Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and environmental security. Full development of a science-based approach for nuclear reactor and fuel cycle technology and systems is a "grand challenge" well suited to...

2

International Nuclear Energy Research Initiative: Annual Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sitesallmodulescontribredisredis.autoload.inc). You are here Home International Nuclear Energy Research Initiative: Annual Report 2005 International Nuclear Energy...

3

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

4

Nuclear methods in environmental and energy research  

SciTech Connect

The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

Vogt, J.R. (ed.)

1977-01-01T23:59:59.000Z

5

Nuclear methods in environmental and energy research  

SciTech Connect

A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

Vogt, J R [ed.

1980-01-01T23:59:59.000Z

6

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

7

2006 Nuclear Energy Research Initiative Awards | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006...

8

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

9

Nuclear Energy Research Advisory Subcommittee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Minutes for the to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting September 30 to October 1, 2002 MEMORANDUM To: Chairman, Nuclear Energy Research Advisory Committee (NERAC) From: Thomas B. Cochran, Member of NERAC Date: October 16, 2002 Subject: "A Technology Roadmap on Generation IV Nuclear Energy Systems," a report of the NERAC Subcommittee on Generation IV Technology Planning Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon- usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by

10

University Research Reactor Task Force to the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

11

Nuclear Energy Research Advisory Committee (NERAC) agenda 11...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

12

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10/03/02 10/03/02 Appendix A to the Minutes for the Nuclear Energy Research Advisory Committee Meeting September 30 to October 1, 2002 Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report October 3, 2002 The Roadmap Context The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV

13

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

14

2009 Annual Reports Issued for Nuclear Energy Research Initiative and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 Annual Reports Issued for Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative July 2, 2010 - 11:49am Addthis On July 2, 2010, the Department of Energy's (DOE) Office of Nuclear Energy (NE) issued annual reports for its Nuclear Energy Research Initiative (NERI) andInternational Nuclear Energy Research Initiative (I-NERI), describing accomplishments achieved in 2009. The NERI and I-NERI programs have furthered DOE goals for the past decade, conducting research into many of the key technical issues that impact the expanded use of advanced nuclear energy systems. Researchers have fostered innovative ideas

15

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Advisory Committee, Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

16

Nuclear Energy Research Advisory Committee (NERAC) Meeting of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting of November 3 and 4, 2003 Nuclear Energy Research Advisory Committee (NERAC) Meeting of November 3 and 4, 2003 The agenda for the National Energy Research Advisory...

17

SRNL Project Supports Nuclear Energy Research  

will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, meet the need for advanced nuclear energy

18

Solar and nuclear energy expertise to be enhanced by research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy frontier research centers Solar and nuclear energy expertise to be enhanced by research centers Los Alamos will be home to two new Energy Frontier Research Centers through a...

19

International Nuclear Energy Research Initiative (I-NERI) Annual Reports |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports August 13, 2013 International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the

20

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status...

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

International Nuclear Energy Research Initiative: 2007 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2007 Annual International Nuclear Energy Research Initiative: 2007 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. Information on the program

22

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2012 Annual International Nuclear Energy Research Initiative: 2012 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs,

23

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

24

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

25

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

26

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Nuclear Energy Research Advisory Committee, of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

27

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility...

28

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility...

29

International Nuclear Energy Research Initiative: 2008 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual 8 Annual Report International Nuclear Energy Research Initiative: 2008 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) website:

30

International Nuclear Energy Research Initiative: 2009 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual 9 Annual Report International Nuclear Energy Research Initiative: 2009 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented collaboration that supports advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy Office of Nuclear Energy website.

31

International Nuclear Energy Research Initiative: Annual Report 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 International Nuclear Energy Research Initiative: Annual Report 2005 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses the key issues affecting the future of nuclear energy and its global deployment. I-NERI research is directed towards improving cost performance, increasing proliferation resistance, enhancing safety, and improving the waste management of future nuclear energy systems. This I-NERI 2005 Annual Report serves to inform interested parties about

32

Nuclear Energy Protocol for Research Isotopes Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protocol for Protocol for Research Isotopes Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology April 16, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/April16_02 NEPRI to NERAC.ppt (2) Nuclear Energy Protocol For Research Isotopes Nuclear Energy Protocol For Research Isotopes Why NEPRI? 6 NEPRI implements DOE funding priorities for fiscal year 2003 6 NEPRI will * Bring order to DOE's responses to requests for research isotopes * Introduce a high-quality peer review to the selection of research isotopes * Enable DOE to concentrate on operating its unique isotope production facilities Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology

33

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

34

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

35

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Annual 2 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs, maximize safety, minimize proliferation risk, and handle used fuel and

36

International Nuclear Energy Research Initiative: Annual Report 2006 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 International Nuclear Energy Research Initiative: Annual Report 2006 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment. A link to the program can be found at the NE website. This I-NERI 2006 Annual Report serves to inform interested parties about the program's organization, progress of collaborative research projects undertaken since FY 2003, and future plans for the program. Following is an

37

International Nuclear Energy Research Initiative 2010 Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 I-NERI Annual Report 2010 I-NERI Annual Report  | i Foreword The U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), established the International Nuclear Energy Research Initiative (I-NERI) in fiscal year (FY) 2001 to conduct advanced nuclear energy systems research in collaboration with international partners. This annual report provides an update on research and development (R&D) accomplishments which the I-NERI program achieved during FY 2010. I-NERI supports bilateral scientific and engineering collaboration in advanced reactor systems and the nuclear fuel cycle and is linked to two of DOE-NE's primary research programs: Reactor Concepts Research, Development and Demonstration and the Fuel Cycle Research and Development program. I-NERI is designed to foster international partnerships to address key issues

38

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-May 1, 2001, Crystal City Marriott, Arlington, Virginia 30-May 1, 2001, Crystal City Marriott, Arlington, Virginia NERAC members present: John Ahearne Benjamin F. Montoya Joseph Comfort Sekazi Mtingwa Michael L. Corradini Lura Powell Jose Luis Cortez Richard Reba Maureen S. Crandall Joy Rempe James Duderstadt (Chair) Allen Sessoms (Monday only) Marvin Fertel Daniel C. Sullivan (Monday only) Steve Fetter John Taylor Beverly Hartline Ashok Thadani (ad hoc) Leslie Hartz Charles E. Till Andrew Klein Neil Todreas Dale Klein Joan Woodard Robert Long NERAC members absent: Thomas Cochran Linda C. Knight Allen Croff Warren F. Miller, Jr. J. Bennett Johnston C. Bruce Tarter Also present: Ralph Bennet, Director, Advanced Nuclear Energy, Idaho National Engineering and Environmental Laboratory Nancy Carder, NERAC Staff Yoon I. Chang, Associate Laboratory Director, Argonne National Laboratory

39

International Nuclear Energy Research Initiative: 2011 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual 1 Annual Report International Nuclear Energy Research Initiative: 2011 Annual Report Fiscal year (FY) 2011 marks the ten-year anniversary of the founding of the International Nuclear Energy Research Initiative, or I-NERI. Designed to foster international partnerships that address key issues affecting the future global use of nuclear energy, I-NERI is perhaps even more relevant today than at its establishment. In the face of increasing energy demands coupled with clean energy imperatives, we must clear the hurdles to expanding the role of nuclear power in our energy portfolio. And in an increasingly global society, the importance of international cooperation in these efforts has escalated. For ten years, I-NERI has been a vehicle for establishing bilateral

40

A Strategy for Nuclear Energy Research and Development  

Science Conference Proceedings (OSTI)

The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sectors dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energys share will require a coordinated research effortcombining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

Ralph G. Bennett

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

International Nuclear Energy Research Initiative: 2010 Annual...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. U.S. researchers partner with international organizations,...

42

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

310: Accomplishing Expanded Civilian Nuclear Energy Research 310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility Summary This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at DOE's Hanford Site near Richland, Washington. This PEIS will analyze the potential environmental impacts of alternative ways to meet the projected irradiation needs for the next 35 years. Public Comment Opportunities

43

Department of Energy Announces 24 Nuclear Energy Research Awards to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Nuclear Energy Research Awards to 4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis $12 Million in Support to Be Provided for Innovative R&D Projects WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today announced 24 research awards totaling $12 million over three years to U.S. universities to engage students and professors in DOE's advanced nuclear energy research and development programs, including the Advanced Fuel Cycle Initiative, Generation IV Nuclear Energy Systems Initiative and Nuclear Hydrogen Initiative. "These awards support the department's advanced nuclear technology development efforts and foster the education and training of the next generation of scientists and engineers needed to move this vital industry

44

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications...

45

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and  

E-Print Network (OSTI)

. 1. HISTORY 1.1 Decommissioning of the Reactor The Gentilly-I nuclear power plant, located satisfactory for safe operation, and AECL decided to decommission it in 1978. The nuclear fuel was removedSP·215-18 FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure by M. Demers. A

46

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Basic Research for an Era of Nuclear Energy Developed at: Lawrence Berkeley National Laboratory, Lawrence Livermore National

47

Appendix B to the Minutes for the Nuclear Energy Research Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix B to the Minutes for the Nuclear Energy Research Advisory Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon-usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by terrorists to develop and deliver a crude nuclear explosive device, or by a hostile proliferant state to develop more sophisticated nuclear weapons. This is not the time for the United States to be launching an international research effort to develop

48

Report of the Infrastructure Task Force of the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Infrastructure Task Force of the Nuclear Energy of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee Report of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee On October 1, 2002 the DOE Nuclear Energy Research Advisory Committee was asked to provide specific, focused updates to its Nuclear Science and Technology Infrastructure Roadmap and review the specific issues at the DOE key nuclear energy research and development (R&D) laboratories. This activity was assigned to a five-member Infrastructure Task Force (ITF). After receiving extensive written materials from DOE, the Idaho Nuclear Engineering and Environmental Laboratory (INEEL) and Argonne National Laboratory-West (ANL-W), on November 6-8, 2002 the ITF visited the Idaho site and received briefings and tours of the INEEL and ANL-W facilities.

49

U.S. DEPARTMENT OF ENERGY NUCLEAR ENGINEERING EDUCATION RESEARCH: HIGHLIGHTS  

E-Print Network (OSTI)

U.S. DEPARTMENT OF ENERGY NUCLEAR ENGINEERING EDUCATION RESEARCH: HIGHLIGHTS OF RECENT AND CURRENT RESEARCH--III Sponsored by the Education and Training Division Cosponsored by the Fusion Energy Division! emitted with various energies at different positions with respect to the crystal. These PXR have several

Danon, Yaron

50

New Nuclear Energy Awards Give Students Hands-On Research Experience |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Nuclear Energy Awards Give Students Hands-On Research New Nuclear Energy Awards Give Students Hands-On Research Experience New Nuclear Energy Awards Give Students Hands-On Research Experience September 28, 2012 - 9:33am Addthis Bojan Petrovic, a senior researcher at Georgia Institute of Technology, will lead an IRP team in developing a high-power light water reactor design with inherent safety features. | Photo courtesy of Georgia Institute of Technology Bojan Petrovic, a senior researcher at Georgia Institute of Technology, will lead an IRP team in developing a high-power light water reactor design with inherent safety features. | Photo courtesy of Georgia Institute of Technology Bradley Williams Team Lead, Nuclear Energy University Programs What Colleges Received The Awards? Georgia Institute of Technology

51

Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy - Related Research and Development Proposals  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Nuclear Energy University Programs (NEUP) is now accepting pre-applications from universities interested in conducting nuclear energy- related research and development (R&D) projects.

52

Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

53

Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative  

Science Conference Proceedings (OSTI)

NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (ORNL) to contact other researchers for additional data from other test equipment. Consequently, we have revised the work plan for Tasks 2.1-2.2, with corresponding changes to the work plan as shown in the Status Summary of NERI Tasks. The revised tasks are as follows: Task 2.1--ORNL will obtain test data from a subcontractor and other researchers for various test equipment. This task includes development of a test plan or a description of the historical testing, as appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, data acquisition equipment, and resulting data from the test sequence. ORNL will analyze this data for quality, and subsequently via the nonlinear paradigm for prognostication. Task 2.2--ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison metrics for reliability of the predictions will include the true positives, true negatives, and the forewarning times. Task 2.3--ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 2.1-2.2, to maximize the rate of true positive and true negative indications of failure. Maximal forewarning time is also highly desirable. Task 2.4--ORNL will develop advanced algorithms for the phase-space distribution function (PS-DF) pattern change recognition, based on the results of Task 2.3. This implementation will provide a capability for automated prognostication, as part of the maintenance decision-making. Appendix A provides a detailed description of the analysis methods, which include conventional statistics, traditional nonlinear measures, and ORNL's patented nonlinear PSDM. The body of this report focuses on results of this analysis.

Hively, LM

2003-02-13T23:59:59.000Z

54

Nuclear Energy Research and Development in the Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

used nuclear fuel disposition, effective utilization and deployment of advanced reactor concepts, and eventual development of a permanent geologic repository(s). This should...

55

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

56

UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report  

SciTech Connect

This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup #25;0}, 2{pi}{sup #25;}0, 3{pi}{sup #25;0}, {eta}#17;, {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4#25;. It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, Gâ??parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta}#17;,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta}#17; and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup #4;â??}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and nonâ??coherent #25;0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the #25;{pi}{sup 0} final state and exclusive for background such as 2#25;{pi}{sup 0}.

B.M.K. Nefkens (Principal Investigator, ed.); J. Goetz; A. Lapik; M. Korolija; S. Prakhov; A. Starostin (ed.)

2011-05-18T23:59:59.000Z

57

Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 4Q99  

SciTech Connect

OAK B188 Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 4Q99.

Stanley E. Ritterbusch

2001-11-12T23:59:59.000Z

58

Department of Energy Awards $3.8 Million in Funding to 38 U.S. Universities for Nuclear Research Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, DC - The U.S. Department of Energy (DOE) today strengthened its commitment to advancing nuclear power by awarding $100,000 to 38 universities to enhance nuclear research and development...

59

Nuclear Energy  

Nuclear Energy Environmental Mgmt. Study Objectives: Respond to the pressing need to refine existing corrosion models: Predict performance in wide range of environments

60

Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratories Under the Nuclear Energy Plant Optimization (NEPO) Program  

Science Conference Proceedings (OSTI)

This report describes cable polymer aging and condition monitoring research performed at Sandia National Laboratories under the Nuclear Energy Plant Optimization (NEPO) Program from 2000 to 2005. The research results apply to low-voltage cable insulation and jacket materials that are commonly used in U.S. nuclear power plants. The research builds upon and is linked to research performed at Sandia from 1977 through 1986, sponsored by the U.S. Nuclear Regulatory Commission. Aged and unaged specimens from t...

2005-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

Ritterbusch, S.E.

2000-08-01T23:59:59.000Z

62

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network (OSTI)

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors configurations will contribute to an improved design, safety, and operation of nuclear reactors. In relation

Lindken, Ralph

63

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

64

Why Nuclear Energy?  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear Why nuclear energy? energy? Nuclear energy already meets a significant share of the Nuclear energy already meets a significant share of the world world' 's energy needs s...

65

Nuclear | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space...

66

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has...

67

(Nuclear theory). [Research in nuclear physics  

SciTech Connect

This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

Haxton, W.

1990-01-01T23:59:59.000Z

68

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Nuclear...

69

MIT Nuclear Space Research Andrew C. Kadak  

E-Print Network (OSTI)

SELENE MIT Nuclear Space Research Andrew C. Kadak Professor of the Practice Nuclear Science with Nuclear Energy ­ Selene - Sodium-Cooled Epithermal Long-term Exploration Nuclear Engine (MS thesis) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration

70

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network (OSTI)

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors: Better prediction of the flow and heat transfer in liquid metal cooled nuclear reactors will contribute

Lindken, Ralph

71

Nuclear Energy Enabling Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop...

72

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

73

Sustainable Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling a Sustainable Nuclear Energy Future Since its inception, Argonne R&D has supported U.S. Department of Energy nuclear programs and initiatives, including today's...

