National Library of Energy BETA

Sample records for nuclear energy research

  1. Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and

    E-Print Network [OSTI]

    Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

  2. Nuclear Energy Research and Development Roadmap | Department...

    Broader source: Energy.gov (indexed) [DOE]

    NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and Technology Committee Appendix B to the Minutes for the Nuclear Energy Research Advisory...

  3. Nuclear methods in environmental and energy research

    SciTech Connect (OSTI)

    Vogt, J R

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  4. International Nuclear Energy Research Initiative, Fiscal Year...

    Broader source: Energy.gov (indexed) [DOE]

    Area: Reactor Concepts RD&D Project Start Date: January 2011 Project End Date: December 2013 38 | International Nuclear Energy Research Initiative (I-NERI) Fiscal Year 2011...

  5. Department of Energy Announces 24 Nuclear Energy Research Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm...

  6. Department of Energy Announces 24 Nuclear Energy Research Awards...

    Office of Environmental Management (EM)

    24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

  7. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    & Screening of Fuel Cycle Options Advanced Fuel Development · Thorium Fuel Cycles · Silicon Carbide - 1996* Advanced Nuclear Fuels* Materials in Radiation Environments* * Continuing program within NS Nuclear Safety Advanced Nuclear Systems · Radiation Resistant Materials · Accident Tolerant Fuels

  8. Nuclear Fusion Energy Research Ghassan Antar

    E-Print Network [OSTI]

    Shihadeh, Alan

    Nuclear Fusion Energy Research at AUB Ghassan Antar Physics Department American University of Beirut #12;Laboratory for Plasma and Fluid Dynamics [LPFD) Dr. G. Antar 2 Students: - R. Hajjar [Physics Advantages of Fusion on other ways to Produce Energy · Abundant Fuel Supply on Earth and Beyond · No Risk

  9. Office of Nuclear Energy Research and Development Benefits Analysis Activities

    SciTech Connect (OSTI)

    None

    2009-01-18

    A presentation for the FY 2007 GPRA methodology review from the Office of Nuclear Energy Research and Development.

  10. Medium Energy Nuclear Physics Research at the University of Richmond

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Medium Energy Nuclear Physics Research at the University of Richmond G. P. Gilfoyle Physics Physics: Medium Energy Nuclear Physics Program Program Manager: Dr. Gulshan Rai 1 #12;2 #12;Contents 1 Justification 39 3 #12;4 #12;Medium Energy Nuclear Physics Research at the University of Richmond G. P. Gilfoyle

  11. Medium Energy Nuclear Physics Research at the University of Richmond

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    1 Medium Energy Nuclear Physics Research at the University of Richmond G. P. Gilfoyle Physics Physics: Medium Energy Nuclear Physics Program Program Manager: Dr. Brad Tippens #12;2 #12;3 Contents 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 Facilities and Support for Nuclear Physics . . . . . . . . . . . . . . . . . . . . 22 2

  12. University Research Reactor Task Force to the Nuclear Energy Research

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear Energy Research andofRod BeeverDataAdvisory

  13. Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements

    Broader source: Energy.gov [DOE]

    As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research...

  14. Medium Energy Nuclear Physics Research at the University of Richmond

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    1 Medium Energy Nuclear Physics Research at the University of Richmond G. P. Gilfoyle Physics Physics: Medium Energy Nuclear Physics Program Program Manager: Dr. Ted Barnes #12;2 #12;3 Contents 1 Project Introduction 5 2 Project Description 7 2.1 Status of Current Projects

  15. A Strategy for Nuclear Energy Research and Development

    SciTech Connect (OSTI)

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

  16. International Nuclear Energy Research Initiative: 2013 Annual...

    Broader source: Energy.gov (indexed) [DOE]

    electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for...

  17. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...

    Office of Science (SC) Website

    Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear...

  18. Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  19. ROBERT J. BUDNITZ Occupation: Physicist in Energy/Environmental Research and Nuclear Safety

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan

    ROBERT J. BUDNITZ Occupation: Physicist in Energy/Environmental Research and Nuclear Safety Birth December 2004 to September 2007 (in Livermore): Leader, Nuclear & Risk Science Group, Energy & Environment Directorate Associate Program Leader for Nuclear Systems Safety and Security, E&E Directorate October 2002

  20. Nuclear Energy Research and Development Roadmap | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e Office

  1. Institute of Nuclear Energy Research Taiwan INER | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMaking EnergyIndosolarInnovasol

  2. 2006 Nuclear Energy Research Initiative Awards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t S eOFCommercialsummary of theThis is

  3. JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

    E-Print Network [OSTI]

    JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

  4. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Vuik, Kees

    for energy, environment, and health. NRG offers a wide range of services to energy utilities, governmentNuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors

  5. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    SciTech Connect (OSTI)

    Brunel, Guy; Denis, Dominique; Boulet, Alain

    2013-07-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m{sup 2} allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the visitors, their characteristics and their perception after their center visits. (authors)

  6. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  7. United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation “Rosatom” Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development

  8. Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 1Q00

    SciTech Connect (OSTI)

    2002-07-16

    OAK B188 Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 1Q00.

  9. Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative

    SciTech Connect (OSTI)

    Hively, LM

    2003-02-13

    NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (<10{sup -3}/year) in the operational environment. Moreover, the ONLY way to guarantee a controlled failure sequence is to seed progressively larger faults in the equipment or to overload the equipment for accelerated tests. Both of these approaches are infeasible for operational utility machinery, but are straight-forward in a test environment. Our subcontractor has provided such test sequences. Thus, we have revised Tasks 2.1-2.4 to analyze archival test data from such tests. The second phase of our work involves validation of the nonlinear prognostication over the second and third years of the proposed work. Recognizing the inherent limitations outlined in the previous paragraph, Dr. Feltus urged Oak Ridge National Laboratory (ORNL) to contact other researchers for additional data from other test equipment. Consequently, we have revised the work plan for Tasks 2.1-2.2, with corresponding changes to the work plan as shown in the Status Summary of NERI Tasks. The revised tasks are as follows: Task 2.1--ORNL will obtain test data from a subcontractor and other researchers for various test equipment. This task includes development of a test plan or a description of the historical testing, as appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, data acquisition equipment, and resulting data from the test sequence. ORNL will analyze this data for quality, and subsequently via the nonlinear paradigm for prognostication. Task 2.2--ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison metrics for reliability of the predictions will include the true positives, true negatives, and the forewarning times. Task 2.3--ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 2.1-2.2, to maximize the rate of true positive and true negative indications of failure. Maximal forewarning time is also highly desirable. Task 2.4--ORNL will develop advanced algorithms for the phase-space distribution function (PS-DF) pattern change recognition, based on the results of Task 2.3. This implementation will provide a capability for automated prognostication, as part of the maintenance decision-making. Appendix A provides a detailed description of the analysis methods, which include conventional statistics, traditional nonlinear measures, and ORNL's patented nonlinear PSDM. The body of this report focuses on results of this analysis.

  10. Research on Materials for Nuclear Energy Technology at the Royal

    E-Print Network [OSTI]

    #12;Research towards heavy metal coolant - corrosion in lead Russian ferritic-martensitic steel EP823

  11. Supplemental Grant Request to Medium Energy Nuclear Physics Research at the

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    1 Supplemental Grant Request to Medium Energy Nuclear Physics Research at the University Manager: Dr. Ted Barnes Abstract This is a supplemental grant request to support a joint University) #12;2 1 Plan of Work This is a supplemental grant request to support a joint University of Richmond

  12. Low Energy Nuclear Reaction Research at the Naval Research Laboratory D.A. Kidwell1

    E-Print Network [OSTI]

    Noble, James S.

    have explored the field of Low Energy Nuclear Reactions (LENR) for about eight years focusing experiments and therefore harder to characterize as unconventional chemistry. In both approaches to LENR only, but that acceptance can change on a moments notice when new data arises. Although simple in concept, LENR experiments

  13. International Nuclear Energy Research Initiative: 2010 Annual Report |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment Interested PartiesDepartment of Energy 0

  14. International Nuclear Energy Research Initiative: 2011 Annual Report |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment Interested PartiesDepartment of Energy

  15. March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE’s nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

  16. International Nuclear Energy Research Initiative: 2007 Annual Report |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment Interested Parties -MEASUREMENTforDepartment of

  17. International Nuclear Energy Research Initiative: 2008 Annual Report |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment Interested Parties -MEASUREMENTforDepartment

  18. International Nuclear Energy Research Initiative: 2009 Annual Report |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment Interested Parties

  19. International Nuclear Energy Research Initiative: Annual Report 2005 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment Interested PartiesDepartment of

  20. International Nuclear Energy Research Initiative: Annual Report 2006 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment Interested PartiesDepartment ofDepartment of

  1. FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress MoreHyd rog en Tan41FY 2013 Q1

  2. International Nuclear Energy Research Initiative (I-NERI) Annual Reports |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergy Copyrights ASiteas Prepared forDepartment of

  3. International Nuclear Energy Research Initiative: 2012 Annual Report |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergy Copyrights ASiteas Prepared forDepartment ofDepartment

  4. International Nuclear Energy Research Initiative: 2013 Annual Report |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergy Copyrights ASiteas Prepared forDepartment

  5. 2009 Annual Reports Issued for Nuclear Energy Research Initiative and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t SClean-up of

  6. Energy Frontier Research Center Center for Materials Science of Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOE Office of Science (SC)Tracking

  7. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  8. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks...

  9. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs ? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R&D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

  10. Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    Please include these additional remarks in your transmittal of the subject report to DOE’s Office of Nuclear Energy, Science and Technology.

  11. NUCLEAR ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy009At26-2009NSRC_MOU.pdffactsNUCLEAR ENERGY

  12. International Nuclear Energy Policy and Cooperation | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Nuclear Energy Policy and Cooperation Recent Events United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering...

  13. October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

  14. US-MEXICAN COLLABORATION IN COMPUTATIONAL RESEARCH FOR THE PEACEFUL USE OF NUCLEAR ENERGY

    SciTech Connect (OSTI)

    R. PERRY; W. CHARLTON; ET AL

    1999-07-01

    Under the auspices of the ''Memorandum of Understanding for the Exchange of Technical Information and for Cooperation in the Field of Peaceful Uses of Nuclear Energy'' between the National Institute of Nuclear Research of Mexico (ININ) and the Los Alamos National Laboratory (LANL), scientists and engineers from ININ met and collaborated with scientists at LANL. The collaboration was sponsored by the US Department of Energy as part of its ''Sister Laboratories'' program. In this weeklong meeting, these scientists and engineers carried out mutual consultation and cooperative efforts in the field of computational research in nuclear power. Three main areas for technical collaboration were discussed: (a) establishment of electronic access to LANL open computational facilities and reactor physics codes from ININ, (b) calculation of radiation damage to BWR reactor vessels, and (c) calculation of BWR burnup for MOX fuel. These three tasks were successfully completed during the weeklong meeting between the laboratory scientists. The discussion, held at LANL in March 1999, involved ten LANL specialists and three ININ specialists. In addition, several computer technicians provided the necessary support for the utilization of the SUN computers, which were setup for the seminars. Discussions between team members occupied about half of the visit. Mixed Oxide (MOX) assembly models were developed and calculations made using HELIOS and MCNP the remainder of the time. As a result of the collaboration, the scientists from ININ returned to the institute and immediately began using the computational facilities at LANL for further MOX assembly calculations. As a result of the meeting, ININ is providing expert advice for the thermal hydraulic calculations for a similar cooperative program between Peruvian and LANL. The three areas of cooperation will be discussed in detail in this paper. Sample results of the MOX calculations at ININ will also be presented.

  15. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Lindken, Ralph

    Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors: Better prediction of the flow and heat transfer in liquid metal cooled nuclear reactors will contribute

  16. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    SciTech Connect (OSTI)

    M.F. Simpson; K.-R. Kim

    2010-12-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  17. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01

    nuclear energies in the absence of a proximity contribution.contributions represent the major part of the potential energy of a nuclear

  18. Research Highlights | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Nuclear Science | Research Highlights SHARE Research Highlights 1-3 of 3 Results Neutron scattering continues as a vital tool in superconductivity studies January 01, 2011...

  19. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  20. COMMENTS ON "A NEW LOOK AT LOW-ENERGY NUCLEAR REACTION RESEARCH"

    SciTech Connect (OSTI)

    Shanahan, K.

    2009-12-30

    Cold fusion researchers have accumulated a large body of anomalous results over the last 20 years that they claim proves a new, mysterious nuclear reaction is active in systems they study. Krivit and Marwan give a brief and wholly positive view of this body of research. Unfortunately, cold fusion researchers routinely ignore conventional explanations of their observations, and claim much greater than real accuracy and precision for their techniques. This paper attempts to equally briefly address those aspects of the field with the intent of providing a balanced view of the field, and to establish some criteria for subsequent publications in this arena.

  1. Experiments + Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations Better Nuclear Power Research Experiments Simulations Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation...

  2. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01

    J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusof macroscopic aspects of nuclear fission and of collisions

  3. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

  4. Department of Energy Announces 24 Nuclear Energy Research Awards to U.S.

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | versionInnovativeStorage of CO2 |Universities |

  5. Nuclear Energy

    ScienceCinema (OSTI)

    Godfrey, Anderw

    2014-05-23

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  6. Nuclear Energy

    SciTech Connect (OSTI)

    Godfrey, Anderw

    2014-04-10

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  7. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  8. Innovating for Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovating for Nuclear Energy Innovating for Nuclear Energy March 9, 2015 - 11:02am Addthis Innovating for Nuclear Energy Nuclear energy is an important part of our nation's energy...

