Sample records for nuclear filter technology

  1. Nuclear Filter Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History ViewTexas:NotreesNu Energie JumpFilter

  2. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26T23:59:59.000Z

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  3. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-25T23:59:59.000Z

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  4. Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

  5. Plasma filtering techniques for nuclear waste remediation

    E-Print Network [OSTI]

    Gueroult, Renaud; Fisch, Nathaniel J

    2015-01-01T23:59:59.000Z

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  6. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01T23:59:59.000Z

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  7. Diesel Particulate Filter Technology for Low-Temperature and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter Technology for Low-Temperature and Low-NOxPM Applications Diesel Particulate Filter Technology for Low-Temperature and Low-NOxPM Applications 2004 DEER Conference...

  8. Nuclear Technology Programs

    SciTech Connect (OSTI)

    Harmon, J.E. (ed.)

    1990-10-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  9. NCSRNCSR ""DEMOKRITOSDEMOKRITOS"" INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTIONINSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTION

    E-Print Network [OSTI]

    PROTECTIONINSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTION ·· ENVIRONMENTAL RESEARCH LABORATORYENVIRONMENTAL·· NCSRNCSR ""DEMOKRITOSDEMOKRITOS"" ·· INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION

  10. Advanced Particulate Filter Technologies for Direct Injection...

    Broader source: Energy.gov (indexed) [DOE]

    Public * Continuing efforts for further CO 2 and PN reduction create a challenging environment for vehicles equipped with DI gasoline engines * Gasoline particulate filters...

  11. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04T23:59:59.000Z

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  12. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01T23:59:59.000Z

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  13. Design of switched-resistor monolithic filters using NMOS technology

    E-Print Network [OSTI]

    Ngo, Dinh Tai

    1981-01-01T23:59:59.000Z

    DESIGN OF SWITCHED-RESISTOR MONOLITHIC FILTERS USING NMOS TECHNOLOGY A Thesis by DINH TAI NGO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December... 1981 Major Subject: Electrical Engineering DESIGN OF SWITCHED-RESISTOR MONOLITHIC FILTERS USING NMOS TECHNOLOGY A Thesis by DINH TAI NGO Approved as to style and content by J+ (' ll ( (C airman of Comm'it tee) (Member) (Member) ( d of De...

  14. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76Safeguards and Nuclear Science

  15. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10T23:59:59.000Z

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  16. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

  17. ANS 2006 WINTER MEETING & Nuclear Technology Expo

    E-Print Network [OSTI]

    Krings, Axel W.

    Development Workshop: Digital Instrumentation Upgrades 52 DOE Nuclear Criticality Safety Program 53ANS 2006 WINTER MEETING & Nuclear Technology Expo "Ensuringthe (TOFE) 5th International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human Machine

  18. Security Science & Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Science & Technology Border Security Comprehensive Vulnerability and Threat Analysis Consequence Management, Safeguards, and Non-Proliferation Tools Export...

  19. Massachusetts Institute of Technology Department of Nuclear Engineering

    E-Print Network [OSTI]

    Massachusetts Institute of Technology Department of Nuclear Engineering Advanced Reactor Technology of Technology Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-2 Student Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-3 Project Objective

  20. Improved HEPA Filter Technology for Flexible and Rigid Containment Barriers

    SciTech Connect (OSTI)

    Pinson, Paul Arthur

    1998-07-01T23:59:59.000Z

    Safety and reliability in glovebox operations can be significantly improved and waste packaging efficiencies can be increased by inserting flexible, lightweight, high capacity HEPA filters into the walls of plastic sheet barriers. This HEPA filter/barrier technology can be adapted to a wide variety of applications: disposable waste bags, protective environmental barriers for electronic equipment, single or multiple use glovebag assemblies, flexible glovebox wall elements, and room partitions. These reliable and inexpensive filtered barriers have many uses in fields such as radioactive waste processing, HVAC filter changeout, vapor or grit blasting, asbestos cleanup, pharmaceutical, medical, biological, and electronic equipment containment. The applications can result in significant cost savings, improved operational reliability and safety, and total waste volume reduction. This technology was developed at the Argonne National Laboratory-West (ANL-W) in 1993 and has been used at ANL-W since then at the TRU Waste Characterization Chamber Gloveboxes. Another 1998 AGS Conference paper titled "TRU Waste Characterization Gloveboxes", presented by Mr. David Duncan of ANL-W, describes these boxes.

  1. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28T23:59:59.000Z

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  2. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

  3. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2005 - 2006 #12;2 #12;3 ANNUAL. Papazoglou #12;5 PREFACE The Institute has continued transferring know how from Nuclear Technology to other of the Institute page 34 7. Publications page 36 8. Research Projects page 72 #12;4 ORGANISATIONAL CHART 2006

  4. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2008 #12;#12;ANNUAL REPORT a success story for the Institute of Nuclear Technology ­ Radiation Protection over the last decades PROJECTS i #12;ii #12;iii UORGANISATIONAL CHART 2008 REACTOR SAFETY COMMITTEE Chairman: I.A. Papazoglou

  5. Nuclear technology for the year 2000

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

  6. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01T23:59:59.000Z

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  7. Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report

    SciTech Connect (OSTI)

    Zirker, L.R.; Francfort, J.E.

    2003-01-31T23:59:59.000Z

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  8. Oil Bypass Filter Technology Performance Evaluation - January 2003 Quarterly Report

    SciTech Connect (OSTI)

    Laurence R. Zirker; James E. Francfort

    2003-01-01T23:59:59.000Z

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  9. Hindawi Publishing Corporation Science and Technology of Nuclear Installations

    E-Print Network [OSTI]

    Demazière, Christophe

    Hindawi Publishing Corporation Science and Technology of Nuclear Installations Volume 2013, Article Department of Nuclear Chemistry, Chalmers University of Technology, 412 96 Gothenburg, Sweden 2 Department of Nuclear Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden Correspondence should

  10. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    Fusion Nuclear Science and Technology Program - Status and plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research...

  11. DOE NHI: Progress in Nuclear Connection Technologies

    SciTech Connect (OSTI)

    Steven R. Sherman

    2007-06-01T23:59:59.000Z

    The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

  12. Institute of Nuclear Technology & Radiation Protection

    E-Print Network [OSTI]

    Institute of Nuclear Technology & Radiation Protection annual Report 2010 #12;#12;ANNUAL REPORTResearchReactor I.Stamatelatos NuclearAnalytical Techniques& Radioisotopes I.Stamatelatos AerosolFlows C Pollution S.Andronopoulos Analyses&Assessment ofEnvironmental Pollutants C.Vasilakos Fusion

  13. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2007 #12;#12;i ANNUAL REPORT has been a pivotal year for the Institute due to the world wide emergence of the "nuclear energy 11 Facts and Figures page 33 4. Personnel page 35 5. Funding page 36 6. Expenditure of the Institute

  14. SOMS HYBRID SPIN-ON FILTER Sponsor: SOMS Technologies

    E-Print Network [OSTI]

    Salama, Khaled

    the lubricating oil. Some premium filters state filtration efficiency down to 25 microns. However, it is particles engine oil filters effectively remove contaminant particles larger than 40 -50 microns from smaller than these, which accumulate in the oil, damage the filter, and force regular and frequent oil

  15. Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology

    E-Print Network [OSTI]

    Leads Technical Leads - evaluation of nuclear hydrogen production methods and system/infrastructure Programmatic Overview Nuclear Hydrogen InitiativeNuclear Hydrogen Initiative #12;Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative

  16. Future AI and Robotics Technology for Nuclear Plants Decommissioning

    E-Print Network [OSTI]

    Hu, Huosheng

    Future AI and Robotics Technology for Nuclear Plants Decommissioning Huosheng Hu and Liam Cragg to aid in decommissioning nuclear plants that have been used to process or store nuclear materials. Scope potential applications to nuclear plant decommissioning, namely Nanotechnology, Telepresence

  17. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01T23:59:59.000Z

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  18. Nuclear technologies for Moon and Mars exploration

    SciTech Connect (OSTI)

    Buden, D.

    1991-01-01T23:59:59.000Z

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  19. Diesel Particulate Filter Technology for Low-Temperature and...

    Broader source: Energy.gov (indexed) [DOE]

    Methods Using Air Restriction Wastega te Compressor Intercooler Turbine Air Filter Pre-Turbo Throttle Exhaust brake VGT Intake Throttle CRT Method Selected Method Selected...

  20. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect (OSTI)

    Perella, V.F.

    1999-11-29T23:59:59.000Z

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  1. Virtual active filters for HVDC networks using V2G technology F.R. Islam

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Virtual active filters for HVDC networks using V2G technology F.R. Islam , H.R. Pota School 23 July 2013 Keywords: Power system HVDC Active filter PHEV V2G a b s t r a c t Active and passive filters are essential to maintain the power quality of a HVDC link. In this paper the Vehicle to Grid (V2G

  2. Nuclear fission and nuclear safeguards: Common technologies and challenges

    SciTech Connect (OSTI)

    Keepin, G.R.

    1989-01-01T23:59:59.000Z

    Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably /sup 239/Pu and /sup 235/U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs.

  3. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    SciTech Connect (OSTI)

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12T23:59:59.000Z

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  4. Design of high order switched resistor momolithic filters using NMOS technology

    E-Print Network [OSTI]

    Aguilar, Raul Antonio

    1983-01-01T23:59:59.000Z

    DESIGN OF HIGH ORDER SWITCHED RESISTOR MONOLITHIC FILTERS USING NMOS TECHNOLOGY A Thesis by RAUL ANTONIO AGUILAR Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1983 Major Subject: Electrical Engineering DESIGN OF HIGH ORDER SMITCHED RESISTOR MONOLITHIC FILTERS USING NMOS TECHNOLOGY A Thesis by RAUL ANTONIO AGUILAR Approved as to style and content by: Phill&p E. Allen (Chairman...

  5. Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Abdou, Mohamed

    Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

  6. M. Abdou April 2013 Fusion Nuclear Science and Technology

    E-Print Network [OSTI]

    Abdou, Mohamed

    M. Abdou April 2013 Fusion Nuclear Science and Technology Challenges and Required R&D Mohamed Fusion Nuclear Science and Technology Challenges and Required R&D Presentation Outline Introduction to realizing fusion power and the Central Role of Fusion Nuclear Science and Technology (FNST) 4 #12;M. Abdou

  7. The market viability of nuclear hydrogen technologies.

    SciTech Connect (OSTI)

    Botterud, A.; Conzelmann, G.; Petri, M. C.; Yildiz, B.

    2007-04-06T23:59:59.000Z

    The Department of Energy Office of Nuclear Energy is supporting system studies to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options. One of the objectives of the current analysis phase is to determine how nuclear hydrogen technologies could evolve under a number of different futures. The outputs of our work will eventually be used in a larger hydrogen infrastructure and market analysis conducted for DOE-EE using a system-level market simulation tool now underway. This report expands on our previous work by moving beyond simple levelized cost calculations and looking at profitability, risk, and uncertainty from an investor's perspective. We analyze a number of technologies and quantify the value of certain technology and operating characteristics. Our model to assess the profitability of the above technologies is based on Real Options Theory and calculates the discounted profits from investing in each of the production facilities. We use Monte-Carlo simulations to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from a production plant. We also quantify the value of the option to switch between hydrogen and electricity production in order to maximize investor profits. Uncertainty in electricity and hydrogen prices can be represented with two different stochastic processes: Geometric Brownian Motion (GBM) and Mean Reversion (MR). Our analysis finds that the flexibility to switch between hydrogen and electricity leads to significantly different results in regards to the relative profitability of the different technologies and configurations. This is the case both with a deterministic and a stochastic analysis, as shown in the tables below. The flexibility in output products clearly adds substantial value to the HPE-ALWR and HTE-HTGR plants. In fact, under the GBM assumption for prices, the HTE-HTGR plant becomes more profitable than the SI-HTGR configuration, although SI-HTGR has a much lower levelized cost. For the HTE-HTGR plant it is also profitable to invest in additional electric turbine capacity (Case b) in order to fully utilize the heat from the nuclear reactor for electricity production when this is more profitable than producing hydrogen. The technologies are all at the research and development stage, so there are significant uncertainties regarding the technology cost and performance assumptions used in this analysis. As the technologies advance, the designers need to refine the cost and performance evaluation to provide a more reliable set of input for a more rigorous analysis. In addition, the durability of the catalytic activity of the materials at the hydrogen plant during repetitive price cycling is of prime importance concerning the flexibility of switching from hydrogen to electricity production. However, given the potential significant economic benefit that can be brought from cogeneration with the flexibility to quickly react to market signals, DOE should consider R&D efforts towards developing durable materials and processes that can enable this type of operation. Our future work will focus on analyzing a range of hydrogen production technologies associated with an extension of the financial analysis framework presented here. We are planning to address a variety of additional risks and options, such as the value of modular expansion in addition to the co-generation capability (i.e., a modular increase in the hydrogen production capacity of a plant in a given market with rising hydrogen demand), and contrast that with economies-of-scale of large-unit designs.

  8. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    SciTech Connect (OSTI)

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07T23:59:59.000Z

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  9. Freeze Technology for Nuclear Applications - 13590

    SciTech Connect (OSTI)

    Rostmark, Susanne C.; Knutsson, Sven [Lulea University of Technology (Sweden)] [Lulea University of Technology (Sweden); Lindberg, Maria [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

    2013-07-01T23:59:59.000Z

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  10. Autonomous Correction of Sensor Data Applied to Building Technologies Using Filtering Methods

    SciTech Connect (OSTI)

    Castello, Charles C [ORNL] [ORNL; New, Joshua Ryan [ORNL] [ORNL; Smith, Matt K [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Sensor data validity is extremely important in a number of applications, particularly building technologies where collected data are used to determine performance. An example of this is Oak Ridge National Laboratory s ZEBRAlliance research project, which consists of four single-family homes located in Oak Ridge, TN. The homes are outfitted with a total of 1,218 sensors to determine the performance of a variety of different technologies integrated within each home. Issues arise with such a large amount of sensors, such as missing or corrupt data. This paper aims to eliminate these problems using: (1) Kalman filtering and (2) linear prediction filtering techniques. Five types of data are the focus of this paper: (1) temperature; (2) humidity; (3) energy consumption; (4) pressure; and (5) airflow. Simulations show the Kalman filtering method performed best in predicting temperature, humidity, pressure, and airflow data, while the linear prediction filtering method performed best with energy consumption data.

  11. Sterling Technology ultra-pure filtered diesel fuel. Final report, April 1984-April 1988

    SciTech Connect (OSTI)

    Adams, E.C.

    1988-05-01T23:59:59.000Z

    This report details testing done on ultra-pure filtered diesel fuel and unfiltered diesel fuel. Several barrels of filtered fuel, shipped from the manufacturer--Sterling Technology, Inc., Jacksonville, Florida--were tested using the 690-in. Deutz F-8L-413A Air Cooled V8 Engine. No significant difference was found, but due to a delay in starting the tests, it was suspected that some deterioration might have occurred in the fuel. The objective was to investigate the possible benefits of the ultra-pure filtered diesel fuel in power improvement and reduction of exhaust smoke.

  12. Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear Science & Engineering ­ Development of novel techniques/tools using particle transport theory methodologies with Alireza Haghighat, Nuclear Engineering Program, Mechanical Engineering Department Virginia

  13. Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction

    E-Print Network [OSTI]

    Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A.E. FINAN, K. MIU, A.C. KADAK Massachusetts Institute of Technology Department of Nuclear Science the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed

  14. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect (OSTI)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  15. Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Safety 3 C #12;Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2013-2014 Page 1

  16. Fusion Nuclear Science and Technology Research Needed Now for Magnetic

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology Research Needed Now for Magnetic Fusion Energy Neil B. Morley;Outline Introduction Nuclear science and technology research needed now to enable the construction Conclusions What we are missing out on by eliminating long term technology programs? Opportunities in the Age

  17. Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology (FNST) Challenges and Facilities on the Pathway to DEMO Princeton,NJ 7-10 September 2011 1 #12;Fusion Nuclear Science and Technology (FNST) must be the Central and Technology Center (UCLA) President, Council of Energy Research and Education Leaders, CEREL (USA) With input

  18. Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2012-2013 Page 1

  19. 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology

    E-Print Network [OSTI]

    of operating NPP; · NPP decommissioning and waste treatment; · Novel reactor concepts and Nuclear Fuel CycleISTCISTC 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology 13th CERNISTC SAC Seminar New Perspectives of High Energy Physics 01

  20. March 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Fission And Nuclear Technologies Science Subject Feed Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 72 > Peer-review study of the draft handbook...

  1. June 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 78 Estimation of gas leak rates through very...

  2. April 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Fission And Nuclear Technologies Science Subject Feed Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (null) 298 > Estimation of gas leak rates through very...

  3. Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities Nuclear Science & Technology (FNST) The nuclear environment also affects Tritium Fuel Cycle separation PFC & Blanket T processing design dependent optics 3 #12;Fusion Nuclear Science and Technology

  4. Operation technology of air treatment system in nuclear facilities

    E-Print Network [OSTI]

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01T23:59:59.000Z

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  5. Oil Bypass Filter Technology Evaluation, Fourth Quarterly Report, July--September 2003

    SciTech Connect (OSTI)

    James E. Francfort; Larry Zirker

    2003-11-01T23:59:59.000Z

    This fourth Oil Bypass Filter Technology Evaluation report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 259,398 test miles. This represents an avoidance of 21 oil changes, which equates to 740 quarts (185 gallons) of oil not used or disposed of. To validate the extended oil-drain intervals, an oil-analysis regime evaluates the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. For bus 73450, higher values of iron have been reported, but the wear rate ratio (parts per million of iron per thousand miles driven) has remained consistent. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on each of the Tahoes to develop a characterization history or baseline for each engine.

  6. Oil Bypass Filter Technology Evaluation - Third Quarterly Report, April--June 2003

    SciTech Connect (OSTI)

    Laurence R. Zirker; James E. Francfort

    2003-08-01T23:59:59.000Z

    This Third Quarterly report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the PuraDYN Corporation. The reported engine lubricating oil-filtering capability (down to 0.1 microns) and additive package of the bypass filter system is intended to extend oil-drain intervals. To validate the extended oil-drain intervals, an oil-analysis regime monitors the presence of necessary additives in the oil, detects undesirable contaminants and engine wear metals, and evaluates the fitness of the oil for continued service. The eight buses have accumulated 185,000 miles to date without any oil changes. The preliminary economic analysis suggests that the per bus payback point for the oil bypass filter technology should be between 108,000 miles when 74 gallons of oil use is avoided and 168,000 miles when 118 gallons of oil use is avoided. As discussed in the report, the variation in the payback point is dependant on the assumed cost of oil. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on the six Tahoes to develop an oil characterization history for each engine.

  7. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

  8. Oil Bypass Filter Technology Evaluation Ninth Quarterly Report October–December 2004

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordan Fielding

    2005-02-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation quarterly report (October–December 2004) details the ongoing fleet evaluation of oil bypass filter technologies being conducted by the Idaho National Laboratory (INL; formerly Idaho National Engineering and Environmental Laboratory) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight INL four-cycle diesel-engine buses used to transport INL employees on various routes and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. This quarter, three additional buses were equipped with bypass filters from Refined Global Solutions. Oil bypass filters are reported to have an engine oil filtering capability of less than 1 micron. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminate from the oil. During the quarter, the eleven diesel engine buses traveled 62,188 miles, and as of January 3, 2005 the buses had accumulated 643,036 total test miles. Two buses had their engine oil changed this quarter. In one bus, the oil was changed due to its degraded quality as determined by a low total base number (<3.0 mg KOH/g). The other bus had high oxidation and nitration numbers (>30.0 Abs/cm). Although a total of six buses have had their oil changed during the last 26 months, by using the oil bypass filters the buses in the evaluation avoided 48 oil changes, which equates to 1,680 quarts (420 gallons) of new oil not consumed and 1,680 quarts of waste oil not generated. Therefore, over 80% of the oil normally required for oil-changes was not used, and, consequently, the evaluation achieved over 80% reduction in the amount of waste oil normally generated. The six Tahoe test vehicles traveled 39,514 miles, and as of January 3, 2005 the Tahoes had accumulated 189,970 total test miles. The Tahoe filter test is in transition. To increase the rate of bypass filter oil flow on the Tahoes, puraDYN provided a larger orifice assembly, and these are being changed out as the Tahoes come in for regular service.