74

Research in theoretical nuclear physics  

SciTech Connect

This report discusses topics in the following areas: Low energy nuclear reactions induced by light and heavy ions; medium energy physics; and nuclear structure. (LSP)

Udagawa, T.

1992-09-01T23:59:59.000Z

75

Nuclear Energy Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these reviews provides advice and recommendations on the program's long-range plans, priorities, and strategies to effectively address the scientific and engineering aspects of the research and development efforts. In addition, the committee provides advice on national policy and scientific aspects of

76

Nuclear Energy Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Funding Opportunities Document Library The Nuclear Energy Advisory...

77

Nuclear Energy Research Advisory Committee Meeting March 30-31, 1999, Marriott Crystal City, Arlington, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 30-31, 1999, Marriott Crystal City, Arlington, Virginia March 30-31, 1999, Marriott Crystal City, Arlington, Virginia NERAC members present: John Ahearne Robert Long Thomas Boulette Sekazi Mtingwa Thomas Cochran Richard Reba Joseph Comfort Joy Rempe Jose Luis Cortez Miguel Rios Maureen S. Crandall C. Paul Robinson (Tuesday only) Allen Croff Allen Sessoms (Wednesday only) James Duderstadt (Chair) Daniel C. Sullivan Marvin Fertel (Wednesday only) John Taylor Dale Klein Charles E. Till Linda Knight Neil Todreas NERAC members absent: Beverly Hartline Warren Miller J. Bennett Johnston Robert Socolow William Kastenberg Bruce Tarter Also present: Norton Haberman, Senior Technical Advisor, Office of Nuclear Energy, Science, and Technology (NE), DOE John Herczeg, Lead Nuclear Engineer, Office of Technology, DOE William Magwood, Director, Office of Nuclear Energy, Science, and Technology (NE), DOE

78

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

Todd R. Allen

2011-12-01T23:59:59.000Z

79

NUCLEAR ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

could improve the economic and safety performance of these advanced reactors. Nuclear power can reduce GHG emissions from electricity production and possibly in co-generation...

80

COMMENTS ON "A NEW LOOK AT LOW-ENERGY NUCLEAR REACTION RESEARCH"  

SciTech Connect

Cold fusion researchers have accumulated a large body of anomalous results over the last 20 years that they claim proves a new, mysterious nuclear reaction is active in systems they study. Krivit and Marwan give a brief and wholly positive view of this body of research. Unfortunately, cold fusion researchers routinely ignore conventional explanations of their observations, and claim much greater than real accuracy and precision for their techniques. This paper attempts to equally briefly address those aspects of the field with the intent of providing a balanced view of the field, and to establish some criteria for subsequent publications in this arena.

Shanahan, K.

2009-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Department of Energy Idaho - Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Department of Energy (DOE). DOE headquarters (DOE-HQ) has decided to focus its nuclear energy research and development (R&D) programs in Idaho. We are taking measurable...

82

Research Areas | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation & Validation Nuclear Systems Technology Reactor Technology Research Highlights Facilities and Capabilities Educational Outreach Publications and Reports News and Awards...

83

Research in theoretical nuclear physics  

SciTech Connect

The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas.

Udagawa, T.

1991-10-01T23:59:59.000Z

84

Budget projections 1989, 1990, and 1991 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

Not Available

1989-05-01T23:59:59.000Z

85

Budget projections 1988, 1989, and 1990 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. Professor R.F. Schwitters is currently chairman of this committee. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, J. Rohlf, C. Rubbia, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, C. Rubbia, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg (Associate Director, High Energy Physics Laboratory) administers the High Energy Physics Laboratory and is in charge of the Computer Facility. Professor Rubbia is currently on leave of absence and will leave Harvard on December 31, 1988 to become the Director General of CERN. A reduced UA1 effort will remain at Harvard after Professor Rubbia`s departure. Harvard is planning to make one or two senior faculty appointments in experimental high energy physics sometime in 1988-89. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. Many of these students have gone on to graduate school studying physics at Harvard and elsewhere.

Not Available

1988-04-01T23:59:59.000Z

86

Budget projections 1990, 1991, and 1992 for research in high energy nuclear physics  

Science Conference Proceedings (OSTI)

Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, M. Franklin, S. Geer, R. J. Glauber, K. Kinoshita, F. M. Pipkin, R. F. Schwitters, K. Strauch, M. E. Law, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F.Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

Not Available

1990-05-01T23:59:59.000Z

87

Nuclear energy | Open Energy Information  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Nuclear energy is energy in the nucleus of an atom.1 References "EIA: Uranium (nuclear) Basics" External links...

88

Argonne Historical News Releases about Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Releases Releases About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

89

Nuclear Energy Research Advisory Committee Meeting November 17-18, 1998, Hyatt Regency Crystal City, Arlington, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1- 1- Minutes for the Nuclear Energy Research Advisory Committee Meeting November 17-18, 1998, Hyatt Regency Crystal City, Arlington, Virginia NERAC members present: John Ahearne (Tuesday only) Linda Knight Thomas Boulette Thomas Cochran Robert Long Joseph Comfort Warren Miller Jose Luis Cortez Sekazi Mtingwa Maureen S. Crandall (Tuesday only) Richard Reba Allen Croff Joy Rempe James Duderstadt (Chair) Robert Socolow (Tuesday only) Marvin Fertel Daniel C. Sullivan Beverly Hartline Bruce Tarter (Tuesday only) William Kastenberg Charles E. Till Dale Klein Neil Todreas NERAC members absent: J. Bennett Johnston Glenn Seaborg C. Paul Robinson Allen Sessoms Miguel Rios John Taylor Also present: Norton Haberman, Senior Technical Advisor, Office of Nuclear Energy, Science, and Technology, NE, DOE

90

The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

Science Conference Proceedings (OSTI)

'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

2011-05-01T23:59:59.000Z

91

Nuclear Energy University Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy University Program Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy University Programs (NEUP), which was created in 2009 to consolidate university support under one initiative and better integrate university research within NE' technical programs. NEUP engages U.S. colleges and universities to conduct research and development (R&D), enhance infrastructure and support student education

92

Nuclear Energy | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

93

NUCLEAR DEFORMATION ENERGIES  

E-Print Network (OSTI)

J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusin connection with nuclear fission. The need for a better

Blocki, J.

2009-01-01T23:59:59.000Z

94

R. Shane Johnson, Associate Director Office of Advanced Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Research Advanced Nuclear Research September 30, 2002 Generation IV International Forum Generation IV International Forum Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Generation IV International Forum Generation IV International Forum 6 Government-sanctioned organization working together to plan the future of nuclear energy * Chartered in July 2002 * Conduct joint R&D on next-generation nuclear energy systems * Voluntary member participation in specific projects 6 Observer Organizations * OECD-NEA * IAEA * Euratom South Korea U.S.A. Argentina Brazil Canada France Japan South Africa United Kingdom Switzerland Office of Nuclear Energy, Science and Technology

95

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

96

department of energy also moving on nuclear  

Science Conference Proceedings (OSTI)

Energy Secretary Steven Chu has announced the selection of 42 university-led research and development projects in nuclear energy for awards totaling $38 million. ... We are taking action to restart the nuclear industry as part of a broad...

97

Energy Research and Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research and Development Energy Research and Development Energy Research and Development 1. In General GC-52 provides legal advice to DOE regarding energy research and development projects supported by DOE for the advancement of basic and applied science in a variety of subject-matter areas including nuclear energy, fusion energy, and climate change research. GC-52 attorneys provide advice on matters related to scientific conduct and activities, review program reports and activities for compliance with applicable provisions of law, and provide support for federal interagency research and development activities. Applicable Laws Atomic Energy Act of 1954 Further Information Office of Science Office of Nuclear Energy (NE) 2. Isotope Production and Sales GC-52 provides legal advice to DOE's Office of Isotope Production and

98

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

99

Summary, Long-Term Nuclear Technology Research and Development Plan  

Energy.gov (U.S. Department of Energy (DOE))

In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on...

100

Research helps safeguard nuclear workers worldwide - Argonne's Historical  

NLE Websites -- All DOE Office Websites (Extended Search)

Research helps safeguard nuclear workers Research helps safeguard nuclear workers worldwide About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nuclear Energy University Program Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program » Nuclear Energy Nuclear Energy University Program » Nuclear Energy University Program Documents Nuclear Energy University Program Documents Documents Available for Download October 31, 2013 FY 2014 Consolidated Innovative Nuclear Research FOA This Funding Opportunity Announcement (FOA) addresses the competitive portion of NE's R&D portfolio as executed through the Nuclear Energy University Programs (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and

102

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Status 1 Status Presentation to Nuclear Energy Advisory Committee (NEAC) June 15, 2011 Michael Worley, NEUP Program Manager NEUP Funding is Program Driven Program Directed Funding Program Supported Funding Mission Supported Funding Natl. Labs Universities DOE-NE HQ Peer Review DOE NE Program Drivers 2 3 Summary of Improvements and New Programs for FY 2011 * Expand "Blue Sky" Research and Development (R&D) * Initiate Integrated Research Projects (IRP) * Expand and improve peer review data base * Evaluate adoption of NRC and NNSA Metrics as appropriate to NEUP * Conduct peer review at pre-application stage for R&D 2011 Proposed NEUP Budget - $61.8M * Program Directed Integrated Research Projects (IRP) - $12.0M (NEW)

103

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and...

104

Research in theoretical nuclear physics  

SciTech Connect

The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas.

Udagawa, Takeshi.

1990-10-01T23:59:59.000Z

105

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition Year 6 Nuclear Power 2010 6 Major Program Developments 6 FY 2003 Budget Request Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (3) Nuclear Power 2010 Nuclear Power 2010 Nuclear Power 2010 is a new R&D initiative announced by Secretary Abraham on February 14, 2002. This initiative is designed to clear the way for the construction of new nuclear power plants by 2010. Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (4) Can We Build New U.S. Reactors By 2010? Yes! Can We Build New U.S. Reactors By 2010? Yes! Can Be Deployed by 2010

106

Geosciences research at Los Alamos related to non-nuclear energy  

DOE Green Energy (OSTI)

A brief description is given of the LASL hot-dry-rock (HDR) geothermal energy project. Geoscience activities in support of HDR-GTE include: (1) geochemical and petrological investigation of drill cores; (2) physical and mechanical properties of the cores, in situ and in the laboratory; (3) seismology; (4) experimental and numerical investigations of the chemical interaction of granite and hot aqueous solutions; (5) field and laboratory investigations of heat flow and thermal properties of the cores; (6) characterization and selection of future HDR sites; and (7) investigation of igneous and volcanic systems. Basic geosciences research activities at LASL include geophysical hydrodynamics, thermochemistry of minerals, aqueous phases and rock-fluid systems, the application of shock-wave and other high-pressure techniques to investigations of the equation-of-state of rocks and minerals and to questions regarding the physics and chemistry of the earth's interior, and preparation of high priority crystals for experimental studies. Brief sketches of these activities are presented. (LBS)

McGetchin, T.R.

1976-01-01T23:59:59.000Z

107

Office of Nuclear Energy Fiscal Year 2014 Budget Request  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Nuclear Energy (NE) supports the diverse civilian nuclear energy programs of the U.S. Government, leading Federal efforts to research and develop nuclear energy technologies,...

108

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Five Years of Building the Next Generation of Reactors Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). A two-year update on the Consortium for Advanced Simulation of Light Water Reactors and the progress being made in overcoming barriers to national

109

Nuclear Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

110

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

111

National Nuclear Data Center Nuclear Energy  

E-Print Network (OSTI)

National Nuclear Data Center and Nuclear Energy Pavel Oblozinsky National Nuclear Data Center;National Nuclear Data Center Probably the oldest active organization at BNL History · Founded in 1952 as Sigma Center, neutron cross sections · Changed to National Nuclear Data Center in 1977 · 40 staff

112

nuclear energy legislation on track  

Science Conference Proceedings (OSTI)

07/8 - NUCLEAR ENERGY LEGISLATION ON TRACK ... the safety and economic viability of nuclear power, the management of nuclear waste, the advancement...

113

Report, Long-Term Nuclear Technology Research and Development Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are not limited to, R&D related to power reactors and the responsibility for the waste management system for final disposition of the spent fuel resulting from nuclear power reactors. Although a major use of nuclear technology is to supply energy for electricity production, the DOE has far broader roles regarding nuclear

114

Nuclear Instruments and Methods in Physics Research A 574 (2007) 98109 Gamma-ray energy-imaging integrated spectral deconvolution$  

E-Print Network (OSTI)

possible. This research was supported by the US Department of Energy/NNSA NA-22 office under Grant DE-FG03

He, Zhong

115

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have any authority to direct DOE and/or NNSA program

116

Nuclear Energy Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 9, 2010 L'Enfant Plaza Hotel Washington, D.C. Committee Members Participating John Ahearne Raymond Juzaitis Ashok Bhatnagar William Martin, Chair Dana Christensen Carl Paperiello Thomas Cochran Burton Richter Michael Corradini John Sackett Marvin Fertel Allen Sessoms Donald Hintz Neil Todreas Committee Members Absent Brew Barron Susan Ion Other Participants: Richard Black, Director, Office of Advanced Reactor Concepts, Office of Nuclear Energy, USDOE Nancy Carder, Medical University of South Carolina, NEAC Support Staff David Hill, Director, Institute for Nuclear Energy Science and Technology, Idaho National Laboratory Shane Johnson, Chief Operating Officer, Office of Nuclear Energy, USDOE

117

Office of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more...

118

Secretary Chu Announces Nuclear Energy University Program Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Secretary Chu Announces Nuclear Energy University Program Awards Nearly 9 Million to Benefit Nuclear Science and Engineering Students and University Research Infrastructure...

119

Nuclear Energy University Program: A Presentation to Vice Presidents...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

120

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology MagwoodApril1502 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition...

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 30, 2002 September 30, 2002 NERAC Fall 2002 Meeting Office of Nuclear Energy, Science and Technology Major Program Developments Major Program Developments 6 June 2002: Department selects three U.S. electric utilities (Dominion Energy, Entergy, and Exelon) to participate in joint government/ industry projects to demonstrate NRC's Early Site Permit (ESP) process and seek NRC approval by mid-decade 6 July 2002: Secretary Abraham announces transition of management of the Idaho National Engineering and Environmental Laboratory to Nuclear Energy and revitalization of its nuclear R&D mission 6 September 2002: Generation IV International Forum reaches agreement on six advanced reactor and fuel cycle technologies for joint development Office of Nuclear Energy, Science and Technology

122

Nuclear Fission Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and about 250 kg of 239Pu. Some 40% of the energy produced in the course of a nuclear fuel cycle comes from 239Pu. Since about 20% of the electricity generated in the United...

123

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the...

