applications in particle physics and string theory are mentioned.

Christof Schmidhuber

1997-01-01T23:59:59.000Z

431

Steam Trap Maintenance as a Profit Center  

E-Print Network [OSTI]

the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 EXCUSES Everybody thinks his or her steam trap maintenance is good. Surveysl have shown the following are the most popular excuses encountered when managers are confronted... for steam traps. 192 ESL-IE-96-04-28 Proceedings from the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 5. Set up a trap maintenance program C. Prepare and present a report to that will: management on the results...

Bouchillon, J. L.

432

Improved plant performance through evaporative steam condensing  

SciTech Connect (OSTI)

Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

Hutton, D.

1998-07-01T23:59:59.000Z

433

Finding Benefits by Modeling and Optimizing Steam and Power Systems  

E-Print Network [OSTI]

A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well...

Jones, B.; Nelson, D.

2007-01-01T23:59:59.000Z

434

CIBO's Energy Efficiency Handbook for Steam Power Systems  

E-Print Network [OSTI]

The Council of Industrial Boiler Owners (CIBO) has developed a handbook to help boiler operators get the best performance from their industrial steam systems. This energy efficiency handbook takes a comprehensive look at the boiler and steam system...

Bessette, R. D.

435

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network [OSTI]

and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator...

Larkin, A.

436

Energy Conservation Thru Steam Trap Surveys and Preventive Maintenance Programs  

E-Print Network [OSTI]

ENERGY CONSERVATION THRU STEAM TRAP SURVEYS AND PREVENTIVE MAINTENANCE PROGRAMS Terry Boynton, Armstrong, Three Rivers, Mich. Bob Dewhirst, Armstrong, New Braunfels, Texas. This paper will deal with steam trap surveys and preventive maintenance...

Boynton, T.; Dewhirst, B.

1980-01-01T23:59:59.000Z

437

Use a Vent Condenser to Recover Flash Steam Energy  

Broader source: Energy.gov [DOE]

This tip sheet on using vent condensers to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

438

Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert  

E-Print Network [OSTI]

Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert OU Mathfest, January 2009 1 professorship at age 61, but continued to work on mathematics right up to his death at age 73. 2. Steam Engines

Albert, John

439

Following Where the Steam Goes: Industry's Business Opportunity  

E-Print Network [OSTI]

Many associated benefits accrue from plant projects which comprehensively address steam systems. The DOE-Alliance to Save Energy Steam Challenge program was initiated shortly after last year's IETC on April 30, 1998 to promote awareness...

Jaber, D.; Jones, T.

440

Optimization of Steam Network in Tehran Oil Refinery  

E-Print Network [OSTI]

case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating...

Khodaie, H.; Nasr, M. R. J.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Analysis and Development of Large Industrial Steam Systems  

E-Print Network [OSTI]

Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

Waterland, A. F.

1980-01-01T23:59:59.000Z

442

Use a Vent Condenser to Recover Flash Steam Energy (Revised)  

SciTech Connect (OSTI)

This revised ITP tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-05-01T23:59:59.000Z

443

North Korea Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Far East » North Korea Far East » North Korea North Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The total fossil-fuel CO2 emissions for North Korea, or the Democratic People's Republic of Korea, averaged 11.2% growth from 1950-93, reaching 71 million metric tons of carbon. Since 1993 according to published UN energy statistics, fossil-fuel CO2 emissions have declined 70% to 21.4 million metric tons of carbon. As the world's 14th largest producer of coal, it is no surprise North Korea's fossil-fuel CO2 emissions record is dominated by emissions from coal burning. Coal consumption accounted for 93% of the 2008 CO2 emission total. With no natural gas usage, another 3.4% currently comes from liquid petroleum consumption, and the remainder is from cement

444

Department of Energy Releases $8 Billion Solicitation for Advanced Fossil  

Broader source: Energy.gov (indexed) [DOE]