  9. Sandia Energy - Sandia Nuclear Power Safety Expert Elected to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power Safety Expert Elected to National Academy of Engineering Home Infrastructure Security Energy Nuclear Energy Capabilities News News & Events Research & Capabilities...

  10. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology...

  11. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to...

  12. BASIC RESEARCH NEEDS IN ENERGY CONSERVATION

    E-Print Network [OSTI]

    Hollander, Jack M.

    2011-01-01

    J. M. "United States Energy Alternatives to 2010 and Beyond:on Nuclear and Alternative Energy Systems (CONAES). Chapterwith equivalent energy supply alternatives. Social research

  13. Generation IV Nuclear Energy Systems ...

    E-Print Network [OSTI]

    Kemner, Ken

    Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

  14. Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

    Broader source: Energy.gov [DOE]

    Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

  15. Office Of Nuclear Energy

    Broader source: Energy.gov (indexed) [DOE]

    Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors Troy Unruh Idaho National...

  16. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    last 50 years, nuclear energy subsidies have totaled nearlyof subsidies. Never- theless, claims that nuclear power is a

  17. Background Long history of research and education in "nuclear

    E-Print Network [OSTI]

    Lemurell, Stefan

    #12;Background · Long history of research and education in "nuclear engineering" at Chalmers. · "Nuclear engineering" = multi-disciplinary research area. #12;Background Establishment of the Sustainable Nuclear Energy Centre (SNEC) on January 31, 2012. Prof. Christophe Demaziere SNEC director Prof. Christian

  18. NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398

    E-Print Network [OSTI]

    Pázsit, Imre

    2000-01-01

    annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

  19. Energy Department Invests $67 Million to Advanced Nuclear Technology...

    Broader source: Energy.gov (indexed) [DOE]

    to high priority nuclear energy research challenges, including instrumentation and vacuum drying systems associated with the storage of used nuclear fuel, an integrated...

  20. Nuclear Energy University Program: A Presentation to Vice Presidents...

    Energy Savers [EERE]

    Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

  1. Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy

    E-Print Network [OSTI]

    Kaji, Hajime

    Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy Master in Nuclear Energy Summary of Research Instruction Research Instruction Application Code Name Major in Nuclear Energy Master's Program Doctoral Program Summary of Research Instruction

  2. Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy

    E-Print Network [OSTI]

    Kaji, Hajime

    Cooperative Major in Nuclear Energy Summary of Research Instruction Research Instruction Application used for accelerators, high energy astrophysics and nuclear medicine. Performance of the detectors role in transmitting energy and information in nuclear power plants. In addition, research

  3. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative

    Broader source: Energy.gov [DOE]

    Sharing an interest in fostering advanced nuclear engineering and pursuing scientific research and development in the nuclear field; 

  4. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative on Advanced Nuclear Technologies

    Broader source: Energy.gov [DOE]

    Noting further that representatives of DOE's Office of Nuclear Energy, Science, and Technology and ANRE have identified common interests in innovative light water reactor technologies, including...

  5. Energy Frontier Research Center Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd Allen

    2014-04-01

    Scientific Successes • The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based anharmonic smoothing technique has enabled quantitative benchmarking of ab initio PDOS simulations. • Direct comparison between anharmonicity-smoothed ab initio PDOS simulations for UO2 and experimental measurements has demonstrated the need for improved understanding of UO2 at the level of phonon dispersion, and, further, that advanced lattice dynamics simulations including finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. • PDOS measurements performed on polycrystalline samples have identified the phonon branches and energy ranges most highly impacted by fission-product and hyper-stoichiometry lattice defects in UO2. These measurements have revealed the broad-spectrum impact of oxygen hyper-stoichiometry on thermal transport. The reduction in thermal conductivity caused by hyper-stoichiometry is many times stronger than that caused by substitutional fission-product impurities. • Laser-based thermo-reflectance measurements on UO2 samples irradiated with light (i.e. He) ions to introduce point defects have been coupled with MD simulations and lattice parameter measurements to determine the role of uranium and oxygen point defects in reducing thermal conductivity. • A rigorous perturbation theory treatment of phonon lifetimes in UO2 based on a 3D discretization of the Brillouin zone coupled with experimentally measured phonon dispersion has been implemented that produces improved predictions of the temperature dependent thermal conductivity. • Atom probe investigations of the influence of grain boundary structure on the segregation behavior of Kr in UO2 have shown that smaller amounts of Kr are present at low angle grain boundaries than at large angle grain boundaries due to the more dense dislocation arrays associated with large angle boundaries; this observation has potentially important ramifications for thermal transport in the high burn-up rim region of light water reactor fuel. • A variable charge interatomic potential has been developed that not only provides an accurate representation of the fluorite UO2 phase, it is further capable of describing continuous stoichiometry changes from UO2 to hyper-stoichiometric UO2+x, to U4O9 and U3O7, and possibly to orthorhombic U3O8. This is the first potential that features many-body effects in all possible interactions (U-U, U-O and O-O) combined with the variable charge. • A theoretical proof has been formulated showing that it is necessary to use the so-called model C phase field approach, consisting of Cahn-Hilliard and Allen-Cahn equations, to describe void evolution in irradiated materials. This work resolved a longstanding literature controversy regarding how to model voids at the mesoscale. • A novel cluster dynamics model has been developed for the nucleation of voids and loops in UO2 under irradiation. This model is important in understanding the defect state of UO2 after irradiation and, more importantly, reveals off-stoichiometric states of irradiated UO2 that are critical for understanding the impact of irradiation on thermal transport. Personnel Successes

  6. 2015 Call for Proposals for the Department of Energy (DOE) Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program 2015 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and...

  7. Research Areas | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation...

  8. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  9. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  10. New Nuclear Energy Awards Give Students Hands-On Research Experience |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable for Public Commentof Energy

  11. Report of the Infrastructure Task Force of the Nuclear Energy Research

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7 Multiple<EnergyU.S. DepartmentAdvisory

  12. Sandia Energy - Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Fuel Cycle Options Catalog Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops Nuclear Fuel Cycle Options Catalog Nuclear Fuel Cycle Options CatalogAshley...

  13. Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee

    SciTech Connect (OSTI)

    Richter, Burton; Chu, Margaret; Hoffman, Darleane; Juzaitis, Ray; Mtingwa, Sekazi; Omberg, Ronald P.; Rempe, Joy L.; Warin, Dominique

    2012-06-12

    The Fuel Cycle (FC) Subcommittee of NEAC met February 7-8, 2012 in Washington (Drs. Hoffmann and Juzaitis were unable to attend). While the meeting was originally scheduled to occur after the submission of the President’s FY 2013 budget, the submission was delayed a week; thus, we could have no discussion on balance in the NE program. The Agenda is attached as Appendix A. The main focus of the meeting was on accident tolerant fuels, an important post Fukushima issue, and on issues related to the report of the Blue Ribbon Commission on America’s Nuclear Future (BRC) as related to the responsibility for used fuel disposal which was assigned to the FC program with the end of the Office of Civilian Radioactive Waste Management. In addition we heard an update on the systems study program which is aimed at helping chose the best options for advanced reactors, and possible new study on separation and waste form relevance to used fuel disposal (these two items are only discussed in this section of the report).

  14. Nuclear Instruments and Methods in Physics Research A 531 (2004) 435444 Transition radiation detectors for energy measurements

    E-Print Network [OSTI]

    Hörandel, Jörg R.

    2004-01-01

    of several radiators and detectors. Typically, the detectors are gaseous ARTICLE IN PRESS *Corresponding. The threshold value of g may be varied by appro- priately choosing the parameters of radiators and detectorsNuclear Instruments and Methods in Physics Research A 531 (2004) 435­444 Transition radiation

  15. United States-Republic of Korea (ROK) International Nuclear Energy Research

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed|DepartmentThe United States and Japan enjoy

  16. Sandia Energy - Nuclear Energy Systems Laboratory (NESL) / Brayton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Systems Laboratory (NESL) Brayton Lab Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Nuclear Energy Systems Laboratory (NESL) Brayton Lab...

  17. Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of...

  18. Sandia Energy - Nuclear Energy Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW DatabaseNuclear FuelsNuclear Energy

  19. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

  20. Strategic Nuclear Research Collaboration - FY99 Annual Report

    SciTech Connect (OSTI)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  1. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW Database

  2. Energy Efficiency and Renewable Energy Postdoctoral Research...

    Office of Environmental Management (EM)

    Postdoctoral Research Awards Energy Efficiency and Renewable Energy Postdoctoral Research Awards Contacts Energy Efficiency and Renewable Energy Postdoctoral Research Awards...

  3. A Career in Nuclear Energy

    ScienceCinema (OSTI)

    Lambregts, Marsha

    2013-05-28

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  4. Summaries of FY 1992 research in nuclear physics

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  5. Sandia Energy - Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Options Catalog Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Nuclear Fuel Cycle Options Catalog Nuclear Fuel Cycle Options CatalogAshley...

  6. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    effectiveness of the nuclear weapons stockpile through well-managed scientific research, technology development, and advantageous international collaborations. The Office of...

  7. Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of People's Republic of Bangladesh concerning Education, Scientific and Technical Co-operation in High-Energy Physics

    E-Print Network [OSTI]

    2014-01-01

    Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of People's Republic of Bangladesh concerning Education, Scientific and Technical Co-operation in High-Energy Physics

  8. Nuclear Engineering 2013-2014 Research Projects

    E-Print Network [OSTI]

    Bahler, Dennis R.

    Nuclear Engineering 2013-2014 Research Projects Faculty Hany S. Abdel-Khalik, Associate Professor (919/ 749-9717); PhD, Nuclear Engineering, NC State University (2004); computational methods@ncsu.edu] Yousry Azmy, Professor and Head (919/ 515-3385); PhD, Nuclear Engineering, University of Illinois, Urbana

  9. Sandia Energy - Gulf Nuclear Energy Infrastructure Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gulf Nuclear Energy Infrastructure Institute Class of 2012 Kicks Off with 20 Students from the Gulf Cooperation Council Home Energy Assurance Infrastructure Security Infrastructure...

  10. Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983

  11. The Global Nuclear Energy Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

  12. Sandia Energy - Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Center Home Energy Research EFRCs Solid-State Lighting Science EFRC Energy Frontier Research Center Energy Frontier Research CenterTara...

  13. Department of Energy Releases Global Nuclear Energy Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of our nation's need to incorporate safe, emissions-free nuclear power into our nation's energy mix. While DOE labs and research facilities host some of the best scientists, the...

  14. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    serious risks of their own; third, nuclear power will notrisks associated with the opera- tion of nuclear powernuclear power can be considered as a rational solution to our energy needs. There are risks

  15. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    nuclear plants will divert private and public investment from the cheaper and readily available renewable and energy efficiencyenergy efficiency and conservation can be more cost effective and can be deployed much sooner than new nuclear

  16. Investing in the next generation: The Office of Nuclear Energy...

    Office of Environmental Management (EM)

    educational and research opportunities to prepare NS&E students for nuclear energy professions, in support of NE's mission. NE is seeking applicants for undergraduate...

  17. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of...

  18. Low Energy Nuclear Reactions?

    E-Print Network [OSTI]

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  19. NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS

    E-Print Network [OSTI]

    Washington at Seattle, University of

    NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS Hiroyasu EJIRI Nuclear Physics Laboratory Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567 Japan. E-mail address: ejiri@rcnp.osaka-u.ac.jp (H. Ejiri). Physics Reports 338 (2000) 265}351 Nuclear spin isospin responses for low

  20. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    SciTech Connect (OSTI)

    Bougaenko, S.E.; Kraev, A.E. [International Nuclear Safety Center of the Russian MINATOM, Moscow (Russian Federation); Hill, D.L.; Braun, J.C.; Klickman, A.E. [Argonne National Lab., IL (United States). International Nuclear Safety Center

    1998-08-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project.

  1. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    E-Print Network [OSTI]

    Gerber, Richard A.

    2012-01-01

    Requirements for Nuclear Physics [10] Hammer, N. J. , Janka,and Storage Requirements for Nuclear Physics ResearchIntegration of ab initio nuclear physics calculations with

  2. Molten salts and nuclear energy production Christian Le Bruna*

    E-Print Network [OSTI]

    Boyer, Edmond

    with solid fuels, liquid fuel in molten salt reactor, solvents for spent nuclear solid fuel in the caseMolten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches

  3. Argonne's Major Nuclear Energy Milestones | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Intelligence Analysis Nuclear Engineering Nuclear Milestones Argonne's Major Nuclear Energy Milestones Argonne's reactor tree Argonne's reactor tree December 2, 1942:...

  4. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

  5. Nuclear Energy Page 570Page 570

    E-Print Network [OSTI]

    Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

  6. Energy Department Announces New Awards for Advanced Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces New Awards for Advanced Nuclear Energy Development Energy Department Announces New Awards for Advanced Nuclear Energy Development April 16, 2015 -...

  7. Symmetry Energy in Nuclear Surface

    E-Print Network [OSTI]

    Pawel Danielewicz; Jenny Lee

    2008-12-25

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

  8. Nuclear Safety Research and Development Annual Report, December...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Research and Development Annual Report, December 2014 Nuclear Safety Research and Development Annual Report, December 2014 December 8, 2014 This document is the...

  9. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The...

  10. Nuclear Energy Density Optimization

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

    2010-05-27

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  11. Proposal for a High Energy Nuclear Database

    E-Print Network [OSTI]

    Brown, David A.; Vogt, Ramona

    2005-01-01

    Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?compilations of high-energy nuclear data for applications

  12. Proposal for a High Energy Nuclear Database

    E-Print Network [OSTI]

    Brown, David A.; Vogt, Ramona

    2005-01-01

    Proposal for a High Energy Nuclear Database XML documentsProposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?

