Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NUCLEAR ENERGY SYSTEM COST MODELING  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

2

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

3

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and...

4

Nuclear Energy  

Nuclear Energy Environmental Mgmt. Study Objectives: Respond to the pressing need to refine existing corrosion models: Predict performance in wide range of environments

5

Modeling and Simulation for Nuclear Reactors Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub August 1, 2010 - 4:20pm Addthis Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas of energy science and engineering from the earliest stages of research to the point of commercialization where technologies can move to the private sector by bringing together leadings scientists to collaborate on critical energy challenges. The Energy Innovation Hubs aim to develop innovation through a unique

6

White paper on VU for Modeling Nuclear Energy Systems  

SciTech Connect

The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

Klein, R; Turinsky, P

2009-05-07T23:59:59.000Z

7

Nuclear binding energies from a BPS Skyrme model  

E-Print Network (OSTI)

Recently, within the space of generalized Skyrme models, a BPS submodel was identified which reproduces some bulk properties of nuclear matter already on a classical level and, as such, constitutes a promising field theory candidate for the detailed and reliable description of nuclei and hadrons. Here we extend and further develop these investigations by applying the model to the calculation of nuclear binding energies. Concretely, we calculate these binding energies by including the classical soliton energies, the excitation energies from the collective coordinate quantization of spin and isospin, the electrostatic Coulomb energies and a small explicit isospin symmetry breaking, which accounts for the mass difference between proton and neutron. The integrability properties of the BPS Skyrme model allow, in fact, for an analytical calculation of all contributions, which may then be compared with the semi-empirical mass formula. We find that for heavier nuclei, where the model is expected to be more accurate o...

Adam, C; Sanchez-Guillen, J; Wereszczynski, A

2013-01-01T23:59:59.000Z

8

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling and Simulation (NEAMS) Software Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan Requirements Version 0.pdf More Documents & Publications NEAMS Quarterly Report for January-March 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

9

Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities  

SciTech Connect

The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

2012-09-01T23:59:59.000Z

10

Integrated Computational Modeling of Materials for Nuclear Energy  

Science Conference Proceedings (OSTI)

Nuclear fuel and primary cooling system structural components are exposed to elevated ... models for safety and performance evaluation of nuclear reactors but also for the ... Continuum Theory of Defects and Materials Response to Irradiation

11

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network (OSTI)

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics, Division of Nuclear Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden Email

Demazière, Christophe

12

Why Nuclear Energy?  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear Why nuclear energy? energy? Nuclear energy already meets a significant share of the Nuclear energy already meets a significant share of the world world' 's energy needs s...

13

Nuclear | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space...

14

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has...

15

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Nuclear...

16

Nuclear Energy Enabling Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop...

17

Nuclear Models  

SciTech Connect

The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

2010-09-10T23:59:59.000Z

18

Sustainable Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling a Sustainable Nuclear Energy Future Since its inception, Argonne R&D has supported U.S. Department of Energy nuclear programs and initiatives, including today's...

19

Nuclear Energy Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Funding Opportunities Document Library The Nuclear Energy Advisory...

20

NUCLEAR ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

could improve the economic and safety performance of these advanced reactors. Nuclear power can reduce GHG emissions from electricity production and possibly in co-generation...

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well-defined, well-characterized data. Element 3. Standards will be established for the design and operation of experiments for the generation of new validation data sets that are to be submitted to NE-CAMS that addresses the completeness and characterization of the dataset. Element 4. Standards will be developed for performing verification and validation (V&V) to establish confidence levels in CFD analyses of nuclear reactor processes; such processes will be acceptable and recognized by both CFD experts and the NRC.

Kimberlyn C. Mousseau

2011-10-01T23:59:59.000Z

22

Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV  

Science Conference Proceedings (OSTI)

The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

Young, P.G.; Chadwick, M.B.; Bosoian, M.

1992-12-01T23:59:59.000Z

23

Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV  

Science Conference Proceedings (OSTI)

The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

Young, P.G.; Chadwick, M.B.; Bosoian, M.