$8 Billion Solicitation for Advanced $8 Billion Solicitation for Advanced Fossil Energy Projects Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects December 12, 2013 - 1:40pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington, D.C. - As part of President Obama's Climate Action Plan, the Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases. Authorized by Title XVII of the Energy Policy Act of 2005, loan guarantees under this new solicitation will help provide critical financing to support new or significantly improved advanced fossil energy projects - such as advanced resource development, carbon capture, low-carbon power

445

DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Leverages Fossil Energy Expertise to Develop and Explore Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources February 7, 2011 - 12:00pm Addthis Washington, D.C. - Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation at oil and gas fields. DOE's Office of Fossil Energy and Office of Energy Efficiency and Renewable Energy will combine efforts to have experts test and validate low temperature geothermal power generation technologies at the Rocky Mountain Oilfield Testing Center (RMOTC) near Casper, Wyoming.

446

South Korea Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Far East » South Korea Far East » South Korea South Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends South Korea, or the Republic of Korea, is the world's tenth largest emitter of CO2 based on 2008 fossil-fuel consumption and cement production with 139 million metric tons of carbon. From 1946-1997 South Korea experienced phenomenal growth in fossil-fuel CO2 emissions with a growth rate that averaged 11.5%. Initial growth in emissions was due to coal consumption, which still accounts for 46.9% of South Korea's fossil-fuel CO2 emissions. Since the late 1960s oil consumption has been a major source of emissions. South Korea is the world's fifth largest importer of crude oil. Natural gas became a significant source of CO2 for the first time in 1987, as South

447

NETL: News Release - Four Minority Universities Selected for Fossil Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 20, 2010 May 20, 2010 Four Minority Universities Selected for Fossil Energy Research Grants College Students to Focus on Computational Modeling, High-Temperature Materials and Components Washington, DC - Innovative fossil energy research projects will be investigated by students and faculty from four winning institutions in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). Students and faculty from the chosen universities - the University of Texas, El Paso; Southern University and A&M College; Tennessee State University; and the University of Texas, San Antonio - will investigate projects dealing with computational energy sciences, material sciences, and sensors and controls for use in fossil fuel power systems.

448

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Broader source: Energy.gov (indexed) [DOE]

Selected to Advance Innovative Materials for Fossil Energy Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

449

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

450

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Broader source: Energy.gov (indexed) [DOE]

Projects Selected to Advance Innovative Materials for Fossil Energy Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

451

Status of fossil energy resources: A global perspective  

SciTech Connect (OSTI)

This article deals with recently status of global fossil energy sources. Fossil energy sources have been split into three categories: oil,coal, and natural gas. Fossil fuels are highly efficient and cheap. Currently oil is the fastest primary energy source in the world (39% of world energy consumption). Coal will be a major source of energy for the world for the foreseeable future (24% of world energy consumption). In 2030, coal covers 45% of world energy needs. Natural gas is expected to be the fastest growing component of world energy consumption (23% of world energy consumption). Fossil fuel extraction and conversion to usable energy has several environmental impacts. They could be a major contributor to global warming and greenhouse gases and a cause of acid rain; therefore, expensive air pollution controls are required.

Balat, M. [SILA Science, Trabzon (Turkey)

2007-07-01T23:59:59.000Z

452

Proceedings of the fourth annual conference on fossil energy materials  

SciTech Connect (OSTI)

The Fourth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on may 15--17, 1990. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. Individual projects are processed separately for the data bases.

Judkins, R.R.; Braski, D.N. (comps.)

1990-08-01T23:59:59.000Z

453

Fossil Energy Today - Fourth Quarter, 2011 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CCUS FE R&D: A Legacy of Benefit NETL Helps Develop Improved Coronary Stents for Heart Patients CSLF Ministerial Reinforces Support for CCUS Fossil Energy Today - Issue No....