  9. Nuclear export and technology transfer controls

    SciTech Connect (OSTI)

    Hower, J.J.; Primeau, S.J. (Eagle Research Group, Inc., Arlington, VA (US))

    1988-01-01T23:59:59.000Z

    A review of the U.S. implementation of nuclear export and technology transfer controls is undertaken to assess whether the U.S. controls is undertaken to assess whether the U.S. controls meet the full scope of the international commitment toward non-proliferation controls. The international non-proliferation controls have been incorporated into CoCom, the Coordinating Committee of the multinational organization established to protect the mutual interests of the participating countries in the area of strategic export controls. However, this CoCom list is classified and each participating country implements these controls pursuant to its own laws. A comparison to the non-proliferation controls promulgated by the U.K. is used to verify that the U.S. controls are at least as comprehensive as the British controls.

  10. Oil Bypass Filter Technology Evaluation Tenth Quarterly Report January–March 2005

    SciTech Connect (OSTI)

    Larry Ziker; James Francfort

    2005-06-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation quarterly report (January– March 2005) details the ongoing fleet evaluation of oil bypass filter technologies being conducted by the Idaho National Laboratory (INL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eleven INL fourcycle diesel-engine buses and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems. Eight of the buses and the six Tahoes are equipped with oil bypass filters from the puraDYN Corporation; the remaining three buses are equipped with oil bypass filters from Refined Global Solutions. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminates from the oil. During the January to March 2005 reporting quarter, the eleven diesel engine buses traveled 97,943 miles. As of March 31, 2005, the buses had accumulated 744,059 total test miles. During this quarter, four regularly scheduled 12,000-mile bus servicings were performed. The full-flow and bypass oil filters were changed and oil analysis samples were taken for the four buses. Bus 73446 had its oil changed due to a low total base number value. Bus 73450 had a major engine failure at the beginning of the quarter when one of its pushrods and valves were damaged. Buses 73432 and 73433 were removed from the bypass filter evaluation project and placed into the INL Diesel Engine Idling Wear-Rate Evaluation Test. While a total of nine oil changes on the INL buses occurred during the past 29 months, 53 oil changes have been avoided by using the oil bypass filters. The 53 avoided oil changes equates to 1,855 quarts (464 gallons) of new oil not consumed and 1,855 quarts of waste oil not generated. Therefore, over 85% of the oil normally required for oil-changes was not used, and, consequently, the evaluation achieved a greater than 85% reduction in the amount of waste oil normally generated by the buses. The six Tahoe test vehicles traveled 40,700 miles, and as of March 31, 2005, the Tahoes had accumulated 231,428 total test miles.

  11. NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    McDonald, Kirk

    NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

  12. Nuclear Science and Technology, November 2000. NEUTRON CROSS SECTION EVALUATIONS

    E-Print Network [OSTI]

    Nuclear Science and Technology, November 2000. 1 NEUTRON CROSS SECTION EVALUATIONS FOR 238 U UP and Power Engineering, 249020 Obninsk, Russia A.Ventura ENEA, Nuclear Data Center and INFN, Bologna Section of the statistical description that includes direct, pre-equilibrium and equilibrium mechanisms of nuclear reactions

  13. Office of Nuclear Energy, Science and Technology Executive Summary

    E-Print Network [OSTI]

    nuclear power plant in the U.S. by 2010 to support the President's goal of reducing greenhouse gasOffice of Nuclear Energy, Science and Technology Executive Summary Mission As we become more in this new century, the benefits of nuclear fission as a key energy source for both the near- and long

  14. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01T23:59:59.000Z

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  15. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Atomic Energy Agency. Nuclear Technology Review 2008. Vienna1: Generations of Nuclear Technology Time 53 1945-1965 -the expansion of their nuclear technology potential. 3 The

  16. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    E-Print Network [OSTI]

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01T23:59:59.000Z

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  17. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    E-Print Network [OSTI]

    I. M. Neklyudov; A. N. Dovbnya; N. P. Dikiy; O. P. Ledenyov; Yu. V. Lyashko

    2013-06-21T23:59:59.000Z

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT3, in the AU1500 iodine air filter are also researched. The possible influences by the standing acoustic wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed.

  18. Vehicle Technologies Office Merit Review 2014: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  19. Vehicle Technologies Office Merit Review 2015: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  20. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect (OSTI)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05T23:59:59.000Z

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

  1. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect (OSTI)

    Casey, Leslie A.

    2014-01-13T23:59:59.000Z

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  2. Production Technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  3. advanced nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Programme A. Nuclear Power...

  4. advancing nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advancing nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Programme A. Nuclear Power...

  5. Development and Testing of a Moving Granular Bed Filter at the Taiwan Industrial Technology Research Institute

    SciTech Connect (OSTI)

    Peng, C.Y.; Hsiau, S-S.; Lee, H-T.; Smid, J.; Wu, T-C.

    2002-09-18T23:59:59.000Z

    The main purpose of developing high temperature gas cleaning technologies are to clean the gas under high temperature in order to be cost effective and to improve energy efficiency. Moving granular bed filters are technically and economically applicable for high temperature cleaning system because of low cost, possible to keep operation at a constant pressure drop, simple structure, easy in operation and maintenance, no high risk internals, and more tolerant to process thermal flow. Energy and Resource Laboratories, Taiwan Industrial Technology Research Institute (ERL/ITRI) has been developing a moving granular bed filter (MGBF) for BIGCC(Biomass Integrated Gasification Combined Cycle) high temperature gas cleanup. The filter granules move downwards directed by louver-like guide plates and the hot gases penetrate the MGBF horizontally. Filtration mechanisms include collection of the dust cake over the bed media surface and deep bed filtration. Stagnant zones of filter granules combining with the dusts always exist along the louver walls. Such stagnant zones often corrode the louver-like guide plates, increase the system pressure drop and decrease the total reaction efficiency that may endanger MGBF operation. Series louver and inert structure research that modify the granular flow pattern have been designed to eliminate the formation of these stagnant zones. By connecting to an auxiliary dust/bed media separation system, MGBF can be operated continuously at a stable pressure drop with a stable high efficiency. There are several MGBF R&D activities in progress: (1) a 3-dimensional cold flow system for testing the MGBF filtration efficiency; (2) a high temperature gas cleanup experimental system that has been designed and installed; (3) a 2-dimensional flow pattern experimental system for approving design concepts.

  6. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report

    SciTech Connect (OSTI)

    L. R. Zirker; J. E. Francfort; J. J. Fielding

    2006-03-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation final report documents the feasibility of using oil bypass filters on 17 vehicles in the Idaho National Laboratory (INL) fleet during a 3-year test period. Almost 1.3 million test miles were accumulated, with eleven 4-cycle diesel engine buses accumulating 982,548 test miles and six gasoline-engine Chevrolet Tahoes accumulating 303,172 test miles. Two hundred and forty oil samples, taken at each 12,000-mile bus servicing event and at 3,000 miles for the Tahoes, documented the condition of the engine oils for continued service. Twenty-eight variables were normally tested, including the presence of desired additives and undesired wear metals such as iron and chrome, as well as soot, water, glycol, and fuel. Depending on the assumptions employed, the INL found that oil bypass filter systems for diesel engine buses have a positive payback between 72,000 and 144,000 miles. For the Tahoes, the positive payback was between 66,000 and 69,000 miles.

  7. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01T23:59:59.000Z

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  8. On the structurization of coal dust precipitations and their influence on aerodynamic resistance by granulated mediums in air filters at nuclear power plants

    E-Print Network [OSTI]

    Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

    2012-01-01T23:59:59.000Z

    The processes of structurization of dust precipitations in granulated filtering mediums, formed by the monolithic glass spherical granules with the diameters of 2mm and 3mm, are re-searched. The distinctions between the distributions of filtered coal dust masses in the air filters with cylindrical granules and the air filters with spherical granules, are found. The influences by the filtered dust masses on the air resistance of both the air filters with the cylindrical granules and the air filters with the spherical granules are described. The conclusions on a possibility of the use of various chemical adsorbents with different geometric forms and volumetric dimensions to improve the filtering properties of granulated filtering mediums in air filters at nuclear power plants are formulated.

  9. On the structurization of coal dust precipitations and their influence on aerodynamic resistance by granulated mediums in air filters at nuclear power plants

    E-Print Network [OSTI]

    I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

    2012-07-02T23:59:59.000Z

    The processes of structurization of dust precipitations in granulated filtering mediums, formed by the monolithic glass spherical granules with the diameters of 2mm and 3mm, are re-searched. The distinctions between the distributions of filtered coal dust masses in the air filters with cylindrical granules and the air filters with spherical granules, are found. The influences by the filtered dust masses on the air resistance of both the air filters with the cylindrical granules and the air filters with the spherical granules are described. The conclusions on a possibility of the use of various chemical adsorbents with different geometric forms and volumetric dimensions to improve the filtering properties of granulated filtering mediums in air filters at nuclear power plants are formulated.

  10. Advanced Technology Development and Mitigation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

  11. Technologies for detection of nuclear materials

    SciTech Connect (OSTI)

    DeVolpi, A.

    1996-03-30T23:59:59.000Z

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  12. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect (OSTI)

    Polansky, G.F. [Phillips Lab., Albuquerque, NM (United States); Schmidt, G.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States); Voss, S.S. [Los Alamos National Lab., NM (United States); Reynolds, E.L. [Applied Physics Lab., Laurel, MD (United States)

    1994-08-01T23:59:59.000Z

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  13. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect (OSTI)

    David J. Hill

    2007-07-01T23:59:59.000Z

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  14. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    SciTech Connect (OSTI)

    David Shropshire

    2009-09-01T23:59:59.000Z

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  15. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01T23:59:59.000Z

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance technical barriers, making plutonium diversion more difficult by not isolating plutonium or/and coexistence of fission products with plutonium.

  16. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect (OSTI)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27T23:59:59.000Z

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

  17. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    SciTech Connect (OSTI)

    Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

    1992-01-01T23:59:59.000Z

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  18. Security Science & Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign InNuclear SecurityUnder BudgetNREL

  19. Sandia Energy - Nuclear Energy Safety Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry

  20. Report of the Nuclear Reactor Technology Subcommittee

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthernof the Nuclear Reactor

  1. PNNL's Community Science & Technology Seminar Series Nuclear Power in a

    E-Print Network [OSTI]

    PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World Leonard J. Bond is a Laboratory Fellow at Pacific Northwest National Laboratory. He has been with PNNL information and upcoming seminars, contact PNNL at 375-6871 or visit http://regionaloutreach.pnnl

  2. annual nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Annual Report Curtin...

  3. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    SciTech Connect (OSTI)

    Sanchez, R.G. [comp.

    1994-01-01T23:59:59.000Z

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  4. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01T23:59:59.000Z

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  5. Roadmap: Radiologic Imaging Sciences Nuclear Medicine (with certification and ATS Radiologic Technology)

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences ­ Nuclear Medicine (with certification and ATS Radiologic Technology) ­ Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-NMHO] Regional College Catalog technology; successfully completed the certification exam for the American Registry of Radiologic Technology

  6. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Fifth Quarterly Report October - December 2003

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort

    2004-02-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation quarterly report (October-December 2003) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 324,091 test miles. This represents an avoidance of 27 oil changes, which equate to 952 quarts (238 gallons) of new oil not conserved and therefore, 952 quarts of waste oil not generated. To validate the extended oil-drain intervals, an oil-analysis regime is used to evaluate the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. The test fleet has been expanded to include six Chevrolet Tahoe sport utility vehicles with gasoline engines.

  7. Nuclear technology programs. Semiannual progress report, April--September 1991

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  8. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect (OSTI)

    Harmon, J.E. [ed.

    1992-06-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  9. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect (OSTI)

    Harmon, J.E. (ed.)

    1992-06-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  10. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    SciTech Connect (OSTI)

    Harmon, J.E. [ed.

    1990-12-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  11. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    SciTech Connect (OSTI)

    Harmon, J.E. [ed.

    1992-01-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  12. Nuclear Technology Programs semiannual progress report, October 1990--March 1991

    SciTech Connect (OSTI)

    NONE

    1992-12-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  13. Institute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel

    E-Print Network [OSTI]

    McDonald, Kirk

    Institute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel FAIR and IFMIF liquid metal Power Targetry Workshop, May 3, 2011 #12;Institute for Nuclear and Energy Technologies 2 L. Stoppel, Th for Nuclear and Energy Technologies 4 L. Stoppel, Th. Wetzel FAIR and IFMIF liquid metal free surface target

  14. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities safety of nuclear facilities could benefit from the use of smart materials technologies in both

  15. March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE’s nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

  16. Refractory alloy technology for space nuclear power applications

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01T23:59:59.000Z

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  17. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    SciTech Connect (OSTI)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative changes, and meeting the needs of the commercial nuclear industry (including developing and evaluating fuel concepts that may enhance accident tolerance in light water reactors while possibly improving fuel performance) are program priorities. Continuing to build partnerships and collaborations with industry, universities, international organizations, and other DOE programs are essential to addressing the challenges facing the FCT program. (authors)

  18. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

    2012-07-01T23:59:59.000Z

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  19. Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants

    E-Print Network [OSTI]

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01T23:59:59.000Z

    The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

  20. Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

    2013-01-01T23:59:59.000Z

    The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of...

  1. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect (OSTI)

    David L. Black

    2000-06-04T23:59:59.000Z

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  2. Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25-28, 2013

    E-Print Network [OSTI]

    Meunier, Michel

    Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25 #12;Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25-28, 2013 Paper 6722 DRAGON5: Designing Computational Schemes Dedicated to Fission Nuclear Reactors

  3. Ceramic HEPA Filter Program

    SciTech Connect (OSTI)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30T23:59:59.000Z

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  4. Overview of Fusion Nuclear Technology in the US

    SciTech Connect (OSTI)

    Morley, Neil B.; Abdou, Mohamed A.; Anderson, Mark; Calderoni, P.; Kurtz, Richard J.; Nygren, R N.; Raffray, R; Sawan, M.; Sharpe, Peter J.; Smolentsev, S.; Willms, Scott; Ying, A Y.

    2006-02-01T23:59:59.000Z

    Fusion Nuclear Technology (FNT) research in the United States encompasses many activities and requires expertise and capabilities in many different disciplines. The US Enabling Technology program is divided into several task areas, with aspects of fusion nuclear technology being addressed mainly in the Plasma Chamber, Neutronics, Safety, Materials, Tritium and Plasma Facing Component Programs. These various programs work together to address key FNT topics, including support for the ITER basic machine and the ITER Test Blanket Module, support for domestic plasma experiments, and development of DEMO relevant material and technological systems for blankets, shields, and plasma facing components. While it is difficult to describe all these activities in adequate detail, this paper gives an overview of critical FNT activities. With the recent return of the US to the ITER collaboration, several activities in support of the ITER machine have been initiated, including development of the first wall shielding blanket baffle module (module 18), testing of plasma facing components, ITER tokamak exhaust tritium processing system development, and 3-D neutronics and activation code advances. The ITER test blanket module development activity has also been restarted in the US, and critical R&D is proceeding on ceramic breeder thermomechanical systems and lead-lithium breeder systems utilizing SiC composite flow channel inserts for thermal and MHD electrical insulation. Novel research on free surface liquid metal divertors is also continuing, with the goal of fielding a lithium free surface divertor in the National Spherical Torus eXperimental device (NSTX) and aiding the development of the Lithium Tokamak Experiment at Princeton. Materials research in the long term is focused on coupled computational materials science and carefully designed experiments to determine the underlying mechanisms that control the mechanical and physical behavior of advanced body-centered cubic metals and ceramic composites in the harsh fusion environment. In addition, two inertial fusion energy (IFE) research programs conducting FNT-related research for IFE are also described.

  5. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect (OSTI)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01T23:59:59.000Z

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness.

  6. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordan Fielding

    2004-08-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE complex and all Federal fleets of on-road vehicles. The estimated potential annual engine oil savings for the three fleets are: INEEL – 3,400 gallons, all DOE fleets – 32,000 gallons, and all Federal fleet – 1.7 million gallons.

  7. Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01T23:59:59.000Z

    The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...

  8. Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

    2013-02-18T23:59:59.000Z

    The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of the aerodynamic resistance of a model of the vertical iodine air filter is completed. The comparative analysis of the technical characteristics of the vertical and horizontal iodine air filters is also made.

  9. V2G Technology for Designing Active Filter System to Improve Wind Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    generation. A system model with wind generator and a dynamic model of PHEVs are introduced here based on the instantaneous power theory (p-q theory) to improve the wind generator performance through compensating have the potential to work as active filter with wind generator to improve power quality, dynamic power

  10. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01T23:59:59.000Z

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  11. 2 Science and Technology of Nuclear Installations the nuclear data are added in a speci c format to so-called

    E-Print Network [OSTI]

    Demazière, Christophe

    information from experi- mental cross-section data, integral data (critical assemblies), and nuclear models#12;2 Science and Technology of Nuclear Installations the nuclear data are added in a speci c format to so-called evaluated nuclear data les, such as ENDF-6 (Evaluated Nuclear Data File-6). e

  12. Leasing of Nuclear Power Plants With Using Floating Technologies

    SciTech Connect (OSTI)

    Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.; Moskin, V.A. [Federal State Unitary Enterprise, N.A. Dollezhal' Scientific-Research and Design Institute of Power Engineering (Russian Federation)

    2002-07-01T23:59:59.000Z

    The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprise 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm-manufacturer, for subsequent reprocessing, utilization and storage. Nuclear fuel and radioactive wastes are removed from NPP site also. Use of leasing method removes legal problems connected with the transportation of radioactive materials through state borders as the RCBM remains a property of the state-producer at all stages of its life cycle. (authors)

  13. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01T23:59:59.000Z

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  14. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    to Journal of Nuclear Technology. [46] C.J. Hagmann and J.Library for Nuclear Science and Technology,” Nuclear Dataof Standards and Technology daughter nuclear data processing

  15. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    SciTech Connect (OSTI)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01T23:59:59.000Z

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  16. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01T23:59:59.000Z

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  17. Fusion Engineering and Design xxx (2006) xxxxxx Overview of fusion nuclear technology in the US

    E-Print Network [OSTI]

    Raffray, A. René

    2006-01-01T23:59:59.000Z

    Fusion Engineering and Design xxx (2006) xxx­xxx Overview of fusion nuclear technology in the US N.B. Morley et al. / Fusion Engineering and Design xxx (2006) xxx­xxx · firstwall

  18. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01T23:59:59.000Z

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  19. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Lindken, Ralph

    Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors: Better prediction of the flow and heat transfer in liquid metal cooled nuclear reactors will contribute

  20. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Vuik, Kees

    production need improvement. In that respect, CFD predictions of the flow and heat transport in nuclear fuelNuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors

  1. Guidance for Deployment of Mobile Technologies for Nuclear Power...

    Energy Savers [EERE]

    Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or...