124

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 13051322  

E-Print Network (OSTI)

annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 1305­1322 www. Demazie`re, I. Pa´zsit / Annals of Nuclear Energy 32 (2005) 1305­1322 Nomenclature ACF autocorrelation`re, I. Pa´zsit / Annals of Nuclear Energy 32 (2005) 1305­1322 amroNli)1(FRIdezamroNli)1(FCAdez 1 0.8 0

Demazière, Christophe

125

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842  

E-Print Network (OSTI)

annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www of Nuclear Energy 32 (2005) 812­842 background noise is present, this technique is useful to indicate. Demazie`re, G. Andhill / Annals of Nuclear Energy 32 (2005) 812­842 noise source could then be derived

Demazière, Christophe

126

Research Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Opportunities Research Opportunities Research Opportunities Research opportunities at Energy Department labs and facilities: Argonne Nuclear Science Educational Programs The mission of Innovate to Educate is to take a leadership role to champion Argonne's mission to transform scientific discovery into innovation, develop and enable education programs that reflect Argonne's strategic engineering, science, and computational initiatives, and to develop new educational programs based on transformative scientific discovery. Faculty and Student Teams Program The Faculty and Student Teams (FaST) Program is a cooperative effort between the Department of Energy (DOE) Office of Science and the National Science Foundation (NSF). Faculty from colleges and universities with limited research facilities, and from those institutions serving

127

Office of Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NE Human Capital Plan Revised August 2006 U. S. Department of Energy NE Human Capital Plan i August 2006 Office of Nuclear Energy Table of Contents Executive Summary...................................................................................................................................1 Background .................................................................................................................................................2 NE Human Capital Strategy.....................................................................................................................2 NE Human Capital Plan: At-A-Glance ..................................................................................................3

128

Nuclear Science and Engineering Education Sourcebook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science and Engineering Education Sourcebook Science and Engineering Education Sourcebook Nuclear Science and Engineering Education Sourcebook The Nuclear Science and Engineering Education Sourcebook is a repository of critial information on nuclear engineering programs at U.S. colleges and universities. It includes detailed information such as nuclear engineering enrollments, degrees, and faculty expertise. In this latest edition, science faculty and programs relevant to nuclear energy are also included. NuclearScienceEngineeringSourcebook2013.pdf More Documents & Publications University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee The Future of University Nuclear Engineering Programs and University Research and Training Reactors Clark Atlanta Universities (CAU) Energy Related Research Capabilities

129

Research Highlights | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Awards News and Awards Nuclear Science Home | Science & Discovery | Nuclear Science | Research Highlights SHARE Research Highlights 1-3 of 3 Results Neutron scattering continues as a vital tool in superconductivity studies January 01, 2011 - In 2008, the totally unexpected discovery of a New class of superconductors, the iron pnictides, set off A Feverish international effort to understand them. Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 - The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. Light Water Reactor Fuel Cladding Research June 01, 2013 - ORNL is the focus point for Light Water Reactor (LWR)

130

Nuclear Energy Page 570Page 570  

E-Print Network (OSTI)

appropriation, NE has ten programs: University Reactor Infrastructure and Education Assistance, Nuclear Energy of commercial spent nuclear fuel and use that material as fuel in fast spectrum reactors to generate additional will lead multi-national research and development projects to usher forth next-generation nuclear reactors

131

Chemistry and Metallurgy Research Replacement - Nuclear Facility...  

National Nuclear Security Administration (NNSA)

Chemistry and Metallurgy Research Replacement - Nuclear Facility (CMRR-NF SEIS) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing...

132

Nuclear Science Research Facilities Nuclear Science User Guide  

E-Print Network (OSTI)

LANSCE User Guide Nuclear Science Research Facilities #12;#12;Nuclear Science User Guide Table of Contents Introduction 3 Nuclear Science Research Facilities 3 The LANSCE Accelerator 4 Time structure techniques 8 Nuclear Science User Program 11 Proposal Process 13 Information for Prospective Users 14

133

Solar Energy Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Research Center PROJECT DESCRIPTION SERC rendering The SERC building will be a 39,000 gsf building designed to house research laboratories and offices devoted to...

134

Energy Frontier Research Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

Frontier Research Centers Science for our Nation's Energy Future US Department of Energy Office of Science www.energyfrontier.us 43 ABOVE: CFSES addresses safe, secure and...

135

BOOK: The Nuclear Energy Option  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... This on-line book covers the driving forces for nuclear power, risks of nuclear energy and next generation reactors. SOURCE: Cohen, B. L. The...

136

Energy Research Group Homepage  

Science Conference Proceedings (OSTI)

Energy Research Group. Welcome. The newest Group in the CNST develops instruments designed to reveal the nanoscale ...

2012-10-02T23:59:59.000Z

137

Third Energy Research Summit Dr. Vania Croce  

E-Print Network (OSTI)

, nuclear and conventional energy, transmission and supply were present. This document reports the outputs could coordinate joint research council/industry summer schools, regionally based industrial energyThird Energy Research Summit May 2007 Author: Dr. Vania Croce Portfolio Manager - Energy EPSRC

138

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on Nuclear Responsibility on theof the Alliance for Nuclear Responsibility. The information

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

139

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more proliferation-resistant fuel cycle technologies. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale

140

Important issues in energy research and development  

DOE Green Energy (OSTI)

This paper identifies and briefly examines a number of important issues in energy research and development which warrant special attention by the Energy Research and Development Office (ERDO). The following six matters are identified as being of sufficient weight to be labeled important issues: nuclear reactor siting policy: nuclear energy centers; the development of solar electric power; exploitation of western oil shale; improvements in mining technology for coal; assuring uranium fuel supplies; and automotive energy systems.

Not Available

1974-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SOLAR ENERGY RESEARCH ENCLAVE  

E-Print Network (OSTI)

1 SOLAR ENERGY RESEARCH ENCLAVE submitted to Indian Institute of Technology Kanpur R.S. Anand (EE......................................................................................................................46 SOLAR ENERGY: ECONOMICS AND PROJECT IMPLEMENTATION the many bottle necks are cost of technology, energy storage, distribution of solar power and daily

Srivastava, Kumar Vaibhav

142

Office of Nuclear Energy | Department of Energy  

NLE Websites -- All DOE Office Websites

(M&S) of commercial nuclear reactors. Read more Blog May 6, 2013 Paving the path for next-generation nuclear energy Nuclear power reactors currently under construction worldwide...

143

Why Nuclear Energy? - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

144

2012 Nuclear Energy Enabling Technology Factsheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Enabling Technology Factsheet 2012 Nuclear Energy Enabling Technology Factsheet Learn more about the Nuclear Energy Enabling Technologies (NEET) program, which will...

145

Intermediate-energy nuclear chemistry workshop  

SciTech Connect

This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

1981-05-01T23:59:59.000Z

146

Nuclear Instruments and Methods in Physics Research A 452 (2000) 256}265 On the signi"cance of the energy correlations of  

E-Print Network (OSTI)

the energy correlations, i.e. the 260 I. Pa& zsit et al. / Nuclear Instruments and Methods in Physics neutrons with source energy E, i.e. (E)" # # l l Q 3 dE E . (34) 262 I. Pa& zsit et al. / Nuclear determination of the two-point energy distribution with coincidence 264 I. Pa& zsit et al. / Nuclear Instruments

Pázsit, Imre

147

Nuclear Energy (WFP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy (WFP) Nuclear Energy (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This will enable the agency to have...

148

Nuclear | Open Energy Information  

Open Energy Info (EERE)

Nuclear Nuclear Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 82. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 9. Electricy Generating Capacity Table 96. Electricity Generation by Electricity Market Module Region and Source Table 97. Electricity Generation Capacity by Electricity Market Module Region and Source Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has

149

Bartlesville Energy Research Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bartlesville Energy Research Center Bartlesville Energy Research Center The Federal Government in Petroleum Research, 1918-1983 The following is a study of a single research...

150

Strategic Nuclear Research Collaboration - FY99 Annual Report  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

T. J. Leahy

1999-07-01T23:59:59.000Z

151

DOE, State of Idaho Sign Agreement on Nuclear Research  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE, State of Idaho Sign Agreement on Nuclear Research The State of Idaho and the U.S. Department of Energy signed an agreement on Jan. 6, 2011 that streamlines the process used by...

152

Nuclear Energy University Program: A Presentation to Vice Presidents of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program: A Presentation to Vice Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy An overview of the Office of Nuclear Energy's university programs Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy More Documents & Publications Meeting Materials: December 18, 2009 Meeting Materials: June 9, 2009 June 2011, Report of the Fuel Cycle Subcommittee of NEAC

153

Nuclear energy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy Nuclear energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time

154

Nuclear Safety Research and Development Committee Charter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter Nuclear Safety Research and Development Committee Charter July 5, 2012 Nuclear Safety Research and Development Committee Charter The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have

155

Energy Research Group Staff Page  

Science Conference Proceedings (OSTI)

Energy Research Group Staff. ... Nikolai Zhitenev, Group Leader Nikolai Zhitenev is the Group Leader of the CNST Energy Research Group. ...

2013-11-08T23:59:59.000Z

156

Nuclear energy: The civilians take charge - Argonne's Historical News  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy: The civilians take charge Nuclear energy: The civilians take charge About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

157

Why are Some People Afraid of Nuclear Energy?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why are some people afraid of Nuclear Energy? Why are some people afraid of Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

158

Nuclear Energy Research Advisory Committee Meeting April 15-16, 2002, Marriott Crystal City Hotel, Arlington, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15-16, 2002, Marriott Crystal City Hotel, Arlington, Virginia 15-16, 2002, Marriott Crystal City Hotel, Arlington, Virginia NERAC members present: John Ahearne (Monday only) Robert Long Thomas Cochran Warren F. Miller, Jr. Joseph Comfort Benjamin F. Montoya Michael L. Corradini Sekazi Mtingwa Jose Luis Cortez Lura Powell Maureen S. Crandall Richard Reba (Tuesday only) Allen Croff Joy Rempe James Duderstadt (Chair) Daniel C. Sullivan (Monday morning only) Steve Fetter John Taylor Beverly Hartline Ashok Thadani (ad hoc; Monday only) Leslie Hartz Charles E. Till Andrew Klein Neil Todreas (Tuesday only) Dale Klein (Monday only) NERAC members absent: Marvin Fertel Allen Sessoms J. Bennett Johnston C. Bruce Tarter Linda C. Knight Joan Woodard Also present: Ralph Bennett, Director for Advanced Nuclear Energy, Idaho National Engineering and

159

The Global Nuclear Energy Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership A report on the Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S....

160

Symmetry Energy in Nuclear Surface  

E-Print Network (OSTI)

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. The interplay leads to a dependence of the symmetry coefficient, in energy formula, on nuclear mass. Charge symmetry of nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of neutron-proton asymmetry.

Danielewicz, Pawel

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fossil energy research meeting  

DOE Green Energy (OSTI)

U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

Kropschot, R.H.; Phillips, G.C.

1977-12-01T23:59:59.000Z

162

Geoscience research for energy security  

Science Conference Proceedings (OSTI)

This report focuses on the nation's geoscience needs and recommends DOE activities to mitigate major problems that effect energy security. The report recommends new or redirected DOE geoscience research initiatives for oil and gas, coal, nuclear resources, structures and processes in the earth's crust, geothermal resources, oil shale, and waste disposal. In light of the current and near-term national energy requirements, federal budget constraints, and the diminished R and D efforts from the domestic energy industry, the Board recommends that DOE: assign highest geoscience research emphasis to shorter-term, energy priorities of the nation; particularly advanced oil and gas exploration and production technologies; establish in DOE an Office of Geoscience Research to develop and administer a strategic plan for geoscience research activities; establish oil and gas research centers within each of the six major oil and gas provinces of the United States to conduct and coordinate interdisciplinary problem-oriented research; increase oil and gas research funding by an initial annual increment of $50 million, primarily to support the regional research centers.

Not Available

1987-02-01T23:59:59.000Z

163

Department of Energy and Nuclear Regulatory Commission Increase Cooperation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Regulatory Commission Increase Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP) through a Memorandum of Understanding (MOU) that was signed on Friday by DOE's GNEP Deputy Program Manager Paul Lisowski and NRC Executive Director for Operations Luis Reyes. The MOU establishes the foundation for increased cooperation between DOE and NRC on technological research and engineering studies and marks another important milestone

164

Energy Frontier Research Center News  

Office of Science (SC) Website

news/ The Office of news/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {9CB101D3-8765-47D6-A2DB-D5E8979B3C9B}http://science.energy.gov/bes/efrc/news-and-events/efrc-news/observing-the-sparks-of-life/ Observing the Sparks of Life EFRC researchers isolate a photosynthetic complex — arguably the most important bit of organic chemistry on the planet — in its complete functioning state. This work, featured in the Office of Science’s

165

THE GLOBAL NUCLEAR ENERGY PARTNERSHIP:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GLOBAL NUCLEAR ENERGY PARTNERSHIP: GLOBAL NUCLEAR ENERGY PARTNERSHIP: Greater Energy Security in a Cleaner, Safer World The Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S. and global energy security, encourage clean development around the world, reduce the risk of nuclear proliferation, and improve the environment. A plentiful, reliable supply of energy is the cornerstone of sustained economic growth and prosperity. Nuclear power is the only proven technology that can provide abundant supplies of base load electricity reliably and without air pollution or emissions of greenhouse gasses. In order to help meet growing demand for energy at home and encourage the growth of prosperity around the globe, GNEP provides for the safe, extensive expansion of clean nuclear power.

166

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support.

167

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next for Nuclear Energy? MIT Students Discuss Path Forward Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support. Investing in the next generation isn't just about technology -- it's

168

Research and Development | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Research and Development Home > About Us > Our Programs >...

169

Institutional Research & Development Reports | National Nuclear...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Reports Home > About Us > Our...

170

Institutional Research & Development | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Home > About Us > Our...

171

Mitsuru Uesaka Nuclear Engineering Research Laboratory ,  

NLE Websites -- All DOE Office Websites (Extended Search)

plasma cathode by 12 TW, 50 fs laser and its application to radiation chemistry Mitsuru Uesaka Nuclear Engineering Research Laboratory , University of Tokyo June 26, 2004...

172

Energy: Nuclear Energy Technology - Symposium @ Northwestern...  

NLE Websites -- All DOE Office Websites (Extended Search)

12-14, 2011 (http:ses2011.org) Fluid, Thermal and Energy Track Symposium 2.6, Energy: Nuclear Energy Technology Chair: Roger Blomquist Thursday, Oct 13 Time Topic & description...

173

Office of Nuclear Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Energy Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is

174

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

175

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program Awards Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

176

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

177

THE ENERGY-DEPENDENT SINGLE NUCLEON POTENTIAL IN A RELATIVISTIC FIELD THEORY OF NUCLEAR MATTER  

E-Print Network (OSTI)

Physics of the Office of High Energy and Nuclear Physics ofPhysics of the Office of High Energy and Nuclear Physics ofthe Director, Office of Energy Research, Divison of Nuclear

Muller, K.-H.

2012-01-01T23:59:59.000Z

178

Energy Functional for Nuclear Masses.  

E-Print Network (OSTI)

??An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional (more)

Bertolli, Michael Giovanni

2011-01-01T23:59:59.000Z

179

YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).  

SciTech Connect

The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

2010-04-28T23:59:59.000Z

180

Secretary Chu Announces Nuclear Energy University Program Awards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

teaching and research capabilities University of Nevada, Las Vegas Physical property measurement system and system upgrade for D8 advance x-ray diffraction for nuclear energy fuels...

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Office of Nuclear Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United...

182

NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398  

E-Print Network (OSTI)

The general theory of linear reactor kinetics and that of the induced neutron noise is developed for systemsannafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www.elsevier.com/locate/anucene LINEAR REACTOR KINETICS AND NEUTRON NOISE IN SYSTEMS WITH FLUCTUATING BOUNDARIES Imre Pfizsit and Vasiliy

Pázsit, Imre

183

Small Modular Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

184

Meeting Between the Department of Energy and the Nuclear Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy...

185

The Global Nuclear Energy Partnership: Greater Energy Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership: Greater Energy Security in a Cleaner, Safer World The Global Nuclear Energy Partnership: Greater Energy Security in a Cleaner, Safer World...

186

NREL: Photovoltaics Research - Solar Energy Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Research Facility Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic energy sciences are two major research areas conducted in the Solar Energy Research Facility (SERF). The building incorporates a multitude of energy saving features that make it one of the government's most energy efficient buildings with 40 percent lower energy costs than similar buildings designed to meet federal energy standards. The SERF houses three adjoining modules each containing a laboratory pod and an office pod. Laboratories in the west module are used to develop semiconductor material for high-efficiency crystalline solar cells. Laboratories in the center module are used to fabricate prototype solar

187

Pilot Application to Nuclear Fuel Cycle Options | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options The Department of Energy's Office of Nuclear Energy (DOE-NE) invests in research and development (R&D) to ensure that the United States will maintain its domestic nuclear energy capability and scientific and technical leadership in the international community of nuclear power nations in the years ahead. The 2010 Nuclear Energy Research and Development Roadmap presents a high-level vision and framework for R&D activities that are needed to keep the nuclear energy option viable in the near term and to expand its use in the decades ahead. The roadmap identifies the development

188

Nuclear Energy University Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The...