454

NREL: Technology Deployment - Fossil Fuel Dependency Falls from...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuel Dependency Falls from 100% to 56% on Alcatraz Island News Solar Cells Light Up Prison Cells on 'The Rock' Sponsors U.S. National Park Service American Recovery and...

455

Three essays on biofuel's and fossil fuel's stochastic prices.  

E-Print Network [OSTI]

??The dissertation consists of three essays on biofuel's and fossil fuel's stochastic prices focusing on the U.S. corn-based fuel-ethanol market. The research objectives include investigating (more)

Zhang, Zibin

2009-01-01T23:59:59.000Z

456

Register for Fossil Energy NewsAlerts | Department of Energy  

Office of Environmental Management (EM)

of the U.S. Department of Energy's Office of Fossil Energy. Each time we update our web site in your area of interest, we will send you a brief e-mail alerting you to the new...

457

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will...

458

Office of Fossil Energy Continues Long-Running Minority Educational  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Continues Long-Running Minority Educational Fossil Energy Continues Long-Running Minority Educational Research Program Office of Fossil Energy Continues Long-Running Minority Educational Research Program April 19, 2012 - 11:41am Addthis Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact Editor's Note: This article is cross-posted from the Office of Fossil Energy. Four projects that will strengthen and promote U.S. energy security, scientific discovery and economic competitiveness while producing a diverse next generation of scientists and engineers have been selected as part of the Energy Department's long-running minority educational research program. The awards - presented under the Historically Black Colleges and Universities and Other Minority Institutions program - are $200,000 each

459

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information  

Open Energy Info (EERE)

Advanced Fossil Fuels Partnerships Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation Agency/Company /Organization National Energy Technology Laboratory Partner Brazil Sector Energy Topics Background analysis Website http://www.netl.doe.gov/techno Program Start 2007 Program End 2012 Country Brazil South America References NETL Technologies Programs[1] This article is a stub. You can help OpenEI by expanding it. Advanced Fossil Fuels Partnerships with Brazil ORD International Research Agreements Brazilian Coal Gasification and CCS MOUs References ↑ NETL Technologies Programs Retrieved from "http://en.openei.org/w/index.php?title=Brazil-NETL_Advanced_Fossil_Fuels_Partnerships&oldid=375248"

460

Materials for Ultra-Supercritical Steam Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

462

President Requests $842.1 Million for Fossil Energy Programs  

Broader source: Energy.gov [DOE]

President Obamas FY 2016 budget seeks $842.1 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels, implement ongoing federal responsibilities at the Naval Petroleum and Oil Shale Reserves, and manage the Strategic Petroleum Reserve, Northeast Gasoline Supply Reserve and Northeast Home Heating oil Reserve to provide strategic and economic security against disruptions in U.S. petroleum supplies.

463

Fossil Energy Advanced Research and Technology Development Materials Program  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. (comps.)

1992-12-01T23:59:59.000Z

464

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network [OSTI]

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

?lveczky, Peter Csaba

465

Steam boiler control speci cation problem: A TLA solution  

E-Print Network [OSTI]

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

466

Steam boiler control specification problem: A TLA solution  

E-Print Network [OSTI]

Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

467

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network [OSTI]

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

?lveczky, Peter Csaba

468

Supported metal catalysts for alcohol/sugar alcohol steam reforming  

SciTech Connect (OSTI)

Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

2014-08-21T23:59:59.000Z

469

Numerical Simulation of a Natural Circulation Steam Generator  

E-Print Network [OSTI]

Numerical Simulation of a Natural Circulation Steam Generator W. Linzer \\Lambda , K. Ponweiser circulation steam generator. We focus on a model with a simple geometry consisting of two vertical pipes properties of water and steam. We present a numerical algorithm based on an explicit upwind discretization

Weinmüller, Ewa B.

470

The Catalysis of the Carbon Monoxide-Steam Reaction  

Science Journals Connector (OSTI)

...The Catalysis of the Carbon Monoxide-Steam Reaction F. J. Long K. W. Sykes The kinetics of the carbon monoxide-steam reaction occurring heterogeneously at...nearly unity, while that with respect to steam is correspondingly lowered; a slight...