  13. Roundtables Is nuclear energy different than other

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    Roundtables Is nuclear energy different than other energy sources? #12;Myths about nuclear claims -- the Nuclear Energy Institute (NEI), Entergy, NEI again, and the World Nuclear Association (WNA radiation releases. · Costs. Third, without citation, Pietrangelo claims, "Once a nuclear energy facility

  14. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  15. International Framework for Nuclear Energy Cooperation (IFNEC...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania...

  16. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    SciTech Connect (OSTI)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-05-05

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these joint projects are given.

  17. Nuclear Energy University Programs

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e OfficeResearch and Development

  18. Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01

    Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -Northeast Asian nuclear energy cooperation advanced byAsia). 2 Cooperation on nuclear energy would have a direct

  19. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    SciTech Connect (OSTI)

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  20. Energy Secretary Moniz Announces Formation of Nuclear Energy...

    Office of Environmental Management (EM)

    Formation of Nuclear Energy Tribal Working Group Energy Secretary Moniz Announces Formation of Nuclear Energy Tribal Working Group December 12, 2014 - 2:00pm Addthis News Media...

  1. Energy Department Announces New Awards for Advanced Nuclear Energy...

    Office of Environmental Management (EM)

    Awards for Advanced Nuclear Energy Development Energy Department Announces New Awards for Advanced Nuclear Energy Development April 16, 2015 - 12:46pm Addthis NEWS MEDIA CONTACT...

  2. Nuclear Astrophysics - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications64NewsroomNontoxicAdministration /Nuclear

  3. NUCLEAR FISSION AND FUSION 6.A Nuclear Binding Energies

    E-Print Network [OSTI]

    Boal, David

    CHAPTER 6 NUCLEAR FISSION AND FUSION 6.A Nuclear Binding Energies A nucleus is characterized emphasis on the nuclear charge, the mass number of a nucleus plays a large role in its binding energy, and is denoted by 7Li. Some further items from the nuclear lexicon: nuclei with the same Z and differing N

  4. Geoscience research for energy security

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    This report focuses on the nation's geoscience needs and recommends DOE activities to mitigate major problems that effect energy security. The report recommends new or redirected DOE geoscience research initiatives for oil and gas, coal, nuclear resources, structures and processes in the earth's crust, geothermal resources, oil shale, and waste disposal. In light of the current and near-term national energy requirements, federal budget constraints, and the diminished R and D efforts from the domestic energy industry, the Board recommends that DOE: assign highest geoscience research emphasis to shorter-term, energy priorities of the nation; particularly advanced oil and gas exploration and production technologies; establish in DOE an Office of Geoscience Research to develop and administer a strategic plan for geoscience research activities; establish oil and gas research centers within each of the six major oil and gas provinces of the United States to conduct and coordinate interdisciplinary problem-oriented research; increase oil and gas research funding by an initial annual increment of $50 million, primarily to support the regional research centers.

  5. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    SciTech Connect (OSTI)

    NONE

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  6. National Policy of Future Nuclear Fusion Research and Development (Tentative Translation)

    E-Print Network [OSTI]

    National Policy of Future Nuclear Fusion Research and Development (Tentative Translation) 26 October 2005 Atomic Energy Commission Advisory Committee on Nuclear Fusion #12;2 Contents Preface Chapter and Environmental Problems 1.2 Significance and Necessity of Fusion R&D in Nuclear Energy Policy Chapter 2 Status

  7. Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

    E-Print Network [OSTI]

    2015-01-01

    Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

  8. Nuclear Instruments and Methods in Physics Research A 562 (2006) 380388 Modeling solid-state boron carbide low energy neutron detectors

    E-Print Network [OSTI]

    2006-01-01

    Nuclear Instruments and Methods in Physics Research A 562 (2006) 380­388 Modeling solid-state boron Available online 10 March 2006 Abstract Two independent techniques for modeling boron-based solid

  9. Office Of Nuclear Energy

    Energy Savers [EERE]

    irradiation effect * Demonstrate the TEG-powered WSN prototype 3 Background and motivation * TEG is very compact and reliable * Heat sources are very abundant in nuclear power...

  10. Office Of Nuclear Energy

    Broader source: Energy.gov (indexed) [DOE]

    Attributes of Software-Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants) (Carol Smidts) (The Ohio State University) (NEET 2) October 28-29, 2015...

  11. Nuclear Instruments and Methods in Physics Research A ] (

    E-Print Network [OSTI]

    U N C O R R EC TED PR O O F Nuclear Instruments and Methods in Physics Research to a crystal mass of about 450 mg. Requirements on energy and time resolutions are not too stringent, therefore technique. From a safe extrapolation of the Milano neutrino mass experi- ment (MIBETA) results [2

  12. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Determination of # S using OPAL

    E-Print Network [OSTI]

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Determination of # S using OPAL hadronic event shapes at # s = 91 - 209 GeV and resummed NNLO calculations The OPAL Collaboration Abstract Hadronic event shape distributions from e + e - annihilation measured by the OPAL ex­ periment at centre­of­mass energies between 91

  13. EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH OPAL Physics Paper PR395

    E-Print Network [OSTI]

    EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH OPAL Physics Paper PR395 15 th January 2004 Revised 1 st at LEP2 The OPAL Collaboration Abstract Anomalous quartic couplings between the electroweak gauge bosons. This analysis uses the LEP2 OPAL data sample at centre-of-mass energies up to 209 GeV. Event selections identify

  14. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  15. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion Efficiency

  16. INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR DATA SERVICES

    E-Print Network [OSTI]

    Cullen, Red

    INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR DATA SERVICES DOCUMENTATION SERIES OF THE IAEA NUCLEAR data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; nuclear data 2014) by Dermott E. Cullen National Nuclear Data Center, BNL, alumnus Nuclear Data Section, IAEA

  17. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNEP/2001063

    E-Print Network [OSTI]

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN­EP/2001­063 31 August 2001 Bose­Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays The L3 Collaboration Abstract Bose­Einstein to Phys. Lett. B #12; Introduction Bose­Einstein correlations (BEC), between identical bosons, have been

  18. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNPHEP/2004008

    E-Print Network [OSTI]

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN­PH­EP/2004­008 24th March 2004 Study of Bose­Einstein Correlations in e + e - #W + W - Events at LEP The OPAL Collaboration Abstract Bose­Einstein correlations events. Within the statistics of the data sample no evidence for inter--WW Bose­Einstein correlations

  19. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNEP/2003005

    E-Print Network [OSTI]

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN­EP/2003­005 28th January 2003 Bose­Einstein Correlations of # 0 Pairs from Hadronic Z 0 Decays The OPAL Collaboration Abstract We observe Bose­Einstein to the JETSET and HERWIG Monte Carlo models, the Bose­Einstein correlations in our data sample largely connect

  20. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNEP/2003005

    E-Print Network [OSTI]

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN­EP/2003­005 28th January 2003 Bose­Einstein Correlations of # 0 Pairs from Hadronic Z 0 Decays The OPAL Collaboration Abstract We observe Bose­Einstein.59 ± 0.08 ± 0.05) fm. According to the JETSET and HERWIG Monte Carlo models, the Bose­Einstein

  1. Portuguese research program on nuclear fusion

    SciTech Connect (OSTI)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-12-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described.

  2. Nuclear Instruments and Methods in Physics Research A 565 (2006) 650656 Semiconductor high-energy radiation scintillation detector

    E-Print Network [OSTI]

    Luryi, Serge

    2006-01-01

    -energy radiation scintillation detector A. Kastalskya , S. Luryia,Ã, B. Spivakb a University at Stony Brook, ECE scintillation-type detector in which high-energy radiation generates electron­hole pairs in a direct semiconductor scintillator combines the best properties of currently existing radiation detectors and can

  3. PRESS RELEASES OF SENATOR PETE DOMENICI Domenici Supports 12 Percent Increase for Nuclear Energy, Disputes Fusion

    E-Print Network [OSTI]

    of Science, Office of Nuclear Energy, and Office of Energy Efficiency and Renewable Energy (EERE). OverallPRESS RELEASES OF SENATOR PETE DOMENICI Domenici Supports 12 Percent Increase for Nuclear Energy his support for a 12 percent increase in federal funding for nuclear energy research, but challenged

  4. Enhancement Mechanisms of Low Energy Nuclear Reactions

    E-Print Network [OSTI]

    Gareev, F A

    2005-01-01

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy of external fields may stimulate LENR [3]. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics,... The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical ...

  5. Sandia Energy - 2014 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2014 USGerman Workshop on Salt...

  6. Sandia Energy - 2016 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2016 USGerman Workshop on Salt...

  7. Sandia Energy - 2015 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2015 USGerman Workshop on Salt...

  8. Nuclear symmetry energy at subnormal densities from measured nuclear masses

    E-Print Network [OSTI]

    Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

    2010-11-17

    The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

  9. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind CareerEnergy NuclearNuclear Safety

  10. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Li, Cheng; Tsang, M B; Zhang, Feng-Shou

    2015-01-01

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  11. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Cheng Li; S. R. Souza; M. B. Tsang; Feng-Shou Zhang

    2015-05-18

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  12. NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944

    E-Print Network [OSTI]

    #12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20, naval reactors, and nuclear power plants. Oak Ridge experiments byArt Snell in 1944 showed that 10 tons

  13. Sandia Energy - Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |Education STEMA GreenAdvanced Nuclear

  14. High Energy Physics and Nuclear Physics Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01

    High Energy Physics and Nuclear Physics Network RequirementsCalifornia. High Energy Physics and Nuclear Physics Networkof High Energy Physics and Nuclear Physics, DOE Office of

  15. Draft Advanced Nuclear Energy Solicitation Fact Sheet | Department...

    Energy Savers [EERE]

    Draft Advanced Nuclear Energy Solicitation Fact Sheet Draft Advanced Nuclear Energy Solicitation Fact Sheet Draft Advanced Nuclear Energy Projects Solicitation Fact Sheet...

  16. Nuclear Power Trends Energy Economics and Sustainability

    E-Print Network [OSTI]

    Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear Nuclear Today · 439 nuclear power reactors (31 countries) · Over 12,000 years of operating experience · Nuclear reactors supply 16% of the world's electricity as base-load power (372,000 MWe of total capacity

  17. Roundtables Is nuclear energy different than other

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    subsidies ($165 billion) to commercial nuclear than to wind and solar combined ($5 billion), if one countsRoundtables Is nuclear energy different than other energy sources? #12;Cheaper, safer alternatives than nuclear fission Kristin Shrader-Frechette 19 August 2011 If reactors were safe, nuclear industries

  18. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure |Cafés NovemberServices »Nuclear

  19. Nuclear | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work FeaturedNuclearNP Homenuclear

  20. Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Nuclear Safety The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and guidance including policy and requirements relating to...

  1. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...

    Office of Environmental Management (EM)

    Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities...

  2. Nuclear energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishiCleanAlincaUK LtdCorp L T JV Jump

  3. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution Distributed Fiber-Optic

  4. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution Distributed

  5. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution DistributedOperator

  6. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution DistributedOperator(A

  7. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution

  8. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial ResolutionMicro-Pocket Fission

  9. Energy Technology Division research summary 2004.

    SciTech Connect (OSTI)

    Poeppel, R. B.; Shack, W. J.

    2004-05-06

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004.

  10. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishiCleanAlincaUK LtdCorp L T JV

  11. Nuclear Energy Advisory Committee

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008 MEMORANDUM FOR DISTRIBUTION Aof December 9, 2010

  12. Nuclear Energy University Programs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008 MEMORANDUM FOR DISTRIBUTION AofDepartment

  13. Research Areas | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAboutNuclearPrincipalResearch AffiliateNational Laser

  14. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and...

  15. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Environmental Management (EM)

    Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation presentation.pdf...

  16. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    first, investments in nuclear power are risky as indicatedto stay clear; second, nuclear power plants are statedrisks of their own; third, nuclear power will not reduce our

  17. Hearing on Nuclear Fusion before the Bundestag Committee for Education, Research and

    E-Print Network [OSTI]

    size. In particular, scaling of the energy confinement time 1 to a plasma having nearly power plant Assessment, Berlin, 28ÊMarch 2001 Answers by the Institutes of the HGF Research Collaboration on Nuclear

  18. Nuclear Reactions at Intermediate Energies

    E-Print Network [OSTI]

    Shyam, Radhey

    2015-01-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant $\\alpha_s$ is large enough ($\\sim$ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss applications of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  19. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and possible detonation or the illicit trafficking of nuclear materials through the long-term...

  20. Nuclear Fission Reactor Safety Research in FP7 and future perspectives

    E-Print Network [OSTI]

    Garbil, Roger

    2014-01-01

    The European Union (?U) has defined in the Europe 2020 strategy and 2050 Energy Roadmap its long-term vision for establishing a secure, sustainable and competitive energy system and setting up legally binding targets by 2020 for reducing greenhouse emissions, by increasing energy efficiency and the share of renewable energy sources while including a significant share from nuclear fission. Nuclear energy can enable the further reduction in harmful emissions and can contribute to the EU’s competitive energy system, security of supply and independence from fossil fuels. Nuclear fission is a valuable option for those 14 EU countries that promote its use as part of their national energy mix. The European Group on Ethics in Science and New Technologies (EGE) adopted its Opinion No.27 ‘An ethical framework for assessing research, production and use of energy’ and proposed an integrated ethics approach for the research, production and use of energy in the EU, seeking equilibrium among four criteria – access ...