1992-01-01T23:59:59.000Z

24

Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear reactor systems, components and processes, and will later expand to include materials, fuel system performance and other areas of M&S as time and funding allow.

Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

2011-09-01T23:59:59.000Z

25

Nuclear energy | Open Energy Information  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Nuclear energy is energy in the nucleus of an atom.1 References "EIA: Uranium (nuclear) Basics" External links...

26

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

27

Medium energy nuclear data for applications  

SciTech Connect

The types of medium energy nuclear data required for applications are discussed. Features of analysis tools, consisting of both detailed nuclear model codes and simple formulas based on nuclear systematics are presented. The activities of the Medium Energy Nuclear Data Working Group (MENDWG) are described including the recent benchmark comparison of nuclear model codes. 40 refs., 7 figs.

Pearlstein, S.

1988-01-01T23:59:59.000Z

28

NUCLEAR DEFORMATION ENERGIES  

E-Print Network (OSTI)

J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusin connection with nuclear fission. The need for a better

Blocki, J.

2009-01-01T23:59:59.000Z

29

Mark Peters testifies before Congress on nuclear energy | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ---Reactors -Energy usage --Energy storage ---Batteries ----Lithium-ion batteries ----Lithium-air...

30

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

31

Nuclear Fuels - Modeling  

Science Conference Proceedings (OSTI)

Mar 12, 2012... for the Current and Advanced Nuclear Reactors: Nuclear Fuels - Modeling .... Using density functional theory (DFT), we have predicted that ...

32

Office of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first DOE Hub for the modeling and simulation (M&S) of commercial

33

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

Science Conference Proceedings (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

34

Analytical free energy second derivatives with respect to nuclear coordinates: Complete formulation for electrostatic continuum solvation models  

Science Conference Proceedings (OSTI)

We present the theory and the implementation of analytical free energy second derivatives with respect to nuclear displacements for a molecular solute described within the framework of the polarizable continuum model. The formulation applies to a cavity with an accurately modeled molecular shape and it permits a complete consideration of all aspects of the solvation model. In particular

B. Mennucci; R. Cammi; J. Tomasi

1999-01-01T23:59:59.000Z

35

Microscopic models and effective equation of state in nuclear collisions at FAIR energies  

E-Print Network (OSTI)

Two microscopic models, UrQMD and QGSM, were employed to study the formation of locally equilibrated hot and dense nuclear matter in heavy-ion collisions at energies from 11.6 AGeV to 160 AGeV. Analysis was performed for the fixed central cubic cell of volume V = 125 fm**3 and for the expanding cell which followed the growth of the central area with uniformly distributed energy. To decide whether or not the equilibrium was reached, results of the microscopic calculations were compared to that of the statistical thermal model. Both dynamical models indicate that the state of kinetic, thermal and chemical equilibrium is nearly approached at any bombarding energy after a certain relaxation period. The higher the energy, the shorter the relaxation time. Equation of state has a simple linear dependence P = a(sqrt{s})*e, where a = c_s**2 is the sound velocity squared. It varies from 0.12 \\pm 0.01 at E_{lab} = 11.6 AGeV to 0.145 \\pm 0.005 at E_{lab} = 160 AGeV. Change of the slope in a(sqrt{s}) behavior occurs at E_...

Bravina, L; Bleibel, J; Bleicher, M; Burau, G; Faessler, Amand; Fuchs, C; Nilsson, M S; Stöcker, H; Tywoniuk, K; Zabrodin, E

2008-01-01T23:59:59.000Z

36

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition Year 6 Nuclear Power 2010 6 Major Program Developments 6 FY 2003 Budget Request Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (3) Nuclear Power 2010 Nuclear Power 2010 Nuclear Power 2010 is a new R&D initiative announced by Secretary Abraham on February 14, 2002. This initiative is designed to clear the way for the construction of new nuclear power plants by 2010. Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (4) Can We Build New U.S. Reactors By 2010? Yes! Can We Build New U.S. Reactors By 2010? Yes! Can Be Deployed by 2010

37

High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

Science Conference Proceedings (OSTI)

The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

2011-09-01T23:59:59.000Z

38

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

39

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Five Years of Building the Next Generation of Reactors Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). A two-year update on the Consortium for Advanced Simulation of Light Water Reactors and the progress being made in overcoming barriers to national

40

Nuclear Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and environmental security. Full development of a science-based approach for nuclear reactor and fuel cycle technology and systems is a "grand challenge" well suited to...