1952-01-01T23:59:59.000Z

471

GLC Analysis of Organic Chelating Agents in Steam Propulsion Systems  

Science Journals Connector (OSTI)

......Chelating Agents in Steam Propulsion Systems by Paul J. Sniegoski...iminodi- acetic acid) in steam propulsion systems. For chromatogra...as an addi- tive to steam propulsion systems to prevent build-up...Fourth Internaval Conference on Marine Cor- rosion, Naval Research......

Paul J. Sniegoski; David L. Venezky

1974-06-01T23:59:59.000Z

472

Best Management Practice #8: Boiler and Steam Systems  

Broader source: Energy.gov [DOE]

Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

473

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network [OSTI]

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

474

Improving Steam System Performance: A Sourcebook for Industry, Second Edition  

Broader source: Energy.gov [DOE]

This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

475

Experience, Engagement and Social Interaction at a Steam Locomotive  

E-Print Network [OSTI]

of two interactive stations (figure 2) where visitors can add coal and water to the steam engine at station 1 and regulate the steam pressure in the engine at station 2, as well as a number of visualExperience, Engagement and Social Interaction at a Steam Locomotive Multimodal Interactive Museum

Hornecker, Eva

476

Steam Traps-The Oft Forgotten Energy Conservation Treasure  

E-Print Network [OSTI]

In these days of high technology, the steam trap is often treated as a commodity item, forgotten by many and respected by a relative few. Yet, in many facilities, widespread undetected failure of steam traps has wasted 5-15% of a plant's total steam...

Pychewicz, F. S.

477

Industrial Steam Power Cycles Final End-Use Classification  

E-Print Network [OSTI]

Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

Waterland, A. F.

1983-01-01T23:59:59.000Z

478

The Largest Tandem Compound Steam Turbines in the world  

Science Journals Connector (OSTI)

The improvement of turbine efficiency is extremely important subject from the...2 and consumption of fossil fuel.

Hiromitsu Iijima

2007-01-01T23:59:59.000Z

479

Optimization of industrial steam supply and steam-and-condensate farming of machine building enterprise  

Science Journals Connector (OSTI)

The article studies efficient control methods of steam condensing economy of the machine building enterprise. There are recommendations about development of complex decisions based on indicators of energy, technical and economic efficiency.

I A Konahina; N F Kashapov; I R Gil'manshin; R R Ganiev

2014-01-01T23:59:59.000Z

480

Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart  

E-Print Network [OSTI]

Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

Jones, T.; Hart, F.

Note: This page contains sample records for the topic "nuclear fossil steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration  

SciTech Connect (OSTI)

Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.

J'Tia Patrice Taylor; David E. Shropshire

2009-09-01T23:59:59.000Z

482

The Utilisation of Volcanic Steam in Italy  

Science Journals Connector (OSTI)

... exploitation of natural resources; and the welkin is still ringing with cries of increase production,back to the land, and keep the home-fires burning. Examples ... definite and successful effort been made in this direction, namely, by utilising the natural steam which emerges from the earth in volcanic districts. The jets of ...

1924-01-12T23:59:59.000Z

483

Task 1Steam Oxidation (NETL-US)  

SciTech Connect (OSTI)

The proposed steam in let temperature in the Advanced Ultra Supercritical (AUSC) steam turbine is high enough (760C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre . A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

G. R. Holcomb

2010-05-01T23:59:59.000Z

484

Natural Steam Power Developments at Larderello  

Science Journals Connector (OSTI)

... utilised since 1818 for the extraction of boric acid, the presence FIG. 2.-The turbine room at Larderello; three turbo-alternators of 2500 kw. each. The ... room at Larderello; three turbo-alternators of 2500 kw. each. The turbines are fed with volcanic steam which has been stripped of about 90 per cent, ...