189

Supplement Analysis for the Programmatic Environmental Impact Statement (PEIS) for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, (DOE/EIS-0310-SA-01) (08/05/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-SA-01 0-SA-01 Supplement Analysis for the Programmatic Environmental Impact Statement (PEIS) for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility Introduction and Background The Department of Energy (DOE), pursuant to the National Environmental Policy Act (NEPA), issued the Final PEIS for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility (Nuclear Infrastructure (NI) PEIS, DOE/EIS-0310) in December 2000. Under the Authority of the Atomic Energy Act of 1954, the DOE's missions include: (1) producing isotopes for research and applications

190

Record of Decision for the Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the U.S. (DOE/EIS-0310) (1/26/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

77 77 Federal Register / Vol. 66, No. 18 / Friday, January 26, 2001 / Notices DEPARTMENT OF ENERGY Record of Decision for the Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility AGENCY: Department of Energy (the Department). ACTION: Record of Decision (ROD). SUMMARY: Under the authority of the Atomic Energy Act of 1954, the Department's missions include: (1) Producing isotopes for research and applications in medicine and industry; (2) meeting nuclear material needs of other Federal agencies; and (3) conducting research and development activities for civilian use of nuclear power. The Department has evaluated

191

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

192

Symmetry Energy in Nuclear Surface  

E-Print Network (OSTI)

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

Pawel Danielewicz; Jenny Lee

2008-11-10T23:59:59.000Z

193

Office of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first DOE Hub for the modeling and simulation (M&S) of commercial

194

Energy Frontier Research Center Events  

Office of Science (SC) Website

events/ The Office events/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {7ED2520F-2DB2-435D-8CBE-DEC18A03F324}http://science.energy.gov/bes/efrc/news-and-events/efrc-events/princeton-cefrc-summer-program-on-combustion-2013-session/ Princeton-CEFRC Summer Program on Combustion: 2013 Session The Combustion Energy Frontier Research Center at Princeton University will host a summer program on Combustion. Mon, 11 Mar 2013 00:00:00 -0400 {0C172CD4-47D1-4231-A89B-7C7C4F0CA5E4}http://science.energy.gov/bes/efrc/news-and-events/efrc-events/approaches-to-ultrahigh-efficiency-solar-energy-conversion-webinar/

195

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network (OSTI)

policy 52 New nuclear stations in the UK 57 The UK nuclear fuel cycle: historic, present and future 63 energy, nuclear research 86 and the fuel cycle The future of waste disposal 88 Public perception failures, can nuclear power stations be built to budget and time? Is public opinion sufficiently resilient

Birmingham, University of

196

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS  

E-Print Network (OSTI)

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS Hiroyasu EJIRI Nuclear Physics Laboratory Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567 Japan. E-mail address: ejiri@rcnp.osaka-u.ac.jp (H. Ejiri). Physics Reports 338 (2000) 265}351 Nuclear spin isospin responses for low

Washington at Seattle, University of

197

Institutional Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

198

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

199

Secretary Chu Announces Funding for 71 University-Led Nuclear Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Funding for 71 University-Led Nuclear Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects May 6, 2009 - 1:49pm Addthis U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D). Under the Nuclear Energy University Program (NEUP), these 71 projects will receive approximately $44 million over three years to advance new nuclear technologies in support of the nation's energy goals. By helping to develop the next generation of advanced nuclear technologies, the Nuclear Energy University Program will play a key role in addressing the global climate

200

Secretary Chu Announces Funding for 71 University-Led Nuclear Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Announces Funding for 71 University-Led Nuclear Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects May 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D). Under the Nuclear Energy University Program (NEUP), these 71 projects will receive approximately $44 million over three years to advance new nuclear technologies in support of the nation's energy goals. By helping to develop the next generation of advanced nuclear technologies, the Nuclear Energy University Program will play a key role in

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

United States and Japan Sign Joint Nuclear Energy Action Plan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

202

The Global Nuclear Energy Partnership (GNEP) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership (GNEP) The Global Nuclear Energy Partnership (GNEP) An article that examines the global nuclear energy partnership. The Global Nuclear Energy...

203

Department of Energy Conference Emphasizes Universities' Role in Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conference Emphasizes Universities' Role in Conference Emphasizes Universities' Role in Nuclear Energy Research Department of Energy Conference Emphasizes Universities' Role in Nuclear Energy Research August 14, 2009 - 1:35pm Addthis This Thursday and Friday, the U.S. Department of Energy hosted a workshop with professors from more than 40 U.S. universities to highlight the role universities can play in advancing the nation's nuclear energy research. U.S. Senator Bob Bennett, R-Utah, delivered closing remarks to the conference, emphasizing the importance of nuclear energy as a clean, carbon-free source of electricity. "The path to a clean energy future is through a balanced energy approach that includes nuclear energy, which provides electricity to one in five homes and businesses," said Bennett, ranking Republican on the Senate

204

Proposal for a High Energy Nuclear Database  

E-Print Network (OSTI)

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munitys ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

205

THE ENERGY GAP IN NUCLEAR MATTER  

E-Print Network (OSTI)

W-7405-eng-48 THE ENERGY GAP IN NUCLEAR MATTER V. J. Emery31, 1960 .po THE ENERGY GAP IN NUCLEAR HNrTEh V. J. ? :merysingle-particle energy in nuclear matter. The internucleon

Emery, V.J.

2008-01-01T23:59:59.000Z

206

Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project.

Bougaenko, S.E.; Kraev, A.E. [International Nuclear Safety Center of the Russian MINATOM, Moscow (Russian Federation); Hill, D.L.; Braun, J.C.; Klickman, A.E. [Argonne National Lab., IL (United States). International Nuclear Safety Center

1998-08-01T23:59:59.000Z

207

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Nuclear Energy Announces Central Europe Nuclear The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional Nuclear Safety Workshop on Trends in Nuclear Power Plant Safety for Robust Civil Nuclear Programs on Oct. 10-13, 2011 in Prague. U.S. Ambassador Norman Eisen and Department of Energy Assistant Secretary for Nuclear Energy Dr. Pete Lyons will deliver speeches welcoming participants. Representatives from the Czech Republic, Bulgaria, Lithuania,

208

NNSA, Philippine Nuclear Research Institute to Prevent Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Philippine Nuclear Research Institute to Prevent Radiological Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

209

CMCs for Nuclear Energy  

Science Conference Proceedings (OSTI)

Ceramic Matrix Composites (CMCs) are considered to improve the performance and safety of nuclear fusion and fission reactors. Silicon carbide-reinforced...

210

Building a Universal Nuclear Energy Density Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

211

Clean Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Alain Bonneville Alain Bonneville Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by an memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly

212

Thomas Miller Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miller Miller Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 30, 2002 Presentation at the Nuclear Energy Research Advisory Committee Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Office of Nuclear Energy, Science and Technology TMiller/Sept11_02 ESE Project.ppt ( 2) Nuclear Power 2010: Overview Nuclear Power 2010: Overview Goal 6 Achieve industry decision by 2005 to deploy at least one new advanced nuclear power plant by 2010 Cooperative Activities 6 Regulatory Demonstration Projects * Early Site Permit (ESP) * Combined Construction and Operating License (COL) 6 Reactor Technology Development Projects * NRC Design Certification (DC) * First-of-a-kind engineering for a standardized plant

213

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

214

Studies in Low-Energy Nuclear Science  

Science Conference Proceedings (OSTI)

This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

Carl R. Brune; Steven M. Grimes

2010-01-13T23:59:59.000Z

215

Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings  

DOE Green Energy (OSTI)

Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

Ruth, M.; Antkowiak, M.; Gossett, S.

2011-12-01T23:59:59.000Z

216

Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...  

Office of Science (SC) Website

Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIRSTTR...

217

Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report  

Science Conference Proceedings (OSTI)

OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities.

L. J. Bond; S. R. Doctor; R. W. Gilbert; D. B. Jarrell; F. L. Greitzer; R. J. Meador

2000-09-01T23:59:59.000Z

218

Medium energy nuclear physics research. Progress report for the period June 1, 1992 through May 31, 1993  

SciTech Connect

The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of {sup 3}He; coincidence measurement of the D(e,e{prime}p) cross section; transverse form factors of {sup 117}Sn; ground state magnetization density of {sup 89}Y; and measurement of the 5th structure function in deuterium and {sup 12}C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q{sup 2}, and A-dependence of R = {sigma}{sub L}/{sigma}{sub T}; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure.

Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

1993-06-01T23:59:59.000Z

219

New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology.

220

Expanding Options for Nuclear Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expanding Options for Nuclear Power Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department. The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Department of Energy Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One the cover: One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for Peaceful Applications ..................................... 7 Chronology of Nuclear Research and Development, 1942-1994 .................................... 13 Selected References ............................................. 23 Glossary ..............................................................

222

Nuclear Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

223

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -present East Asian national nuclear energy programs. Withoutfor the Peaceful Use of Nuclear Energy in East Asia by Jor-

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

224

Appliances Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Appliances Research Emerging Technologies » Appliances Research Appliances Research The Emerging Technology team conducts research into residential and commercial appliances. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in driving research in energy efficient technologies, with the goal of realizing 20% energy savings relative to a 2010 baseline. Appliance research focuses on refrigerators, washers, and dryers. Refrigerators Photo of a stainless steel refrigerator. Refrigerators have become substantially more energy efficient over the years, using less energy while also providing more space. While appliance standards for refrigerators have helped, continued research into new ways of improving refrigerators in the

225

Energy Frontier Research Centers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis from Atoms to Systems Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Center for Defect Physics in Structural Materials Fluid Interface Reactions, Structure and Transport Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Energy Frontier Research Centers SHARE Energy Frontier Research Centers Advanced Materials research at ORNL is home to two Department of Energy-Office of Basic Energy Sciences' Energy Frontier Research Centers, the Fluid Interface Reaction, Structure, and Transport Center (FIRST), which focuses on understanding interfacial processes critical to electrical energy storage and catalysis, and the Center for Defect Physics, (CDP)

226

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 6, 2010 May 6, 2010 CX-002327: Categorical Exclusion Determination Central Facility Area and Advanced Test Reactor-Complex Analytical and Research and Development Laboratory Operation (Overarching) CX(s) Applied: B3.6 Date: 05/06/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002192: Categorical Exclusion Determination Site Wide Well Abandonment Activities CX(s) Applied: B2.5, B3.1 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002584: Categorical Exclusion Determination Nuclear Fabrication Consortium CX(s) Applied: B3.6, A9, A11 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 12, 2010 CX-001627: Categorical Exclusion Determination

227

FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of NE. These efforts are essential to balancing NE's R&D portfolio and encouraging new nuclear power deployment with creative solutions to the universe of nuclear energy

228

FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2013 Consolidated Innovative Nuclear Research FOA FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of NE. These efforts are essential to balancing NE's R&D portfolio and encouraging new nuclear power deployment with creative solutions to the universe of nuclear energy

229

Nuclear Fuel Cycle | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

230

RENEWABLE ENERGY RESEARCH August 2010  

E-Print Network (OSTI)

RENEWABLE ENERGY RESEARCH August 2010 CERTS Smart Grid Demonstration with Renewable Energy Integration PIER Renewable Energy Research The Issue Researchers at the Santa Rita Jail, in Dublin, California will be demonstated. This demonstration will enable future applications under a Renewable-Based Energy Secure

231

Advanced research workshop: nuclear materials safety  

SciTech Connect

The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectivethe safe and secure storage and disposition of excess fissile nuclear materials.

Jardine, L J; Moshkov, M M

1999-01-28T23:59:59.000Z

232

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

233

The Global Nuclear Energy Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership (GNEP) GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors...

234

Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these joint projects are given.

Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

2000-05-05T23:59:59.000Z

235

nuclear energy in the spotlight  

Science Conference Proceedings (OSTI)

In the House, the Science and Technology Subcommittee on Energy and the ... a comprehensive approach to waste management, including research into fuel...

236

DOE, IAEA Partner for Greater Access to Nuclear Energy R&D  

Office of Scientific and Technical Information (OSTI)

October 27, 2009 DOE, IAEA Partner for Greater Access to Nuclear Energy R&D Oak Ridge, TN - The findings from years of nuclear energy research supported by the Department of Energy...

237

Energy Efficiency and Renewable Energy Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

213 June 2010 Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate...

238

Nuclear Liability | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Liability Liability Nuclear Liability 1. Price-Anderson Act (PAA) GC-52 provides legal advice to DOE regarding issues arising under the PAA, which governs nuclear liability in the United States and establishes a system of financial protection for persons who may be liable for and persons who may be injured by a nuclear incident. GC-52 is also responsible for developing regulations implementing any amendments to the PAA. As necessary, GC-52 attorneys coordinate with other US and international agencies. Applicable Laws Atomic Energy Act of 1954, Section 170 Report to Congress on the Price-Anderson Act 2. Extraordinary Contractual Relief for Nuclear Risks GC-52 advises DOE on providing indemnification under Public Law 85-804 for DOE and National Nuclear Security Administration (NNSA) contractors for

239

Materials Research Needs for Near-Term Nuclear Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Material

John R. Weeks

240

Medium energy nuclear data for applications  

SciTech Connect

The types of medium energy nuclear data required for applications are discussed. Features of analysis tools, consisting of both detailed nuclear model codes and simple formulas based on nuclear systematics are presented. The activities of the Medium Energy Nuclear Data Working Group (MENDWG) are described including the recent benchmark comparison of nuclear model codes. 40 refs., 7 figs.

Pearlstein, S.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Clean Energy Research Areas | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Research Highlights Facilities and Centers...

242

SUPPLEMENT ANALYSIS OF FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL TRANSPORTATION ALONG OTHER THAN~. PRESENTATIVE ROUTE FROM CONCORD NAVAL WEAPO~~ STATION TO IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LADORA TORY Introduction The Department of Energy is planning to transport foreign research reactor spent nuclear fuel by rail from the Concord Naval Weapons Station (CNWS), Concord, California, to the Idaho National Engineering and Environmental Laboratory (INEEL). The environmental analysis supporting the decision to transport, by rail or truck, foreign research reactor spent nuclear fuel from CNWS to the INEEL is contained in +he Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliftration Policy Concerning Foreign Research Reactor

243

DOE's Office of Nuclear Energy Honored  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's Office of Nuclear Energy Honored The U.S. Department of Energy's Office of Nuclear Energy was among those honored by the Partnership for Science and Technology (PST) as...

244

Paving the path for next-generation nuclear energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Nuclear power reactors currently under construction worldwide boast modern safety and operational enhancements that were designed by the global nuclear energy industry and enhanced through research and development (R&D)

245

ARTICLES: Global Nuclear Energy Partnership - TMS  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... The Global Nuclear Energy Partnership (GNEP) was established to be an equal and voluntary international partnership for developing nuclear...

246

Department of Energy Established | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Department of Energy Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

247

Office of Nuclear Energy Launches New Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website February 11, 2013 - 4:01pm Addthis The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy What does this mean for me? Visit the new Office of Nuclear Energy website at energy.gov/ne. The Office of Nuclear Energy (NE) is pleased to introduce our new, updated public website: energy.gov/ne. The new site was designed to help facilitate users' access to NE

248

GE Hitachi Nuclear Energy | Open Energy Information  

Open Energy Info (EERE)

GE Hitachi Nuclear Energy GE Hitachi Nuclear Energy Jump to: navigation, search Name GE Hitachi Nuclear Energy Place Wilmington, North Carolina Zip 28402 Sector Efficiency, Services Product GE Hitachi Nuclear Energy develops advanced light water reactors and offers products and services used by operators of boiling water reactor (BWR) nuclear power plants to improve efficiency and boost output. Coordinates 42.866922°, -72.868494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866922,"lon":-72.868494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

NUCLEAR DEFORMATION ENERGIES  

E-Print Network (OSTI)

= .9807 ENERGY 598.24 SPAC I NG NG t I I ! t I I I I ! ! ! ! I I1 ! I I I " II " II SPAC I NG I I ! 1 ! ! ! I I [ I ! ! ! "

Blocki, J.