  1. RENEWABLE ENERGY RESEARCH August 2010

    E-Print Network [OSTI]

    issues surrounding energy independence, system reliability, highly demanding security requirements will be demonstated. This demonstration will enable future applications under a Renewable-Based Energy SecureRENEWABLE ENERGY RESEARCH August 2010 CERTS Smart Grid Demonstration with Renewable Energy

  2. ReseaRch at the University of Maryland Nuclear Safety Research at the University of Maryland

    E-Print Network [OSTI]

    Hill, Wendell T.

    been a complicated rise and fall for nuclear technology. The proliferation of nuclear power plants and nuclear weapons was followed by controversial accidents and regulation. Today, nuclear power is considered that analyze the risks involved in the use of nuclear energy. Understanding and Using Radiation The ionizing

  3. Harry Potter, Oxford and Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford...

  4. Current Status of Nuclear Physics Research

    E-Print Network [OSTI]

    C. A. Bertulani; M. S. Hussein

    2015-09-01

    In this review we discuss the current status of research in nuclear physics which is being carried out in different centers in the World. For this purpose we supply a short account of the development in the area which evolved over the last 9 decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data become available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as $^4$He, $^7$Li, $^9$Be etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly statistical mechanics does not work for such finite system, neither does other theories applicable to condensed matter systems. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei deal with the wealth of experimental data available in the last 35 years. Further, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked with.

  5. Advanced Nuclear Energy Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram Manager DirectoryofDOEAccomplishmentsAdv.Advanced Nuclear Energy Projects

  6. REPORT TO THE PRESIDENT ON FEDERAL ENERGY RESEARCH AND DEVELOPMENT

    E-Print Network [OSTI]

    of such an increase would go to R&D in energy efficiency and renewable energy technologies, but nuclear fusion to communicate clearly to the public the importance of energy and energy R&D to the nation's future, and PCASTREPORT TO THE PRESIDENT ON FEDERAL ENERGY RESEARCH AND DEVELOPMENT FOR THE CHALLENGES OF THE TWENTY

  7. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for integrated system options; 5. Identify experimental needs to develop and demonstrate nuclear-renewable energy systems.

  8. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    Supporting Advanced Scientific Computing Research · Basic Energy Sciences · Biological and Environmental Research · Fusion Energy Sciences · High Energy Physics · Nuclear Physics What my students Code ­http://code.google.com/p/net-almanac/ ­Beta release this week #12;Contact Information Jon Dugan

  9. Making glue in high energy nuclear collisions

    E-Print Network [OSTI]

    Alex Krasnitz; Raju Venugopalan

    1999-05-12

    We discuss a real time, non-perturbative computation of the transverse dynamics of gluon fields at central rapidities in very high energy nuclear collisions.

  10. DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy/ne-workshops/ufd-working-group-2015/

    E-Print Network [OSTI]

    DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy 1 of 5 #12;DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy Level Waste Rigali UFD WG 2015-06-10 Wed Afternoon 1245 Salt Repository Research Actinide and Microbial

  11. Enhancement Mechanisms of Low Energy Nuclear Reactions

    E-Print Network [OSTI]

    F. A. Gareev; I. E. Zhidkova

    2005-05-08

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy of external fields may stimulate LENR [3]. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics,... The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong. Our main conclusions:

  12. Original Research Cytoskeletal prestress regulates nuclear shape and stiffness

    E-Print Network [OSTI]

    Parker, Kevin Kit

    and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exertedOriginal Research Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been

  13. Renewable Energy Carriers Research Profile

    E-Print Network [OSTI]

    Giger, Christine

    Renewable Energy Carriers Research Profile The research program of the Professorship of Renewable applied to renewable energy technologies. The fundamental research focus comprises high-temperature heat (radiative fluxes >10 000 kW/m2 ; temperatures >1000°C; heating rates >1000°C/s) + Renewable Energy

  14. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    planning and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, for Weapons Ac- tivities and Defense Nuclear Nonproliferation, and Federal employees at the NNSA service379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

  15. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, and Naval pro- gram direction for Weapons Activities and Defense Nuclear Nonproliferation, and Federal employees361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

  16. Nuclear Energy's Renaissance Andrew C. Kadak

    E-Print Network [OSTI]

    23% 22% 3% 8% 3% 41% Electricity Production Source: EIA Gas 15% Hydro 8% Coal 51% Oil 3% Other 2 (1) Beaver Valley (2) 103 Nuclear Power Plants Totaling 97,018 MWe Columbia (1) Diablo Canyon (2) San Nuclear Power Plants Totaling 97,018 MWe 103 Nuclear Power Plants Totaling 97,018 MWe National Energy

  17. Theories of Low Energy Nuclear Transmutations

    E-Print Network [OSTI]

    Y. N. Srivastava; A. Widom; J. Swain

    2012-10-27

    Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

  18. Institutional Research & Development | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  19. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  20. Institutional Research & Development Reports | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Advanced Simulation and Computing and Institutional R&D Programs Institutional Research & Development Institutional Research & Development Reports Institutional Research &...

  1. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Stewardship Science Academic Alliances Research Areas Research Areas Properties of Materials under Extreme Conditions and Hydrodynamics During open solicitations research...

  2. MIT Nuclear Space Research Andrew C. Kadak

    E-Print Network [OSTI]

    ) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration ­ Extraterrestrial Nuclear Power Stations: Transportation and Operation (MS Thesis) ­ Participated in MIT/Draper Lab are politically incorrect. Selene 97% Enriched U235 #12;18 Extraterrestrial Nuclear Power Stations: Transportation

  3. ENERGY GENERATION RESEARCH PIER Energy Generation Research

    E-Print Network [OSTI]

    dedicated energy supply resources. The pilot project will employ geothermal heat pump technology, using tertiary treated wastewater as a "heat sink" powered by existing solar photovoltaic cells (PV); develop vehicle charging stations powered by PV and wind. System Dynamics Model: In order to understand

  4. GNEP Element:Minimize Nuclear Waste | Department of Energy

    Office of Environmental Management (EM)

    Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP Element:Demonstrate More Proliferation-Resistant Recycling...

  5. International energy: Research organizations, 1986--1990

    SciTech Connect (OSTI)

    Hendricks, P.; Jordan, S. )

    1991-03-01

    The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science Technology'' on DIALOG and Energy'' on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

  6. BASIC RESEARCH NEEDS IN ENERGY CONSERVATION

    E-Print Network [OSTI]

    Hollander, Jack M.

    2011-01-01

    on Nuclear and Alternative Energy Systems (CONAES). Chapterand allocation of alternative energy supply resources andJ. M. "United States Energy Alternatives to 2010 and Beyond:

  7. Current Status of Nuclear Physics Research

    E-Print Network [OSTI]

    Bertulani, C A

    2015-01-01

    In this review we discuss the current status of research in nuclear physics which is being carried out in different centers in the World. For this purpose we supply a short account of the development in the area which evolved over the last 9 decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data become available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as $^4$He, $^7$Li, $^9$Be etc. and up the ladder to heavier bound nuclei co...

  8. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  9. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  10. Nuclear Processes at Solar Energy

    E-Print Network [OSTI]

    Carlo Broggini

    2003-08-29

    LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

  11. 1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Nuclear Data Research at RPI

    E-Print Network [OSTI]

    Danon, Yaron

    1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Nuclear Data Research for Criticality Safety and Reactor Applications Rensselaer Polytechnic Institute, April 27, 2011 #12;2Mechanical.P Barry, Dr. R.C Block, B. Epping #12;3Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner

  12. U.S. NUCLEAR REGULATORY COMMISSION GUIDEOFFICE OF NUCLEAR REGULATORY RESEARCH

    E-Print Network [OSTI]

    Johnson, Eric E.

    U.S. NUCLEAR REGULATORY COMMISSION REGULATORY Revision 3 June 1999 GUIDEOFFICE OF NUCLEAR protection problems present in the work place." The Nuclear Regulatory Commission's (NRC's) regulations REGULATORY RESEARCH REGULATORY GUIDE 8.13 (Draft was issued as DG-801 4) INSTRUCTION CONCERNING PRENATAL

  13. Nuclear Physics: User/Researcher Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CEBAF @ 12GeV CEBAF Status Screen Conferences, Workshops, and Summer Schools Nuclear Physics CUGA Archive Directory of Members Member Institutions Experiment Information...

  14. Department of Energy Releases Global Nuclear Energy Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan outlines a path forward to enable worldwide increase in the use of safe, emissions-free nuclear energy without contributing to the spread of nuclear weapons capabilities in...

  15. NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01

    Flow in Central High Energy Nuclear Collisions H. Stockera,under Contract High energy nuclear collisions offer a uniquesidewards flow·in high-energy nuclear collisions. The

  16. India's baseline plan for nuclear energy self-sufficiency.

    SciTech Connect (OSTI)

    Bucher, R .G.; Nuclear Engineering Division

    2009-01-01

    India's nuclear energy strategy has traditionally strived for energy self-sufficiency, driven largely by necessity following trade restrictions imposed by the Nuclear Suppliers Group (NSG) following India's 'peaceful nuclear explosion' of 1974. On September 6, 2008, the NSG agreed to create an exception opening nuclear trade with India, which may create opportunities for India to modify its baseline strategy. The purpose of this document is to describe India's 'baseline plan,' which was developed under constrained trade conditions, as a basis for understanding changes in India's path as a result of the opening of nuclear commerce. Note that this treatise is based upon publicly available information. No attempt is made to judge whether India can meet specified goals either in scope or schedule. In fact, the reader is warned a priori that India's delivery of stated goals has often fallen short or taken a significantly longer period to accomplish. It has been evident since the early days of nuclear power that India's natural resources would determine the direction of its civil nuclear power program. It's modest uranium but vast thorium reserves dictated that the country's primary objective would be thorium utilization. Estimates of India's natural deposits vary appreciably, but its uranium reserves are known to be extremely limited, totaling approximately 80,000 tons, on the order of 1% of the world's deposits; and nominally one-third of this ore is of very low uranium concentration. However, India's roughly 300,000 tons of thorium reserves account for approximately 30% of the world's total. Confronted with this reality, the future of India's nuclear power industry is strongly dependent on the development of a thorium-based nuclear fuel cycle as the only way to insure a stable, sustainable, and autonomous program. The path to India's nuclear energy self-sufficiency was first outlined in a seminal paper by Drs. H. J. Bhabha and N. B. Prasad presented at the Second United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. The paper described a three stage plan for a sustainable nuclear energy program consistent with India's limited uranium but abundant thorium natural resources. In the first stage, natural uranium would be used to fuel graphite or heavy water moderated reactors. Plutonium extracted from the spent fuel of these thermal reactors would drive fast reactors in the second stage that would contain thorium blankets for breeding uranium-233 (U-233). In the final stage, this U-233 would fuel thorium burning reactors that would breed and fission U-233 in situ. This three stage blueprint still reigns as the core of India's civil nuclear power program. India's progress in the development of nuclear power, however, has been impacted by its isolation from the international nuclear community for its development of nuclear weapons and consequent refusal to sign the Nuclear Nonproliferation Treaty (NPT). Initially, India was engaged in numerous cooperative research programs with foreign countries; for example, under the 'Atoms for Peace' program, India acquired the Cirus reactor, a 40 MWt research reactor from Canada moderated with heavy water from the United States. India was also actively engaged in negotiations for the NPT. But, on May 18, 1974, India conducted a 'peaceful nuclear explosion' at Pokharan using plutonium produced by the Cirus reactor, abruptly ending the era of international collaboration. India then refused to sign the NPT, which it viewed as discriminatory since it would be required to join as a non-nuclear weapons state. As a result of India's actions, the Nuclear Suppliers Group (NSG) was created in 1975 to establish guidelines 'to apply to nuclear transfers for peaceful purposes to help ensure that such transfers would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities. These nuclear export controls have forced India to be largely self-sufficient in all nuclear-related technologies.

  17. Secretary Chu Announces Nuclear Energy University Program Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 12:00am Addthis WASHINGTON, DC -...

  18. Role of inorganic chemistry on nuclear energy examined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

  19. Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors GNEP will provide...

  20. Global Nuclear Energy Partnership Inaugural Steering Group Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress...

  1. International Framework for Nuclear Energy Cooperation to Hold...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

  2. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Nuclear Power and New Energy Industrial Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment Fund...

  3. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  4. Energy/National Nuclear Security Administration (NNSA) Career...

    Office of Environmental Management (EM)

    Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

  5. Global Nuclear Energy Partnership Steering Group Members Approve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve...

  6. Energy Frontier Research Centers | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Center for Defect Physics in Structural...

  7. TRANSPORTATION ENERGY RESEARCH PIER Transportation Research

    E-Print Network [OSTI]

    . The project also tested a Caterpillar C15 engine certified to 2007 U.S. Environmental Protection Agency.energy.ca.gov/research/ transportation/ January 2011 Heavy-Duty Vehicle Emissions and Fuel Consumption Improvement Illustration of a heavy-duty tractor-trailer modified to meet the SmartWayTM Equipment Standards for lower fuel

  8. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    5.3.2 Nuclear Energy System Model . . . . . . . . . . .scenarios of global nuclear energy demand . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear Fuel

  9. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

  10. Bartlesville Energy Research Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Definitions, 1968-1975 ERDA, DOE and Future-Oriented Energy Research, 1976-1983 Appendices and Notes More Documents & Publications Fact 841: October 6, 2014...

  11. Jointly Sponsored Research Program Energy Related Research

    SciTech Connect (OSTI)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. This report summarizes the accomplishments of the JSR Program.