1928-01-14T23:59:59.000Z

485

Carbon deposition in steam reforming and methanation  

SciTech Connect (OSTI)

The purpose of this review is to survey recent studies of carbon deposition on metals used as catalysts in steam reforming and methanation, emphasizing research where significant progress has been made. Where possible, an attempt is made to treat the fundamental nature of carbon formation and deactivation by carbon and the relationships between these two phenomena. Steam reforming and methanation are emphasized in this review because (1) deactivation of catalysts by carbon deposits is a serious concern in both processes, (2) much of the previous research with carbon formation on metals involved one or the other of these two reactions, and (3) there are interesting differences and similarities between these two reactions; for example, methanation is typically carried out at moderate reaction temperatures (200-450/sup 0/C) while steam reforming is typically carried out at significantly higher reaction temperatures (600-900/sup 0/C). Yet the two reactions are very closely related, since methane steam reforming is the reverse of methanation of CO. Moreover, there is evidence that some of the carbons formed in these two different processes are similar in their morphology.

Bartholomew, C.H.

1982-01-01T23:59:59.000Z

486

Fuel cell integrated with steam reformer  

SciTech Connect (OSTI)

A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

1987-01-01T23:59:59.000Z

487

Natural gas-assisted steam electrolyzer  

DOE Patents [OSTI]

An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

488

55Home Power #21 February / March 1991 ALTERNATIVES TO FOSSIL FUELED  

E-Print Network [OSTI]

boiler producing steam which powers an engine driving a generator. I've noticed interest in this recently news is that steam power has all the disadvantages of an engine/generator and several more all its own otherwise the steam would condense in the supply lines or inside the cylinder of the steam engine itself

489

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect (OSTI)

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

Not Available

2002-01-01T23:59:59.000Z

490

Bruce Nuclear Generating Station B rapid cooldown test and validation of simulation model  

SciTech Connect (OSTI)

The SOPHT code was assessed against Bruce Nuclear Generating Station B commissioning data from a heat transport system rapid cooldown. It was found that (a) under a rapid upstream depressurization, the steam relief valves, like orifices, had a lower discharge coefficient than the corresponding steadystate value and (b) the flashing of water in the steam generators during depressurization causes the at-power boiling heat transfer correlations to overpredict the steam generator heat transfer.

Chang, Y.F.; Langan, M.D.; Sermer, P.; Watson, P.C.

1985-09-01T23:59:59.000Z

491

A parametric study of steam injected gas turbine with steam injector  

SciTech Connect (OSTI)

The interest in the STIG concept has arisen from the fact that the application shows high flexibility in power output, and therefore can serve well as a peak load unit. A new addition to the STIG-cycle is proposed and investigated in this paper. The introduction of steam injectors at the injection point of the steam is proposed to lightly raise the pressure of the gas flow entering the expander. The injector reduces the thermodynamic irreversibilities associated with the throttling nature of injecting a high pressure steam into a lower pressure region. A thermodynamic study has been conducted on the STIG with steam injectors for power generation. Steam pressure and superheating temperature are the main parameters for the system. The impact and usefulness of supplementary firing before the HRSG has also been investigated. The results are compared with a STIG with throttling valves instead of injectors. The efficiency and power output proves to increase somewhat upon introducing the steam injectors. This modification can be of commercial interest since the injectors are of low installation cost and need virtually no maintenance.