2009-01-01T23:59:59.000Z

250

Nuclear Energy 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Pot? A turbine and generator makes electricity using the energy of the steam. A condenser turns the used steam back to water. Condenser Turbine Generator Images: www.tva.gov...

251

THE LAUNDRY OF A NUCLEAR RESEARCH CENTRE  

SciTech Connect

The special demands on the laundry of a nuclear research center are described. By the example of cleaning and ironing in two days the radioactive contaminated work clothing of a staff of 1200 coworkers, a detailed plan is given for the construction of a serviceable laundry and an exact description of the flow sheet is added. (auth)

Meixner, A.

1962-09-01T23:59:59.000Z

252

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

253

DOE Hydrogen and Fuel Cells Program: Office of Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Office of Nuclear Energy Printable...

254

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will...

255

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEUP FY2011 Process Presentation to NEAC December 9, 2010 Marsha Lambregts, NEUP-IO Manager FUNDED R&D PROPOSALS BY STATE 2010 * Awards/Full Submissions - 42/128 * Awards to PIs for first time - 29 * Awards to junior faculty - 20 * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of awards with lab partners - 20 * Number of universities receiving awards for first time - 8 2 2010 INFRASTRUCTURE * Major Reactor: 4 awards for a total of $3.75 M * Minor Reactor: 12 awards for $1.95 M * General Scientific Infrastructure: 33 award for $7.47 M * Since 2009, $ 19.438 M has been awarded in General Scientific Infrastructure (did not issue Major or Minor Reactor calls in 2009).

256

Energy Crossroads: Research Institutions | Environmental Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Institutions Research Institutions Suggest a Listing American Council for an Energy-Efficient Economy (ACEEE) The ACEEE is a nonprofit organization dedicated to advancing energy efficiency as a means of promoting both economic prosperity and environmental protection. California Institute for Energy Efficiency (CIEE) CIEE plans, coordinates, and implements applied research to advance productivity and competitiveness through energy efficiency. As a University of California research unit administered by the Lawrence Berkeley Laboratory, CIEE was established in 1988 in cooperation with the California utilities, the California Public Utilities Commission, the California Energy Commission, and the U.S. Department of Energy.

257

Research Highlights | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Research Highlights SHARE Research Highlights 1-20 of 48 Results Advances in Understanding Durability of the Building Envelope: ORNL Research November 22, 2013 - Moisture, and its accompanying outriders - things like mold, corrosion, freeze damage, and decay - present powerful threats to the durability and long-term performance of a building envelope. First Annual Housing Innovation Award Winners Announced November 22, 2013 - On October 4, 2013, the US Department of Energy (DOE) presented the inaugural winners of the firstever Housing Innovation Awards.

258

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 21, 2012 March 21, 2012 CX-008252: Categorical Exclusion Determination Central Facilities Area (CFA) Shoot House Panel Installation CX(s) Applied: B2.1 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy March 21, 2012 CX-008251: Categorical Exclusion Determination International Way Office Building Lease Termination CX(s) Applied: B1.24 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy March 15, 2012 CX-008253: Categorical Exclusion Determination Materials and Fuels Complex (MFC) Contaminated Equipment Storage Building (CESB) Conversion Scope Change CX(s) Applied: B1.31 Date: 03/15/2012 Location(s): Idaho Offices(s): Nuclear Energy November 28, 2011 CX-007774: Categorical Exclusion Determination Rensselaer Infrastructure Upgrade to Enhance Research and Education in

259

Bartlesville Energy Research Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bartlesville Energy Research Center Bartlesville Energy Research Center Bartlesville Energy Research Center The Federal Government in Petroleum Research, 1918-1983 The following is a study of a single research facility, the Bartlesville Energy Research Center, and showcases how petroleum technology, petroleum policy, and national political priorities have interacted through seven decades of the twentieth century. Download entire document Introduction and Table of Contents Chapter 2 - Search for a Role, 1919-1930 Chapter 3 - Emergence of Scientific Research, 1930-1941 Chapter 4 - World War II and the Response of Oil Technology, 1941-1946 Chapter 5 -Petroleum Research Under Siege, 1946-1959 Chapter 6 - Petroleum Science as a National Resource, 1959-1967 Chapter 7 - Government Energy Research: Emerging Definitions, 1968-1975

260

Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Million for 42 University-Led Nuclear 8 Million for 42 University-Led Nuclear Research and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects May 20, 2010 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the Department's Nuclear Energy University Program, will help advance nuclear education and develop the next generation of nuclear technologies. "We are taking action to restart the nuclear industry as part of a broad approach to cut carbon pollution and create new clean energy jobs," said Secretary Chu. "These projects will help us develop the nuclear

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$38 Million for 42 University-Led Nuclear $38 Million for 42 University-Led Nuclear Research and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects May 20, 2010 - 12:05pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the Department's Nuclear Energy University Program, will help advance nuclear education and develop the next generation of nuclear technologies. "We are taking action to restart the nuclear industry as part of a broad approach to cut carbon pollution and create new clean energy jobs," said Secretary Chu. "These projects will help us develop the nuclear

262

A look back at Union Carbides first 20 Years in Nuclear Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory continued Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated the Atomic Energy CommissionEnergy Research and...

263

A look back at Union Carbides FIRST 20 Years in Nuclear Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Y-12 Plant Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated the Atomic Energy CommissionEnergy Research and...

264

NE - Nuclear Energy - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY (NE) NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible. Saving an average of 1.5 gallons of gasoline per day per person (e.g., 13 miles per work x 2 = 26 miles, an average of 17 mpg), on a normal workday, NE employees save (56 percent of 145 = 71 times 1.2 days per pay period = 85.2 workdays x 1.5 gals = 127.8 gallons/pay

265

Safer nuclear reactors could result from Los Alamos research  

NLE Websites -- All DOE Office Websites (Extended Search)

Calendar Video Newsroom News Releases News Releases - 2010 March Safer nuclear reactors could result from research Safer nuclear reactors could result from Los...

266

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Liu, Min; Li, Zhuxia; Zhang, Fengshou

2010-01-01T23:59:59.000Z

267

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

268

Department of Energy Awards $5.7 Million to U.S. Universities for Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million to U.S. Universities for 7 Million to U.S. Universities for Nuclear Energy Research Department of Energy Awards $5.7 Million to U.S. Universities for Nuclear Energy Research February 2, 2007 - 10:15am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award $5.7 million to nine universities for research grants under the Nuclear Energy Research Initiative (NERI). These grants are designed to engage U.S. university professors and students in advanced nuclear energy research and development (R&D), in an effort to strengthen and focus DOE's research for the Generation IV Nuclear Energy Systems Initiative and the Nuclear Hydrogen Initiative. "These awards demonstrate our commitment to pursuing nuclear research, and we are eager for our next generation of scientists and engineers to

269

CFES RESEARCH THRUSTS: Energy Storage  

E-Print Network (OSTI)

CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our industrial partners, the Energy Scholars program is an opportunity to connect with the talent of Rensselaer. Sponsoring a Rensselaer Polytechnic Institute undergraduate as an Energy Scholar enables a company

Lü, James Jian-Qiang

270

Global Nuclear Energy Partnership Fact Sheet | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet Global Nuclear Energy Partnership Fact Sheet The Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S....

271

GNEP Element:Minimize Nuclear Waste | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste The Global Nuclear Energy Partnership: Greater Energy Security in a Cleaner, Safer...

272

Nuclear & Uranium - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Today in Energy - Nuclear. Short, timely articles with graphs about recent nuclear energy issues and trends . Monthly Energy Review - Nuclear Section

273

Report, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safeguards and nonproliferation, environmental management and waste cleanup, and Navy nuclear propulsion systems development resides outside the Office of Nuclear Energy, Science...

274

EIA - State Nuclear Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections integrated across all ...

275

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

276

Renewable Energy Research | Open Energy Information  

Open Energy Info (EERE)

Research Jump to: navigation, search Name Renewable Energy Research Address 2113 C Boulevard St Regis Place Dollard des Ormeaux Zip H9B 2M9 Sector Marine and Hydrokinetic Year...

277

International energy: Research organizations, 1986--1990  

Science Conference Proceedings (OSTI)

The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science Technology'' on DIALOG and Energy'' on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

Hendricks, P.; Jordan, S. (eds.) (USDOE Office of Scientific and Technical Information, Oak Ridge, TN (USA)) [eds.; USDOE Office of Scientific and Technical Information, Oak Ridge, TN (USA)

1991-03-01T23:59:59.000Z

278

International Nuclear Energy Policy and Cooperation | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United...

279

PDF: The History of Nuclear Energy  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... This 28-page report, produced by the U. S. Department of Energy, reviews the history of nuclear energy from the discovery of fission through...

280

Net energy from nuclear power  

SciTech Connect

An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered. (auth)

Rotty, R.M.; Perry, A.M.; Reister, D.B.

1975-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Global Nuclear Energy Partnership Strategic Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan A report describing the United States Global Nuclear Energy Partnership which: "will build the Global Nuclear Energy Partnership to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe,clean nuclear energy to help meet the growing global energy demand." Global Nuclear Energy Partnership Strategic Plan

282

Energy Department - Electric Power Research Institute Cooperation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy...

283

Department of Energy to Co-Sponsor Workshop on Nuclear Power Plant Life Extension R&D  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE), U.S. Nuclear Regulatory Commission (NRC), and the Nuclear Energy Institute (NEI) will co-sponsor a Second Workshop on U.S. Nuclear Power Plant Life Extension Research and Development.

284

CERN-INTC-2011-053/INTC-P-317 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH  

E-Print Network (OSTI)

an exacting test for nuclear models. Binding energies offer a clear signature for the presence (or disCERN-INTC-2011-053/INTC-P-317 06/10/2011 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal. N. Wolf8 , K. Zuber9 1Max Planck Institute for Nuclear Physics, Heidelberg, Germany 2GSI

285

Durham Energy Institute 107 Researchers  

E-Print Network (OSTI)

Challenges in Energy Networks Project (Total £3.3M) Supergen wind £4.85M ­ working on reliability FlexNet (flexible networks) 2003- 2011. Wind and energy markets, power system dynamics Dong EnergyDurham Energy Institute 107 Researchers Focus on society and key technologies World leading

Wirosoetisno, Djoko

286

Jointly Sponsored Research Program Energy Related Research  

DOE Green Energy (OSTI)

Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. This report summarizes the accomplishments of the JSR Program.

Western Research Institute

2009-03-31T23:59:59.000Z

287

Crosscutting Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crosscutting Research Crosscutting Research Crosscutting Research Crosscutting Research The Crosscutting Research program serves as a bridge between basic and applied research by fostering the development of innovative systems for improving availability, efficiency, and environmental performance of fossil energy systems with carbon capture and storage. This crosscutting effort is implemented through the research and development of sensors, controls, and advanced materials. This program area also develops computation, simulation, and modeling tools focused on optimizing plant design and shortening developmental timelines. In addition, the Crosscutting Research program area supports science and engineering education in minority colleges and universities. Plant Optimization Technologies

288

Basic Research for Evaluating Nuclear Waste Form Performance  

Science Conference Proceedings (OSTI)

Technical Paper / Argonne National Laboratory Specialists Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste

Don J. Bradley

289

Clean Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

290

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

on Nuclear and Alternative Energy Systems (CONAES). Chapterand allocation of alternative energy supply resources andJ. M. "United States Energy Alternatives to 2010 and Beyond:

Hollander, Jack M.

2011-01-01T23:59:59.000Z

291

Background Long history of research and education in "nuclear  

E-Print Network (OSTI)

). #12;Master Programme in Nuclear Engineering · Coupling education ­ research (reactor physics#12;Background · Long history of research and education in "nuclear engineering" at Chalmers. · "Nuclear engineering" = multi-disciplinary research area. #12;Background Establishment of the Sustainable

Lemurell, Stefan

292

Nuclear Materials Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

293

Materials Challenges in Nuclear Energy  

SciTech Connect

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL; Was, Gary [University of Michigan

2013-01-01T23:59:59.000Z

294

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

clear; second, nuclear power plants are stated terroristinvesting in new nuclear power plants because they do notas things stand, new nuclear power plants will not be cost

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

295

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

radioactive spent nuclear fuel is stored at commercialmost polluting part of the nuclear fuel cycle. It would notthe reprocessing of spent nuclear fuel will face technical,

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

296

Global Nuclear Energy Partnership Fact Sheet - Demonstrate More...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Global Nuclear Energy Partnership Fact Sheet - Demonstrate More...

297

1 iiNuclear Energy Advisory Committee  

E-Print Network (OSTI)

task, NEAC formed two subcommittees, one devoted to nuclear energy policy and one focused on nuclear energy technology. The report calls attention to the role of nuclear power and its impact on energy security, the environment, and nonproliferation. A strategy for nuclear energy policy and technology should be considered not in years but decades. This report identifies important benchmarks in both the policy and technology areas. Importantly, progress on nuclear energy will require bipartisan efforts and our members are representative of both political parties and are drawn from different professional backgrounds. The committee is composed of eminent scientists including a Nobel Prize winner; former senior officials of the U.S. Department of Energy, the Nuclear Regulatory Commission, the U.S. State Department, NASA and the National Security Council; distinguished professors in the field of nuclear energy, including a university president; as well as industry leaders and important non-governmental organizations, such as the Nuclear Threat Initiative, the Natural Resources Defense Council, the Nuclear Energy Institute, and the Eisenhower Institute. The Department of Energy has played and will continue to play an integral role in securing safe nuclear power for our Nation, including a very important and fundamental role in advancing technology. Nuclear power is experiencing a dramatic expansion internationally that will require safe construction and operation as well as compliance with nonproliferation objectives. Our report emphasizes that a global approach is vital to ensure a sustained U.S. nuclear program

Dr. Samuel Bodman

2008-01-01T23:59:59.000Z

298

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

energy is an important source of power, supplying 20 energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To develop viable technical solutions, these interdependent challenges must be addressed through tightly integrated multidisciplinary research and development efforts. Los Alamos National Laboratory is playing a key role in

299

Dealing With the Issues of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy September 17, 2010 - 12:39pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? The U.S. is working to reduce our own reliance on nuclear weapons and to lock down dangerous nuclear material so terrorists can't use it. Editorial Note: This has been cross-posted from Huffington Post. Next week I have the honor of leading the U.S. delegation to an annual conference that is critical to our national and energy security. Every year, the International Atomic Energy Agency (IAEA), the nuclear watchdog arm of the UN, gathers ministers from around the world to discuss ways to promote nuclear energy, strengthen efforts to keep other countries from illegally acquiring nuclear weapons, reduce stockpiles of nuclear

300

Advanced Research Projects Agency - Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Advanced Research Projects Agency - Energy recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced...

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Department of Energy Hosts Inaugural Energy Frontier Research...  

Office of Science (SC) Website

Department of Energy Hosts Inaugural Energy Frontier Research Center Summit Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

302

Peaceful uses of nuclear energy  

SciTech Connect

It is now a quarter of a century since nuclear energy was introduced to the public. Its introduction was made in the most dramatic, but unfortunately in the most destructive way - through the use of a nuclear weapon. Since that introduction enormous strides have been made in developing the peaceful applications of this great and versatile force. Because these strides have always been overshadowed by the focusing of public attention on the military side of the atom, the public has never fully understood or appreciated the gains and status of the peaceful atom. This booklet is an attempt to correct, in some measure, this imbalance in public information and attitude. It is a compilation of remarks, and excerpts of remarks, that I have made in recent years in an effort to bring to the public the story of the remarkable benefits the peaceful atom has to offer man. This is a story that grows with the development and progress of the peaceful atom. It must be told so that we can learn to use the power of nuclear energy wisely and through this use help to build a world in which the military applications of the atom will never again be a threat to mankind.

Seaborg, Glenn T.