  12. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Science for our Nation's Energy Future US Department of Energy Office of Science www.energyfrontier.us 43 ABOVE: CFSES addresses safe, secure and economical underground...

  13. Catalysis Research for Energy Independence

    E-Print Network [OSTI]

    -conversions to significantly reduce the carbon footprint of the global energy system. We provide a fundamental understandingCatalysis Research for Energy Independence Chemical transformations are at the heart of energy production and use, and catalysis lies at the core of efficiently and effectively using our current energy

  14. INL Director Discusses the Future for Nuclear Energy in the United States

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  15. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  16. 2015 Call for Proposals for the Department of Energy (DOE) Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program 2015 Call for Proposals for the Department of Energy (DOE)...

  17. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  18. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  19. U.S. Department of Energy Announces Energy Frontier Research...

    Energy Savers [EERE]

    include electrical energy storage, fuels from sunlight, carbon capture and sequestration, solar energy, solid state lighting, advanced nuclear energy systems, materials by design,...

  20. Danish Energy Research Programme (EFP) Energy Performance Contracting

    E-Print Network [OSTI]

    Danish Energy Research Programme (EFP) Energy Performance Contracting ­ energy saving potential of selected energy conservation measures (ECM) September 2008 #12;Danish Energy Research Programme (EFP) Energy Performance Contracting ­ energy saving potential of selected energy conservation measures (ECM

  1. Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH

    E-Print Network [OSTI]

    Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH 141980 Dubna is well known in physics of nuclear reactions and astrophysics. Developing methods for studying resonances components taken on the physical sheet only. The representations for T ­matrix are used then to construct

  2. The Politically Correct Nuclear Energy Plant

    E-Print Network [OSTI]

    is Sustainable - Coal, Oil and Natural Gas · Natural Gas is a Clean Fuel - relative to what - coal? · RenewablesThe Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology are "clean and free"... · Conservation with sacrifice will work · There is no solution to nuclear waste

  3. Development of Technical Nuclear Forensics for Spent Research Reactor Fuel 

    E-Print Network [OSTI]

    Sternat, Matthew Ryan 1982-

    2012-11-20

    Pre-detonation technical nuclear forensics techniques for research reactor spent fuel were developed in a collaborative project with Savannah River National Lab ratory. An inverse analysis method was employed to reconstruct ...

  4. Nuclear engineer Stauff awarded for excellence in research and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear engineer Stauff awarded for excellence in research and early-career leadership November 9, 2015 Tweet EmailPrint Launching a career in the sciences or engineering can be...

  5. Research in nuclear astrophysics: Stellar collapse and supernovae

    SciTech Connect (OSTI)

    Lattimer, J.M.; Yahil, A.

    1992-01-01

    This progress report describes the nuclear astrophysics research activities in the Earth and Space Sciences Department at Stony Brook during the last year. Our research focused on three aspects of nuclear astrophysics: (1) the equation of state of hot, dense matter, (2) the origin of supernovae and neutron stars, (3) the early cooling epoch of neutron stars. The following contains detailed reports which summarize each completed project.

  6. Research Facilities & Centers | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology...

  7. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNPPE / 93158

    E-Print Network [OSTI]

    CERN

    is composed of bismuth germanate (BGO) crystals. Hadronic energy depositions are measured by a uranium with an electromagnetic energy deposit. The BGO cluster and TEC

  8. Department of Energy Nuclear Safety Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-08

    It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Supersedes SEN-35-91.

  9. Nuclear Safety at the Department of Energy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-12-05

    Nuclear Safety is a core value of the Department of Energy. As our management principle state: "We will pursue our mission in a manner that is safe, secure, legally and ethically sound, and fiscally responsible."

  10. Investing in Clean, Safe Nuclear Energy

    ScienceCinema (OSTI)

    President Obama

    2010-09-01

    President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

  11. Manpower development for new nuclear energy programs

    E-Print Network [OSTI]

    Verma, Aditi

    2012-01-01

    In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

  12. Investing in Clean, Safe Nuclear Energy

    Broader source: Energy.gov [DOE]

    President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

  13. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    SciTech Connect (OSTI)

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle “quality” qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  14. NREL: Photovoltaics Research - Solar Energy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolar Energy Research Facility Photo of

  15. Nuclear diffractive structure functions at high energies

    E-Print Network [OSTI]

    C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

    2008-05-30

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  16. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  17. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  18. Energy Technology Division research summary 1997.

    SciTech Connect (OSTI)

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

  19. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNPPE/9468

    E-Print Network [OSTI]

    CERN

    is composed of bismuth germanate (BGO) crystals; hadronic energy depositions are measured by a uranium

  20. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNPPE/94186

    E-Print Network [OSTI]

    CERN

    germanate (BGO) crystals; hadronic energy depositions are measured by an uranium­proportional wire chamber

  1. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  2. Microsoft Word - Advanced_Nuclear_Energy_Projects_Loan_Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 45 Loan Guarantee Solicitation Announcement Advanced Nuclear Energy Projects 1 UNITED STATES DEPARTMENT OF ENERGY FULL ANNOUNCMENT Loan Guarantee...

  3. The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as

    E-Print Network [OSTI]

    Kemner, Ken

    nuclear power as a resource capable of meeting the Nation's energy, environmental and national security nuclear power plants. zz NuclearzEnergyzEnablingzTechnologiesz-- to explore transformative, "out our national and international supplies of fuel for nuclear power plants remain stable

  4. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    readily available renewable and energy efficiency optionsannual investments in renewable energy capacity are now M.billion US dollars, and renewable energy markets continue to

  5. Nuclear Energy Density Optimization: UNEDF2

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-10-30

    The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

  6. Symmetry energy in nuclear density functional theory

    E-Print Network [OSTI]

    W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

    2013-07-22

    The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

  7. Nuclear Fuels | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure |CafésNuclearNuclear Fuels Nuclear

  8. Sandia Energy - Research Challenge 1: Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Nanowires Home Energy Research EFRCs Solid-State Lighting Science EFRC Our SSLS EFRC's Scientific Research Challenges and Publications Research Challenge 1: Nanowires Research...

  9. Office of the Assistant General Counsel for Civilian Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    of Nuclear Materials and Non-HLW Nuclear Fuel Cycle Energy Research and Development Non-Proliferation Nuclear Regulatory Commission Regulatory and Licensing Matters Nuclear...

  10. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNPPE/9798

    E-Print Network [OSTI]

    CERN

    s = 172:32 GeV (high­energy data). These centre­of­mass energies are known to \\Sigma0:06 GeV [14]. The results obtained at threshold and from the high­energy data are combined to determine the mass of the W for the high­energy data. These analyses reconstruct the visible fermions in the final state, i.e., electrons

  11. India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear fission

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear posed by reactors, the accident liability laws and regulatory structure governing nuclear energy, Wednesday, Oct 29th 4:00 PM (Tea/Coffee at Seminar Hall, TCIS Colloquium India's Nuclear Energy Program

  12. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNPPE/9774

    E-Print Network [OSTI]

    CERN

    QCD. Submitted to Phys. Lett. B #12; 1 Introduction The study of events with high energy isolated­state radiation (FSR) are highly suppressed. Selection of hadronic events with high energy isolated photons by a calorimetric energy trigger with an efficiency exceeding 99.9%. The selection of events of the type e + e

  13. Nuclear Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovember 2014 Postings(NSUF) Gateway to NuclearNuclear

  14. Public opinion and nuclear energy

    SciTech Connect (OSTI)

    Nealey, S.M.; Melber, B.D.; Rankin, W.L.

    1983-01-01

    Public acceptance of a nuclear power plant (NPP) built near one's residence has declined steadily since the early 1970's. Following the TMI accident, this acceptance decreased dramatically. There has been some attitude rebound, however, and through mid-1981, the % who supported continued NPP construction in USA was 5 to 10% more than those in opposition. Men's and women's attitudes are different and were differentially affected by the TMI accident. Beliefs and attitudes about specific nuclear power issues were explored using questionnaires. Reactor-safety concerns were found to be more important than nuclear-waste concerns. Nuclear fuel-supply considerations are believed to be a major advantage of nuclear power. The public was largely unaware of the breeder-reactor concept. The US public generally does not favor selling US reactors abroad. It also greatly underestimates how long it takes to build a NPP. Most people believed solar-generated electricity is cheapest. The public has little information or has misinformation about some areas of nuclear power. (DLC)

  15. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Awards Mo-99 Cooperative Agreement to General Atomics Stewardship Science Academic Alliances Awards Research, Development, Test, and Evaluation Material Management and...

  16. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCell for

  17. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCell forAnalysis

  18. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCell

  19. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCellHighlights -

  20. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavyHigh-Temperature

  1. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    SciTech Connect (OSTI)

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  2. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  3. NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842

    E-Print Network [OSTI]

    Demazière, Christophe

    2005-01-01

    or density wave oscillation (DWO) in boiling water reactors (BWRs) (Analytis et al., 2001; Lansa°ker, 1997 rods in pressurized water reactors (PWRs). Such noise sources are not considered in this paper.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G

  4. The development of nuclear energy in the Philippines

    SciTech Connect (OSTI)

    Aleta, C. )

    1992-01-01

    The paper traces the development of nuclear energy in the Philippines and outlines the program on the peaceful uses of nuclear energy in the country as well as the problems and prospects of nuclear energy development. Nuclear power is at a standstill but the other areas of nuclear energy development are underway. The projects on the application of nuclear energy in agriculture, industry, public health and safety, are being pursued. Technology transfer to end users is sometimes hampered by public acceptance issues, such as irradiated food being believed to become radioactive, dislike with anything associated with radiation, and plain inherent fear of nuclear energy.

  5. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  6. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms,...

  7. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect (OSTI)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  8. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

    Office of Legacy Management (LM)

    .' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :.. ,. Memo to Piles' CARNEGIE-MELLON SC&RCCYCLOTRON On October 23, 1975, W....

  9. Energy Department Announces New Investments in Advanced Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News...

  10. Energy Department Issues Request For Proposal for Nuclear Regulatory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request For Proposal for Nuclear Regulatory Commission Licensed Facilities Procurement Energy Department Issues Request For Proposal for Nuclear Regulatory Commission Licensed...

  11. Department of Energy Issues Requests for Applications for Nuclear...

    Office of Environmental Management (EM)

    Requests for Applications for Nuclear-Related Science and Engineering Scholarships and Fellowships Department of Energy Issues Requests for Applications for Nuclear-Related Science...

  12. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Broader source: Energy.gov (indexed) [DOE]

    meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards accelerate our nation's drive towards diverse...

  13. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect (OSTI)

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  14. Nuclear plant-aging research on reactor protection systems

    SciTech Connect (OSTI)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  15. JET Papers Presented to 13th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research

    E-Print Network [OSTI]

    JET Papers Presented to 13th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research

  16. Climate Control Using Nuclear Energy

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2008-01-01

    We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

  17. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    and Environmental Research · Fusion Energy Sciences · High Energy Physics · Nuclear Physics IPv6 SNMP Network will become consistent and routine IPv6 SNMP Network Management Goals #12;2/2/10 ·ESnet has a long history - Polling of SNMP MIBs - Handling of asynchronous trap based alerts - GUI input & output Enablers ESnet has

  18. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  19. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    SciTech Connect (OSTI)

    Robert C. O'Brien

    2001-09-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  20. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL/2000-005 AP

    E-Print Network [OSTI]

    Keil, Eberhard

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL/2000-005 AP Collective Effects in High is absent. I derive criteria for the longitudinal and transverse loss factors. 2 AN-ISOCHRONOUS HEMC An at collision energy in a Mathematica notebook [8] that I have used for testing packages for the design

  1. Correlation energy contribution to nuclear masses

    E-Print Network [OSTI]

    S. Baroni; M. Armati; F. Barranco; R. A. Broglia; G. Colo'; G. Gori; E. Vigezzi

    2004-04-07

    The ground state correlation energies associated with collective surface and pairing vibrations are calculated for Pb- and Ca-isotopes. It is shown that this contribution, when added to those predicted by one of the most accurate modern nuclear mass formula (HFBCS MSk7 mass formula), reduces the associated rms error by an important factor, making mean field theory, once its time dependence is taken into account, a quantitative predictive tool for nuclear masses.

  2. Instabilities in the Nuclear Energy Density Functional

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski

    2010-02-05

    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

  3. BES Energy Storage Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartmentj.

  4. BUILDING ENERGY EFFICIENCY RESEARCH & TECHNOLOGY

    E-Print Network [OSTI]

    California at Davis, University of

    BUILDING ENERGY EFFICIENCY RESEARCH & TECHNOLOGY A JOURNAL REVIEW TTP 289A-003, CRN #42059 Friday 3, cultural). Topics: May include: Zero net energy, `smart' building controls, passive design strategies, human health and wellness in buildings. Students are encouraged to introduce their own topic of interest

  5. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNPPE/9541

    E-Print Network [OSTI]

    CERN

    counters, a sampling hadron calorimeter with uranium absorbers and proportional wire chamber readout.0 GeV in the ECAL must be at least 2 and less than 8; (2) the total energy deposited in the ECAL must

  6. Department of Energy Hosts Inaugural Energy Frontier Research...

    Office of Science (SC) Website

    News & Events DOE Announcements Department of Energy Hosts Inaugural Energy Frontier Research Center Summit Energy Frontier Research Centers (EFRCs) EFRCs Home Centers...