  2. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect (OSTI)

    Kadner, S.P. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Reisman, A. [Brookhaven National Lab., Upton, NY (United States); Turpen, E. [Aquila Technologies Group, Inc., Cambridge, MA (United States)

    1996-10-01T23:59:59.000Z

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  3. How to Proceed with the Thorium Nuclear Technology: a Real Options Analysis

    E-Print Network [OSTI]

    Guillas, Serge

    How to Proceed with the Thorium Nuclear Technology: a Real Options Analysis Afzal Siddiqui Stein-Erik Fleten August 11, 2008 Abstract The advantage of thorium-fuelled nuclear power is that it limits, and the current costs of initiating a thorium fuel cycle would be very high. We analyse how a government may

  4. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01T23:59:59.000Z

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  5. Moving granular-bed filter development program, Option III: Development of moving granular-bed filter technology for multi-contaminant control. Task 14: Test plan; Topical report

    SciTech Connect (OSTI)

    Haas, J.C.; Olivo, C.A.; Wilson, K.B.

    1994-04-01T23:59:59.000Z

    An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation. The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.

  6. 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation

    E-Print Network [OSTI]

    Search 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation to employ nuclear fusion technologies in power generation by 2050. China will adopt a three-step strategy with thermonuclear reactors; the second step aims to raise the utilization rate of nuclear fuels from the current 1

  7. Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 189 Copyright 2006 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Pázsit, Imre

    Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 189 Copyright © 2006* and Imre Pázsit Department of Nuclear Engineering Chalmers University of Technology SE-412 96 Göteborg, I. (2006) `Investigation of detector tube impacting in the Ringhals-1 BWR', Int. J. Nuclear Energy

  8. March 2015 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    solutions Maimoni, A. (1980) 101 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 87 One-dimensional drift-flux model and constitutive...

  9. Nuclear Energy: Policies and Technology for the 21st Century

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Nuclear Energy Advisory Committee (NEAC) formed two subcommittees to develop a report for the new Administration: a Policy Subcommittee chartered to evaluate U.S....

  10. Most Viewed Documents for Fission And Nuclear Technologies: September...

    Office of Scientific and Technical Information (OSTI)

    under accident conditions Bomelburg, H.J. (1977) 71 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 68 Stress analysis and evaluation of a...

  11. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    SciTech Connect (OSTI)

    Robbins, W.H.; Finger, H.B.

    1991-07-01T23:59:59.000Z

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  12. 288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Copyright 2013 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Demazière, Christophe

    288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Copyright © 2013 Energy Science and Technology, Vol. 7, No. 4, pp.288­318. Biographical notes: Christophe Demazière of Technology, SE-412 96 Gothenburg, Sweden Email: demaz@chalmers.se Abstract: Current practices in the nuclear

  13. Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational methods and their

    E-Print Network [OSTI]

    Demazière, Christophe

    Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational plants', Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, pp.287­298. Biographical notes Engineering Chalmers University of Technology SE-412 96 Gothenburg, Sweden E-mail: demaz

  14. Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 167 Copyright 2006 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Demazière, Christophe

    Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 167 Copyright © 2006 unseated fuel assemblies in BWRs', Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, pp.167 in BWRs Christophe Demazière Department of Reactor Physics Chalmers University of Technology SE-412 96

  15. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    E-Print Network [OSTI]

    Danon, Yaron

    ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 11 Nuclear Research and Consultancy Group, P 2011) The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear

  16. 309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR MATERIALS"

    E-Print Network [OSTI]

    Motta, Arthur T.

    309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR review; it is a book preview. Thirty years ago, "Fundamental Aspects of Nuclear Reactor Fuel Elements of nuclear fuels among other topics pertinent to the materials in the ensemble of the nuclear reactor

  17. Overview of Fusion Nuclear Technology in the US

    E-Print Network [OSTI]

    / Shield Module 18 ­ Tokamak Exhaust Plant IFE Technology Research ­ High Average Power Laser ­ Z Studies ­ Neutronics Simulation Tools ITER Project Office and US Contributions to ITER ­ First wall) Department of Energy (DOE) Enabling Technologies Program ITER Project Office (US-IPO) High Average Power

  18. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Electricity Markets" OECD/IEA Report 2000. OECD/IEA. "Nuclear Power in the OECD" OECD/IEA Report 2001.OECD/IEA. "Nuclear Power". IEA Energy Technology Essentials,

  19. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect (OSTI)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C. [BWX Technologies, PO Box 785, Lynchburg, VA 24505-0785 (United States)

    2004-02-04T23:59:59.000Z

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  20. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect (OSTI)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01T23:59:59.000Z

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  1. Nuclear rocket performance based on Rover/NERVA technology

    SciTech Connect (OSTI)

    Kirk, W.L.

    1990-01-01T23:59:59.000Z

    It has been suggested that the 1955-1972 nuclear rocket development (Rover) program provides a strong foundation for a renewed nuclear engine development effort. It is concluded that there is an extensive development base deriving from the Rover/NERVA program for bead-loaded graphite-fueled reactors (Isp = 825-900 s), a moderate base for composite fuel (Isp = 875-925 s), and a modest base for carbide fuel (Isp = 975-1025 s). For carbide fuel and to some extent for composite fuel, there is a potential for considerable increase in reactor core and presumable engine lifetime with only modest reduction in Isp.

  2. Fusion Nuclear Science and Technology (FNST) Mohamed Abdou

    E-Print Network [OSTI]

    Material degradation by radiation and other damage Fabrication and joining for reliable components at IFE pulse repetition rate · Incremental effects of repetitive pulses (e.g., radiation damage Components divertor, limiter and nuclear aspects of plasma heating/fueling and IFE final optics Blanket

  3. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Vuik, Kees

    of overheating of the nuclear reactor core during a severe accident, large amount of hydrogen are generatedNuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy utilities, government

  4. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  5. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  6. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  7. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  8. September 1, 2003 / Vol. 28, No. 17 / OPTICS LETTERS 1567 Ring-resonator filters in silicon oxynitride technology for

    E-Print Network [OSTI]

    Melloni, Andrea

    .4510. Ring resonators are promising candidates for the creation of selective filters with small channel spac-ring filters suitable for wavelength-division multiplexed systems with channel spacing in the range 10­100 GHz of the periodicity of the transfer function.1 The monomode waveguide that we designed is shown in Fig. 1. The rib

  9. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17T23:59:59.000Z

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  10. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear

  11. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers in

  12. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers

  13. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers0

  14. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect (OSTI)

    Heather D. Medema; Ronald K. Farris

    2012-09-01T23:59:59.000Z

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  15. October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH

  16. Nuclear Separations Technologies Workshop Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates fromNuclear Security Conference

  17. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear MaterialsModeling

  18. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers0Summer 1995

  19. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers0Summer

  20. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers0SummerSpring

  1. Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthern Supplementthe NUCLEAR

  2. FY 2006 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017 Federal Register09National NuclearSecurity

  3. FY 2008 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017National Nuclear

  4. FY 2009 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017NationalNational NuclearSecurity

  5. State Nuclear Power Technology Corporation SNPTC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop,Lanka-DLRStandard EthanolEnergyState Nuclear

  6. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect (OSTI)

    Garaizar, X

    2010-01-06T23:59:59.000Z

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  7. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11T23:59:59.000Z

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  8. SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security

    E-Print Network [OSTI]

    A. Alemberti; M. Battaglieri; E. Botta; R. De Vita; E. Fanchini; G. Firpo

    2014-04-14T23:59:59.000Z

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  9. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

    2002-11-30T23:59:59.000Z

    OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  10. International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION

    E-Print Network [OSTI]

    California at Los Angeles, University of

    International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION PRODUCTS IN SELECTED APEX DESIGNS K. A. McCarthy, D. A. Petti, R. L. Moore, and B. J. In this paper we concentrate on mobilization of first wall materials during ingress events, and provide guidance

  11. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect (OSTI)

    Howe, S. (Los Alamos National Lab., NM (United States)); Borowski, S. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Motloch, C. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Helms, I. (Nuclear Utility Services, Damascus, MD (United States)); Diaz, N.; Anghaie, S. (Florida Univ., Gainesville, FL (United States)); Latham, T. (United

    1991-01-01T23:59:59.000Z

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  12. Professor Emeritus of Nuclear Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), syip@mit.edu

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    CV SIDNEY YIP Professor Emeritus of Nuclear Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), syip@mit.edu Education B.S. (Mechanical Engineering, 1958), M.S. (Nuclear Engineering, 1959), and Ph.D. (Nuclear Engineering, 1962), all from the University of Michigan

  13. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11T23:59:59.000Z

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

  14. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator NNSAAdministration Technology

  15. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01T23:59:59.000Z

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  16. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative on Advanced Nuclear Technologies

    Broader source: Energy.gov [DOE]

    Noting further that representatives of DOE's Office of Nuclear Energy, Science, and Technology and ANRE have identified common interests in innovative light water reactor technologies, including...

  17. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    SciTech Connect (OSTI)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15T23:59:59.000Z

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  18. Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs

    SciTech Connect (OSTI)

    Fischer, U. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Postfach 3640, D-76021 Karlsruhe (Germany); Batistoni, P. [Associazione Euratom-ENEA sulla Fusione, ENEA Fusion Divison, Via E. Fermi 27, I-00044 Frascati (Italy); Cheng, E. [TSI Research, Inc., P.O. Box 2754, Rancho Santa Fe, CA 92067 (United States); Forrest, R.A. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Nishitani, T. [Fusion Neutronics Laboratory, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2005-05-24T23:59:59.000Z

    The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

  19. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11T23:59:59.000Z

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for restoring the ability of degraded EPR to be compliant and resist fracture. The results of this research reveal that absorption of chemical treatments can lower the glass transition temperature and modulus of EPR. Chemical treatments pursued thus far have proven ineffective at restoring EPR strength and elongation at break. Future work will combine the plasticizer modalities found to successfully increase the volume of the EPR, reduce EPR glass transition temperature and reduce EPR modulus with promising chemistries that will repair the damage of the polymer, potentially using the plasticizer as a host for the new chemistry.

  20. METAL MEDIA FILTERS, AG-1 SECTION FI

    SciTech Connect (OSTI)

    Adamson, D.

    2012-05-23T23:59:59.000Z

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

  1. Disk filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09T23:59:59.000Z

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  2. Technology status in support of refined technical baseline for the Spent Nuclear Fuel project. Revision 1

    SciTech Connect (OSTI)

    Puigh, R.J.; Toffer, H.; Heard, F.J.; Irvin, J.J.; Cooper, T.D.

    1995-10-20T23:59:59.000Z

    The Spent Nuclear Fuel Project (SNFP) has undertaken technology acquisition activities focused on supporting the technical basis for the removal of the N Reactor fuel from the K Basins to an interim storage facility. The purpose of these technology acquisition activities has been to identify technology issues impacting design or safety approval, to establish the strategy for obtaining the necessary information through either existing project activities, or the assignment of new work. A set of specific path options has been identified for each major action proposed for placing the N Reactor fuel into a ``stabilized`` form for interim storage as part of this refined technical basis. This report summarizes the status of technology information acquisition as it relates to key decisions impacting the selection of specific path options. The following specific categories were chosen to characterize and partition the technology information status: hydride issues and ignition, corrosion, hydrogen generation, drying and conditioning, thermal performance, criticality and materials accountability, canister/fuel particulate behavior, and MCO integrity. This report represents a preliminary assessment of the technology information supporting the SNFP. As our understanding of the N Reactor fuel performance develops the technology information supporting the SNFP will be updated and documented in later revisions to this report. Revision 1 represents the incorporation of peer review comments into the original document. The substantive evolution in our understanding of the technical status for the SNFP (except section 3) since July 1995 have not been incorporated into this revision.

  3. Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation

    SciTech Connect (OSTI)

    Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

    2010-11-01T23:59:59.000Z

    This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

  4. active filter system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 EEE 405 Filter Design (3) Course (Catalog) Description: Principles of active and passive filter design, frequency domain Computer Technologies and Information Sciences...

  5. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25T23:59:59.000Z

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

    2010-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19T23:59:59.000Z

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2009-11-23T23:59:59.000Z

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

  10. A version of this appeared in Current Science 75(6) 1998 India's Nuclear Breeders: Technology, Viability, and Options

    E-Print Network [OSTI]

    A version of this appeared in Current Science 75(6) 1998 India's Nuclear Breeders: Technology, Viability, and Options Rahul Tongia & V. S. Arunachalam Department of Engineering & Public Policy Carnegie tongia@andrew.cmu.edu; vsa@andrew.cmu.edu Abstract: India's nuclear power program is based on indigenous

  11. Abstract. The problem of controlled nuclear fusion (CNF) is a colossal scientific and technological challenge on a global

    E-Print Network [OSTI]

    Abstract. The problem of controlled nuclear fusion (CNF) is a colossal scientific and technological the feasibility of building a magnetic thermonuclear reactor''. The three papers below briefly outline the history044n08ABEH001068 The initial period in the history of nuclear fusion research at the Kurchatov

  12. Report on the Scientific Committee for the Evaluation of the Institute of Nuclear Technology and Radiation Protection (INTRP)

    E-Print Network [OSTI]

    - 1/4 - Report on the Scientific Committee for the Evaluation of the Institute of Nuclear and evaluated the Institute of Nuclear Reactor Technology and Radiation Protection, following the instructions), Prof. Michel Giot (Université Catholique de Louvain), Dr. Michel Reocreux, (Institut de Radioprotection

  13. Experts in Defense: How China’s Academicians Contribute to Its Defense Science and Technology Development

    E-Print Network [OSTI]

    WILSON, Jordan

    2015-01-01T23:59:59.000Z

    leader Nuclear propulsion and basic nuclear technology Groupmember Nuclear weapons technology Group leader Precisionrockets Information technology and computing Nuclear Medical

  14. ``White Land``...new Russian closed-cycle nuclear technology for global deployment

    SciTech Connect (OSTI)

    Bowman, C.D.

    1996-07-01T23:59:59.000Z

    A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

  15. Tags and seals for controling nuclear materials, Arms control and nonproliferation technologies. Second quarter 1993

    SciTech Connect (OSTI)

    Staehle, G; Talaber, C; Stull, S; Moulthrop, P [eds.

    1993-12-31T23:59:59.000Z

    This issue of Arms Control and Nonproliferation Technologies summarizes demonstrations and addresses related topics. The first article, ``Basic Nuclear Material Control and Accountability Concepts as Might be Applied to the Uranium from the US-Russian HEU Purchase,`` describes safeguards sybsystems necessary for effective nuclear material safeguards. It also presents a general discussion on HEU-to-low-enrichment uranium (LEU) commingling processes and suggests applicable key measurement points. The second article, ``A Framework for Evaluating Tamper-Indicating-Device Technologies (TIDs),`` describes their uses, proper selection, and evaluation. The final three articles discuss the tags and seals applications and general characteristics of several nuclear material containers: the Type 30B uranium hexafluoride container, the AT-400R container, and the DOT Specification 6M container for SNM. Finally, the Appendix displays short descriptions and illustrations of seven tags and seals, including: the E-cup and wire seal, the python seal, the secure loop inspectable tag/seal (SLITS), bolt-and-loop type electronic identification devices, and the shrink-wrap seal.

  16. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    it would transfer nuclear technology. Washington Post. 26preferences: the export of sensitive nuclear technology.export of sensitive nuclear technology presents a kind of

  17. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20T23:59:59.000Z

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect (OSTI)

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30T23:59:59.000Z

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program through cold flow and high-temperature testing. The Blasch, mullite-bonded alumina sheet filter element is the only candidate currently approaching qualification for demonstration, although this oxide-based, monolithic sheet filter element may be restricted to operating temperatures of 538 C (1000 F) or less. Many other types of ceramic and intermetallic sheet filter elements could be fabricated. The estimated capital cost of the sheet filter system is comparable to the capital cost of the standard candle filter system, although this cost estimate is very uncertain because the commercial price of sheet filter element manufacturing has not been established. The development of the sheet filter system could result in a higher reliability and availability than the standard candle filter system, but not as high as that of the inverted candle filter system. The sheet filter system has not reached the same level of development as the inverted candle filter system, and it will require more design development, filter element fabrication development, small-scale testing and evaluation before larger-scale testing could be recommended.

  20. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    the previous year. NUCLEAR TECHNOLOGY AND FUEL CYCLES China’third-generation nuclear technology and reactor design, withs own third-generation nuclear technology. Westing- house,

  1. (International symposium on fusion nuclear technology, Tokyo, Japan, April 10, 1988): Foreign trip report

    SciTech Connect (OSTI)

    Bell, G.E.

    1988-05-24T23:59:59.000Z

    A presentation entitled ''Experimental and Analytical Investigations of Mass Transfer Processes of /sup 12/Cr-1MoVW Steel in Thermally-Convected Lithium Systems'' was made by G.E. Bell (coauthors M.A. Abdou (UCLA) and P.F. Tortorelli (ORNL)) at a poster session of the International Symposium on Fusion Nuclear Technology (ISFNT). The results presented were taken from work performed while Mr. Bell was an Oak Ridge Associated Universities Fellow at ORNL from October 1986 to March 1988. A consistent theme throughout the conference was the need for collaboration within and among national efforts to achieve the goal of an engineering test reactor.

  2. Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development

    SciTech Connect (OSTI)

    Abdou, M [University of California, Los Angeles] [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL] [ORNL

    1995-01-01T23:59:59.000Z

    The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

  3. Vehicle Technologies Office Merit Review 2014: Durability of Diesel Particulate Filters (Agreement ID:10461) Project ID:18519

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about durability of...

  4. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Oleg P. Ledenyov; Ivan M. Neklyudov

    2013-06-14T23:59:59.000Z

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antinodes of the acoustic waves are positioned. Finally, we completed the comparative analysis of the theoretical calculations with the experimental results, obtained for the cases of: 1) the experimental aerodynamic modeling of physical processes of the absorbed radioactive chemical elements and their isotopes distribution in the IAF; and 2) the gamma-activation spectroscopy analysis of the absorbed radioactive chemical elements and their isotopes distribution in the IAF. We made the innovative propositions on the necessary technical modifications with the purpose to improve the IAF technical characteristics and increase its operational time at the nuclear power plant (NPP), going from the completed precise characterization of the IAF parameters at the long term operation.

  5. Development of Fusion Nuclear Technologies at Japan Atomic Energy Research Institute

    SciTech Connect (OSTI)

    Seki, Masahiro; Yamanishi, Toshihiko; Shu, Wataru; Nishi, Masataka; Hatano, Toshihisa; Akiba, Masato; Takeuchi, Hiroshi; Nakamura, Kazuyuki; Sugimoto, Masayoshi; Shiba, Kiyoyuki; Jitsukawa, Shiro; Ishitsuka, Etsuo; Tsuji, Hiroshi [Japan Atomic Energy Research Institute (Japan)

    2002-07-15T23:59:59.000Z

    An overview of the present status of development of fusion nuclear technologies at Japan Atomic Energy Research Institute is presented. A tritium handling system for the ITER was designed, and the technology for each component of this system was demonstrated successfully. An ultraviolet laser with a wavelength of 193 nm was found quite effective for removing tritium from in-vessel components of D-T fusion reactors. Blanket technologies have been developed for the test blanket module of the ITER and for advanced blankets for DEMO reactors. This blanket is composed of ceramic Li{sub 2}TiO{sub 3} breeder pebbles and neutron multiplier beryllium pebbles, whose diameter ranges from 0.2 to 2 mm, contained in a box structure made of a reduced-activation ferritic steel, F82H. Mechanical properties of F82H under a thermal neutron irradiation at up to 50 displacements per atom (dpa) were obtained in a temperature range from 200 to 500 deg. C. Design of the International Fusion Materials Irradiation Facility (IFMIF) has been developed to obtain engineering data for candidate materials for DEMO reactors under a simulated fusion neutron irradiation up to 100 to 200 dpa, and basic development of the key technologies to construct the IFMIF is now under way as an International Energy Agency international collaboration.