1970-01-01T23:59:59.000Z

303

High Energy Density Laboratory Plasmas | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog HEDLP High Energy Density Laboratory Plasmas Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > High Energy Density Laboratory Plasmas

304

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

305

Research and Development | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

306

Research Reactor Conversion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

307

Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement on the Global Nuclear Energy Partnership and Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Ministers and other senior officials representing the respective governmental agencies of China, France, Japan, Russia, and the United States met in Washington, D.C., on May 21, 2007 to address the prospects for international cooperation in peaceful uses of nuclear energy, including technical aspects, especially in the framework of the Global Nuclear Energy Partnership (GNEP). The International Atomic Energy Agency (IAEA) also attended as an observer. Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation More Documents & Publications Ministerial Conference

308

China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guangdong Nuclear Solar Energy Co Ltd Guangdong Nuclear Solar Energy Co Ltd Jump to: navigation, search Name China Guangdong Nuclear Solar Energy Co Ltd Place China Sector Solar Product China Guangdong Nuclear's division on solar project development. References China Guangdong Nuclear Solar Energy Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Guangdong Nuclear Solar Energy Co Ltd is a company located in China . References ↑ "China Guangdong Nuclear Solar Energy Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=China_Guangdong_Nuclear_Solar_Energy_Co_Ltd&oldid=343500" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

309

Mark Peters testifies before Congress on nuclear energy | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ---Reactors -Energy usage --Energy storage ---Batteries ----Lithium-ion batteries ----Lithium-air...

310

Meeting between Department of Energy Contractor and the Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting between Department of Energy Contractor and the Nuclear Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

311

Meeting between Department of Energy Contractor and the Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

between Department of Energy Contractor and the Nuclear between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

312

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

313

Department of Energy and Nuclear Regulatory Commission Increase...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to...

314

Letter from the Nuclear Energy Institute to DOE GC | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

from the Nuclear Energy Institute to DOE GC Letter from the Nuclear Energy Institute to DOE GC Convention on Supplementary Compensation for Nuclear Damage Contingent Cost...

315

NUCLEI: Nuclear Computational Low-Energy Initiative | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

NUCLEI: Nuclear Computational Low-Energy Initiative NUCLEI: Nuclear Computational Low-Energy Initiative This project seeks to advance large-scale nuclear physics compoutations in...

316

Nuclear Security Conference 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

317

Nuclear Security Conference 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

318

Hydrogen Research and Development Initiative - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Research and Development Initiative Hydrogen Research and Development Initiative International Safety Projects Overview Hydrogen as an Energy Carrier Global access to energy and fresh water International cooperation on safety of nuclear plants Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Major Programs The Use of Hydrogen as an Energy Carrier Bookmark and Share President Bush initiated a major program to accelerate the development of a national hydrogen economy. The goal is to reverse America's growing dependence on foreign oil by developing science and technology for commercially viable fuel cells that use hydrogen to power cars, trucks, homes, and businesses without directly emitting pollution or greenhouse

319

Sustainable Energy Through Recycling Used Nuclear Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Through Recycling Used Nuclear Fuel M.A. Williamson, A.V. Guelis, J.L. Willit, C. Pereira and A.J. Bakel Argonne National Laboratory Recycle of used nuclear fuel is central...

320

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Nuclear Energy Categorical Exclusion Determinations: Nuclear Energy Categorical Exclusion Determinations issued by Nuclear Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 2013 CX-010766: Categorical Exclusion Determination Interim Storage Area for Interim Storage Containers (ISCs) at the Radioactive Scrap and Waste Facility (RSWF) CX(s) Applied: B6.6 Date: 08/16/2013 Location(s): Idaho Offices(s): Nuclear Energy August 14, 2013 CX-010767: Categorical Exclusion Determination University Boulevard Water Meter Installation CX(s) Applied: B2.2 Date: 08/14/2013 Location(s): Idaho Offices(s): Nuclear Energy August 12, 2013 CX-010768: Categorical Exclusion Determination ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

322

Energy Department Announces New Nuclear Energy Innovation Investments  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Announces New Nuclear Energy Innovation Investments Sixteen Awards to Advance Cross-cutting R&D, Train Next Generation of Industry Leaders WASHINGTON -...

323

Department of Energy Releases Global Nuclear Energy Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Dennis Spurgeon today released the Global Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation...

324

Role of density dependent symmetry energy in nuclear stopping  

E-Print Network (OSTI)

Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

Vinayak, Karan Singh

2011-01-01T23:59:59.000Z

325

Role of density dependent symmetry energy in nuclear stopping  

E-Print Network (OSTI)

Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

Karan Singh Vinayak; Suneel Kumar

2011-07-27T23:59:59.000Z

326

Modeling and Simulation for Nuclear Reactors Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub August 1, 2010 - 4:20pm Addthis Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas of energy science and engineering from the earliest stages of research to the point of commercialization where technologies can move to the private sector by bringing together leadings scientists to collaborate on critical energy challenges. The Energy Innovation Hubs aim to develop innovation through a unique

327

Nuclear Energy-Depend On It Helping  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Depend On It Helping to Power America for More Than Five Decades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity production in 1957 and now produces approximately 20 percent of our total electricity and 70 percent of our low-carbon electricity from nuclear energy, according to the Energy Information Administration. More than 100 U.S. commercial nuclear power reactors provide reliable, affordable electricity in 31 states. Nuclear energy can help meet our Nation's need for dependable electricity into the future. The use of nuclear power is increasing around the world: z 29 countries worldwide operate a total of 437 nuclear reactors for electricity generation, with 55 new nuclear reactors under construction in 14 countries.

328

Nuclear Security & Nonproliferation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Taste Like? At Sandia National Laboratories, researchers have developed pods that can survey and "taste" radioactive particles without exposing a human crew to nuclear hazards....

329

NEAC Recommended Goals for Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy Nuclear energy currently provides approxi- mately 20 percent of the electricity for the U.S. The primary alternative for power generation is fossil fuels. Though still controversial, evidence continues to mount about the negative health and environmental effects of carbon emissions. Nuclear power is the most significant technology available for meeting anticipated energy needs while reducing emissions to the environment. Nuclear energy is an essential component to a secure and prosperous future for the U.S. and the world. The reliance on fossil fuels for the growing energy usage of an expanding world population will bring about enormous global environmental problems. Nuclear energy is the single largest tool

330

Department of Energy Releases Global Nuclear Energy Partnership Strategic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Assistant Secretary for Nuclear Energy Dennis Spurgeon today released the Global Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation strategy. The Plan outlines a path forward to enable worldwide increase in the use of safe, emissions-free nuclear energy without contributing to the spread of nuclear weapons capabilities in a manner that responsibly addresses the waste produced. "For the United States, GNEP is good policy; for industry, it could be very good business," Assistant Secretary Spurgeon said. "Releasing GNEP's

331

Energy Department Announces New Nuclear Energy Innovation Investments |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Innovation Nuclear Energy Innovation Investments Energy Department Announces New Nuclear Energy Innovation Investments July 17, 2012 - 12:29pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitments to restarting the nation's nuclear industry and promoting education in science, technology, engineering and math, the Energy Department announced today nearly $13 million in new nuclear energy innovation investments. "Today's awards will help train and educate our future nuclear energy scientists and engineers, while advancing the technological innovations we need to make sure America's nuclear industry stays competitive in the 21st century," said Energy Secretary Steven Chu. "These investments in U.S. universities, national labs and industry advance the Obama

332

International Nuclear Energy Policy and Cooperation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both bilaterally and multilaterally to accomplish this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United States and 70% of our low-carbon production, avoiding over 600 million metric tons of carbon emissions. With approximately 440 commercial reactors operating in 30 countries-and 300 more valued at $1.6 trillion

333

Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Million for Nuclear Fuel Cycle 15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology Research and Development August 1, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award up to $15 million to 34 research organizations as part of the Department's Advanced Fuel Cycle Initiative (AFCI). AFCI is the Department's nuclear energy research and development program supporting the long-term goals and objectives of the United States' nuclear energy policy. These projects will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle

334

Office of Research, Development, Test, and Evaluation | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development, Test, and Evaluation | National Nuclear Research, Development, Test, and Evaluation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Research, Development, Test, and Evaluation Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation

335

Institute for Energy Research | Open Energy Information  

Open Energy Info (EERE)

Energy Research Energy Research Jump to: navigation, search Logo: Institute for Energy Research Name Institute for Energy Research Address 1415 S. Voss Rd. Place Houston, Texas Zip 77057 Region Texas Area Notes Completely funded by tax-deductible contributions. Public. Coordinates 29.7515335°, -95.5009716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7515335,"lon":-95.5009716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION  

Office of Legacy Management (LM)

.' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :.. ,. Memo to Piles' CARNEGIE-MELLON SC&RCCYCLOTRON On October 23, 1975, W....

337

Nuclear Security & Nonproliferation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety » Nuclear Security & Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy and National Nuclear Security Administration’s effort to assist Japanese personnel with nuclear issues related to the Fukushima nuclear power plant. Above, scientists, technicians and engineers from the National Nuclear Security Administration’s Nevada Site Office board an Air Force C-17. | Photo courtesy of NNSA. Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy

338

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research...

339

Nuclear decay data files of the Dosimetry Research Group  

Science Conference Proceedings (OSTI)

This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission on Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ``MIRD: Radionuclide Data and Decay Schemes.`` The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

1993-12-01T23:59:59.000Z

340

Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings  

SciTech Connect

Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

Ruth, M.; Antkowiak, M.; Gossett, S.

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

United States -Japan Joint Nuclear Energy Action Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-Japan Joint Nuclear Energy Action Plan -Japan Joint Nuclear Energy Action Plan 1. Introduction 1.1 Background and Objective President Bush of the U n i t e d States and Prime Minister Koizumi of Japan have both stated their strong support for the contribution of nuclear power to energy security and the global environment. Japan w a s the first nation to endorse President Bush's Global Nuclear Energy Partnership. During the June 29,2006 meeting between President Bush and Prime Minister Koizumi, "We discussed research and development that will help speed up fnt breeder reactors and new types of reprocessing so that we cmt help deal with the cost of globalization when it comes to energy; make ourselves more secure, economicallyI a s well n make us less dependent on hycirocmbons ..... " (I)

342

THE ENERGY GAP IN NUCLEAR MATTER  

E-Print Network (OSTI)

energy gap for nuclear matter with a vieVi to gaining some ins ight into the possible results of extending the theory

Emery, V.J.

2008-01-01T23:59:59.000Z

343

Nuclear Filter Technology | Open Energy Information  

Open Energy Info (EERE)

located in Golden, CO. References Retrieved from "http:en.openei.orgwindex.php?titleNuclearFilterTechnology&oldid379255" Categories: Clean Energy Organizations Companies...

344

Today, nuclear energy is the largest...  

NLE Websites -- All DOE Office Websites (Extended Search)

Today, nuclear energy is the largest non-carbon electricity production method in use, but the nation must effectively address economic and waste management concerns to enable its...

345

WEB RESOURCE: Global Nuclear Energy Partnership - TMS  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This site provides general news and information on the Global Nuclear Energy Partnership, a U.S. initiative that seeks to develop worldwide...

346

WEB RESOURCE: Generation IV Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This web site provides offers a broad overview of the Department of Energy's activities in exploring the development of next generation nuclear...

347

ARTICLE: Expanding Nuclear Energy the Right Way  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This article from Los Alamos National Laboratory reviews the United States' Global Nuclear Energy Partnership. Los Alamos contributions are...

348

Structural Materials in Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

Apr 28, 2008 ... Structural Materials in Advanced Nuclear Energy Systems: The Need for ... of functionalized interfaces for optimization of materials properties.

349

Energy Technology Division research summary 1997.  

SciTech Connect

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

1997-10-21T23:59:59.000Z

350

Energy Technology Division research summary 1997.  

SciTech Connect

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

NONE

1997-10-21T23:59:59.000Z

351

Joint Actinide Shock Physics Experimental Research | National Nuclear  

National Nuclear Security Administration (NNSA)

Actinide Shock Physics Experimental Research | National Nuclear Actinide Shock Physics Experimental Research | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Jasper Joint Actinide Shock Physics Experimental Research Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development >

352

Development of Students Metacognitive Strategies In Science Learning Regarding Nuclear Energy  

Science Conference Proceedings (OSTI)

This research aimed to develop 48 Grade 10 students learning process and metacognitive strategies in the Nuclear Energy topic through the Science

Warawun Siriuthen; Chokchai Yuenyong

2010-01-01T23:59:59.000Z

353

Emerging Energy Research | Open Energy Information  

Open Energy Info (EERE)

Research Research Jump to: navigation, search Logo: Emerging Energy Research Name Emerging Energy Research Address 700 Technology Square Place Cambridge, Massachusetts Zip 02139 Sector Services Website http://www.emerging-energy.com Coordinates 42.3640808°, -71.0927675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3640808,"lon":-71.0927675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Energy efficient residence: research results  

Science Conference Proceedings (OSTI)

This report on the design, construction, and monitoring of an energy efficient residence and a conventional comparison home by the National Association of Home Builders Research Foundation, Inc. The report describes the two homes in considerable detail, summarizes the results of the energy and other measurements, and evaluates many of the energy conservation techniques used. Finally, these results are synthesized with the foundation's other energy conservation experience into two lists of energy saving design tips for homes in both colder and warmer climates. Most of the design tips are accompanied by brief comments intended to aid in their interpretation and use.

Johnson, R.J.

1980-12-01T23:59:59.000Z

355

Meeting between Department of Energy Contractor and the Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear...

356

Theories of Low Energy Nuclear Transmutations  

E-Print Network (OSTI)

Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

Y. N. Srivastava; A. Widom; J. Swain

2012-10-27T23:59:59.000Z

357

Theories of Low Energy Nuclear Transmutations  

E-Print Network (OSTI)

Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

Srivastava, Y N; Swain, J

2012-01-01T23:59:59.000Z

358

Laboratory Directed Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Laboratory Directed Research & Development | National Nuclear Security Laboratory Directed Research & Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Laboratory Directed Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

359

Collaborative research helps Alexis Kaplan pursue her interest in nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborative research helps Alexis Kaplan pursue her interest in Collaborative research helps Alexis Kaplan pursue her interest in nuclear engineering Collaborative research helps Alexis Kaplan pursue her interest in nuclear engineering Nuclear Engineering graduate research assistant designs a prototype for a system that will measure the used fuel that comes out of nuclear reactors. August 22, 2013 Alexis Kaplan Alexis Kaplan, a graduate research assistant, relocates to the small town of Los Alamos to finish her PhD thesis research with the Safeguards Science and Technology group. Alexis and her team of nuclear, mechanical, and electrical engineers are designing and building a prototype for a system that will measure the used fuel that comes out of nuclear reactors. "I feel like I have 4 or 5 mentors. That is one of my favorite things

360

Nuclear Processes at Solar Energy  

E-Print Network (OSTI)

LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

Carlo Broggini

2003-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Cycle Research & Development Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Development » Fuel Cycle Research & Development Documents Fuel Cycle Research & Development Documents November 8, 2011 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. July 11, 2011 Nuclear Separations Technologies Workshop Report

362

Nuclear energy at the turning point  

DOE Green Energy (OSTI)

In deciding the future course of nuclear energy, it is necessary to re-examine man's long-term energy options, in particular solar energy and the breeder reactor. Both systems pose difficultiies: energy from the sun is likely to be expensive as well as limited, whereas a massive world-wide deployment of nuclear breeders will create problems of safety and of proliferation. Nuclear energy's long-term success depends on resolving both of these problems. Collocation of nuclear facilities with a system of resident inspectors are measures that ought to help increase the proliferation-resistance as well as the safety of a large-scale, long-term nuclear system based on breeders. In such a long-term system a strengthened International Atomic Energy Agency (IAEA) is viewed as playing a central role.

Weinberg, A.M.

1977-07-01T23:59:59.000Z

363

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

A Brief History of Nuclear Energy . . . . . . . . NuclearBrief History of Nuclear Energy The history of nuclear powerRisk The history of nuclear energy to date reflects

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

364

EXPERIMENTAL AND CALCULATED RESEARCHES OF NUCLEAR-PHYSICS CHARACTERIST...  