  7. Nuclear and gravitational energies in stars

    SciTech Connect (OSTI)

    Meynet, Georges; Ekström, Sylvia [Astronomical Observatory of Geneva University (Switzerland); Courvoisier, Thierry [ISDC, Astronomical Observatory of Geneva University (Switzerland)

    2014-05-09

    The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ?}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ?}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

  8. Nuclear waste repository research at the micro- to nanoscale

    SciTech Connect (OSTI)

    Schaefer, T.; Denecke, M. A.

    2010-04-06

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  9. Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01

    Asia, examine the energy- security connection in Asia withon the long-term security of energy supply, which mustin East Asia's security, nuclear energy, and environment. It

  10. Criteria for Global Nuclear Energy Development

    SciTech Connect (OSTI)

    Lawrence, Michael J.

    2002-07-01

    Global energy consumption will at least double over the next fifty years due to population growth, increased consumption, and an urgent need to improve the standard of living in under-developed countries. Thirty percent of this growth will be for electricity. At the same time, carbon emissions must be significantly reduced to respond to concerns regarding global warming. The use of nuclear energy to meet this growing electricity demand without carbon emissions is an obvious solution to many observers, however real concerns over economics, safety, waste and proliferation must be adequately addressed. The issue is further complicated by the fact that developing countries, which have the most pressing need for additional electricity generation, have the least capability and infrastructure to deploy nuclear energy. Nevertheless, if the specific needs of developing countries are appropriately considered now as new generation reactors are being developed, and institutional arrangements based upon the fundamental principles of President Eisenhower's 1953 Atoms For Peace speech are followed, nuclear energy could be deployed in any country. From a technical perspective, reactor safety and accessibility of special nuclear material are primary concerns. Institutionally, plant and fuel ownership and waste management issues must be addressed. International safety and safeguards authority are prerequisites. While the IAEA's IMPRO program and the United States' Generation IV programs are focusing on technical solutions, institutional issues, particularly with regard to deployment in developing countries, are not receiving corresponding attention. Full-service, cradle-to-grave, nuclear electricity companies that retain custody and responsibility for the plant and materials, including waste, are one possible solution. Small modular reactors such as the Pebble Bed Modular Reactor could be ideal for such an arrangement. While waste disposal remains a major obstacle, this is already true for numerous nuclear programs even in developed countries with limited geologically suitable formations. Fortunately, several organizations are currently pursuing international solutions to the nuclear waste disposal problem. While the capability to deploy nuclear energy in a specific country may not be desirable for a number of reasons, we should not develop nuclear hardware that can only benefit and serve technically and economically advanced countries. The potential benefits of nuclear energy are global, and we should not unduly limit that potential by inattention today to the requirements necessary for global deployment. (authors)

  11. Research and Development | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday Production of SOA inResearch PortfolioResearch Teams

  12. Research and Development | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday Production of SOA inResearch PortfolioResearch

  13. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  14. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema (OSTI)

    Raja, Rajendran

    2010-01-08

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  15. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  16. Office of Nuclear Energy Teachers' Edition

    Broader source: Energy.gov (indexed) [DOE]

    representations of their clean energy research. Introduces students to the use of a thesis, or conclusion which they reach through analysis and interpretation of what they...

  17. Nuclear Energy In the United States Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Status and Outlook for Nuclear Energy In the United States Executive Summary The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear...

  18. Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional

    E-Print Network [OSTI]

    Weise, Wolfram

    2006-01-01

    Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density Keywords: Relativistic mean field; Density functional theory; Nuclear structure; Chiral dynamics; QCD sum

  19. National Renewable Energy Laboratory Report Identifies Research...

    Energy Savers [EERE]

    National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges National Renewable Energy Laboratory Report Identifies Research...

  20. RENEWABLE ENERGY Research Experiences for Undergraduates (REU)

    E-Print Network [OSTI]

    for Oil Shale Technology and Research, the Colorado Energy Research Institute, and the National Renewable Systems for Oil Shale Production Microstructural Design of Composite Membranes for Energy Storage

  1. Residential Energy Efficiency Research Planning Meeting Summary...

    Energy Savers [EERE]

    Residential Energy Efficiency Research Planning Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings...

  2. Tidal Energy Research

    SciTech Connect (OSTI)

    Stelzenmuller, Nickolas; Aliseda, Alberto; Palodichuk, Michael; Polagye, Brian; Thomson, James; Chime, Arshiya; Malte, Philip

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  3. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae model (Journal About DOE Button StaffEnergyEFRC Home

  4. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOE Office of Science (SC)TrackingCenters

  5. Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www.energy from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

  6. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNEP/2000135

    E-Print Network [OSTI]

    CERN

    tracks in the tracking chamber with a net charge of zero, a polar angle # i carry nearly the full beam energy and their transverse momenta are usually so small charge conjugation, J#=1 and helicity­zero (#=0) or two (#=2) can be formed. In order to decay into K 0

  7. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  8. Policy Paper 37: Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01

    security, nuclear energy, and environment. It also indicatesbased on its nuclear submarine technology Energy Environmentalternatives? Environment--Use of nuclear energy can lessen

  9. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    SciTech Connect (OSTI)

    Henry, C.N.

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  10. Nuclear Instruments and Methods in Physics Research A 515 (2003) 458466 Energy resolution of a silicon detector with the RX64 ASIC

    E-Print Network [OSTI]

    Ramello, Luciano

    2003-01-01

    counting in digital X-ray imaging, with foreseen applications to dual energy mammography and angiography diagnostic applications, such as mammography, the dual energy technique makes it possible to isolate.07.020 #12;co-workers, several authors investigated the appli- cation of dual energy imaging [3,4]. However

  11. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  12. International energy: Research organizations, 1988--1992. Revision 1

    SciTech Connect (OSTI)

    Hendricks, P.; Jordan, S.

    1993-06-01

    This publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the US DOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). ETDE member countries are also members of the International Nuclear Information System (INIS). Nuclear organization names recorded for INIS by these ETDE member countries are also included in the ETDE Energy Database. Therefore, these organization names are cooperatively standardized for use in both information systems. This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases ``Energy Science & Technology`` on DIALOG and ``Energy`` on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 31,000 organizations that reported energy-related literature from 1988 to 1992 and updates the DOE Energy Data Base: Corporate Author Entries.

  13. Sandia Energy - Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory Fellows Jerry Simmons IsNationalNuclear

  14. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNationalPrograms | High Energy Density Laboratory

  15. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNationalPrograms | High Energy Density Laboratory

  16. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNationalPrograms | High Energy Density

  17. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNationalPrograms | High Energy DensitySecurity

  18. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNationalPrograms | High Energy

  19. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH OPAL PR 305

    E-Print Network [OSTI]

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH OPAL PR 305 CERN­EP­2000­032 February 23, 2000 Measurement of |V cb | using � B 0 # D #+ # - � # decays The OPAL Collaboration Abstract The magnitude on the Z 0 peak using the OPAL detector at LEP. The D #+ # D 0 # + decays were reconstructed both

  20. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH OPAL PR 317

    E-Print Network [OSTI]

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH OPAL PR 317 CERN­EP­2000­90 July 7, 2000 Measurement of the B 0 Lifetime and Oscillation Frequency using � B 0 # D #+ # - � # decays The OPAL Collaboration #+ # - � # decays recorded on the Z 0 peak with the OPAL detector at LEP. The D #+ # D 0 # + decays were

  1. Nuclear Energy Density Functionals Constrained by Low-Energy QCD

    E-Print Network [OSTI]

    Dario Vretenar

    2008-02-06

    A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

  2. Nuclear Materials Disposition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind CareerEnergy Nuclear Fuels

  3. Nuclear Regulatory Commission | Department of Energy

    Office of Environmental Management (EM)

    Commission Nuclear Regulatory Commission Nuclear Regulatory Commission More Documents & Publications What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear...

  4. Training the Next Generation of Nuclear Energy Leaders | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn...

  5. Nuclear Instruments and Methods in Physics Research A 452 (2000) 256}265 On the signi"cance of the energy correlations of

    E-Print Network [OSTI]

    Pázsit, Imre

    2000-01-01

    }3]. However, in future accelerator-driven subcritical systems (ADS), the energy span of the neutrons"cance of the energy correlations of spallation neutrons on the neutron #uctuations in accelerator-driven subcritical systems I. PaH zsit*, N.G. SjoK strand, V. Fhager Department of Reactor Physics, Chalmers University

  6. Idaho National Laboratory/Nuclear Power Industry Strategic Plan for Light Water Reactor Research and Development An Industry-Government Partnership to Address Climate Change and Energy Security

    SciTech Connect (OSTI)

    Electric Power Research

    2007-11-01

    The dual issues of energy security and climate change mitigation are driving a renewed debate over how to best provide safe, secure, reliable and environmentally responsible electricity to our nation. The combination of growing energy demand and aging electricity generation infrastructure suggests major new capacity additions will be required in the years ahead.

  7. Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies

    E-Print Network [OSTI]

    T. Niksic; D. Vretenar; P. Ring

    2008-09-08

    We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

  8. Bartlesville Energy Research Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |Bartlesville Energy Research Center Bartlesville Energy

  9. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    SciTech Connect (OSTI)

    Weigl, M. [Forschungszentrum Karlsruhe GmbH, Projekttragerforschungszentrum Karlsruhe (PTKA-WTE), Karlsruhe (Germany)

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich and Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)

  10. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect (OSTI)

    Kubic, Jr., William L.

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  11. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  12. A Resurgence of United Kingdom Nuclear Power Research (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Grimes, Robin W. (Imperial College, London, UK)

    2012-03-14

    Robin W. Grimes, Professor at Imperial College, London,was the third speaker in the the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Grimes discussed recent research endeavors in advanced nuclear energy systems being pursued in the UK. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  13. Interdisciplinary research on Buildings in energy systems

    E-Print Network [OSTI]

    Zhao, Yuxiao

    issues are: Zero energy buildings: implementation processes, planning tools Energy efficient renovation of existing buildings Building owners and inhabitants: their role in creating energy efficiency. LocalInterdisciplinary research on Buildings in energy systems Local and regional energy systems

  14. Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

  15. Nuclear Liability | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment of Energy101

  16. Getting to Know Nuclear Energy: The Past, Present & Future

    E-Print Network [OSTI]

    Kemner, Ken

    Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

  17. Role of inorganic chemistry on nuclear energy examined

    E-Print Network [OSTI]

    - 1 - Role of inorganic chemistry on nuclear energy examined July 31, 2013 The journal Inorganic Chemistry published a special Forum issue on the role of inorganic chemistry in nuclear energy. John Gordon and Argonne National Laboratory collaborated on the work. The DOE Office of Nuclear Energy and the Office

  18. THE FUTURE OF NUCLEAR ENERGY IN THE UK

    E-Print Network [OSTI]

    Birmingham, University of

    THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

  19. Office of Nuclear Energy, Science and Technology Executive Summary

    E-Print Network [OSTI]

    the second most important source of electric energy in the United States and at the same time, the most method of generating energy from nuclear fission in both the United States and the world. A key mission system using nuclear energy by 2015; and developing a next-generation nuclear system for deployment after

  20. Energy Technology Division research summary - 1999.

    SciTech Connect (OSTI)

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  1. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect (OSTI)

    Steven E. Aumeier

    2010-10-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: • economic stability – related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; • environmental sustainability – related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; • resource security – related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process applications is certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD&D areas, or “platforms”: • feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); • heat / energy management (e.g. advanced heat exchangers, process design); • energy storage (e.g. H2 production, liquid fuels synthesis); • byproduct management (e.g. CO2 recycle approaches); • systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

  2. Sandia Energy - Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW DatabaseNuclear FuelsNuclear

  3. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    Nuclear Assistance and Nuclear Proliferation. Cambridge, MA:Way. The Correlates of Nuclear Proliferation: A Quantitativethe linkages between nuclear proliferation and energy. Susan

  4. Nuclear Power and the World's Energy Requirements

    E-Print Network [OSTI]

    Castellano, V; Dunning-Davies, J

    2004-01-01

    The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

  5. Nuclear Power and the World's Energy Requirements

    E-Print Network [OSTI]

    V. Castellano; R. F. Evans; J. Dunning-Davies

    2004-06-10

    The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

  6. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  7. United States and Italy Sign Nuclear Energy Agreements | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear Energy Research and DevelopmentEnergy

  8. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks Citation Details In-Document Search Title: Pyroelectric Energy Scavenging...

  9. Department of Energy and Nuclear Regulatory Commission Increase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Partnership Department of Energy to Award 16 Million for GNEP Studies United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes...

  10. A Roman Shipwreck and Safe Nuclear Storage | Department of Energy

    Energy Savers [EERE]

    more information on Energy Department's Office of Science, please go to: http:science.energy.gov. Addthis Related Articles A Roman Shipwreck and Safe Nuclear Storage Ancient...

  11. Description of induced nuclear fission with Skyrme energy functionals...

    Office of Scientific and Technical Information (OSTI)

    fragment properties Citation Details In-Document Search Title: Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission...

  12. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

  13. Nuclear structure studies with medium energy probes. [Northwestern Univ

    SciTech Connect (OSTI)

    Seth, Kamal K.

    1980-01-01

    Progress in the continuing program of experimental research in nuclear structure with medium-energy probes during the year 1979-1980 is reviewed, and the research activities planned for the year 1980-1981 are discussed. In the study of pion-induced reactions emphasis is placed on investigation of isovector characteristics of nuclear excitations and on double charge exchange reactions. Pion production studies form the major part of the program of experiments with proton beams of 400 to 800 MeV at LAMPF. Current emphasis is on the bearing of these investigations on di-baryon existence. The study of high-spin states and magnetic scattering constitute the main goals of the electron scattering program at Bates. Representative results are presented; completed work is reported in the usual publications. (RWR)

  14. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  15. MTL ANNUAL RESEARCH REPORT 2015 Energy 59 Energy: Photovoltaics, Energy

    E-Print Network [OSTI]

    Kastner, Marc A.