  6. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01T23:59:59.000Z

    10-01096) Journal of Nuclear Technology, in Press. [46] G.W.Library for Nuclear Science and Technology,” Nuclear Datacalculations,” Nuclear Data for Science and Technology

  7. Nuclear fuels technologies Fiscal Year 1996 research and development test results

    SciTech Connect (OSTI)

    Beard, C.A.; Blair, H.T.; Buksa, J.J.; Butt, D.P.; Chidester, K.; Eaton, S.L.; Farish, T.J.; Hanrahan, R.J.; Ramsey, K.B.

    1996-11-01T23:59:59.000Z

    During fiscal year 1996, the Department of Energy`s Office of Fissile Materials Disposition (OFMD) funded Los Alamos National Laboratory (LANL) to investigate issues associated with the fabrication of plutonium from dismantled weapons into mixed-oxide (MOX) nuclear fuel for disposition in nuclear power reactors. These issues can be divided into two main categories: issues associated with the fact that the plutonium from dismantled weapons contains gallium, and issues associated with the unique characteristics of the PuO[sub 2] produced by the dry conversion process that OFMD is proposing to convert the weapons material. Initial descriptions of the experimental work performed in fiscal year 1996 to address these issues can be found in Nuclear Fuels Technologies Fiscal Year 1996 Research and Development Test Matrices. However, in some instances the change in programmatic emphasis towards the Parallex program either altered the manner in which some of these experiments were performed (i.e., the work was done as part of the Parallex fabrication development and not as individual separate-effects tests as originally envisioned) or delayed the experiments into Fiscal Year 1997. This report reviews the experiments that were conducted and presents the results.

  8. Attutude-action consistency and social policy related to nuclear technology

    SciTech Connect (OSTI)

    Lindell, M.K.; Perry, R.W.; Greene, M.

    1980-06-01T23:59:59.000Z

    This study reports the results of a further analysis of questionnaire data--parts of which have been previously reported by Lindell, Earle, Hebert and Perry (1978)--that are related to the issue of consistency of attitudes and behavior toward nuclear power and nuclear waste management. Three factors are considered that might be expected to have a significant bearing on attitude-action consistency: social support, attitude object importance and past activism. Analysis of the data indicated that pronuclear respondents were more likely to show consistency of attitudes and actions (66%) than were antinuclear respondents (51%) although the difference in proportions is not statistically significant. Further analyses showed a strong positive relation between attitude-action consistency and perceived social support, measured by the degree to which the respondent believed that close friends and work associated agreed with his attitude. This relationship held up even when controls for attitude object importance and past activism were introduced. Attitude object importance--the salience of the issue of energy shortage--had a statistically significant effect only when perceived social support was low. Past activism had no significant relation to attitude-action consistency. These data suggest that the level of active support for or opposition to nuclear technology will be affected by the distribution of favorable and unfavorable attitudes among residents of an area. Situations in which pro- and antinuclear attitudes are concentrated among members of interacting groups, rather than distributed randomly, are more likely to produce high levels of polarization.

  9. Filtering apparatus

    DOE Patents [OSTI]

    Haldipur, G.B.; Dilmore, W.J.

    1992-09-01T23:59:59.000Z

    A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.

  10. Filtering apparatus

    DOE Patents [OSTI]

    Haldipur, Gaurang B. (Monroeville, PA); Dilmore, William J. (Murrysville, PA)

    1992-01-01T23:59:59.000Z

    A vertical vessel having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas.

  11. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25T23:59:59.000Z

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  12. 288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors

    E-Print Network [OSTI]

    Demazière, Christophe

    of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics of nuclear reactors are based on the use of different solvers for resolving the different physical fields and the corresponding approximations. Keywords: nuclear reactors; multi-physics; multi-scale; modelling; deterministic

  13. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  14. Ensemble Kalman Filtering with Shrinkage Regression Techniques

    E-Print Network [OSTI]

    Eidsvik, Jo

    Ensemble Kalman Filtering with Shrinkage Regression Techniques Jon Sætrom & Henning Omre, Norwegian University of Science and Technology; Summary The classical Ensemble Kalman Filter (EnKF) is known;Introduction The Ensemble Kalman Filter (EnKF) is a Bayesian data assimilation method that in recent years has

  15. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    SciTech Connect (OSTI)

    Jacobson, Victor Levon

    2002-08-01T23:59:59.000Z

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

  16. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect (OSTI)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12T23:59:59.000Z

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  17. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01T23:59:59.000Z

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  18. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect (OSTI)

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01T23:59:59.000Z

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

  19. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  20. active filter employing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    type). Traditional design Wilamowski, Bogdan Maciej 25 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  1. active power filters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Varying Network Frequency Ramon Costa Hammerton, James 31 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  2. active power filtering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Varying Network Frequency Ramon Costa Hammerton, James 31 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  3. active power filter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Varying Network Frequency Ramon Costa Hammerton, James 31 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  4. Joanna McFarlane, Refuyat Ashen, and K.C. Cushman Separations and Materials Research Group, Nuclear Science and Technology Division

    E-Print Network [OSTI]

    Pennycook, Steve

    , Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge. Fuel mixtures that were considered included: biodiesel and standard diesel fuel, methyl-butanoate and n

  5. 167Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 Analysis methods for the determination of possible

    E-Print Network [OSTI]

    Demazière, Christophe

    167Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 Analysis methods-dependence due to the localised character of the perturbation. Several techniques relying on the analysis. Keywords: neutron noise analysis; Boiling Water Reactor (BWR); stability; Decay Ratio (DR); space

  6. Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems

    E-Print Network [OSTI]

    , use of electric primary propulsion in flight systems has been limited to low-power, solar electric thruster output power are identified. Design evolutions are presented for three thrusters that would1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power

  7. Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology

    SciTech Connect (OSTI)

    Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

    1998-08-01T23:59:59.000Z

    The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

  8. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01T23:59:59.000Z

    Repository”,   Nuclear  Technology,   154,   April  2006.  Materials,”  Nuclear   Technology,  62,  335  (1983).  ERA  1974]   of   nuclear   technologies   into   the  

  9. October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

  10. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  11. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-10-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  12. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01T23:59:59.000Z

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  13. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect (OSTI)

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01T23:59:59.000Z

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  14. Filter apparatus

    DOE Patents [OSTI]

    Kuban, Daniel P. (Oak Ridge, TN); Singletary, B. Huston (Oak Ridge, TN); Evans, John H. (Rockwood, TN)

    1984-01-01T23:59:59.000Z

    A plurality of holding tubes are respectively mounted in apertures in a partition plate fixed in a housing receiving gas contaminated with particulate material. A filter cartridge is removably held in each holding tube, and the cartridges and holding tubes are arranged so that gas passes through apertures therein and across the partition plate while particulate material is collected in the cartridges. Replacement filter cartridges are respectively held in holding canisters mounted on a support plate which can be secured to the aforesaid housing, and screws mounted on said canisters are arranged to push replacement cartridges into the cartridge holding tubes and thereby eject used cartridges therefrom.

  15. Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report

    Broader source: Energy.gov [DOE]

    The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new...

  16. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Michael W. Patterson

    2008-05-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

  17. February 2004, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The ANTT Subcommittee of NERAC met February 26th and 27th (S. Pillon absent) to begin a review of the potential role of transmutation technologies in increasing the capacity of the geological...

  18. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    SciTech Connect (OSTI)

    Abdou, M.

    1984-10-01T23:59:59.000Z

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  19. Implementation of the Ensemble Kalman Filter in the Characterization of Hydraulic Fractures in Shale Gas Reservoirs by Integrating Downhole Temperature Sensing Technology

    E-Print Network [OSTI]

    Moreno, Jose A

    2014-08-12T23:59:59.000Z

    -length and permeability, by assimilating data from downhole temperature sensors. The ensemble Kalman filter is implemented to assimilate DTS data and estimate fracture parameters. This inverse method is suitable for applications to non-linear assimilation problems and is...

  20. Nuclear Nonproliferation Programs | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initiatives Nonproliferation Technology Nonproliferation Systems Safeguards and Security Technology International Safeguards Nuclear Material Detection and Characterization For...

  1. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    SciTech Connect (OSTI)

    Warren, N. Jill [Editor

    1999-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. American Nuclear Society 2013 Student Conference Massachusetts Institute of Technology Boston, Massachusetts, USA, April 4-6, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)

    E-Print Network [OSTI]

    Danon, Yaron

    American Nuclear Society 2013 Student Conference ­ Massachusetts Institute of Technology Boston, Massachusetts, USA, April 4-6, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013) A DETECTOR. Troy, NY 12180 mcderb@rpi.edu 1. INTRODUCTION Reactor design and criticality safety calculations

  3. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Karin. "Nuclear Energy and Sustainability: UnderstandingKarin. "Nuclear Energy and Sustainability: Understandingfission sustainability with hybrid nuclear cycles", Energy

  4. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Essentials, March 2007. OECD/Nuclear Energy Agency. "Nuclear Energy and the Kyoto Protocol"OECD/IEA Report OECD/Nuclear Energy Agency. "Nuclear Energy

  5. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    2005. Cowan Robin. "Nuclear Power Reactors: A Study inThe Last Chance for Nuclear Power?" Energy Studies Reviewa National Infrastructure for Nuclear Power", IAEA Nuclear

  6. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J. [United States Department of State, Bureau of Arms Control, Verification and Compliance, Office of Verification and Transparency Technologies, Washington, DC (United States); Jones, Anthony M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Benz, Jacob M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Denlinger, Laura Schmidt [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-05-04T23:59:59.000Z

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.

  7. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  8. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    for nuclear waste disposal and decommissioning whilethe cost of decommissioning and nuclear waste disposal on

  9. Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste

    SciTech Connect (OSTI)

    Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

    2002-06-01T23:59:59.000Z

    Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

  10. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  11. Filter Press Building

    E-Print Network [OSTI]

    Bush, W. M.

    " exemplifies the ultimate all-electric application. INTRODUCTION The City of Avon Lake launched a program in 1983 to eKpand and modernize its water pollution control facilities. A part of this expansion was construction of a separate building to house a...? was established as a year-round requirement for both management 585 ESL-IE-86-06-94 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 ~>-:? ~ Filter Press Building Avon Lake Water Pollution Control...

  12. Evaluating the use of PAO (4 cSt polyalphaoelfin) oil instead of DOP (di-octyl phthalate) oil for measuring the aerosol capture of nuclear canister filters

    SciTech Connect (OSTI)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-18T23:59:59.000Z

    This document details the distinction between using PAO (4 cSt polyalphaoelfin) oil instead of DOP (di-octyl phthalate) oil for measuring the aerosol capture of filters. This document is developed to justify the use of PAO rather than DOP for evaluating the performance of filters in the SAVY 4000 and Hagan containers. The design criteria (Anderson et al, 2012) for purchasing SAVY 4000 containers and the Safety Analysis Report for the SAVY 4000 Container Series specified that the filter must “capture greater than 99.97% of 0.45 ?m mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter.”This corresponds to a leakage percent of 0.03% (3.0x10-2). The density of DOP oil is 985 kg/m3 and the density of PAO oil is 819 kg/m3. ATI Test Inc measured the mass mean diameter of aerosol distributions produced by a single Laskin type III-A nozzle operating at a 20 psig air pressure as 0.563 ?m for DOP oil and 0.549 ?m for PAO oil. (See Appendix A.) For both types of oil in this document, the single fiber method calculated the leakage percent to be 4.4x10-5 for DOP oil and 4.7x10-5 for PAO oil. Although the percent error between these two quantities is 7.7%, these calculated leakage percent values are more than two orders of magnitude less than the criterion specified in the SAVY canister SAR. As a point of reference, the photometer used to measure the SAVY canister filter performance cannot resolve values for the leakage percent below 1.0x10-5. Additionally, over a range of particle sizes from 0.01 ?m to 3.0 ?m, there was less than 4.0x10-5 error between the calculated filter efficiency for the two types of oil at any particular particle size diameter. In conclusion, the difference between using DOP and PAO for testing SAVY canister filters is of inconsequential concern.

  13. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  14. An improved visualization of diesel particulate filter/

    E-Print Network [OSTI]

    Boehm, Kevin (Kevin W.)

    2011-01-01T23:59:59.000Z

    The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

  15. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Ledenyov, Oleg P

    2013-01-01T23:59:59.000Z

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

  16. active filter utilizing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design (3) Course (Catalog) Description: Principles of active and passive filter design, frequency domain Computer Technologies and Information Sciences Websites Summary: EEE...

  17. activated soil filters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design (3) Course (Catalog) Description: Principles of active and passive filter design, frequency domain Computer Technologies and Information Sciences Websites Summary: EEE...

  18. Diesel Soot Filter Characterization and Modeling for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Substrates Diesel Soot Filter Characterization and Modeling for Advanced Substrates 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

  19. Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle

    SciTech Connect (OSTI)

    Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T. [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements (Germany)

    2013-07-01T23:59:59.000Z

    Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

  20. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    heat transfer. Nuclear Technology 163 (2008) 344- [18] V.and Electricity . Nuclear Technology 144 [5] D. F. Williams,Vessel Technology . Nuclear Technology, 78 (1987) 245- [5

  1. It is a unique programme of its kind not only in this country but also in the whole of South East Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & Technology, the programme provides research and development exper

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & TechnologyDepartmentofAtomicEnergy. Contact Head Nuclear Engineering & Technology Programme Indian Institute of Technology Kanpur Kanpur - 208.iitk.ac.in/net/ Nuclear Engineering & Technology Programme IITK Indian Institute of Technology Kanpur 3D Tomographic

  2. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    government in nuclear energy regulation in Rossiiskaiaof 63260 MW. 30 Nuclear energy regulation in France is not astate control in nuclear energy regulation at the expense of

  3. LONG-TERM MONITORING STRATEGY FOR CONCRETE-BASED STRUCTURES USING NONLINEAR KALMAN FILTERING

    E-Print Network [OSTI]

    Bentz, Dale P.

    LONG-TERM MONITORING STRATEGY FOR CONCRETE-BASED STRUCTURES USING NONLINEAR KALMAN FILTERING K 2 U.S. Nuclear Regulatory Commission, Rockville, MD USA ABSTRACT Kalman filtering is introduced of linear Kalman filters are presented briefly, and the use of linear filters is demon- strated for Fickian

  4. Novel Quaternion Kalman Filter

    E-Print Network [OSTI]

    Choukroun, Daniel; Bar-Itzhack, Itzhack Y.; Oshman, Yaakov

    2006-01-01T23:59:59.000Z

    F. L. , and Shuster, M. D. Kalman filtering for spacecraftOshman, Y. A novel quaternion Kalman filter. TAE Report 930,errors, a typical extended Kalman filter (EKF) fails to

  5. Novel quaternion Kalman filter

    E-Print Network [OSTI]

    Choukroun, D; Bar-Itzhack, I Y; Oshman, Y

    2006-01-01T23:59:59.000Z

    F. L. , and Shuster, M. D. Kalman filtering for spacecraftOshman, Y. A novel quaternion Kalman filter. TAE Report 930,errors, a typical extended Kalman filter (EKF) fails to

  6. FILTER COMPONENT ASSESSMENT--CERAMIC CANDLES--

    SciTech Connect (OSTI)

    M.A. Alvin

    2004-04-23T23:59:59.000Z

    Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on development of hot gas filter systems as an enabling technology for advanced coal and biomass-based gas turbine power generation applications. SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report summarizes the results of SWPC's filter component assessment efforts, identifying the performance and stability of porous monolithic, fiber reinforced, and filament wound ceramic hot gas candle filters, potentially for {ge}3 years of viable pressurized fluidized-bed combustion (PFBC) service operating life.

  7. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Nuclear Power", IAEA Nuclear Energy Series, No. NG-G-3.1.Essentials, March 2007. OECD/Nuclear Energy Agency. "Nuclear Energy and the Kyoto Protocol" OECD/IEA Report OECD/

  8. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    SciTech Connect (OSTI)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01T23:59:59.000Z

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  9. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

    1999-10-01T23:59:59.000Z

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

  10. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  11. Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Trammell, Michael P [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Qualls, A L [ORNL; Harrison, Thomas J [ORNL

    2013-01-01T23:59:59.000Z

    ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

  12. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01T23:59:59.000Z

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  13. active filter control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jerome V. Moloney; Joshua E. S. Socolar 1996-12-05 63 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  14. active filter compensator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 61 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  15. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01T23:59:59.000Z

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

  16. Hepa filter dissolution process

    DOE Patents [OSTI]

    Brewer, Ken N. (Arco, ID); Murphy, James A. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  17. HEPA filter dissolution process

    DOE Patents [OSTI]

    Brewer, K.N.; Murphy, J.A.

    1994-02-22T23:59:59.000Z

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  18. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09T23:59:59.000Z

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  19. SPACE-R thermionic space nuclear power system: Design and technology demonstration. Monthly report for 1 August 1994--1 September 1994

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The objective of this program is to design, develop, demonstrate, and advance the technology for thermionic space nuclear power system (TI-SNPS) to meet key functional requirements with reliable 5{approximately}40 kWe output and 18-month near-term/10-year long-term goals. A 40 kWe TI-SNPS point design will be prepared, and key technologies and critical components supporting that design will be validated. This program will produce an assessed design of a 40 kWe-EOL space nuclear power system. Phase 1 will provide for the performance of parametric trade studies and demonstration of key technologies, resulting in a preferred conceptual design for the TI-SNPS. The focus of the tasks is technology validation drive by the system design.

  20. Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence

    E-Print Network [OSTI]

    Quiter, Brian

    2010-01-01T23:59:59.000Z

    Library for Nuclear Science and Technology," Nuclear Datanuclear structure studies. More recently, NRF has been identified as a promising technology

  1. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01T23:59:59.000Z

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  2. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect (OSTI)

    Elder, H.K.

    1986-05-01T23:59:59.000Z

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  3. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01T23:59:59.000Z

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  4. Nuclear Materials Science:Materials Science Technology:MST-16:LANL:Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers inAlamos

  5. Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclear EnergySouth CarolinaJobEducation atofReduce

  6. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  7. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  8. ELECTROSTATICALLY ENHANCED BARRIER FILTER COLLECTION

    SciTech Connect (OSTI)

    John Erjavec; Michael D. Mann; Ryan Z. Knutson; Michael L. Swanson; Michael E. Collings

    2003-06-01T23:59:59.000Z

    This work was performed through the University of North Dakota (UND) Chemical Engineering Department with assistance from UND's Energy & Environmental Research Center. This research was undertaken in response to the U.S. Department of Energy Federal Technology Center Program Solicitation No. DE-PS26-99FT40479, Support of Advanced Coal Research at U.S. Universities and Colleges. Specifically, this research was in support of the UCR Core Program and addressees Topic 1, Improved Hot-Gas Contaminant and Particulate Removal Techniques, introducing an advanced design for particulate removal. Integrated gasification combined cycle (IGCC) offers the potential for very high efficiency and clean electric generation. In IGCC, the product gas from the gasifier needs to be cleaned of particulate matter to avoid erosion and high-temperature corrosion difficulties arising with the turbine blades. Current methods involve cooling the gases to {approx}100 C to condense alkalis and remove sulfur and particulates using conventional scrubber technology. This ''cool'' gas is then directed to a turbine for electric generation. While IGCC has the potential to reach efficiencies of over 50%, the current need to cool the product gas for cleaning prior to firing it in a turbine is keeping IGCC from reaching its full potential. The objective of the current project was to develop a highly reliable particulate collector system that can meet the most stringent turbine requirements and emission standards, can operate at temperatures above 1500 F, is applicable for use with all U.S. coals, is compatible with various sorbent injection schemes for sulfur and alkali control, can be integrated into a variety of configurations for both pressurized gasification and combustion, increases allowable face velocity to reduce filter system capital cost, and is cost-competitive with existing technologies. The collector being developed is a new concept in particulate control called electrostatically enhanced barrier filter collection (EBFC). This concept combines electrostatic precipitation (ESP) with candle filters in a single unit. Similar technology has been recently proven on a commercial scale for atmospheric applications, but needed to be tested at high temperatures and pressures. The synergy obtained by combining the two control technologies into a single system should actually reduce filter system capital and operating costs and make the system more reliable. More specifically, the ESP is expected to significantly reduce candle filter load and also to limit ash reintrainment, allowing for full recovery of baseline pressure drop during backpulsing of the filters.