National Nuclear Security Administration (NNSA)

1 Session 12: Engineering and Criticality Experimental And Calculated Researches of Nuclear-Physics Characteristics Of Assemblies Containing 237 Np + 239 Pu(98%) in The Core...

365

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

366

Nuclear symmetry energy: An experimental overview  

E-Print Network (OSTI)

The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article, we review experimental studies carried out up-to-date and their current status.

Shetty, D V

2010-01-01T23:59:59.000Z

367

The Future of Nuclear Energy: Facts and Fiction Chapter I: Nuclear Fission Energy Today  

E-Print Network (OSTI)

Nuclear fission energy is considered to be somewhere between the holy grail, required to solve all energy worries of the human industrialized civilization, and a fast path directly to hell. Discussions about future energy sources and the possible contribution from nuclear energy are often dominated by variations of fundamentalists and often irrational approaches. As a result, very little is known by the general public and even by decision makers about the contribution of nuclear energy today, about uranium supplies, uranium resources and current and future technological challenges and limitations. This analysis about nuclear energy and its contribution for tomorrow tries to shed light on the nuclear reality and its limitations in the near and long term future. The report, presented in four chapters, is based essentially on the data provided in the documents from the IAEA (International Atomic Energy Administration) and the NEA (the Nuclear Energy Agency from the OECD countries, the WNA (World Nuclear Associat...

Dittmar, Michael

2009-01-01T23:59:59.000Z

368

HEARING ON NUCLEAR ENERGY RISK MANAGEMENT  

E-Print Network (OSTI)

am pleased to discuss the possible health implications of radiation from the Fukushima Daiichi nuclear power plant accident in Japan. Just a few days before the natural disasters struck on March 11, 2011, I was in Hiroshima, Japan as a member of the Radiation Effects Research Foundation's Science Council, reviewing the study of atomic bomb survivors. I would like to begin by expressing my heartfelt sympathy for the families of the tens of thousands who lost their lives as a result of the tsunami and earthquake and for the hundreds of thousands who have been displaced from their homes and livelihoods. The health consequences associated with the radiation exposures emanating from the Fukushima Daiichi plant pale in comparison. As background, I am a radiation epidemiologist and Professor in the Department of Medicine at Vanderbilt University and Scientific Director of the International Epidemiology Institute. I have spent my career studying human populations exposed to radiation, including Chernobyl clean-up workers, patients receiving diagnostic and therapeutic radiation, underground miners exposed to radon, nuclear energy workers, atomic veterans, persons living in areas of high background radiation and U.S. populations living near nuclear power plants and other facilities. I am also a commissioner of the International Commission on Radiological Protection, an emeritus member of the National Council on Radiation Protection and

John D. Boice; Sc. D; Good Morning; Mr. Chairmen; Ranking Members

2011-01-01T23:59:59.000Z

369

Energy research network management workshop  

Science Conference Proceedings (OSTI)

This report contains presentations on computer network management. The list of presentations are: ESNET Steering Committee; Site Access Coordinator Group; Magnetic Fusion Energy; HEPNET Review Committee; High Energy Physics Technical Coordinating Committee; Energy Research DECnet Working Group; A Research and Development Strategy for High Performance Computing; Compare Functionality of DECNET, MFENET, TCP/IP; Video Movie Making Using The LBL/MFE Experimental Link; Research in Distributed Computing over Long Haul Networks; Performance Improvements and Transport Protocols; HRC Report; Panel Discussion: ESNET Management Issues; NMFECC Operations Summary; Large Systems Overview File Storage and POSIX Interface; User Support Services; Overview of the MFENET II; and Access to Supercomputers at FSU Hardware, Software Status, and Remote Access.

Not Available

1988-06-01T23:59:59.000Z

370

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

371

Department of Energy Research Opportunities for Historically...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Research Opportunities for Historically Black Colleges and Universities Department of Energy Research Opportunities for Historically Black Colleges and...

372

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing world’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

373

Nuclear power and the public: an update of collected survey research on nuclear power  

SciTech Connect

The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

1981-12-01T23:59:59.000Z

374

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

day experimental fusion devices and in nuclear reactors thatnuclear energy both for next-generation fission reactors and for fusion reactors

Gerber, Richard A.

2012-01-01T23:59:59.000Z

375

Energy Praises the Nuclear Regulatory Commission Approval of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

376

Nuclear Engineering (NE) and the Energy Engineering and Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and...

377

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

The bilateral nuclear and security agreement between theThe bilateral nuclear and security agreement between thein East Asia's security, nuclear energy, and environment. It

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

378

Investing in the Next Generation of U.S. Nuclear Energy Leaders |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Next Generation of U.S. Nuclear Energy Leaders the Next Generation of U.S. Nuclear Energy Leaders Investing in the Next Generation of U.S. Nuclear Energy Leaders August 9, 2011 - 5:12pm Addthis Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy As part of the Energy Department's Nuclear Energy University Programs (NEUP) annual workshop, I met today with professors from across the country and announced awards of up to $39 million for research projects aimed at developing cutting-edge nuclear energy technologies. The awards will also help train and educate the next generation of nuclear industry leaders in the U.S. These projects, led by 31 universities in more than 20 states, will help to enable the safe, secure and sustainable expansion of nuclear energy in the United States.

379

Researcher-guide networking: a case of renewable energy research  

Science Conference Proceedings (OSTI)

Renewable energy research has recently been seen as one of the most important areas of studies by budding doctoral researchers. The paper is an attempt to study the trends of renewable energy research on the basis of PhD dissertations database provided ... Keywords: doctoral dissertation, energy, renewable energy, social network analysis

Vipan Kumar, Rohit Sagar, Sapna A. Narula

2013-08-01T23:59:59.000Z

380

Earth Sciences Division Research Summaries 2006-2007  

E-Print Network (OSTI)

migration. Nuclear Waste and Energytheoretical,Berkeley Lab Nuclear Energy and Waste Program ResearchBerkeley Lab Nuclear Energy and Waste Program Research

DePaolo, Donald

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE, IAEA Partner for Greater Access to Nuclear Energy R&D | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

DOE, IAEA Partner for Greater Access to Nuclear Energy R&D DOE, IAEA Partner for Greater Access to Nuclear Energy R&D NEWS MEDIA CONTACT: Cathey Daniels, (865) 576-9539 FOR IMMEDIATE RELEASE October 27, 2009 DOE, IAEA Partner for Greater Access to Nuclear Energy R&D Oak Ridge, TN - The findings from years of nuclear energy research supported by the Department of Energy (DOE) and predecessor agencies are being made searchable on the World Wide Web, due to a collaborative project between DOE and the International Atomic Energy Agency (IAEA). By adding valuable nuclear-related research to the online collections of both the DOE and the IAEA, access to this knowledge by researchers, academia and the public interested in the peaceful aspects of nuclear energy is greatly facilitated. As part of its knowledge preservation mandate, the IAEA, through the

382

Virtus Energy Research Association | Open Energy Information  

Open Energy Info (EERE)

Virtus Energy Research Association Virtus Energy Research Association Jump to: navigation, search Logo: Virtus Energy Research Association Name Virtus Energy Research Association Address 906 1/2 Congress Avenue Place Austin, Texas Zip 78701 Sector Services Product Photovoltaic, solar thermal, wind site/resource assessment, project evaluation, consulting Website http://www.vera.com/index.htm Coordinates 30.2625692°, -97.7448548° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2625692,"lon":-97.7448548,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Surface Symmetry Energy of Nuclear Energy Density Functionals.  

E-Print Network (OSTI)

??The thesis studies the bulk deformation properties of the Skyrme nuclear energy densityfunctionals. Following simple arguments based on the leptodermous expansion andliquid drop model, the (more)

Nikolov, Nikola Iliev

2011-01-01T23:59:59.000Z

384

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Description President Obama announces more than 8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and...

385

Georgia Nuclear Energy Financing Act (Georgia) | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Georgia Nuclear Energy Financing Act (Georgia) No revision has been approved for this page. It is...

386

Money for Research, Not for Energy Bills: Finding Energy and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs Title Money for Research, Not for Energy Bills: Finding Energy and Cost...

387

JETS OF NUCLEAR MATTER FROM HIGH ENERGY HEAVY ION COLLISIONS  

E-Print Network (OSTI)

of the Office of High Energy and Nuclear Physics of the U.S.distributions and energy flux in violent nuclear collisions.of the Office of High Energy and Nuclear Physics of the U.S.

Stocker, H.

2013-01-01T23:59:59.000Z

388

United States-Japan Joint Nuclear Energy Action Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan An outline on the United States and Japan's joint nuclear energy action...

389

Institutional Research & Development | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development Institutional Research & Development...

390

Laboratory Directed Research & Development | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > Laboratory Directed Research &...

391

Notices DEPARTMENT OF ENERGY National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

222 Federal Register 222 Federal Register / Vol. 76, No. 94 / Monday, May 16, 2011 / Notices DEPARTMENT OF ENERGY National Nuclear Security Administration Extension of the Public Review and Comment Period and Announcement of an Additional Public Hearing for the Draft Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, NM AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Extension of Public Review and Comment Period and Announcement of an additional Public Hearing. SUMMARY: On April 29, 2011, the National Nuclear Security Administration (NNSA), a semi- autonomous agency within the U.S. Department of Energy (DOE), published

392

Global Nuclear Energy Partnership Fact Sheet - Demonstrate More  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Under GNEP, the U.S. will work with GNEP partners to demonstrate the capability to safely recycle used nuclear fuel using more proliferation resistant separation processes. In support of this effort, the U.S and its international partners would conduct an Engineering-Scale Demonstration (ESD) of a process that would separate the usable components in used commercial fuel from its waste components, without separating pure plutonium. An Advanced Fuel Cycle Facility (AFCF) would be a multi-purpose research and development laboratory that can serve fuel cycle testing needs

393

Used Fuel Disposition Research & Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. In order to assure the development of a sustainable nuclear fuel cycle for the nation's energy future, to provide a sound technical basis for implementation of a new national policy for managing the back end of the nuclear fuel cycle, and to better understand, assess, and communicate the

394

Aquafuel Research | Open Energy Information  

Open Energy Info (EERE)

Aquafuel Research Aquafuel Research Jump to: navigation, search Name Aquafuel Research Place Kent, England, United Kingdom Zip ME9 8HL Sector Renewable Energy Product England-based renewable energy company. Coordinates 41.150928°, -81.358223° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.150928,"lon":-81.358223,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

U.S. DOE Energy Frontier Research Center Announcements  

Office of Science (SC) Website

doe-announcements/ The doe-announcements/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {2FC67298-672C-476B-B645-000DED9B5398}http://science.energy.gov/bes/efrc/news-and-events/doe-announcements/doe-to-award-$100-million-for-energy-frontier-research-centers/ DOE to Award $100 Million for Energy Frontier Research Centers U.S. Energy Secretary Ernest Moniz today announced a proposed $100 million in FY2014 funding for Energy Frontier Research Centers to accelerate the scientific

396

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

397

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

398

Compilation of selected non-nuclear energy legislation. [19 items  

SciTech Connect

Nineteen legislative actions dealing with non-nuclear energy are collected here. Section A, Organic Legislation Directly Related to ERDA includes: Energy Reorganization Act of 1974, Public Law 93-438; Federal Non-nuclear Energy Research and Development Act of 1974, Public Law 93-577; Solar Heating and Cooling Demonstration Act of 1974, Public Law 93-409; Geothermal Energy Research, Development, and Demonstration Act of 1974, Public Law 94-410; Solar Energy Research, Development, and Demonstration Act of 1974, Public Law 94-473; and Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976, Public Law 94-413. Section B, ERDA Authorizing Legislation, includes: Energy Research and Development Administration Appropriation Authorization Act for Fiscal Year 1976, Public Law 94-187. Section C, ERDA Appropriation Legislation, includes; Second Supplemental Appropriation Act for Fiscal Year 1975, Public Law 94-32; Continuing Appropriations for Fiscal Year 1976, Public Law 94-41; Department of the Interior and Related Agencies Appropriation Act for Fiscal Year 1976, Public Law 94-165; Public Works for Water and Power Development and Energy Research Appropriation Act for Fiscal Year 1976, Public Law 94-180; Second Supplemental Appropriations Act for Fiscal Year 1976, Public Law 94-303; Public Works for Water and Power Development and Energy Research Appropriation Act for Fiscal Year 1977, Public Law 94-355; Department of the Interior and Related Agencies Appropriation Act for Fiscal Year 1977, Public Law 94-373; and Continuing Appropriations for Fiscal Year 1977, Public Law 94-473. Section D, Related Energy Legislation, includes: Federal Energy Administration Act of 1974, Public Law 93-275; Energy Supply and Environmental Coordination Act of 1974, Public Law 93-319; Energy Policy and Conservation Act, Public Law 94-163; and Energy Conservation and Production Act, Public Law 94-385.

1977-01-01T23:59:59.000Z

399

Fuel Cycle Research & Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Research & Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit proliferation risk. The FCRD program will develop a suite of options to enable future policymakers to make informed decisions about how best to manage used fuel from nuclear reactors. The overall goal is to demonstrate the technologies necessary to allow commercial deployment of solutions for the sustainable management of used

400

Nuclear energy field fascinates David Parkinson, chemical engineer  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy field fascinates David Parkinson, chemical engineer Nuclear energy field fascinates David Parkinson, chemical engineer Chemical engineer undergraduate designs and...

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop...

402

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

403

Los Alamos expertise integral to nuclear energy innovation hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy innovation hub Los Alamos expertise integral to nuclear energy innovation hub The information gained through this effort will help extend the life and improve the...

404

International Framework for Nuclear Energy Cooperation to Hold...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

405

Getting to Know Nuclear Energy: The Past, Present & Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use...

406

Agenda for September 16,2007 Global Nuclear Energy Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agenda for September 16,2007 Global Nuclear Energy Partnership (GNEP) Ministerial Meeting Austria Centre Agenda for September 16,2007 Global Nuclear Energy Partnership (GNEP)...

407

Energy Department Announces New Investments in Advanced Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear...

408

United States -Japan Joint Nuclear Energy Action Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan...

409

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

410

Energy/National Nuclear Security Administration (NNSA) Career...  

NLE Websites -- All DOE Office Websites (Extended Search)

Students & Recent Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways...

411

Energy/National Nuclear Security Administration (NNSA) Career...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern Program The...

412

Georgia Nuclear Energy Financing Act (Georgia) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Financing Act (Georgia) Georgia Nuclear Energy Financing Act (Georgia) Eligibility Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility...

413

Renewing America's Nuclear Power Partnership for Energy Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

414

Federal Wind Energy Research Program  

SciTech Connect

The Office of Program Analysis (OPA) undertook an assessment of 55 research projects sponsored by the Federal Wind Energy Research Program. This report summarizes the results of that review. In accordance with statue and policy guidance, the program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. Wind turbine research has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. Rating factors including project scientific and technical merit, appropriateness and level of innovation of the technical approach, quality of the project team, productivity, and probable impact on the program's mission. Each project was also given an overall evaluation supported with written comments. 1 fig.

1991-10-01T23:59:59.000Z

415

Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Overview Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology April 15, 2002 Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 2 Nuclear Power 2010 Overview Nuclear Power 2010 Overview Goals 6 Orders for one or more new nuclear plants by 2005 6 Operation of new nuclear power plants by 2010 6 New program initiative unveiled February 2002 6 Based on Near-Term Deployment Roadmap 6 Public/private partnership to: ! Develop advanced reactor technologies ! Explore sites that could host new nuclear power plants ! Demonstrate new Nuclear Regulatory Commission (NRC) regulatory processes Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 3

416

Viscosity of High Energy Nuclear Fluids  

E-Print Network (OSTI)

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

417

Nuclear Facility Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Operations Facility Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program laboratory In addition to enabling the Office of Nuclear Energy to develop space power systems and advanced fuel cycle and reactor technologies, INL facilities are used by the National Nuclear Security Administration and other DOE offices, together with other Federal agencies such as the Department of

418

Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report  

SciTech Connect

This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle quality qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

2006-02-28T23:59:59.000Z

419

Energy Frontier Research Centers Announced - Materials ...  