Aagren, N.D.; Svedberg, G. [Royal Inst. of Technology, Stockholm (Sweden); Frutschi, H.U. [ABB Power Generation Ltd., Baden (Switzerland)

1994-12-31T23:59:59.000Z

492

Steam turbine maintenance and repair technology: Reducing planned-outage costs  

SciTech Connect (OSTI)

The North American Electric Reliability Council (NAERC) reported that the average loss of equivalent availability per outage for a major fossil turbine overhaul is 323,000 MW-HR. The Electric Power Research Institute (EPRI) Generation and Storage Division, is in the first phase of a major research project to reduce the duration and/or frequency of steam turbine maintenance outages. This project consists of an assessment of the current state-of-the-art turbine maintenance and repair techniques and technologies. It is based on a review of current turbine maintenance practices of the US, European, Japanese, and Australian utility industries. Emphasized are maintenance and repair activities that have the most significant impact on outage duration or frequency. Twenty-six key turbine maintenance activities and the current best techniques were identified for use by utility maintenance personnel. Overall outage durations could be reduced if the duration of these activities were shortened or if they were performed more effectively. Recommended projects for development of advanced steam turbine maintenance technology were identified. 29 refs., 46 figs., 9 tabs.

Grace, H.P.; McClintock, M. (General Physics Corp., Columbia, MD (USA)); Lamping, G. (Southwest Research Inst., San Antonio, TX (USA))

1990-04-01T23:59:59.000Z

493

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper  

Science Journals Connector (OSTI)

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper ... Alumbrera (Argentina) ...

Pilar Swart; Jo Dewulf

2013-11-22T23:59:59.000Z

494

Measurement of steam quality in two-phase critical flow  

E-Print Network [OSTI]

through a venturi for subczitical flow of steam-water 45 13 Steam quality as a function of vapor-phase Reynolds number for subczitical flow of steam-water 46 14 Steam quality as a function of Collins and Gacesa parameter for subcritical flow of steam... high degree of accuracy. He suggested that the following correlation may be used to calculate two-phase flow rates through orifices to within an error of 1. 5 percent 339 K 3 9 9' J 9 v v a v w f + [ 1. 26 (1-f ) K Y /K ] ~p p where V and L...

Sinclair, John William

2012-06-07T23:59:59.000Z

495

Fossil Energy Program Annual Progress Report for April 1, 2002, Through March 31, 2003  

SciTech Connect (OSTI)

The mission of the Fossil Energy Program is to conduct research and development that contribute to the advancement of fossil energy technologies. The Oak Ridge National Laboratory Fossil Energy Program research and development activities, performed for the Department of Energy Assistant Secretary for Fossil Energy, cover the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy Office of Fossil Energy, the DOE National Energy Technology Laboratory, the DOE Fossil Energy Clean Coal Technology Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The ORNL Fossil Energy Program shares with DOE Oak Ridge Operations technical management responsibility for all activities on the DOE Fossil Energy Advanced Research Materials Program. The Advanced Research Materials Program includes research at other DOE and government laboratories, at universities, and at industrial organizations.

Judkins, RR

2003-06-19T23:59:59.000Z

496

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

497

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

498

A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen  

SciTech Connect (OSTI)

The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

1992-08-01T23:59:59.000Z

499

Response of El Centro Steam Plant equipment during the October 15, 1979 Imperial Valley earthquake  

SciTech Connect (OSTI)

For the US Nuclear Regulatory Commission (NRC), Lawrence Livermore National Laboratory (LLNL) performed a dynamic seismic analysis of Unit 4 of the El Centro Steam Plant in El Centro, Calif. Built in 1968, Unit 4 is an oil- or gas-fired, steam-driven turbine-generator that was designed to resist a static lateral force equivalent to 20% of the dead and live load. The unit's structural and mechanical systems sustained only minor damage during the October 15, 1979 Imperial Valley earthquake that produced an estimated 0.5 g peak horizontal ground acceleration (0.66 g vertical) at the site. LLNL's seismic analysis was done to analytically estimate the equipment response, which, when compared to actual observation, will indicate the levels of actual equipment capacity. 15 refs., 51 figs., 11 tabs.

Nelson, T. A.; Murray, R. C.; Young, J. A.; Campbell, R. D.; Martore, J. A.; Levin, H. A.; Reiter, L.

1980-09-01T23:59:59.000Z

500

Fossil fuel combined cycle power generation method  

DOE Patents [OSTI]

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z