  9. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    the merits and the risks of nuclear energy dependence aresecurity risks associated with nuclear energy are so immenseNuclear Energy and Coal in France and the Netherlands". Risk

  10. Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 11691181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 1169­1181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M" Mitsuru KAMBE Central Research Institute and accepted September 10, 2002) A metal fueled modular island core sodium cooled fast breeder reactor concept

  11. FPGA-based Particle Recognition in the HADES Abstract--Modern FPGA technologies are often employed in nuclear and particle physics experimental facilities to accelerate

    E-Print Network [OSTI]

    Jantsch, Axel

    are often employed in nuclear and particle physics experimental facilities to accelerate application the emission direction, the en- ergy, and the mass of the produced particles when the accelerated beam hits1 FPGA-based Particle Recognition in the HADES Experiment Abstract--Modern FPGA technologies

  12. Accelerator-driven transmutation technologies for resolution of long-term nuclear waste concerns

    SciTech Connect (OSTI)

    Bowman, C.D.

    1996-10-01T23:59:59.000Z

    The paper provides a rationale for resolution of the long-term waste disposition issue based on complete destruction of fissile material and all higher actinides. It begins with a brief history of geologic storage leading to the present impasse in the US. The proliferation aspects of commercial plutonium are presented in a new light as a further driver for complete destruction. The special problems in Russia and the US of the disposition of the highly enriched spent naval reactor fuel and spent research reactor fuel are also presented. The scale of the system required for complete destruction is also examined and it is shown that a practical system for complete destruction of commercial and defense fissile material must be widely dispersed rather than concentrated at a single site. Central tenants of the US National Academy of Sciences recommendations on waste disposition are examined critically and several technologies considered for waste destruction are described briefly and compared Recommendations for waste disposition based on Accelerator-Driven Transmutation Technology suitable for both the US and Russia are presented.

  13. Toward Green Systems for Cleanrooms: Energy Efficient Fan-filter Units Ming-Shan Jeng, Industrial Technology Research Institute, msjeng@itri.org.tw

    E-Print Network [OSTI]

    of twenty FFUs collected from the market were tested, including thirteen 1220 mm x 610 mm (or 4 ft x 2 ft technology with architecture and natural resources. Cleanroom HVAC systems account for a large portion of energy use in cleanrooms. Improving energy efficiency of HVAC systems and their components can contribute

  14. VNS: A volumetric neutron source for fusion nuclear technology testing and development

    SciTech Connect (OSTI)

    Abdou, M.A.; Peng, Y.K.; Ying, A.Y. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-12-31T23:59:59.000Z

    Recent progress in fusion plasma research and the initiation of the Engineering Design Activity for ITER provide incentives to seriously explore technically sound and logically consistent pathways toward development of fusion as a practical and attractive energy source. A critical goal is the successful construction and operation of a fusion power demonstration plant (DEMO). Major world program strategies call for DEMO operation by the year 2025. Such a date is important in order for fusion to play a significant role in the energy supply market in the second half of the twenty-first century. Without such a DEMO goal, it will be very hard to justify major financial commitments in the near term for major projects such as ITER. The major question is whether a DEMO goal by the year 2025 is attainable from a technical standpoint. This has been the central question being addressed in a study, called VENUS. Results to date show that a DEMO by the year 2025 can be realized if three major facilities begin operation in parallel by the year 2005. These facilities are: (1) ITER, (2) VNS, and (3) IFMIF. Results show that VNS is a necessary element toward DEMO in a strategy consistent with present world program plans. The key requirements to test and develop fusion nuclear components (e.g. blanket) are 1 MW/m{sup 2} neutron wall load, >10 m{sup 2} of test area at the first wall, steady state or long burn plasma operation, fluence of {approx}6MWy/m{sup 2} at the first wall in {approx}10-12 year period, and duty cycle x availability factor of {approx}0.3. Results of the study show that an attractive design envelope for VNS that satisfies the nuclear testing and development requirements exists. Within this design envelope, the most attractive design points for VNS appear to be driven plasma (Q{approx}1) in tokamak configuration with normal toroidal-field copper coils, major radius 1.5-2.0m, fusion power {approx}100MW, and neutron wall load {approx}1.5MW/m{sup 2}.

  15. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    SciTech Connect (OSTI)

    Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

    2003-08-01T23:59:59.000Z

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

  16. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    a Geologic Repository. Nuclear Technology, 154:95–106, Mayfor the promise of nuclear technology inspired my ownof the ever-changing nuclear technology landscape. Making

  17. Environmental Challenges of Climate-Nuclear Fusion: A Case Study of India

    E-Print Network [OSTI]

    Badrinarayan, Deepa

    2011-01-01T23:59:59.000Z

    149 B. Transferring Nuclear Technology to India Sets thepromotion of advanced nuclear technology in the Bali ActionB. Transferring Nuclear Technology to India Sets the Stage

  18. Spin-On for the Renaissance? The Current State of China's Nuclear Industry

    E-Print Network [OSTI]

    Yuan, Jing-dong

    2010-01-01T23:59:59.000Z

    and oversee and review nuclear technology trans- fers andwith China’s State Nuclear Power Technology Corpora- tion,China’s own technologies in developing nuclear power proj-

  19. Filter type gas sampler with filter consolidation

    DOE Patents [OSTI]

    Miley, Harry S. (219 Rockwood Dr., Richland, WA 99352); Thompson, Robert C. (5313 Phoebe La., West Richland, WA 99352); Hubbard, Charles W. (1900 Stevens, Apt. 526, Richland, WA 99352); Perkins, Richard W. (1413 Sunset, Richland, WA 99352)

    1997-01-01T23:59:59.000Z

    Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, whereafter the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant.

  20. Filter type gas sampler with filter consolidation

    DOE Patents [OSTI]

    Miley, H.S.; Thompson, R.C.; Hubbard, C.W.; Perkins, R.W.

    1997-03-25T23:59:59.000Z

    Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, where after the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant. 5 figs.

  1. HEPA filter encapsulation

    DOE Patents [OSTI]

    Gates-Anderson, Dianne D. (Union City, CA); Kidd, Scott D. (Brentwood, CA); Bowers, John S. (Manteca, CA); Attebery, Ronald W. (San Lorenzo, CA)

    2003-01-01T23:59:59.000Z

    A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.

  2. Filter service system

    DOE Patents [OSTI]

    Sellers, Cheryl L. (Peoria, IL); Nordyke, Daniel S. (Arlington Heights, IL); Crandell, Richard A. (Morton, IL); Tomlins, Gregory (Peoria, IL); Fei, Dong (Peoria, IL); Panov, Alexander (Dunlap, IL); Lane, William H. (Chillicothe, IL); Habeger, Craig F. (Chillicothe, IL)

    2008-12-09T23:59:59.000Z

    According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.

  3. Evaluation of the complementary use of the ceramic (Kosim) filter and Aquatabs in Northern Region, Ghana

    E-Print Network [OSTI]

    Swanton, Andrew A

    2008-01-01T23:59:59.000Z

    The Kosim filter is a ceramic water filter that is currently used in Northern Ghana. Based on prior MIT research in Northern Ghana, this technology is effective at removing 92% of turbidity, 99.4% of total coliforms, and ...

  4. Isotope Development & Production | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

  5. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  6. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  7. AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems

    SciTech Connect (OSTI)

    Dove, F.H.; Cole, C.R.; Foley, M.G.

    1982-09-01T23:59:59.000Z

    A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere.

  8. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National Nuclear Data Center - 1952* High Flux Beam Reactor - 1964 Technical Support for NRC - 1974

  9. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect (OSTI)

    Blumenthal, Daniel J. [NNSA; Clark, Harvey W. [NSTec; Essex, James J. [NSTec; Wagner, Eric C. [NSTec

    2013-07-01T23:59:59.000Z

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  10. An Overview of strategic measures to assess workforce needs and ensure technology transfer to meet current and future nuclear power operations

    SciTech Connect (OSTI)

    Vincenti, J.R. [acuri.net, 1344 Curtin Street, State College, PA (United States); Stigers, R.A. [Senior Health Physicist-Radwaste, PPL Susquehanna, Berwick, PA (United States)

    2007-07-01T23:59:59.000Z

    Between 1956 and 1989, the number of operating commercial nuclear power plants in the United States increased from none to 109. With the exception of a few plants that were still in final construction, no new nuclear power plants were ordered in the United States as the new millennium began. In 2005, the federal government pronounced the need for new electric power generating systems during the first quarter of the 21. century. The need comes from a desire to curb our reliance on fossil fuels, as well as to provide for a cleaner environment. One of those fuel systems noted was nuclear energy. Given the time between the last active period of nuclear power plant development and construction, there is a need to supply a talented and well-prepared workforce to operate the new plants. It will also be necessary to assess the needs of our current fleet of operating nuclear power plants, of which many are in the process of re-licensing, yet also facing an aging plant workforce. This paper will review and discuss measures to assess diverse workforce needs and technology transfer to meet current licensing requirements as that of future nuclear power plant development in the United States. (authors)

  11. 259NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.38 NO.3 APRIL 2006 NuSEE: AN INTEGRATED ENVIRONMENT OF SOFTWARE

    E-Print Network [OSTI]

    . In safety-critical systems such as a Nuclear Power Plant (NPP), extremely high- confidence for software and analysis have become increasingly important in nuclear power plant (NPP) safety-critical systems. KEYWORDS : V&V, Software Specification, Safety-Critical System, Tool #12;260 NUCLEAR ENGINEERING

  12. Technology and apparatus for solidification of radioactive wastes from nuclear fuel cycle by high temperature adsorption of metals on inorganic matrices

    SciTech Connect (OSTI)

    Nardova, A.K.; Philipov, E.A.; Kudriavtsev, Y.G.; Dzekun, E.G.; Parfanovitch, B.N. [Russian Research Inst. of Chemical Technology, Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    This study deals with the investigation of high-level waste (HLW) solidification by high-temperature adsorption of radionuclides on porous inorganic matrices. An appropriate drum-type apparatus using magnetic gear drive was designed and tested. The report contains the test results of the solidification process of high-level radioactive raffinate from the first regeneration extraction cycle of irradiated fuel elements from nuclear power plants. Industrial-scale tests of the HLW solidification process (technology and equipment) are planned.

  13. Examining 239Pu and 240Pu Nuclear Resonance Fluorescence Measurements on Spent Fuel for Nuclear Safeguards

    E-Print Network [OSTI]

    Quiter, Brian

    2013-01-01T23:59:59.000Z

    10- 01096) Journal of Nuclear Technology, p. 150, Vol. 175,linac and laser technologies for nuclear photonics gamma-rayNuclear resonance fluorescence (NRF) has been identified as a technology

  14. Moving granular-bed filter development program. Topical report

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1994-04-01T23:59:59.000Z

    Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

  15. Contactor/filter improvements

    DOE Patents [OSTI]

    Stelman, D.

    1988-06-30T23:59:59.000Z

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream is described. The filter includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. A cover screen isolates the filter element from contact with the moving granular bed. In one embodiment, the granular material is comprised of porous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses. 6 figs.

  16. Filter holder and gasket assembly for candle or tube filters

    DOE Patents [OSTI]

    Lippert, T.E.; Alvin, M.A.; Bruck, G.J.; Smeltzer, E.E.

    1999-03-02T23:59:59.000Z

    A filter holder and gasket assembly are disclosed for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut. 9 figs.

  17. ?1 Trend Filtering

    E-Print Network [OSTI]

    2007-09-28T23:59:59.000Z

    H-P filtering is supported in several standard software packages for statistical data ...... Journal of the American Statistical Association, 76(374):374–378,. 1981.

  18. Micromechanical optical filters for spectrometry Hakon Sagberg

    E-Print Network [OSTI]

    Johansen, Tom Henning

    This thesis presents a study of optical filters that are fabricated as micro-electro- mechanical systems (MEMS. Experiments show that sensitive microphones can be made with this technology. The thesis consists partner. He has posed critical questions and saved me from spending too much time in blind alleys

  19. Nitride-bonded silicon carbide composite filter

    SciTech Connect (OSTI)

    Thomson, B.N.; DiPietro, S.G.

    1995-12-01T23:59:59.000Z

    The objective of this program is to develop and demonstrate an advanced hot gas filter, using ceramic component technology, with enhanced durability to provide increased resistance to thermal fatigue and crack propagation. The material is silicon carbide fiber reinforced nitride bonded silicon carbide.

  20. Results of 2001 Groundwater Sampling in Support of Conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the Vicinity of the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Meachum, T.R.

    2002-04-26T23:59:59.000Z

    This report summarizes the results of sampling five groundwater monitoring wells in the vicinity of the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory in 2001. Information on general sampling practices, quality assurance practices, parameter concentrations, representativeness of sampling results, and cumulative cancer risk are presented. The information is provided to support a conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the vicinity of the Idaho Nuclear Technology and Engineering Center.

  1. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Energy Policy, Vol. 34 Generation IV International Forum. “Introduction to Generation IV Nuclear Energy Systems and theIII Plus 2030-onward – Generation IV 2030-onward 2030-onward

  2. INSTITUTE OF NUCLEAR TECHNOLOGY

    E-Print Network [OSTI]

    CENTER FOR SCIENTIFIC RESEARCH #12;1 1. Research Reactor Laboratory (RRL) 1. PEER-REVIEWED JOURNALS 1. Mourtzanos, K., Housiadas, C., Antonopoulos-Domis, M., "Calculation of the moderator temperature coefficient of reactivity for water moderated reactors", Ann. Nucl. Energy, 28, 1773-1782, (2001). 4. Housiadas, C

  3. Evaluation of Alternative Filter Media for the Rotary Microfilter

    SciTech Connect (OSTI)

    Poirier, M. [Savannah River National Laboratory, Environmental and Chemical Process Technology; Herman, [Savannah River National Laboratory, Environmental and Chemical Process Technology; Bhave, Ramesh R [ORNL

    2012-01-01T23:59:59.000Z

    M. R. Poirier , D. T. Herman & R. Bhave (2012) Evaluation of Alternative Filter Media for the Rotary Microfilter, Separation Science and Technology, 47:14-15, 2108-2114

  4. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    SciTech Connect (OSTI)

    Abdou, M.

    1984-10-01T23:59:59.000Z

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  5. Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 1

    SciTech Connect (OSTI)

    Hofmann, P.L.; Breslin, J.J. (eds.)

    1981-01-01T23:59:59.000Z

    The papers in this volume cover the following subjects: waste isolation and the natural geohydrologic system; repository perturbations of the natural system; radionuclide migration through the natural system; and repository design technology. Individual papers are abstracted.

  6. Sub-micron filter

    DOE Patents [OSTI]

    Tepper, Frederick (Sanford, FL); Kaledin, Leonid (Port Orange, FL)

    2009-10-13T23:59:59.000Z

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  7. Sintered composite filter

    DOE Patents [OSTI]

    Bergman, W.

    1986-05-02T23:59:59.000Z

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  8. Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors

    E-Print Network [OSTI]

    Maryland at College Park, University of

    Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated sensors. The transmission ratio in the pass-band and suppression ratio in the stop-band of the optical and of the optical filter. Test results comparing sensor and filter performance with competing technologies

  9. Kalman Filtering with Intermittent Observations

    E-Print Network [OSTI]

    Jordan, Michael I.

    1 Kalman Filtering with Intermittent Observations Bruno Sinopoli, Luca Schenato, Massimo within sensor networks, we consider the prob- lem of performing Kalman filtering with intermittent be neglected. We address this problem starting from the discrete Kalman filtering formulation, and modelling

  10. METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS

    SciTech Connect (OSTI)

    M.A. Alvin

    2004-01-02T23:59:59.000Z

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

  11. Development of NDE methods for hot gas filters.

    SciTech Connect (OSTI)

    Deemer, C.; Ellingson, W. A.; Koehl, E. R.; Lee, H.; Spohnholtz, T.; Sun, J. G.

    1999-07-21T23:59:59.000Z

    Ceramic hot gas candle filters are currently under development for hot gas particulate cleanup in advanced coal-based power systems. The ceramic materials for these filters include nonoxide monolithic, nonoxide-fiber-reinforced composites, and nonoxide reticulated foam. A concern is the lack of reliable data on which to base decisions for reusing or replacing hot gas filters during plant shutdowns. The work in this project is aimed at developing nondestructive evaluation (FIDE) technology to allow detection, and determination of extent, of life-limiting characteristics such as thermal fatigue, oxidation, damage from ash bridging such as localized cracking, damage from local burning, and elongation at elevated temperature. Although in-situ NDE methods are desirable in order to avoid disassembly of the candle filter vessels, the current vessel designs, the presence of filter cakes and possible ash bridging, and the state of NDE technology prevent this. Candle filter producers use a variety of NDE methods to ensure as-produced quality. While impact acoustic resonance offers initial promise for examining new as-produced filters and for detecting damage in some monolithic filters when removed from service, it presents difficulties in data interpretation, it lacks localization capability, and its applicability to composites has yet to be demonstrated. Additional NDE technologies being developed and evaluated in this program and whose applicability to both monolithics and composites has been demonstrated include (a) full-scale thermal imaging for analyzing thermal property variations; (b) fret, high-spatial-resolution X-ray imaging for detecting density variations and dimensional changes; (c) air-coupled ultrasonic methods for determining through-thickness compositional variations; and (d) acoustic emission technology with mechanical loading for detecting localized bulk damage. New and exposed clay-bonded SiC filters and CVI-SiC composite filters have been tested with these additional NDE methods.

  12. Filter design for hybrid spin gates

    E-Print Network [OSTI]

    Andreas Albrecht; Martin B. Plenio

    2015-04-14T23:59:59.000Z

    The impact of control sequences on the environmental coupling of a quantum system can be described in terms of a filter. Here we analyze how the coherent evolution of two interacting spins subject to periodic control pulses, at the example of a nitrogen vacancy center coupled to a nuclear spin, can be described in the filter framework in both the weak and the strong coupling limit. A universal functional dependence around the filter resonances then allows for tuning the coupling type and strength. Originally limited to small rotation angles, we show how the validity range of the filter description can be extended to the long time limit by time-sliced evolution sequences. Based on that insight, the construction of tunable, noise decoupled, conditional gates composed of alternating pulse sequences is proposed. In particular such an approach can lead to a significant improvement in fidelity as compared to a strictly periodic control sequence. Moreover we analyze the decoherence impact, the relation to the filter for classical noise known from dynamical decoupling sequences, and we outline how an alternating sequence can improve spin sensing protocols.