Science Conference Proceedings (OSTI)

May 6, 2009... from solar energy and electricity storage, to materials sciences, biofuels, advanced nuclear systems, and carbon capture and sequestration.

420

NUCLEAR ENERGY SYSTEM COST MODELING  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Program on Technology Innovation: Cladding and Structural Materials for Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

This EPRI technical update gives an overview of the initial work being done under a 3-year research program on cladding and structural materials for advanced nuclear energy systems. This research is part of EPRI's Program on Technology Innovation.

2008-12-23T23:59:59.000Z

422

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH  

E-Print Network (OSTI)

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

423

Roundtables Is nuclear energy different than other  

E-Print Network (OSTI)

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

Shrader-Frechette, Kristin

424

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Paul Dodd Researcher, Sandia National Laboratories Paul Dodd Paul Dodd Role: Researcher, Sandia National Laboratories Award: Fellow of the Institute of Electrical & Electronics...

425

Emerging Energy Research EER | Open Energy Information  

Open Energy Info (EERE)

EER EER Jump to: navigation, search Name Emerging Energy Research (EER) Place Cambridge, Massachusetts Zip 2139 Product Research and advisory company focused on new energy technologies, markets and strategies. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network (OSTI)

Flow in Central High Energy Nuclear Collisions H. Stockera,under Contract High energy nuclear collisions offer a uniquesidewards flowin high-energy nuclear collisions. The

Stocker, H.

2012-01-01T23:59:59.000Z

427

Nuclear Energy - Idaho National Laboratory - Technology Transfer ...  

Nuclear Energy Hydrogen Production Using Reduced Temperature. Related Patents: 8,132,410. Contact: David R. Anderson . Phone: (208) 526-0837 . E-mail: Send E-mail

428

Development of Nuclear Energy Systems and Fuels  

Science Conference Proceedings (OSTI)

Mar 2, 2011 ... Session Chair: Meimei Li, Argonne National Lab; Matthew Kerr, US ... The realization of advanced nuclear reactors as a national source of reliable energy .... 2Illinois Institute of Technology; 3Argonne National Laboratory

429

Manpower development for new nuclear energy programs  

E-Print Network (OSTI)

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

430

Applied nuclear data research and development. Progress report, January 1--March 31, 1976. [Activities of LASL Nuclear Data Group  

SciTech Connect

This report describes the activities of the Los Alamos Nuclear Data Group for the period January 1 to March 31, 1976. The following areas are discussed: Theory and evaluation of nuclear cross sections, including calculations of neutron cross sections; Nuclear cross-section processing, including developments concerning the computer codes used; Cross sections for HTGR safety research; Effect of dispersion matrix structure on a data adjustment and consistency analysis; Fission product and decay data studies; and Medium-energy library. 20 figures, 18 tables. (RWR)

Baxman, C.I.; Hale, G.M.; Young, P.G. (comps.)

1976-08-01T23:59:59.000Z

431

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

432

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

433

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs. Speakers President Obama, Steven Chu Duration 10:42 Topic Energy Economy Loans Energy Policy Credit Video courtesy of WhiteHouse.gov PRESIDENT BARACK OBAMA: Good morning, everybody. AUDIENCE MEMBERS: Good morning. PRESIDENT OBAMA: Before I begin, let me just acknowledge some of the people who are standing behind me here. First of all, two people who've been working really hard to make this day happen, Secretary Steven Chu, my energy secretary - Steven Chu - (applause) - and my White House

434

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network (OSTI)

Energy Research/ Energy System Integration Transmission-Research Program Energy System Integration Public InterestCommissions PIER Energy Systems Integration program for

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

435

Institutional Research & Development Reports | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reports | National Nuclear Security Reports | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Reports Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

436

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

Marquet, C; Lappi, T; Venugopalan, R

2008-01-01T23:59:59.000Z

437

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

438

Energy Technology Division research summary - 1999.  

Science Conference Proceedings (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

NONE

1999-03-31T23:59:59.000Z

439

International energy: Research organizations, 1988--1992. Revision 1  

Science Conference Proceedings (OSTI)

This publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the US DOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). ETDE member countries are also members of the International Nuclear Information System (INIS). Nuclear organization names recorded for INIS by these ETDE member countries are also included in the ETDE Energy Database. Therefore, these organization names are cooperatively standardized for use in both information systems. This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases ``Energy Science & Technology`` on DIALOG and ``Energy`` on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 31,000 organizations that reported energy-related literature from 1988 to 1992 and updates the DOE Energy Data Base: Corporate Author Entries.

Hendricks, P.; Jordan, S. [eds.] [USDOE Office of Scientific and Technical Information, Oak Ridge, TN (United States)

1993-06-01T23:59:59.000Z

440

Nuclear Energy CFD Application Management System  

Science Conference Proceedings (OSTI)

In modeling and simulation (M&S), it is virtually impossible to separately evaluate the effectiveness of the model from the data used because the results produced rely heavily on the interaction between the two. Both the data and the simulation are responsible for achieving the ultimate goal of providing defensible research and development (R&D) products and decisions. It is therefore vital that data verification and validation (V&V) activities, along with stringent configuration management, be considered part of the overall M&S accreditation process. In support of these goals is the Nuclear Energy CFD Application Management System (NE-CAMS) for nuclear system design and safety analysis. Working with Bettis Laboratory and Utah State University, a plan of action is being developed by the Idaho National Laboratory (INL) that will address the highest and most immediate needs to track and manage computational fluid dynamics (CFD) models and experimental data in an electronic database. The database will intrinsically incorporate the Nuclear Regulatory Commission (NRC) approved policies and procedures for quality. The quality requirements will be such that the model and data must conform to the quality specifications outlined by the NRC before they can be entered into the database. The primary focus of this database is CFD V&V for nuclear industry needs and will, in practice, serve as the best practice guideline that will accommodate NRC regulations. Such a database, along with a prescriptive methodology for how to utilize it, will provide the NRC with accepted CFD results that could potentially be used for licensing. NE-CAMS will incorporate data V&V as key precursors to the distribution of nuclear systems design and safety data, ensuring that these data are appropriate for use in a particular M&S application. Verification will be conducted to provide a level of confidence that the data selected are the most appropriate for the simulation and are properly prepared, i.e., they are complete, correct and conform to predefined procedures and requirements. Validation will ensure that the data accurately represent the real world activity that is being simulated, ensuring the analytical quality of the data. The level of detail and stringency applied against the data V&V activities will be based on a graded approach principle; the higher the risk, the more rigorous the V&V activities. For the V&V activities to be complete, it will be necessary to scrutinize the physical and statistical properties of the extracted data during the overall process. Regardless of the specific technique or methodology, data V&V will be an important component of NE-CAMS.

Hyung Lee; Kimberlyn C. Mousseau

2001-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Research Toward Zero Energy Homes  

SciTech Connect

This final report was compiled from the detailed annual reports that were submitted for efforts in 2008 and 2009, and from individual task reports from 2010. Reports, case studies, and presentations derived from this work are available through the Building America website. The BIRA team is led by ConSol, a leading provider of energy solutions for builders since 1983. In partnership with over fifty builders, developers, architects, manufactures, researchers, utilities, and agencies, research work was performed in California, Colorado, Utah, New Mexico, Washington, Oregon, and Hawaii and five (5) climate regions (Hot-Dry, Marine, Hot-Humid, Cold, and Hot/Mixed Dry). In addition to research work, the team provided technical assistance to our partners whose interests span the entire building process. During the three year budget period, the BIRA team performed analyses of several emerging technologies, prototype homes, and high performance communities through detailed computer simulations and extensive field monitoring to meet the required climate joule milestone targets.

Robert Hammon

2010-12-31T23:59:59.000Z

442

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear  

National Nuclear Security Administration (NNSA)

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Maria Research Reactor loaded with LEU - ... Maria Research Reactor loaded with LEU - Otwock, Poland Maria Research Reactor loaded with LEU - Otwock, Poland

443

LANL researchers use computer modeling to study HIV | National Nuclear  

National Nuclear Security Administration (NNSA)

researchers use computer modeling to study HIV | National Nuclear researchers use computer modeling to study HIV | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL researchers use computer modeling to study HIV LANL researchers use computer modeling to study HIV Posted By Office of Public Affairs Los Alamos National Laboratory researchers are investigating the complex

444

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

445

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

Nazarewicz, W; Satula, W; Vretenar, D

2013-01-01T23:59:59.000Z

446

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

447

Fossil Energy's HBCU Research Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that goal. Fossil Energy's HBCU Research Activities More Documents & Publications Fossil Energy Today - Third Quarter, 2012 Fossil Energy Today - First Quarter, 2011...

448

2013 Annual Planning Summary for the Office of Nuclear Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual Planning Summary for the Office of Nuclear Energy 2013 Annual Planning Summary for the Office of Nuclear Energy 2013 Annual Planning Summary for the Office of Nuclear...

449

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the world’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

450

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances > National...

451

Stochastic Jet Quenching in High Energy Nuclear Collisions  

E-Print Network (OSTI)

Energy losses of fast color particles in random inhomogeneous color medium created in high energy nuclear collisions are estimated.

Kirakosyan, M R

2008-01-01T23:59:59.000Z

452

A Clean Nuclear Energy Using Hydrogen and Condensed Matter Nuclear Science  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Xing Z. Li; Zhan M. Dong; Chang L. Liang; Han Yi; Yun P. Fu

453

First Report from New Nuclear Energy Standards Group ...  

Science Conference Proceedings (OSTI)

First Report from New Nuclear Energy Standards Group Released. For Immediate Release: August 11, 2009. ...

2010-12-29T23:59:59.000Z

454

Education of Nuclear Energy Systems at bo Akademi  

Science Conference Proceedings (OSTI)

Education, Economics, and Sustainability / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Tom Lnnroth

455

Future challenges for nuclear data research in fission (u)  

Science Conference Proceedings (OSTI)

I describe some high priority research areas in nuclear fission, where applications in nuclear reactor technologies and in modeling criticality in general are demanding higher accuracies in our databases. We focus on fission cross sections, fission neutron spectra, and fission product data.

Chadwick, Mark B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

456

Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Global Nuclear Energy Initiative at Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Global Nuclear Energy Initiative at LBNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Global nuclear energy initiative Developed at: 88-inch Cyclotron, Lawrence Berkeley National Laboratory Developed in:

457

Nuclear Instruments and Methods in Physics Research A 598 (2009  

NLE Websites -- All DOE Office Websites (Extended Search)

8,19; short X-ray pulse generation for light sources l'l|2-23 J. Shi et al. Nuclear lnstruments and Methods n Physics Research A 598 (2009) 388-393 '1.2. Emttance...

458

Basic Research Needs: Catalysis for Energy  

DOE Green Energy (OSTI)

The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

2008-03-11T23:59:59.000Z

459

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Coal Research University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research proposals. Today approximately 16 percent of the Office of Fossil Energy's annual R&D funding goes to academic institutions. The University Coal Research Program Universities have traditionally fared well in the Energy Department's open competitions for federal research grants and contracts. In 1979, however, the Department took an additional step to encourage greater university participation in its fossil energy program. The agency set aside funding for a special university-only competition that required professors to conduct cutting-edge research alongside students who were pursuing advanced

460

Research Facilities & Centers | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology Facility Center For Structural Molecular Biology Climate Change Science Institute Joint Institute for Biological Sciences Manufacturing Demonstration Facility National Transportation Research Center Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Facilities and Centers SHARE Facilities, Centers Welcome Industry, Academia Oak Ridge National Laboratory facilities and capabilities together provide a unique environment for Clean Energy research. For example, as the lead institution for DOE's BioEnergy Science Center, ORNL is pioneering

Note: This page contains sample records for the topic "nuclear energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Climate Control Using Nuclear Energy  

E-Print Network (OSTI)

We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

Moninder Singh Modgil

2008-01-01T23:59:59.000Z

462

Engineering Development & Applications - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies (FCT) Generation IV (Gen IV) Nuclear Energy Program Decontamination and Decommissioning Nuclear Regulatory Research Facilities Environmentally Assisted Cracking...

463

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOEs Office of Advanced Scientific Computing Research (ASCR) and DOEs Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSCs continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called case studies, of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

464

U.S. Department of Energy Announces Energy Frontier Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Frontier Research Centers Summit & Forum U.S. Department of Energy Announces Energy Frontier Research Centers Summit & Forum March 4, 2011 - 12:00am Addthis Washington, D.C....

465

First Office of Nuclear Energy -Tribal Leader Dialogue | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue November 14, 2013 - 4:48pm Addthis First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy On October 30th, I hosted Tribal Leaders from all over the United States at the first Office of Nuclear Energy (NE) and Tribal Leader Dialogue (Dialogue) in New Orleans, Louisiana. The Dialogue was a great success! The Tribal Leaders and I were able sit down together to discuss the issues surrounding nuclear energy in the

466

First Office of Nuclear Energy -Tribal Leader Dialogue | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue November 14, 2013 - 4:48pm Addthis First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy On October 30th, I hosted Tribal Leaders from all over the United States at the first Office of Nuclear Energy (NE) and Tribal Leader Dialogue (Dialogue) in New Orleans, Louisiana. The Dialogue was a great success! The Tribal Leaders and I were able sit down together to discuss the issues surrounding nuclear energy in the

467

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

on Energy Demand and Conservation. 1979 (in press). Brooks.Look at Energy Conservation," Papers and Proceedings,Research Opportunities," in Conservation and Public Policy,

Hollander, Jack M.

2011-01-01T23:59:59.000Z

468

Nanyang Technological University's New Energy Research Institute...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanyang Technological University's New Energy Research Institute: Grids, Energy Systems and Sustainable Building Technologies Programs Speaker(s): King Jet Tseng Subodh Mhaisalkar...

469

Maximum Building Energy Efficiency Research Laboratory secures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Network - Maximum Building Energy Efficiency Research Laboratory secures LEED Gold July 01, 2013 The recently completed 14.3m Maximum Building Energy Efficiency...

470

National Energy Research Scientific Computing Center (NERSC)...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contract to Cray August 5, 2009 BERKELEY, CA - The Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National...

471

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

cost competitive with other electricity-generating alternatives. For example, wind power and other renewable technologies, combined with energy

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

472

Energy Technology Division research summary -- 1994  

DOE Green Energy (OSTI)

Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

Not Available

1994-09-01T23:59:59.000Z

473

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Laboratories Award: Fellows of the American Association for the Advancement of Science Profile: Sandia researchers David Haaland and David Myers have been elected Fellows...

474

Institutional Research & Development Reports | National Nuclear...  

National Nuclear Security Administration (NNSA)

Development Reports Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

475

Institutional Research & Development News | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Development News Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

476

The History of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

History of Nuclear Energy History of Nuclear Energy The History of Nuclear Energy Although they are tiny, atoms have a large amount of energy holding their nuclei together. Certain isotopes of some elements can be split and will release part of their energy as heat. This splitting is called fission. The heat released in fission can be used to help generate electricity in powerplants. Uranium-235 (U-235) is one of the isotopes that fissions easily. During fission, U-235 atoms absorb loose neutrons. This causes U-235 to become unstable and split into two light atoms called fission products. The combined mass of the fission products is less than that of the original U-235. The reduction occurs because some of the matter changes into energy. The energy is released as heat. Two or three neutrons

477

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States December 10, 2013 - 2:30pm Addthis News Media Contact (202) 586-4940 U.S. Secretary of Energy Ernest Moniz and State Corporation for Nuclear Energy (Rosatom) Director General Sergey Kirienko today held talks in Washington, D.C., about the future of U.S.-Russia collaborative work in the nuclear energy field, including nuclear research and development, commercial aspects of cooperation, nuclear safety, and nonproliferation. The meeting coincided with the arrival of the final shipment of low