    MTL ANNUAL RESEARCH REPORT 2015 Energy 59 Energy: Photovoltaics, Energy Harvesting, Energy Storage........................................ 63 Ink-Jet Printing of Organic-Inorganic Halide Perovskites for Solar Photovoltaics on porous silicon or direct wafering to reduce the volume of sil- icon used in a photovoltaic cell

  16. MTL ANNUAL RESEARCH REPORT 2014 Energy 75 Energy: Photovoltaics, Energy

    E-Print Network [OSTI]

    Reif, Rafael

    MTL ANNUAL RESEARCH REPORT 2014 Energy 75 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel.....................................79 Energy Level Modification in Lead Sulfide Quantum Dot Photovoltaics Through Ligand Exchange Crystalline silicon (c-Si) is the dominant material in the photovoltaic industry, yet silicon is expensive

  17. Nuclear Safety | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment ofProgram mission is to support the

  18. Energy Technology Division research summary -- 1994

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  19. UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaborat...

    Office of Environmental Management (EM)

    UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaboration UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaboration September 30, 2014 - 12:00pm...

  20. Management of the Department of Energy Nuclear Weapons Complex

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-08

    The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Supersedes DOE O 5600.1.

  1. Energy Frontier Research Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include GE Global Research, Yale University-Crabtree Group, Yale University-Batista Group, Stanford University and Lawrence Berkeley National Laboratory. GE Global...

  2. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    report, National Nuclear Security Administration, Departmentproliferation and security risks of nuclear energy systemsthe proliferation and security risk posed by nuclear energy

  3. State Nuclear Profiles - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Page Welcome to

  4. Renewable Energy Research | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPs HomeRenewable Energy RFPsResearch

  5. 2 | energy & automotive research laboratory2 | energy & automotive research laboratory Creating Sustainable Energy Solutions

    E-Print Network [OSTI]

    Feeny, Brian

    nergy& utomotive esearch aboratory #12;2 | energy & automotive research laboratory2 | energy & automotive research laboratory Creating Sustainable Energy Solutions on the cover: A prototype cylinder head-third of all the energy used in the country. The critical need to reduce the nation's dependence on oil imports

  6. Research Toward Zero Energy Homes

    SciTech Connect (OSTI)

    Robert Hammon

    2010-12-31

    This final report was compiled from the detailed annual reports that were submitted for efforts in 2008 and 2009, and from individual task reports from 2010. Reports, case studies, and presentations derived from this work are available through the Building America website. The BIRA team is led by ConSol, a leading provider of energy solutions for builders since 1983. In partnership with over fifty builders, developers, architects, manufactures, researchers, utilities, and agencies, research work was performed in California, Colorado, Utah, New Mexico, Washington, Oregon, and Hawaii and five (5) climate regions (Hot-Dry, Marine, Hot-Humid, Cold, and Hot/Mixed Dry). In addition to research work, the team provided technical assistance to our partners whose interests span the entire building process. During the three year budget period, the BIRA team performed analyses of several emerging technologies, prototype homes, and high performance communities through detailed computer simulations and extensive field monitoring to meet the required climate joule milestone targets.

  7. National Energy Research Scientific Computing Center 2007 Annual Report

    E-Print Network [OSTI]

    Hules, John A.

    2008-01-01

    Berkeley National Laboratory National Energy ResearchNorthwest National Laboratory National Energy ResearchNational Laboratory Research Accelerator for Mul- tiple Processors UCLA NERSC National Energy Research

  8. Ex Parte Meeting Between the Department of Energy and the Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy...

  9. NE - Nuclear Energy - Energy Conservation Plan

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft Word1SustainabilityEnergyTO8:00AMENERGY

  10. Nuclear Energy University Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind Career MapPowerHydrogenNowEnablingEnergy

  11. Nuclear Instruments and Methods in Physics Research B13 f 1986) 295-303 North-Holland, Amsterdam

    E-Print Network [OSTI]

    Johnson, Robert E.

    component to the ejected energy distribution that is suggestive of a thermal or collisionat spike to thermal conductivity. This is significant in reducing the rate at which energy flows away fromNuclear Instruments and Methods in Physics Research B13 f 1986) 295-303 North-Holland, Amsterdam

  12. University Coal Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research proposals. Today approximately 16 percent of the Office...

  13. Building America Residential Energy Efficiency Research Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and...

  14. Basic Research Needs: Catalysis for Energy

    SciTech Connect (OSTI)

    Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

    2008-03-11

    The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT NOVEMBER 2010 CEC5002013048 Manager Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research and Development Commission Energy Research and Development Division supports public interest energy research and development

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PLANNING ALTERNATIVE this project contributes to Energy Research and Development Division's EnergyRelated Environmental Research Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  17. Nuclear Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind CareerEnergy Nuclear FuelsReactor

  18. Master's programme in Nuclear Energy Engineering Programme outline

    E-Print Network [OSTI]

    Haviland, David

    .With advances in science and technology, nuclear energy is increasingly re- garded as an eminent part technology will play an important role in future sustainable energy systems.the ongoing advances in nuclear science and technology play the central role in the development of future nuclear power systems

  19. Nuclear Energy: Where do we go from here? Keith Bradley

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    11.30am Nuclear Energy: Where do we go from here? Keith Bradley Argonne National Laboratories Abstract For the past several decades, nuclear energy has proven to be one of the most reliable and cost's so-called carbon footprint suggested a resurgence in modern nuclear power -- a renaissance period

  20. Research Teams - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday Production of SOA inResearch PortfolioResearch Teams Research

  1. National Energy Research Scientific Computing Center 2007 Annual Report

    E-Print Network [OSTI]

    Hules, John A.

    2008-01-01

    nuclear, biofuels, and renewable), energy efficiency, climate management, nanotechnology, and knowledge

  2. Impacts of Energy Research and Development With Analyses of Price-Andersen Act & Hydro Relicensing

    Reports and Publications (EIA)

    2002-01-01

    This report deals primarily with the Research and Development provisions of S. 1766, organized across four areas: energy efficiency, renewable energy, fossil energy, and nuclear energy. The provisions are assessed using the results from Annual Energy Outlook 2002 and other side cases, rather than a direct quantitative analysis.

  3. Overview of Nuclear Energy: Present and Projected Use

    SciTech Connect (OSTI)

    Alexander Stanculescu

    2011-09-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY AND ENVIRONMENTAL PERFORMANCE this project contributes to Energy Research and Development Division's Renewable Energy Technologies Program Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  5. Innovating for Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | Department ofInfrastructure andInitiatives

  6. Nuclear Energy Advisory Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind Career MapPowerHydrogenNow

  7. Nuclear Energy Response in the EMF27 Study

    SciTech Connect (OSTI)

    Kim, Son H.; Wada, Kenichi; Kurosawa, Atsushi; Roberts, Matthew

    2014-03-25

    The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

  8. Building a Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  9. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    E-Print Network [OSTI]

    Gerber, Richard A.

    2012-01-01

    Requirements for Nuclear Physics [10] Hammer, N. J. , Janka,and Storage Requirements for Nuclear Physics Researchof ab initio nuclear physics calculations with optimization

  10. Nuclear's role in 21. century Pacific rim energy use

    SciTech Connect (OSTI)

    Singer, Clifford; Taylor, J'Tia [Department of Nuclear, Plasma, and Radiological Engineering, MC-234, 103 S. Goodwin Ave., University of Illinios at Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-07-01

    Extrapolations contrast the future of nuclear energy use in Japan and the Republic of Korea (ROK) to that of the Association of Southeast Asian Nations (ASEAN). Japan can expect a gradual rise in the nuclear fraction of a nearly constant total energy use rate as the use of fossil fuels declines. ROK nuclear energy rises gradually with total energy use. ASEAN's total nuclear energy use rate can rapidly approach that of the ROK if Indonesia and Vietnam make their current nuclear energy targets by 2020, but experience elsewhere suggests that nuclear energy growth may be slower than planned. Extrapolations are based on econometric calibration to a utility optimization model of the impact of growth of population, gross domestic product, total energy use, and cumulative fossil carbon use. Fractions of total energy use from fluid fossil fuels, coal, water-driven electrical power production, nuclear energy, and wind and solar electric energy sources are fit to market fractions data. Where historical data is insufficient for extrapolation, plans for non-fossil energy are used as a guide. Extrapolations suggest much more U.S. nuclear energy and spent nuclear fuel generation than for the ROK and ASEAN until beyond the first half of the twenty-first century. (authors)

  11. Energy Department Invests $60 Million to Advance Nuclear Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invests 60 Million to Advance Nuclear Technology Energy Department Invests 60 Million to Advance Nuclear Technology June 5, 2015 - 11:18am Addthis News Media Contact 202-586-4940...

  12. Nuclear Energy Readiness Indicator Index (NERI): A benchmarking tool for assessing nuclear capacity in developing countries

    SciTech Connect (OSTI)

    Saum-Manning,L.

    2008-07-13

    Declining natural resources, rising oil prices, looming climate change and the introduction of nuclear energy partnerships, such as GNEP, have reinvigorated global interest in nuclear energy. The convergence of such issues has prompted countries to move ahead quickly to deal with the challenges that lie ahead. However, developing countries, in particular, often lack the domestic infrastructure and public support needed to implement a nuclear energy program in a safe, secure, and nonproliferation-conscious environment. How might countries become ready for nuclear energy? What is needed is a framework for assessing a country's readiness for nuclear energy. This paper suggests that a Nuclear Energy Readiness Indicator (NERI) Index might serve as a meaningful basis for assessing a country's status in terms of progress toward nuclear energy utilization under appropriate conditions. The NERI Index is a benchmarking tool that measures a country's level of 'readiness' for nonproliferation-conscious nuclear energy development. NERI first identifies 8 key indicators that have been recognized by the International Atomic Energy Agency as key nonproliferation and security milestones to achieve prior to establishing a nuclear energy program. It then measures a country's progress in each of these areas on a 1-5 point scale. In doing so NERI illuminates gaps or underdeveloped areas in a country's nuclear infrastructure with a view to enable stakeholders to prioritize the allocation of resources toward programs and policies supporting international nonproliferation goals through responsible nuclear energy development. On a preliminary basis, the indicators selected include: (1) demonstrated need; (2) expressed political support; (3) participation in nonproliferation and nuclear security treaties, international terrorism conventions, and export and border control arrangements; (4) national nuclear-related legal and regulatory mechanisms; (5) nuclear infrastructure; (6) the utilization of IAEA technical assistance; (7) participation in regional arrangements; and (8) public support for nuclear power. In this paper, the Index aggregates the indicators and evaluates and compares the level of readiness in seven countries that have recently expressed various degrees of interest in establishing a nuclear energy program. The NERI Index could be a valuable tool to be utilized by: (1) country officials who are considering nuclear power; (2) the international community, desiring reassurance of a country's capacity for the peaceful, safe, and secure use of nuclear energy; (3) foreign governments/NGO's, seeking to prioritize and direct resources toward developing countries; and (4) private stakeholders interested in nuclear infrastructure investment opportunities.

  13. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  14. Nuclear Energy Enabling Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind Career MapPowerHydrogenNowEnabling

  15. Public views on multiple dimensions of security : nuclear waepons, terrorism, energy, and the environment : 2007.

    SciTech Connect (OSTI)

    Herron, Kerry Gale; Jenkins-Smith, Hank C.

    2008-01-01

    We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support for domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.

  16. 5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions

    E-Print Network [OSTI]

    Peletier, Reynier

    5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

  17. Research - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome / RelatedResearch Research

  18. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  19. International Nuclear Energy Policy and Cooperation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | International Nuclear Energy Policy and Cooperation

  20. Energy Research and Development Division STAFF REPORT

    E-Print Network [OSTI]

    , and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives and Development is the staff report for the 2013 Natural Gas Annual Report project conducted by Energy Research and Development. The information from this project contributes to Energy Research and Development Division

  1. Energy Department and Catholic University Improve Safety of Nuclear Waste

    Broader source: Energy.gov [DOE]

    A new waste processing plant in Washington will help to safely remove nuclear and chemical waste, thanks to research from Catholic University.

  2. Aquafuel Research | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,Summaries | OpenLibraryAquafuel Research Jump

  3. Planning implications of energy research in Nigeria

    SciTech Connect (OSTI)

    Osotimehin, S.O.A.; Benjamin, N.R.D.; Sanni, S.A.

    1980-12-01

    A survey of projects in research institutions and major public energy organizations was undertaken with a view to determining to what extent energy research activities are in consonance with national research objectives. Such a survey is also useful in developing an appropriate energy research policy for Nigeria. It appears that energy R and D efforts are concentrated in the area of alternative energy resources; this accounts for 66% of the total projects. Most of the local efforts are duplication of international research efforts. Even though the demand for energy research is well defined, the absence of proper coordination and adequate policy instruments have resulted in the unattainment of the research goals of the energy sector. Thus, the arguement adduced by some investigators that lack of demand for research is the main obstacle for designing and implementing a relevant science policy in a developing country does not hold for Nigerian conditions.