  13. The potential role of new technology for enhanced safety and performance of nuclear power plants through improved service maintenance

    E-Print Network [OSTI]

    Achorn, Ted Glen

    1991-01-01T23:59:59.000Z

    Refinements in the safety and performance of nuclear power plants must be made to maintain public confidence and ensure competitiveness with other power sources. The aircraft industry, US Navy, and other programs have ...

  14. Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems

    E-Print Network [OSTI]

    White, Daniel B., Jr

    2011-01-01T23:59:59.000Z

    High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

  15. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

    2013-11-15T23:59:59.000Z

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  16. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  17. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

    2003-04-01T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  18. HEPA filter jointer

    SciTech Connect (OSTI)

    Hill, D.; Martinez, H.E.

    1998-02-01T23:59:59.000Z

    A HEPA filter jointer system was created to remove nitrate contaminated wood from the wooden frames of HEPA filters that are stored at the Rocky Flats Plant. A commercial jointer was chosen to remove the nitrated wood. The chips from the wood removal process are in the right form for caustic washing. The jointer was automated for safety and ease of operation. The HEPA filters are prepared for jointing by countersinking the nails with a modified air hammer. The equipment, computer program, and tests are described in this report.

  19. Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 2

    SciTech Connect (OSTI)

    Hofmann, P.L. (ed.)

    1982-01-01T23:59:59.000Z

    The twenty papers in this volume are divided into three parts: site exploration and characterization; repository development and design; and waste package development and design. These papers represent the status of technology that existed in 1981 and 1982. Individual papers were processed for inclusion in the Energy Data Base.

  20. Westinghouse filter update

    SciTech Connect (OSTI)

    Lippert, T.E.; Bruck, G.J.; Smeltzer, E.E.; Newby, R.A.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1993-09-01T23:59:59.000Z

    Hot gas filters have been implemented and operated in four different test facilities: Subpilot scale entrained gasifier, located at the Texaco Montebello Research facilities in California, Foster Wheeler Advanced Pressurized Fluidized Bed Combustion pilot plant facilities, located in Livingston, New Jersey, Slipstream of the American Electric Power (AEP) 70 MW (electric) Tidd-PFBC, located in Brilliant, Ohio, and in the Ahlstrom 10 MW (thermal) Circulating PFBC facility, located in Karhula, Finland. Candle filter testing has occurred at all four facilities; cross flow filter testing has occurred at the Texaco and Foster Wheeler facilities. Table 1 identifies and summarizes the key operating characteristics of these facilities and the type and scale of filter unit tested. A brief description of each project is given.

  1. Differential Filtering and Detexturing

    E-Print Network [OSTI]

    He, Lei

    2014-08-18T23:59:59.000Z

    introduce how to use bilateral filter appropriately on image texture removal by modifying its range image. While current existing methods either fail to remove the textures completely or over blur main structures, our method delivers best-in-class image...

  2. Differential Filtering and Detexturing 

    E-Print Network [OSTI]

    He, Lei

    2014-08-18T23:59:59.000Z

    introduce how to use bilateral filter appropriately on image texture removal by modifying its range image. While current existing methods either fail to remove the textures completely or over blur main structures, our method delivers best-in-class image...

  3. POLICIES For CONTENT FILTERING In EDUCATIONAL NETWORKS: The CASE Of GREECE

    E-Print Network [OSTI]

    Bouras, Christos

    POLICIES For CONTENT FILTERING In EDUCATIONAL NETWORKS: The CASE Of GREECE Maria Avgoulea, Patras, GREECE Christos Bouras Department of Computer Engineering and Informatics, University of Patras & Computer Technology Institute, Patras, GREECE Email: bouras@cti.gr Michael Paraskevas Computer Technology

  4. Moving Granular Bed Filter Development Program

    SciTech Connect (OSTI)

    Wilson, K.B.; Haas, J.C. [Combustion Power Co., San Mateo, CA (United States); Gupta, R.P.; Turk, B.S. [Research Triangle Inst., Research Triangle Park, NC (United States)

    1996-12-31T23:59:59.000Z

    For coal-fired power plants utilizing a gas turbine, the removal of ash particles is necessary to protect the turbine and to meet emission standards. Advantages are also evident for a filter system that can remove other coal-derived contaminants such as alkali, halogens, and ammonia. With most particulates and other contaminants removed, erosion and corrosion of turbine materials, as well as deposition of particles within the turbine, are reduced to acceptable levels. The granular bed filter is suitable for this task in a pressurized gasification or combustion environment. The objective of the base contract was to develop conceptual designs of moving granular bed filter (GBF) and ceramic candle filter technologies for control of particles from integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and direct coal-fueled turbine (DCFT) systems. The results of this study showed that the GBF design compared favorably with the candle filter. Three program options followed the base contract. The objective of Option I, Component Testing, was to identify and resolve technical issues regarding GBF development for IGCC and PFBC environments. This program was recently completed. The objective of Option II, Filter Proof Tests, is to test and evaluate the moving GBF system at a government-furnished hot-gas cleanup test facility. This facility is located at Southern Company Services (SCS), Inc., Wilsonville, Alabama. The objective of Option III, Multicontaminant Control Using a GBF, is to develop a chemically reactive filter material that will remove particulates plus one or more of the following coal-derived contaminants: alkali, halogens, and ammonia.

  5. Moving granular-bed filter development program topical report

    SciTech Connect (OSTI)

    Newby, R.A.; Dilmore, W.J.; Fellers, A.W.; Gasparovic, A.C.; Kittle, W.F.; Lippert, T.E.; Smeltzer, E.E.; Yang, W.C.

    1991-10-17T23:59:59.000Z

    The Westinghouse Science Technology Center has proposed a novel moving granular-bed filter concept, the Standleg Moving Granular-Bed Filter (S-MGBF) system, that overcomes the inherent deficiencies of the current state-of-the-art moving granular-bed filter technology. The S-MGBF system combines two unique features that make it highly effective for use in advanced coal-fueled power plants. First, the S-MGBF system applies pelletization technology to generate filter pellets from the power plant solid waste materials, and uses these pellets as a once-through'' filtering media to eliminate the need for costly, complex, and large filter media recycling equipment. This pelletizing step also generates a more environmentally acceptable solid waste product and provides the potential to incorporate gas-phase contaminant sorbents into the filtering media. Secondly, the S-MGBF system passes these pellets and the flyash laden power plant gas through a highly compact S-MGBF that uses cocurrent gas-pellet contacting in an arrangement that greatly simplifies and enhances the distribution of dirty gas to the moving bed and the disengagement of clean gas from the moving bed.

  6. Remotely serviced filter and housing

    DOE Patents [OSTI]

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22T23:59:59.000Z

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  7. Filters for cathodic arc plasmas

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  8. Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance

    E-Print Network [OSTI]

    Whalley, David

    A Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance Alen Bardizbanyan, Chalmers University of Technology Magnus Sj¨alander, Florida State University David Whalley, Florida State University Per Larsson-Edefors, Chalmers University of Technology Conventional data filter

  9. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  10. Evaluation of Alternative Filter Media for the Rotary Microfilter

    SciTech Connect (OSTI)

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-11-09T23:59:59.000Z

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

  11. Minimizing the Cost of Innovative Nuclear Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor Park

    E-Print Network [OSTI]

    Cardin, Michel-Alexandre; Steer, Steven J.; Nuttall, William J.; Parks, Geoffrey T.; Gonçalves, Leonardo V.N.; de Neufville, Richard

    Presented is a methodology to analyze the expected Levelised Cost Of Electricity (LCOE) in the face of technology uncertainty for Accelerator-Driven Subcritical Reactors (ADSRs). It shows that flexibility in the design and deployment strategy...

  12. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01T23:59:59.000Z

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  13. Making the World Safe for Nuclear Energy 65 John Deutch, Institute Professor at the Massachusetts Institute of Technology, served as

    E-Print Network [OSTI]

    Deutch, John

    of a new phase of widespread deployment of nuclear power. The rapidly growing global demand for electricity of dramatically lowering greenhouse gas emissions that lead to global warming are all factors behind has partially admitted secret efforts and proclaims peaceful intent in developing electricity supply

  14. Report to the Office of Science Technology and Policy: interagency research report for assessing climatic effects of nuclear war

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    The purpose of this document is to present a research plan that addresses the need for a rapid improvement in understanding and for reducing important uncertainties in the nuclear winter hypothesis. The plan lays out the basic strategy for a coordinated interagency program.

  15. A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry

    E-Print Network [OSTI]

    Pilip-Florea, Shadrach Jay

    2012-01-01T23:59:59.000Z

    Richardson, Mark 2009. Siemens Water Technologies Company2011. www. 3news.co.nz Siemens Water Technologies, 2012.conglomerations, US Filter, now Siemens Water Technologies

  16. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Energy Savers [EERE]

    nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards...

  17. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01T23:59:59.000Z

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  18. Filter component assessment

    SciTech Connect (OSTI)

    Alvin, M.A.; Lippert, T.E.; Diaz, E.S.; Smeltzer, E.W. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1995-11-01T23:59:59.000Z

    The objectives of this program are to provide a more ruggedized filter system that utilizes porous ceramic filters which have improved resistance to damage resulting from crack propagation, thermal fatigue and/or thermal excursions during plant or process transient conditions, and/or mechanical ash bridging events within the candle filter array. As part of the current Phase 1, Task 1, effort of this program, Westinghouse is evaluating the filtration characteristics, mechanical integrity, and corrosion resistance of the following advanced or second generation candle filters for use in advanced coal-fired process applications: 3M CVI-SiC composite--chemical vapor infiltration of silicon carbide into an aluminosilicate Nextel{trademark} 312 fiber preform; DuPont PRD-66--filament wound candle filter structure containing corundum, cordierite, cristobalite, and mullite; DuPont SiC-SiC--chemical infiltration of silicon carbide into a silicon carbide Nicalon{trademark} fiber mat or felt preform; and IF and P Fibrosic{trademark}--vacuum infiltrated oxide-based chopped fibrous matrix. Results to date are presented.

  19. Development of ceramic composite hot-gas filters

    SciTech Connect (OSTI)

    Judkins, R.R.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Smith, R.G.; Fischer, E.M.; Eaton, J.H.; Weaver, B.L.; Kahnke, J.L.; Pysher, D.J. [3M Co., St. Paul, MN (United States)

    1995-04-01T23:59:59.000Z

    A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to fullsize, 60-mm OD by 1.5-meter-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are underway. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues and the status of commercialization of the filters are described.

  20. Low-energy RI beam technology and nuclear clusters in the explosive pp-chain breakout process

    SciTech Connect (OSTI)

    Kubono, S. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0 (Japan); Yamaguchi, H.; Kahl, D. M.; Ohshiro, Y.; Watanabe, S.; Yamazaki, N. [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-858 (Japan); Yanagisawa, Y.; Wakabayashi, Y.; Kase, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-81 (Korea, Republic of); Hashimoto, T.; Fukuda, Y. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); He, J. J. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); Goto, A. [Faculty of Medcine, Yamagata University, Yamagata 990-2331 (Japan); Muto, H. [Center of General Education, Tokyo University of Science at Suwa, Chino, Nagano 391-0292 (Japan)

    2014-05-09T23:59:59.000Z

    The lecture includes two parts: One is a discussion on the technology for developing RIB beam facility based on the in-flight method and relevant experimental technology. The second part is a discussion on experimental efforts for studying the breakout process from the pp-chain region based on recent works with low energy RI beams. The discussion of the second part specifically covers the problem of the vp-process in type II supernovae in terms of alpha cluster nature for the reactions.

  1. Westinghouse standleg moving granular bed filter development program

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1994-10-01T23:59:59.000Z

    Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, there are concerns for their reliability and operability. An alternative hot gas filtration technology is the moving granular bed filter. These systems are at a lower state of development than ceramic barrier filters, and their effectiveness as filters is still in question. Their apparent attributes, result from their much less severe mechanical design and materials constraints, and the potential for more reliable, failure-free particle removal operation. The standleg moving granular-bed filter (SMGBF) system, is a compact unit that uses cocurrent gas-pellet contacting in an arrangement that greatly simplifies and enhances the distribution of dirty, process gas to the moving bed and allows effective disengagement of clean gas from the moving bed. This paper describes the equipment and process test results.

  2. Filter assembly for metallic and intermetallic tube filters

    DOE Patents [OSTI]

    Alvin, Mary Anne (113 Lehr Ave., Pittsburgh, PA 15223); Lippert, Thomas E. (3205 Cambridge Rd., Murrysville, PA 15668); Bruck, Gerald J. (4469 Sardis Rd., Murrysville, PA 15668); Smeltzer, Eugene E. (R.D. 7, Box 267-I, Italy Rd., Export, PA 15632-9621)

    2001-01-01T23:59:59.000Z

    A filter assembly (60) for holding a filter element (28) within a hot gas cleanup system pressure vessel is provided, containing: a filter housing (62), said filter housing having a certain axial length and having a peripheral sidewall, said sidewall defining an interior chamber (66); a one piece, all metal, fail-safe/regenerator device (68) within the interior chamber (66) of the filter housing (62) and/or extending beyond the axial length of the filter housing, said device containing an outward extending radial flange (71) within the filter housing for seating an essential seal (70), the device also having heat transfer media (72) disposed inside and screens (80) for particulate removal; one compliant gasket (70) positioned next to and above the outward extending radial flange of the fail-safe/regenerator device; and a porous metallic corrosion resistant superalloy type filter element body welded at the bottom of the metal fail-safe/regenerator device.

  3. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  4. Web Content Filtering 1 User Guidelines Web content filter guidelines

    E-Print Network [OSTI]

    Web Content Filtering 1 User Guidelines Web content filter guidelines Introduction The basic criterion for blocking a Web page Categories of material which will be blocked Requesting the unblocking of Aberdeen applies a Web Content Filtering service to all web pages accessed from the undergraduate network

  5. Rotating drum filter

    DOE Patents [OSTI]

    Anson, Donald (Worthington, OH)

    1990-01-01T23:59:59.000Z

    A perforated drum (10) rotates in a coaxial cylindrical housing (18) having three circumferential ports (19,22,23), and an axial outlet (24) at one end. The axis (11) is horizontal. A fibrous filter medium (20) is fed through a port (19) on or near the top of the housing (81) by a distributing mechanism (36) which lays a uniform mat (26) of the desired thickness onto the rotating drum (10). This mat (26) is carried by the drum (10) to a second port (23) through which dirty fluid (13) enters. The fluid (13) passes through the filter (26) and the cleaned stream (16) exits through the open end (15) of the drum (10) and the axial port (24) in the housing (18). The dirty filter material (20) is carried on to a third port (22) near the bottom of the housing (18) and drops into a receiver (31) from which it is continuously removed, cleaned (30), and returned (32) to the charging port (36) at the top. To support the filter mat, the perforated cylinder may carry a series of tines (40), shaped blades (41), or pockets, so that the mat (26) will not fall from the drum (10) prematurely. To minimize risk of mat failure, the fluid inlet port (23) may be located above the horizontal centerline (11).

  6. Ozone decomposing filter

    DOE Patents [OSTI]

    Simandl, Ronald F. (Farragut, TN); Brown, John D. (Harriman, TN); Whinnery, Jr., LeRoy L. (Dublin, CA)

    1999-01-01T23:59:59.000Z

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  7. State-of-the-Art of Non-Destructive Testing Methods and Technologies for Application to Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect (OSTI)

    Wiggenhauser, Dr. Herbert [Federal Institute for Materials Research and Testing (BAM)] [Federal Institute for Materials Research and Testing (BAM); Naus, Dan J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: locating steel reinforcement and identification of its cover depth locating tendon ducts and identification of the condition of the grout materials detection of cracking, voids, delamination, and honeycombing in concrete structures detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner methods capable of identification of corrosion occurrence on the concrete side of the containment liner

  8. State-of-the-art of non-destructive testing methods and technologies for application to nuclear power plant safety-related concrete structures

    SciTech Connect (OSTI)

    Wiggenhauser, Herbert [BAM - Federal Institute for Materials Research and Testing, Berlin, D (Germany); Naus, Dan J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2014-02-18T23:59:59.000Z

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: •locating steel reinforcement and identification of its cover depth •locating tendon ducts and identification of the condition of the grout materials •detection of cracking, voids, delamination, and honeycombing in concrete structures •detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner •methods capable of identification of corrosion occurrence on the concrete side of the containment liner.

  9. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS

    SciTech Connect (OSTI)

    M.A. Alvin

    2002-01-31T23:59:59.000Z

    Through sponsorship from the Department of Energy's National Energy Technology Laboratory (DOE/NETL), development and manufacture of advanced second generation candle filters was undertaken in the early 1990's. Efforts were primarily focused on the manufacture of fracture toughened, 1.5 m, continuous fiber ceramic composite (CFCC) and filament wound candle filters by 3M, McDermott, DuPont Lanxide Composites, and Techniweave. In order to demonstrate long-term thermal, chemical, and mechanical stability of the advanced second generation candle filter materials, Siemens Westinghouse initiated high temperature, bench-scale, corrosion testing of 3M's CVI-SiC and DuPont's PRD-66 mini-candles, and DuPont's CFCC SiC-SiC and IF&P Fibrosic{sup TM} coupons under simulated, pressurized fluidized-bed combustion (PFBC) conditions. This effort was followed by an evaluation of the mechanical and filtration performance of the advanced second generation filter elements in Siemens Westinghouse's bench-scale PFBC test facility in Pittsburgh, Pennsylvania. Arrays of 1.4-1.5 m 3M CVI-SiC, DuPont PRD-66, DuPont SiC-SiC, and IF&P Fibrosic{sup TM} candles were subjected to steady state process operating conditions, increased severity thermal transients, and accelerated pulse cycling test campaigns which represented {approx}1760 hours of equivalent filter operating life. Siemens Westinghouse subsequently participated in early material surveillance programs which marked entry of the 3M CVI-SiC and DuPont PRD-66 candle filters in Siemens Westinghouse Advanced Particulate Filtration (APF) system at the American Electric Power (AEP) Tidd Demonstration Plant in Brilliant, Ohio. Siemens Westinghouse then conducted an extended, accelerated life, qualification program, evaluating the performance of the 3M, McDermott, and Techniweave oxide-based CFCC filter elements, modified DuPont PRD-66 elements, and the Blasch, Scapa Cerafil{sup TM}, and Specific Surface monolithic candles for use in the APF system at the Foster Wheeler pressurized circulating fluidized-bed combustion (PCFBC), pilot-scale, test facility in Karhula, Finland. This report presents a summary of these efforts, defining the stability of the various porous ceramic filter materials, as well as component performance and extended life for use in advanced coal-based power systems.

  10. Quick-change filter cartridge

    DOE Patents [OSTI]

    Rodgers, John C. (Santa Fe, NM); McFarland, Andrew R. (College Station, TX); Ortiz, Carlos A. (Bryan, TX)

    1995-01-01T23:59:59.000Z

    A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

  11. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Demazière, Christophe

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazière

  12. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

  13. Siphon filter assessment for Northern Ghana

    E-Print Network [OSTI]

    Ziff, Sara Elizabeth

    2009-01-01T23:59:59.000Z

    The siphon filter is a household water filter developed by the Basic Water Needs Foundation based on the design of ceramic candle filters. The siphon filter is marketed under brand names CrystalPur and Tulip and is sold ...

  14. Requirements for a Dynamic Solvent Extraction Module to Support Development of Advanced Technologies for the Recycle of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Jack Law; Veronica Rutledge; Candido Pereira; Jackie Copple; Kurt Frey; John Krebs; Laura Maggos; Kevin Nichols; Kent Wardle; Pratap Sadasivan; Valmor DeAlmieda; David Depaoli

    2011-06-01T23:59:59.000Z

    The Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program has been established to create and deploy next generation, verified and validated nuclear energy modeling and simulation capabilities for the design, implementation, and operation of future nuclear energy systems to improve the U.S. energy security. As part of the NEAMS program, Integrated Performance and Safety Codes (IPSC's) are being produced to significantly advance the status of modeling and simulation of energy systems beyond what is currently available to the extent that the new codes be readily functional in the short term and extensible in the longer term. The four IPSC areas include Safeguards and Separations, Reactors, Fuels, and Waste Forms. As part of the Safeguards and Separations (SafeSeps) IPSC effort, interoperable process models are being developed that enable dynamic simulation of an advanced separations plant. A SafeSepss IPSC 'toolkit' is in development to enable the integration of separation process modules and safeguards tools into the design process by providing an environment to compose, verify and validate a simulation application to be used for analysis of various plant configurations and operating conditions. The modules of this toolkit will be implemented on a modern, expandable architecture with the flexibility to explore and evaluate a wide range of process options while preserving their stand-alone usability. Modules implemented at the plant-level will initially incorporate relatively simple representations for each process through a reduced modeling approach. Final versions will incorporate the capability to bridge to subscale models to provide required fidelity in chemical and physical processes. A dynamic solvent extraction model and its module implementation are needed to support the development of this integrated plant model. As a stand-alone application, it will also support solvent development of extraction flowsheets and integrated safeguards approaches within the Fuel Cycle Research and Development (FCR&D) Program. The purpose of this document is to identify the requirements for this dynamic solvent extraction model to guide process modelers and code developers to produce a computational module that meets anticipated future needs.

  15. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

  16. CLEERS Activities: Diesel Soot Filter Characterization & NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

  17. A decision analysis framework to support long-term planning for nuclear fuel cycle technology research, development, demonstration and deployment

    SciTech Connect (OSTI)

    Sowder, A.G.; Machiels, A.J. [Electric Power Research Institute, 1300 West. W.T Harris Boulevard, Charlotte, NC 28262 (United States); Dykes, A.A.; Johnson, D.H. [ABSG Consulting Inc., 300 Commerce, Suite 200, Irvine, CA 92602 (United States)

    2013-07-01T23:59:59.000Z

    To address challenges and gaps in nuclear fuel cycle option assessment and to support research, develop and demonstration programs oriented toward commercial deployment, EPRI (Electric Power Research Institute) is seeking to develop and maintain an independent analysis and assessment capability by building a suite of assessment tools based on a platform of software, simplified relationships, and explicit decision-making and evaluation guidelines. As a demonstration of the decision-support framework, EPRI examines a relatively near-term fuel cycle option, i.e., use of reactor-grade mixed-oxide fuel (MOX) in U.S. light water reactors. The results appear as a list of significant concerns (like cooling of spent fuels, criticality risk...) that have to be taken into account for the final decision.

  18. THE CREATIVE APPLICATION OF SCIENCE TECHNOLOGY & WORK FORCE INNOVATIONS TO THE D&D OF PLUTONIUM FINISHING PLANT (PFP) AT THE HANFORD NUCLEAR RESERVATION

    SciTech Connect (OSTI)

    CHARBONEAU, S.L.

    2006-02-01T23:59:59.000Z

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program. The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D&D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D&D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D&D mission with a can-do attitude. They went into D&D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox cleanout. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these challengers are described. Many of the challenges to the D&D work at PFP were met with innovative approaches based on new science and/or technology and many were also based on the creativity and motivation of the work force personnel.

  19. Volatilization of Fission Products from Metallic Melts in the Melt-Dilute Treatment Technology Development for Al-Based DOE Spent Nuclear Fuels

    SciTech Connect (OSTI)

    Adams, T.

    1999-11-18T23:59:59.000Z

    The melt-dilute treatment technology is being developed to facilitate the ultimate disposition of highly enriched Al-Base DOE spent nuclear fuels in a geologic repository such as that proposed for Yucca Mountain. Currently, approximately 28 MTHM is expected to be returned to the Savannah River Site from domestic and foreign research reactors. The melt-dilute treatment technology will melt the fuel assemblies to reduce their volume and alloys them with depleted uranium to isotopically dilute the 235U concentration. The resulting alloy is cast into a form for long term geologic repository storage. Benefits accrued from the melt-dilute process include the potential for significant volume reduction; reduced criticality potential, and proliferation concerns. A critical technology element in the development of the melt-dilute process is the development of offgas system requirements. The volatilization of radioactive species during the melting stage of the process primarily constitutes the offgas in this process. Several of the species present following irradiation of a fuel assembly have been shown to be volatile or semi-volatile under reactor core melt-down conditions. Some of the key species that have previously been studied are krypton, iodine, and cesium. All of these species have been shown to volatilize during melting experiments however, the degree to which they are released is highly dependent upon atmosphere, fuel burnup, temperature, and fuel composition. With this in mind an analytical and experimental program has been undertaken to assess the volatility and capture of species under the melt-dilute operating conditions.

  20. Some thoughts on the nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Krikorian N.H.; Hawkins, H.T.

    1996-05-01T23:59:59.000Z

    This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

  1. Regenerable particulate filter

    DOE Patents [OSTI]

    Stuecker, John N. (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Miller, James E. (Albuquerque, NM)

    2009-05-05T23:59:59.000Z

    A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

  2. In-service filter testing

    SciTech Connect (OSTI)

    Terada, K.; Woodard, R.W.; Jensen, R.T.

    1985-04-29T23:59:59.000Z

    This report contains the observations, test results, and conclusions of three separate in-service tests beginning in November 1979 and concluding in September 1983. The in-service tests described in this report produced encouraging results on filters constructed with fiberglass medium containing 5% Nomex and separators of aluminum foil coated with a thin film of vinyl-epoxy polymer. Filters containing medium with Kevlar fiber additives demonstrated they merited further evaluation. Other types of filters tested include separatorless filters (Flanders SuperFlow) and one filter with fiberglass separators. Asbestos-containing filters were used for comparison until their supply was exhausted. All filters tested were judged to have performed satisfactorily under the test conditions.

  3. Paola Cappellaro Assistant Professor of Nuclear Science and Engineering

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    Massachusetts Institute of Technology, Cambridge, MA (2001­2006) ­ Ph.D. in Nuclear of Technology, Dept. of Nuclear Science and Engineering: ­ Instructor for "22Paola Cappellaro Assistant Professor of Nuclear Science and Engineering

  4. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER

    SciTech Connect (OSTI)

    Poirier, M.; Herman, D.; Bhave, R.

    2011-09-13T23:59:59.000Z

    SRS is currently developing and testing several processes to treat high level radioactive liquid waste. These processes include the Integrated Salt Disposition Process (ISDP), the Salt Waste Processing Facility (SWPF), and the Small Column Ion Exchange Process (SCIX). Each of these processes has a solid-liquid separation process that limits its throughput. SRNL researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The testing showed significant improvement in filter flux with the rotary microfilter over the baseline crossflow filter (i.e., 2.5-6.5X during scoping tests, as much as 10X in actual waste tests, and approximately 3X in pilot-scale tests). SRNL received funding from DOE EM-21, and subsequently DOE EM-31 to develop the rotary microfilter for high level radioactive service. The work has included upgrading the rotary microfilter for radioactive service, testing with simulated SRS waste streams, and testing it with simulated Hanford waste streams. While the filtration rate is better than that obtained during testing of crossflow filters, the authors believe the rotary microfilter throughput can be improved by using a better filter membrane. The rotary microfilter membrane is made of stainless steel (Pall PMM050). Previous testing, funded by DOE EM-21, showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. In that testing, the Pall Accusep and Graver filters produced 13-21% larger filter flux than the baseline 0.1 {micro}m Mott filter. While the improvement in flux is not as dramatic as the improvement of the rotary filter over a crossflow filter, a 13-21% increase could reduce the lifetime of a 30 year process by 4-6 years, with significant cost savings. Subsequent rotary filter testing showed the Pall PMM050 stainless steel filter membrane produced higher flux than the Mott filter media in bench-scale and pilot-scale testing. The Accusep and Graver filter media were not evaluated in that testing, because they are not available as flat sheets. The Accusep filter was developed at ORNL and licensed to Pall Corporation. This filter has a stainless steel support structure with a zirconium oxide ceramic membrane. The pore size is 0.1 {micro}m absolute. The Graver filter has a stainless steel support structure with a titanium dioxide ceramic membrane. The pore size is 0.07 {micro}m absolute. SRNL and ORNL are working together to develop filter media similar to the Accusep and Graver media, and to test them in a bench-scale filtration apparatus to attempt to improve the throughput of the rotary microfilter. This report describes the effort.

  5. TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357

    SciTech Connect (OSTI)

    Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

    2011-02-02T23:59:59.000Z

    The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build up of filter cake on the disks and therefore the performance of the filter. The filter performed well with the simulant. Very little drop in production was noticed between the 5 and 10 wt% insoluble solids feed. Increasing to 15 wt% had a more pronounced impact due to the rheology of the feed. Acid cleaning was used to clean the filter disks in-situ and restore filtration rate to almost 90% of the initial clean disk rate. Eighty liters of 0.2 M nitric acid in conjunction with water rinses were used to clean the filter in less than 2 hours. Filter testing was completed after 1000 hours of operation were performed on the final filter assembly configuration. The total run time for the testing was over 1500 hours. At the end of the test, the sludge washing was performed successfully from approximately 5.6 M to less than 1 M sodium.

  6. National Nuclear Chemistry Summer School

    Broader source: Energy.gov [DOE]

    The Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding is provided by the US Department of Energy.

  7. SRNS | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    for careers in plant maintenance and operations at nuclear facilities by supporting Augusta Technical College's Nuclear Engineering Technology Program. http:1.usa.gov1uKSDdW...

  8. National Nuclear Chemistry Summer School

    Broader source: Energy.gov [DOE]

    he Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding...

  9. Comparative survey on non linear filtering methods : the quantization and the particle filtering approaches

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , importance sam- pling, Kalman filter, stochastic volatility, infinite dimension filter. 1 Introduction We models: the Kalman filter case, the canonical stochastic volatility model and the infinite dimension

  10. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    E-Print Network [OSTI]

    Destaillats, Hugo

    2012-01-01T23:59:59.000Z

    and degradation of filter media additives H. Destaillats, W.and Degradation of Filter Media Additives Hugo Destaillatsand degradation of filter media additives Hugo Destaillats

  11. Nuclear Systems Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76SafeguardsSystems Modeling Advanced

  12. Coated x-ray filters

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-24T23:59:59.000Z

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers. 4 figs.

  13. Coated x-ray filters

    DOE Patents [OSTI]

    Steinmeyer, Peter A. (Farmington, NM)

    1992-11-24T23:59:59.000Z

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers.

  14. I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114

    E-Print Network [OSTI]

    Ellison, Paul Andrew

    2011-01-01T23:59:59.000Z

    library for nuclear science and technology. Nuclear DataJournal of Nuclear Science and Technology, 7(10):487–499,Journal of Nuclear Science and Technology, G.T. Seaborg,

  15. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  16. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  17. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  18. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  19. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  20. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  1. Idaho HWMA/RCRA Closure Plan for Idaho Nuclear Technology and Engineering Center Tanks WM-182 and WM-183 - Rev. 2

    SciTech Connect (OSTI)

    Evans, Susan Kay; unknown

    2000-12-01T23:59:59.000Z

    This document presents the plan for the closure of the Idaho Nuclear Technology and Engineering Center Tank Farm Facility tanks WM-182 and WM-183 in accordance with Idaho Hazardous Waste Management Act/Resource Conservation and Recovery Act interim status closure requirements. Closure of these two tanks is the first in a series of closures leading to the final closure of the eleven 300,000-gal tanks in the Tank Farm Facility. As such, closure of tanks WM-182 and WM-183 will serve as a proof-of-process demonstration of the waste removal, decontamination, and sampling techniques for the closure of the remaining Tank Farm Facility tanks. Such an approach is required because of the complexity and uniqueness of the Tank Farm Facility closure. This plan describes the closure units, objectives, and compliance strategy as well as the operational history and current status of the tanks. Decontamination, closure activities, and sampling and analysis will be performed with the goal of achieving clean closure of the tanks. Coordination with other regulatory requirements, such as U.S. Department of Energy closure requirements, is also discussed.

  2. Removing Redundancy and Inconsistency in Memory-Based Collaborative Filtering

    E-Print Network [OSTI]

    Tresp, Volker

    Removing Redundancy and Inconsistency in Memory- Based Collaborative Filtering Kai Yu Siemens AG, Corporate Technology & University of Munich, Germany kai.yu.external@mchp.siemens. de Xiaowei Xu Information Science Department University of Arkansas at Little Rock xwxu@ualr.edu Anton Schwaighofer Siemens AG

  3. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10T23:59:59.000Z

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  4. Automated Intruder Tracking using Particle Filtering and a Network of Binary Motion Sensors

    E-Print Network [OSTI]

    Goldberg, Ken

    infrared (PIR) motion sensors that suggest that our estimator is effective and degrades gracefully with increasing sensor refractory periods. Index Terms - Security, Sensor Networks, Particle Filter, Tracking, Sensor Fusion. I. INTRODUCTION Many new technologies for automated security, wireless networks

  5. Development of an infrared absorption spectroscope based on linear variable filters

    E-Print Network [OSTI]

    Nogueira, Felipe Guimaraes

    2009-05-15T23:59:59.000Z

    The objective of this thesis is to develop a low-cost infrared absorption spectroscope based on linear variable filter (LVF) technology for the automated detection of gases and vapors, and the semi-automated detection of liquids. This instrument...

  6. Study of Compact Tunable Filters Using Negative Refractive Index Transmission Lines

    E-Print Network [OSTI]

    Lewis, Brian Patrick

    2011-08-08T23:59:59.000Z

    , and thermal requirements, new filter technologies with different balances between these requirements are always desirable. Negative Refractive Index (NRI) transmission media was discovered 10 years ago with the unique property of negative phase propagation...

  7. filter + electrical Zeroforcing Electrical Filters for Direct Detection Optical Systems

    E-Print Network [OSTI]

    Humblet, Pierre A.

    signal envelope. The thermal noise n(t) from the electronics is assumed to be the dominant noise) = Re{p(t-iT )p # (t-jT )}, p(t) is the complex envelope of the received optical pulse taking­Perot interferometer We consider a Fabry­Perot filter as the optical demulti­ plexing filter [1]. The envelope

  8. SRNS | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    signs on as industry partner for Nuclear Engineering Technology Education at Augusta Technical College. http:1.usa.gov1uKSDdW...

  9. Interacting Multiple Model Kalman Filters (IMMKF) Interacting Multiple Model Kalman Filters

    E-Print Network [OSTI]

    Williams, Brian C.

    Interacting Multiple Model Kalman Filters (IMMKF) Interacting Multiple Model Kalman Filters (IMMKF R.Q.A. Santana Interacting Multiple Model Kalman Filters (IMMKF) #12;Interacting Multiple Model Kalman Filters (IMMKF) Sumário 1 Introdução Abordagens de múltiplos modelos Introdução ao Interacting

  10. Mode Filtered Fiber Amplifier

    ScienceCinema (OSTI)

    Sandia

    2009-09-01T23:59:59.000Z

    A breakthrough technology for fabricating practical, high-power, high-beam-quality laser sources that are compact, rugged, and extremely efficient. 2007 R&D 100 winner (SAND2007-1475P)

  11. Durability of Diesel Particulate Filters - Bench Studies on Cordierite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filters - Bench Studies on Cordierite Filters Durability of Diesel Particulate Filters - Bench Studies on Cordierite Filters Presentation given at DEER 2006, August...

  12. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect (OSTI)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01T23:59:59.000Z

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

  13. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect (OSTI)

    Alvin, M.A.

    2002-09-19T23:59:59.000Z

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  14. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05T23:59:59.000Z

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  15. STATISTICAL FILTERING* John B. Moore~

    E-Print Network [OSTI]

    Moore, John Barratt

    noise signals. Theoretical developments in statistical filtering have been made side by side linkages will be made between these two major in filtering. in the developments In the classical approaches and the unwanted signals (noise) lie in another with possibly some overlap. In the statistical approach, the best

  16. Evaluation and Testing of the Cells Unit Crossflow Filter on INEEL Dissolved Calcine Slurries

    SciTech Connect (OSTI)

    N. R. Mann; T. A. Todd

    1998-08-01T23:59:59.000Z

    Development of waste treatment processes for the remediation of radioactive wastes is currently under way at the Idaho Nuclear Technology and Engineering Center (INTEC), located at the Idaho National Engineering and Environmental Laboratory (INEEL). INTEC, formerly known as the Idaho Chemical Processing Plant, previously reprocessed nuclear fuel to retrieve fissionable uranium. Liquid waste raffinates resulting from reprocessing were solidified into a granular calcine material. Approximately 4,000 m3 of calcine are presently being stored in concrete encased stainless steel bins at the INTEC. Greater than 99 weight percent of the calcine is non-radioactive inert materials. By separating radioactive and non-radioactive constituents into high and low activity fractions, a significant high-activity volume reduction can be achieved. Prior to separation, calcine dissolution must be performed. However, dissolution studies have shown a small percentage of solids present after dissolution. Undissolved solids (UDS) in solution must be removed prior to downstream processes such as solvent extraction and ion exchange. Furthermore, residual UDS in solutions have the potential to carry excess radioactivity into low activity waste fractions, if not removed. Filtration experiments were conducted at the INEEL using the Cell Unit Filter (CUF) on actual dissolved H-4 calcine and dissolved Run 1027 non-radioactive pilot plant calcine. The purpose of this testing was to evaluate the removal and operational efficiency of crossflow filtration on slurries of various solids loading. The solids loadings tested were, 0.19, 2.44 (H-4) and 7.94 (1027) weight percent, respectively. A matrix of test patterns was used to determine the effects of transmembrane pressure and axial velocity on filtrate flux. Filtrate flux rates for each solids loading displayed a high dependence on transmembrane pressure, indicating that pressure filtration resistance limits filtrate flux. Filtrate flux rates for all solids loading displayed a negative dependency on axial velocity. This would suggest axial velocities tested were efficient at removing filter cake.

  17. Technology Transfer Success Stories, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Research and Development at NETL Muon Tomography Muon Tomography Muon Tomography technology developed at LANL to detect nuclear and other weapons of mass destruction will be...

  18. Nuclear disarmament verification

    SciTech Connect (OSTI)

    DeVolpi, A.

    1993-12-31T23:59:59.000Z

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

  19. Spatial Filter with Volume Gratings for High-peak-power Multistage Laser Amplifiers

    E-Print Network [OSTI]

    Tan, Yi-zhou; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Li, Liu

    2012-01-01T23:59:59.000Z

    The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermo-refractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser...

  20. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Michael F. Simpson; Jack D. Law

    2010-02-01T23:59:59.000Z

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  1. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration FY 2011 - FY 2015 Budget Outlook Managing the NNSA 4.0% Science, Technology & Engineering 14.5% Stockpile Support 17.9% Preventing the Spread of...

  2. On the Kalman Filter and Its Variations

    E-Print Network [OSTI]

    Lindsey, Theodore S.