  4. Emerging Energy Research EER | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, New York: EnergyElyria, Ohio:EmelResearch EER Jump to:

  5. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    R.A. Wigeland

    2008-10-01

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  6. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01

    2005. Cowan Robin. "Nuclear Power Reactors: A Study inThe Last Chance for Nuclear Power?" Energy Studies ReviewInfrastructure for Nuclear Power", IAEA Nuclear Energy

  7. Nuclear energy in a nuclear weapon free world

    SciTech Connect (OSTI)

    Pilat, Joseph

    2009-01-01

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  8. Energy Research Made Easy Our Mission

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Research Made Easy Our Mission To advance environmental and economic well-being by providing unmatched energy services, products, education and information based on world-class research. Overview Our staff of approximately 100 people (energy engineers, energy specialists, technical experts, soft- ware

  9. Overview of BNL's Solar Energy Research Plans

    E-Print Network [OSTI]

    Homes, Christopher C.

    Overview of BNL's Solar Energy Research Plans March 2011 #12;2 Why Solar Energy Research at BNL BNL's capabilities can advance solar energy In the Northeast #12;North Array Field South Array Field Variability and Non-Dispatchability · Solar energy varies · Solar generation cannot be dispatched when needed

  10. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  11. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  12. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  13. Nuclear Self-energy and Realistic Interactions

    E-Print Network [OSTI]

    T. Frick; Kh. Gad; H. Müther; P. Czerski

    2001-11-14

    The structure of nucleon self-energy in nuclear matter is evaluated for various realistic models of the nucleon-nucleon (NN) interaction. Starting from the Brueckner-Hartree-Fock approximation without the usual angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Special attention is paid to the predictions for the spectral function originating from various models of the NN interaction which all yield an accurate fit for the NN phase shifts.

  14. Renewability and sustainability aspects of nuclear energy

    SciTech Connect (OSTI)

    ?ahin, Sümer

    2014-09-30

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG?PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG?PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG?PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG?PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG?PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG?PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ? 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ? 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG?PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ?160 kg {sup 233}U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ?1.3.

  15. secretary of energy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReporteeo | National Nuclear Securityhr |of energy | National

  16. Sandia Energy - Sandia Teaches Nuclear Safety Course

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies PilotTeaches Nuclear Safety Course

  17. Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 INSTRUMENTS

    E-Print Network [OSTI]

    Dutz, Hartmut

    1995-01-01

    ELSEVIER Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 NUCLEAR INSTRUMENTS 8 METHODS IN PHYSICS REgtR?n Thermodynamics of dynamic nuclear polarization W.Th. Wenckebach Faculty ofApplied Physics, Delfr Unicersity of Technology, P.O.B. 5046, 2600 GA De& The Netherlands Abstract Dynamic nuclear

  18. Surface Symmetry Energy of Nuclear Energy Density Functionals

    E-Print Network [OSTI]

    N. Nikolov; N. Schunck; W. Nazarewicz; M. Bender; J. Pei

    2010-12-28

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron- rich matter and description of fission rates for r-process nucleosynthesis.

  19. International Nuclear Energy Research Initiative 2010 Annual...

    Broader source: Energy.gov (indexed) [DOE]

    for the SCWR &14; Metal and oxide fuel core design, actinide processing, and safety optimization in the SFR &14; Analysis codes for reactor design and safety, thermohydraulics,...

  20. Foiling the Flu Bug Global Partnerships for Nuclear Energy

    E-Print Network [OSTI]

    1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

  1. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIFECYCLE ENERGY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives this project contributes to Energy Research and Development Division's EnergyRelated Environmental Research

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT INTEGRATING BIOENERGETICS, SPACIAL. The information from this project contributes to Energy Research and Development Division's Energy Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH

  3. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Technology Systems Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P Research Center and funded by the California Energy Commission (Energy Commission), Public Interest Energy

  4. Required Assets for a Nuclear Energy Applied R&D Program

    SciTech Connect (OSTI)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facility requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs, a viable work force, and well-equipped specialized facilities.

  5. Department of Energy Issues Final $12.5 Billion Advanced Nuclear...

    Office of Environmental Management (EM)

    Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation Department of Energy Issues Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation December...

  6. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  7. A Practical Approach to a Closed Nuclear Fuel Cycle and Sustained Nuclear Energy - 12383

    SciTech Connect (OSTI)

    Collins, Emory D.; Del Cul, Guillermo D.; Spencer, Barry B.; Williams, Kent A. [Oak Ridge National Laboratory, P.O. Box 2008, MS-6152, Oak Ridge TN 37831 (United States)

    2012-07-01

    Recent systems analysis studies at Oak Ridge National Laboratory (ORNL) have shown that sufficient information is available from previous research and development (R and D), industrial experience, and current studies to make rational decisions on a practical approach to a closed nuclear fuel cycle in the United States. These studies show that a near-term decision is needed to recycle used nuclear fuel (UNF) in the United States, to encourage public recognition that a practical solution to disposal of nuclear energy wastes, primarily UNF, is achievable, and to ensure a focus on essential near-term actions and future R and D. Recognition of the importance of time factors is essential, including the multi-decade time period required to implement industrial-scale fuel recycle at the capacity needed, and the effects of radioactive decay on proliferation resistance, recycling complexity, radioactive emissions, and high-level-waste storage, disposal form development, and eventual emplacement in a geologic repository. Analysis of time factors led to identification of the benefits of processing older fuel and an 'optimum decay storage time'. Further benefits of focused R and D can ensure more complete recycling of UNF components and minimize wastes requiring disposal. Analysis of recycling costs and nonproliferation requirements, which are often cited as reasons for delaying a decision to recycle, shows that (1) the differences in costs of nuclear energy with open or closed fuel cycles are insignificant and (2) nonproliferation requirements can be met by a combination of 'safeguards-by-design' co-location of back-end fuel cycle facilities, and applied engineered safeguards and monitoring. The study shows why different methods of separating and recycling used fuel components do not have a significant effect on nonproliferation requirements and can be selected on other bases, such as process efficiency, maturity, and cost-effectiveness. Finally, the study concludes that continued storage of UNF without a decision to recycle is not a solution to the problem of nuclear waste disposal, but can be a deterrent to public confidence in nuclear energy. In summary, our studies have shown, in contrast to findings of the more prominent studies, that today we do have sufficient knowledge to make informed choices for the values and essential methods of UNF recycling, based on previous research, industrial experience, and current analyses. We have shown the significant importance of time factors, including the benefits of an optimum decay storage time on deploying effective nonproliferation safeguards, enabling reduced recycling complexity and environmental emissions, and optimizing waste management and disposal. Together with the multi-decade time required to implement industrial-scale UNF recycle at the capacity needed to match generation rate, our conclusion is that a near-term decision to recycle as many UNF components as possible is vitally needed. Further indecision and procrastination can lead to a loss of public confidence and favorable perception of nuclear energy. With no near-term decision, the path forward for UNF disposal will remain uncertain, with many diverse technologies being considered and no possible focus on a practical solution to the problem. However, a near-term decision to recycle UNF fuel and to take advantage of processing UNF and surface storing HLW, together with development and incorporation of more-complete recycling of UNF components, can provide the focus needed for a practical solution to the problem of nuclear waste disposal. (authors)

  8. Energy Department Announces New Investments in Advanced Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    the University of Pittsburg-- Development of thermo-acoustic sensors for Sodium-cooled Fast Reactors (SFR) Find more information at the Department of Energy's Office of Nuclear...

  9. What's Next for Nuclear Energy? MIT Students Discuss Path Forward

    Broader source: Energy.gov [DOE]

    Students at Massachusetts Institute of Technology (MIT) gathered Friday to have a casual discussion with the U.S. government’s foremost expert on nuclear energy

  10. Energy Department Announces New Investments in Advanced Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    low-carbon economy, the Energy Department today announced 3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects --...

  11. Louisiana Nuclear Energy and Radiation Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

  12. In 2008, the Department of Energy, National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    In 2008, the Department of Energy, National Nuclear Security Administration (DOE NNSA) established the Next Generation Safeguards Initiative (NGSI) to develop the policies,...

  13. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...

    Office of Environmental Management (EM)

    Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

  14. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents &...

  15. Global Nuclear Energy Partnership Fact Sheet - Demonstrate More...

    Office of Environmental Management (EM)

    Demonstrate More Proliferation-Resistant Recycling Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Under GNEP, the U.S. will work...

  16. Department of Energy Commends the Nuclear Regulatory Commission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commission's Approval of a Second Early Site Permit in Just One Month Department of Energy Commends the Nuclear Regulatory Commission's Approval of a Second Early Site Permit...

  17. Numerical simulations for low energy nuclear reactions including...

    Office of Scientific and Technical Information (OSTI)

    Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for...

  18. Description of induced nuclear fission with Skyrme energy functionals...

    Office of Scientific and Technical Information (OSTI)

    content will become publicly available on March 24, 2016 Title: Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects Authors:...

  19. Global Nuclear Energy Partnership Inaugural Steering Group Meeting...

    Energy Savers [EERE]

    Inaugural Steering Group Meeting Makes Marked Progress Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress December 19, 2007 - 4:58pm Addthis...

  20. Department of Energy Cites Savannah River Nuclear Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions for Worker Safety and Health Violations October 8, 2010 - 12:00am...

  1. Symmetry energy at subnuclear densities deduced from nuclear masses

    E-Print Network [OSTI]

    Kazuhiro Oyamatsu; Kei Iida

    2010-04-19

    We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

  2. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  3. "THE NUCLEAR OPTION IN GREEK NATIONAL ENERGY POLICY

    E-Print Network [OSTI]

    "THE NUCLEAR OPTION IN GREEK NATIONAL ENERGY POLICY: A RENAISSANCE OR A DJA VUE" by RAPHAEL MOISSIS;· Starting from as early as the late 1950's, many scientists produced paper studies on nuclear application: Governor Demopoulos Establishes "Nuclear Office" #12;· Mid to late 1970's · Konstantinos Karamanlis

  4. Nuclear Security Conference 2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his...

  5. National Nuclear Security Administration | Department of Energy

    Office of Environmental Management (EM)

    Administration National Nuclear Security Administration National Nuclear Security Administration More Documents & Publications Global Threat Reduction Initiative U.S. Global Threat...

  6. Nuclear Instruments and Methods in Physics Research A 392 (1997) 402-406 INSTRUMENTS

    E-Print Network [OSTI]

    Thompson, Chris

    1997-01-01

    Nuclear Instruments and Methods in Physics Research A 392 (1997) 402-406 NUCLEAR INSTRUMENTS _.z 6]. Other princi- pal shortcomings of PET are its considerable capital cost and limited availability. We

  7. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  8. ENERGY, WEATHER AND Walker Institute Research

    E-Print Network [OSTI]

    Hodges, Kevin

    ENERGY, WEATHER AND CLIMATE Walker Institute Research Climate scientists and engineers are working together to understand the impacts of weather and climate on energy systems. WEATHER, CLIMATE AND ENERGY new risks to the energy sector. With the increasing deployment of variable, renewable energy

  9. Occupation number-based energy functional for nuclear masses

    E-Print Network [OSTI]

    M. Bertolli; T. Papenbrock; S. Wild

    2011-10-19

    We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to nuclear masses yields a root-mean-square deviation of \\chi = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

  10. Department of Energy/ National Nuclear Security Administration FY 2007 Congressional Budget

    E-Print Network [OSTI]

    Department of Energy/ National Nuclear Security Administration FY 2007 Congressional Budget Volume..................................................................................................................25 Weapons Activities..............................................................................................................................51 Defense Nuclear Nonproliferation

  11. California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project

    E-Print Network [OSTI]

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-01-01

    Public Interest Energy Research (PIER) scoping project is toPublic Interest Energy Research (PIER) scoping project is toPublic Interest Energy Research (PIER) scoping project is to

  12. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect (OSTI)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

  13. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    risky approach to nuclear expansion that offsets theirglobal implications of nuclear expansion in aggregate and10, 32, 103] The expansion of nuclear energy stalled

  14. Policy Paper 37: Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01

    The bilateral nuclear and security agreement between theThe bilateral nuclear and security agreement between thein East Asia's security, nuclear energy, and environment. It

  15. Russian Nuclear Energy Official Pleads Guilty | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesA Token RequestingRoundtablesRussian Nuclear Energy

  16. Research Needs Workshop for Magnetic Fusion Energy

    E-Print Network [OSTI]

    ReNeW Research Needs Workshop for Magnetic Fusion Energy June 7-13, 2009 Richard Hazeltine, ReNeW for Magnetic Fusion Energy Sciences Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland ­ June 8-12, 2009 OFFICE OF FUSION ENERGY SCIENCES Wednesday, November 25, 2009 #12;Acknowledgements ReNeW

  17. Update on BNL's Solar Energy Research Plans

    E-Print Network [OSTI]

    Homes, Christopher C.

    Update on BNL's Solar Energy Research Plans Presented to CAC by Bob Lofaro January 12, 2012 #12;2 First, BP Solar is going out of business, but this will not impact BNL's plans for solar energy research! BP Solar will meet all of its contractual commitments with regard to supporting BNL's solar energy

  18. QER- Comment of Institute for Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Institute for Energy Research would like to submit a comment for the DOE's Quadrennial Energy Review. You will find the comment attached, and we would like to be listed as: Institute for Energy Research 1155 15th St Nw, Suite 1900 Washington, D.C. 20005 Thank you for the opportunity to comment!

  19. Nuclear Safety Research and Development Status Workshop Summary

    Office of Environmental Management (EM)

    Chief of Nuclear Safety Staff NUCLEAR SAFETY R&D Perform a peer review of Risk Assessment Corporation WTP analysis by a team and identify Using other benchmarked...

  20. A History or Geothermal Energy Research and Development in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Geothermal Energy Research and Development in the United States: Energy Conversion 1976-2006 A History or Geothermal Energy Research and Development in the United States: Energy...