    2014-05-31T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0.6 Kalman Filter via Newton’s method . . . . . . . . . . . . . . . . . . . . . . . 7 0.7 Implementation and Comparison of Two Kalman Filter Extensions . . . . . 10 0.8 Future Investigations: Several Kalman Filter Modifications . . . . . . . . . 15... . . . . . . . . . . . . . . . . . . . . 22 0.12 Unscented Kalman Filter Implementation . . . . . . . . . . . . . . . . . . . . 24 v 0.1 Introduction - Filtering The essence of a filter is to determine the states of a system (say, xk) which are not directly observed by forming estimates...

  3. Environmental Challenges of Climate-Nuclear Fusion: A Case Study of India

    E-Print Network [OSTI]

    Badrinarayan, Deepa

    2011-01-01T23:59:59.000Z

    nuclear and carbon capture and storage technologies couldthat carbon capture and storage (CCS) technology, as well as

  4. Performance of ceramic membrane filters

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Im, K.H.; Geyer, H.K. [Argonne National Lab., IL (United States); Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1996-08-01T23:59:59.000Z

    CeraMem Corp.`s ceramic-membrane coated, dead-end ceramic filters offer a promising alternative to ceramic candle filters providing long-term operational and reliability issues are resolved: regenerability of filter passages by back pulse cleaning, tolerance to alkali-containing combustion gas and thermal/chemical aging. ANL is responsible for analytical modeling of filtration and pulse cleaning operations, flow-through testing, and prediction of filter response to thermal cycling under realistic service conditions. A test apparatus was built to expose ceramic filter specimens to chemical environments simulating operation of pressurized fluidized bed and integrated gasification combined cycle plants. Four long-duration tests have been conducted in which 100-cpsi channel filters were exposed to ash collected downstream of the cyclone separator at the PFBC plant at Tidd. Results are discussed. Focus has now shifted to exposing the advanced candle filter specimens to reducing gas environments containing NaCl, H{sub 2}S, H{sub 2}O, and gasification ash.

  5. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  6. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  7. Trees as Filters of Radioactive Fallout from the Chernobyl Accident

    E-Print Network [OSTI]

    Brownridge, James D

    2011-01-01T23:59:59.000Z

    This paper is a copy of an unpublished study of the filtering effect of red maple trees (acer rubrum) on fission product fallout near Binghamton, NY, USA following the 1986 Chernobyl accident. The conclusions of this work may offer some insight into what is happening in the forests exposed to fallout from the Fukushima Daiichi Nuclear Plant accident. This posting is in memory of Noel K. Yeh.

  8. Tunable Imaging Filters in Astronomy

    E-Print Network [OSTI]

    J. Bland-Hawthorn

    2000-06-05T23:59:59.000Z

    While tunable filters are a recent development in night time astronomy, they have long been used in other physical sciences, e.g. solar physics, remote sensing and underwater communications. With their ability to tune precisely to a given wavelength using a bandpass optimized for the experiment, tunable filters are already producing some of the deepest narrowband images to date of astrophysical sources. Furthermore, some classes of tunable filters can be used in fast telescope beams and therefore allow for narrowband imaging over angular fields of more than a degree over the sky.

  9. Physics-based multiscale coupling for full core nuclear reactor...

    Office of Scientific and Technical Information (OSTI)

    multiscale coupling for full core nuclear reactor simulation Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety,...

  10. DOE Initiates Environmental Impact Statement for Global Nuclear...

    Energy Savers [EERE]

    DOE Initiates Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations DOE Initiates Environmental Impact Statement for Global Nuclear Energy...

  11. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a global nuclear energy infrastructure as envisioned in GNEP to develop innovative nuclear reactor and fuel cycle technologies. GNEP seeks to bring about a significant,...

  12. NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.

    SciTech Connect (OSTI)

    PRITYCHENKO, B.

    2006-06-05T23:59:59.000Z

    The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

  13. ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    data for higher priority isotopes and fuel mixes in the thermal, epithermal and fast-neutron ANTT Report 14 January 2003 8 spectra using heated samples in low-power critical...

  14. ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    AND ENGINEERING Under the Advanced Fuels Cycle Initiative, Transmutation Science and Engineering is divided into four subprograms: Physics, Structural Materials, Materials...

  15. Nuclear waste incineration technology status

    SciTech Connect (OSTI)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15T23:59:59.000Z

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  16. technology | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U C L E A R E NTAU

  17. Reactor Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds forAdvanced MaterialsPortal

  18. FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)

    E-Print Network [OSTI]

    FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF): UPDATE · It was well recognized there were also critical materials and technology issues that needed to be addressed in order to apply the knowledge we gained about burning plasma state #12;FUSION NUCLEAR SCIENCE PROGRAM

  19. The development and evaluation of a neutron window filter facility utilizing the TAMU NSC TRIGA reactor 

    E-Print Network [OSTI]

    Harding, Patricia Colleen

    1982-01-01T23:59:59.000Z

    THE DEVELOPMENT AND EVALUATION OF A NEUTRON WINDOW FILTER FACILITY UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis by PATRICIA COLLEEN HARDING Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1982 Major Subject: Nuclear Engineering THE DEVELOPMENT AND EVALUATION OF A NEUTRON WINDOW FILTER FACILITY UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis by PATRICIA COLLEEN HARDING Approved as to style...

  20. Kalman filtering for matrix estimation

    E-Print Network [OSTI]

    Choukroun, Daniel; Weiss, Haim; Bar-Itzhack, Itzhack Y; Oshman, Yaakov

    2006-01-01T23:59:59.000Z

    of the AIAA. CHOUKROUN ET AL. : KALMAN FILTERING FOR MATRIXof an AD problem. REFERENCES Kalman, R. E. A new approach toD, 82 (Mar. 1960), 35—45. Kalman, R. E. , and Bucy, R. S.

  1. Development of Advanced Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    Time (sec) 400 degC 500 degC Filter -pore structures were imaged by conventional optics 19 Reconstructed 3-D images revealed the details of -pores at any section of...

  2. particle flow for nonlinear filters

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    particle flow for nonlinear filters Fred Daum 19 June 2012 Copyright © 2012 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. 1 #12;discrete time

  3. Spin Filtering in Storage Rings

    E-Print Network [OSTI]

    N. N. Nikolaev; F. F. Pavlov

    2005-12-05T23:59:59.000Z

    The spin filtering in storage rings is based on the multiple passage of a stored beam through a polarized internal gas target. Apart from the polarization by transmission, a unique geometrical feature of interaction with the target in such a filtering process, pointed out by H.O. Meyer \\cite{Meyer}, is a scattering of stored particles within the beam. A rotation of the spin in the scattering process affects the polarization buildup. We derive here a quantum-mechanical evolution equation for the spin-density matrix of the stored beam which incorporates scattering within the beam. We show how the interplay of transmission and scattering with the beam changes from polarized electrons to polarized protons in the atomic target. After discussions of the FILTEX results on the filtering of stored protons \\cite{FILTEX}, we comment on the strategy of spin filtering of antiprotons for the PAX experiment at GSI FAIR \\cite{PAX-TP}.

  4. Overview paper on nuclear power

    SciTech Connect (OSTI)

    Spiewak, I.; Cope, D.F.

    1980-09-01T23:59:59.000Z

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  5. Westinghouse advanced particle filter system

    SciTech Connect (OSTI)

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  6. Advanced hot-gas filter development. Topical report, September 30, 1994--May 31, 1996

    SciTech Connect (OSTI)

    Lane, J.E.; LeCostaouec, J.F.; Painter, C.J.; Sue, W.A.; Radford, K.C.

    1996-12-31T23:59:59.000Z

    The application of high-performance, high-temperature particulate control devices is considered to be beneficial to advanced fossil fuel processing technology, to selected high-temperature industrial processes, and to waste incineration concepts. Ceramic rigid filters represent the most attractive technology for these applications due to their capability to withstand high-temperature corrosive environments. However, current generation monolithic filters have demonstrated poor resistance to crack propagation and can experience catastrophic failure during use. To address this problem, ceramic fiber-reinforced ceramic matrix composite (CMC) filter materials are needed for reliable damage tolerant candle filters. This program is focused on the development of an oxide-fiber reinforced oxide material composite filter material that is cost competitive with prototype next generation filters. This goal would be achieved through the development of a low cost sol-gel fabrication process and a three-dimensional fiber architecture optimized for high volume filter manufacturing. The 3D continuous fiber reinforcement provides a damage tolerant structure which is not subject to delamination-type failures. This report documents the Phase 1, Filter Material Development and Evaluation, results. Section 2 provides a program summary. Technical results, including experimental procedures, are presented and discussed in Section 3. Section 4 and 5 provide the Phase 1 conclusions and recommendations, respectively. The remaining sections cover acknowledgements and references.

  7. Summary of meeting on disposal of LET&D HEPA filters

    SciTech Connect (OSTI)

    Not Available

    1991-11-21T23:59:59.000Z

    This report is a compilation of correspondence between Westinghouse Idaho Nuclear Company and the US EPA over a period of time from 1988 to 1992 (most from 1991-92) regarding waste management compliance with EPA regulations. Typical subjects include: compliance with satellite accumulation requirements; usage of ``Sure Shot`` containers in place of aerosol cans; notice of upcoming recyclable battery shipments; disposition of batteries; HEPA filter leach sampling and permit impacts; functional and operation requirements for the spent filter handling system; summary of meeting on disposal of LET and D HEPA filters; solvent substitution database report; and mercury vapor light analytical testing.

  8. Interval Arithmetic Kalman Filtering Steven Reece

    E-Print Network [OSTI]

    Roberts, Stephen

    Interval Arithmetic Kalman Filtering Steven Reece Abstract The problem of robust estimation. The Kalman filter, which is probably the most popular model­based data fusion method, is extended filter (BDF), is proposed which combines interval arithmetic with statistical Kalman filter estimation

  9. Water washable stainless steel HEPA filter

    DOE Patents [OSTI]

    Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803)

    2001-01-01T23:59:59.000Z

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  10. Moving granular-bed filter development program topical report. Base contract test plan

    SciTech Connect (OSTI)

    Newby, R.A.; Dilmore, W.J.; Fellers, A.W.; Gasparovic, A.C.; Kittle, W.F.; Lippert, T.E.; Smeltzer, E.E.; Yang, W.C.

    1991-10-17T23:59:59.000Z

    The Westinghouse Science & Technology Center has proposed a novel moving granular-bed filter concept, the Standleg Moving Granular-Bed Filter (S-MGBF) system, that overcomes the inherent deficiencies of the current state-of-the-art moving granular-bed filter technology. The S-MGBF system combines two unique features that make it highly effective for use in advanced coal-fueled power plants. First, the S-MGBF system applies pelletization technology to generate filter pellets from the power plant solid waste materials, and uses these pellets as a ``once-through`` filtering media to eliminate the need for costly, complex, and large filter media recycling equipment. This pelletizing step also generates a more environmentally acceptable solid waste product and provides the potential to incorporate gas-phase contaminant sorbents into the filtering media. Secondly, the S-MGBF system passes these pellets and the flyash laden power plant gas through a highly compact S-MGBF that uses cocurrent gas-pellet contacting in an arrangement that greatly simplifies and enhances the distribution of dirty gas to the moving bed and the disengagement of clean gas from the moving bed.

  11. Spatial filters for high power lasers

    DOE Patents [OSTI]

    Erlandson, Alvin Charles; Bayramian, Andrew James

    2014-12-02T23:59:59.000Z

    A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first longitudinal slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second longitudinal slit filter positioned between the second pair of cylindrical lenses.

  12. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011 277 Anomaly Detection in Nuclear Power Plants via

    E-Print Network [OSTI]

    Ray, Asok

    in Nuclear Power Plants via Symbolic Dynamic Filtering Xin Jin, Student Member, IEEE, Yin Guo, Soumik Sarkar detection algorithm for condition monitoring of nuclear power plants, where symbolic feature extraction Innova- tive & Secure (IRIS) simulator of nuclear power plants, and its per- formance is evaluated

  13. Kalman Filter and Extended Kalman Filter Namrata Vaswani, namrata@iastate.edu

    E-Print Network [OSTI]

    Vaswani, Namrata

    Kalman Filter and Extended Kalman Filter Namrata Vaswani, namrata@iastate.edu Kalman and Extended Kalman Filtering 1 #12;Kalman Filter Introduction · Recursive LS (RLS) was for static data: estimate of an object from a video sequence · RLS with forgetting factor assumes slowly time varying x · Kalman filter

  14. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03T23:59:59.000Z

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  15. Active dc filter for HVDC systems

    SciTech Connect (OSTI)

    Zhang, W. (Royal Inst. of Tech., Stockholm (Sweden)); Asplund, G.

    1994-01-01T23:59:59.000Z

    This article is a case history of the installation of active dc filters for high-performance, low-cost harmonics filtering at the Lindome converter station in the Konti-Skan 2 HVDC transmission link between Denmark and Sweden. The topics of the article include harmonics, interference, and filters, Lindome active dc filter, active dc filter design, digital signal processor, control scheme, protection and fault monitoring, and future applications.

  16. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  17. Kalman Filter Tracking on Parallel Architectures

    E-Print Network [OSTI]

    Giuseppe Cerati; Peter Elmer; Steven Lantz; Kevin McDermott; Dan Riley; Matevž Tadel; Peter Wittich; Frank Würthwein; Avi Yagil

    2015-05-18T23:59:59.000Z

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust and are exactly those being used today for the design of the tracking system for HL-LHC. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedup both with Intel Xeon and Xeon Phi. We report here our further progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic simulation setup.

  18. Nuclear Power - Deployment, Operation and Sustainability

    E-Print Network [OSTI]

    . Tsvetkov p. cm. ISBN 978-953-307-474-0 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface IX Part 1 Nuclear Power Deployment 1 Chapter 1 Nuclear Naval Propulsion 3 Magdi... to successful development, deployment and operation of nuclear power systems worldwide: Nuclear Power Deployment 1. Nuclear Naval Propulsion 2. Deployment Scenarios for New Technologies 3. The Investment Evaluation of Third-Generation Nuclear Power - from...

  19. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    SciTech Connect (OSTI)

    Klingensmith, A. L.

    2012-03-21T23:59:59.000Z

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  20. Development of active porous medium filters based on plasma textiles

    SciTech Connect (OSTI)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren [Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC 27695 (United States)

    2012-05-15T23:59:59.000Z

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  1. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y. [CH2M Hill (United States)

    2007-02-15T23:59:59.000Z

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  2. Kalman Filter Tracking on Parallel Architectures

    E-Print Network [OSTI]

    Cerati, Giuseppe; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2015-01-01T23:59:59.000Z

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has...

  3. Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies NPIC&HMIT 2009, Knoxville, Tennessee, April 5-9, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL

    E-Print Network [OSTI]

    Heljanko, Keijo

    Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, automation 1 INTRODUCTION In nuclear power plants (NPPs), novel digitalized I&C systems enable complicated, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009) VERIFICATION OF SAFETY LOGIC DESIGNS

  4. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    ENGINEERING TECHNOLOGY Engineering Technology Program The Bachelor of Science in Engineering Technology (BSET) is a hands-on program based upon engineering technology fundamentals, engineering for employment or further education. The focus is on current engineering technology issues and applications used

  5. Nuclear Energy Page 570Page 570

    E-Print Network [OSTI]

    Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

  6. Hot gas cross flow filtering module

    DOE Patents [OSTI]

    Lippert, Thomas E. (Murrysville Boro, PA); Ciliberti, David F. (Murrysville Boro, PA)

    1988-01-01T23:59:59.000Z

    A filter module for use in filtering particulates from a high temperature gas has a central gas duct and at least one horizontally extending support mount affixed to the duct. The support mount supports a filter element thereon and has a chamber therein, which communicates with an inner space of the duct through an opening in the wall of the duct, and which communicates with the clean gas face of the filter element. The filter element is secured to the support mount over an opening in the top wall of the support mount, with releasable securement provided to enable replacement of the filter element when desired. Ceramic springs may be used in connection with the filter module either to secure a filter element to a support mount or to prevent delamination of the filter element during blowback.

  7. Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

    2012-04-26T23:59:59.000Z

    Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

  8. Kalman filter analysis of delayed neutron nondestructive assay measurements.

    SciTech Connect (OSTI)

    Aumeier, S. E.

    1998-04-29T23:59:59.000Z

    The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation.

  9. Radiant zone heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-12-27T23:59:59.000Z

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  10. Evaluation of the KanchanTM Arsenic Filter under various water quality conditions of the Nawalparasi District, Nepal

    E-Print Network [OSTI]

    Espinoza, Claudia M. (Claudia Maritza)

    2011-01-01T23:59:59.000Z

    In 2002, the Massachusetts Institute of Technology Department of Civil and Environmental Engineering partnered with the Environment and Public Health Organization to develop and disseminate the KanchanTM Arsenic Filter ...

  11. National Nuclear Security Administration to Help Train Former...

    National Nuclear Security Administration (NNSA)

    Former Soviet WMD Scientists in Commercial Information Technology Fields --Reduces Proliferation Threats-- | National Nuclear Security Administration Facebook Twitter Youtube...

  12. Nuclear Futures Analysis and Scenario Building

    SciTech Connect (OSTI)

    Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

    1999-07-09T23:59:59.000Z

    This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios.

  13. Evaluated Nuclear Data

    SciTech Connect (OSTI)

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01T23:59:59.000Z

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  14. Electric filter with movable belt electrode

    DOE Patents [OSTI]

    Bergman, W.

    1983-09-20T23:59:59.000Z

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.

  15. Hydrogen Technology Research at SRNL

    SciTech Connect (OSTI)

    Danko, E.

    2011-02-13T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  16. Features of coal dust dynamics at action of differently oriented forces in granular filtering medium

    E-Print Network [OSTI]

    I. M. Neklyudov; L. I. Fedorova; P. Ya. Poltinin; O. P. Ledenyov

    2013-01-24T23:59:59.000Z

    The process of the coal dust particles transportation and structurization in the experimental horizontal model of air filter with the cylindrical coal adsorbent granules as in the iodine air filter at the nuclear power plant is researched. In the investigated case the vector of carrying away force of air flow and the vector of gravitation force are mutually perpendicular, and the scattering of the dust particles on the granules occurs in the normal directions. It is found that the phenomenon of non controlled spontaneous sharp increase of aerodynamic resistance in the iodine air filter under the big integral volumes of filtered air and the big masses of introduced coal dust particles is not observed at the described experimental conditions in distinction from the case of the parallel orientation of this forces as in the vertical iodine air filters at the nuclear power plant. The quantitative measurements of the main parameters of the process of the dust masses transportation and structurization are made on a developed experimental model of the iodine air filter with the cylindrical coal adsorbent granules.

  17. The development and evaluation of a neutron window filter facility utilizing the TAMU NSC TRIGA reactor

    E-Print Network [OSTI]

    Harding, Patricia Colleen

    1982-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 1982 Major Subject: Nuclear Engineering THE DEVELOPMENT AND EVALUATION OF A NEUTRON WINDOW FILTER FACILITY UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis by PATRICIA COLLEEN HARDING Approved as to style...]. There are several methods that might be adopted to produce quasi-monoenergetic neutrons: Bragg scattering, neutr on generating nuclear reactions, radioactive sour- ces, resonance scattering and resonance or neutron fil? ters Bragg scattering from single...

  18. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12T23:59:59.000Z

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  19. Improving Filtering for Computer Graphics

    E-Print Network [OSTI]

    Manson, Josiah

    2014-04-30T23:59:59.000Z

    When drawing images onto a computer screen, the information in the scene is typically more detailed than can be displayed. Most objects, however, will not be close to the camera, so details have to be filtered out, or anti-aliased, when the objects...

  20. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    RICHARD A. WAGNER

    1998-09-04T23:59:59.000Z

    This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 °C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.