42

National Nuclear Data Center Nuclear Energy  

E-Print Network (OSTI)

National Nuclear Data Center and Nuclear Energy Pavel Oblozinsky National Nuclear Data Center;National Nuclear Data Center Probably the oldest active organization at BNL History · Founded in 1952 as Sigma Center, neutron cross sections · Changed to National Nuclear Data Center in 1977 · 40 staff

43

nuclear energy legislation on track  

Science Conference Proceedings (OSTI)

07/8 - NUCLEAR ENERGY LEGISLATION ON TRACK ... the safety and economic viability of nuclear power, the management of nuclear waste, the advancement ...

44

Microscopic models and effective equation of state in nuclear collisions at FAIR energies  

E-Print Network (OSTI)

Two microscopic models, UrQMD and QGSM, were employed to study the formation of locally equilibrated hot and dense nuclear matter in heavy-ion collisions at energies from 11.6 AGeV to 160 AGeV. Analysis was performed for the fixed central cubic cell of volume V = 125 fm**3 and for the expanding cell which followed the growth of the central area with uniformly distributed energy. To decide whether or not the equilibrium was reached, results of the microscopic calculations were compared to that of the statistical thermal model. Both dynamical models indicate that the state of kinetic, thermal and chemical equilibrium is nearly approached at any bombarding energy after a certain relaxation period. The higher the energy, the shorter the relaxation time. Equation of state has a simple linear dependence P = a(sqrt{s})*e, where a = c_s**2 is the sound velocity squared. It varies from 0.12 \\pm 0.01 at E_{lab} = 11.6 AGeV to 0.145 \\pm 0.005 at E_{lab} = 160 AGeV. Change of the slope in a(sqrt{s}) behavior occurs at E_{lab} = 40 AGeV and can be assigned to the transition from baryon-rich to meson-dominated matter. The phase diagrams in the T - mu_B plane show the presence of kinks along the lines of constant entropy per baryon. These kinks are linked to the inelastic (i.e. chemical) freeze-out in the system.

L. Bravina; I. Arsene; J. Bleibel; M. Bleicher; G. Burau; Amand Faessler; C. Fuchs; M. S. Nilsson; H. Stoecker; K. Tywoniuk; E. Zabrodin

2008-04-09T23:59:59.000Z

45

The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report  

SciTech Connect

In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

2009-10-12T23:59:59.000Z

46

Nuclear Energy Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 9, 2010 L'Enfant Plaza Hotel Washington, D.C. Committee Members Participating John Ahearne Raymond Juzaitis Ashok Bhatnagar William Martin, Chair Dana Christensen Carl Paperiello Thomas Cochran Burton Richter Michael Corradini John Sackett Marvin Fertel Allen Sessoms Donald Hintz Neil Todreas Committee Members Absent Brew Barron Susan Ion Other Participants: Richard Black, Director, Office of Advanced Reactor Concepts, Office of Nuclear Energy, USDOE Nancy Carder, Medical University of South Carolina, NEAC Support Staff David Hill, Director, Institute for Nuclear Energy Science and Technology, Idaho National Laboratory Shane Johnson, Chief Operating Officer, Office of Nuclear Energy, USDOE

47

Office of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more...

48

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology MagwoodApril1502 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition...

49

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 30, 2002 September 30, 2002 NERAC Fall 2002 Meeting Office of Nuclear Energy, Science and Technology Major Program Developments Major Program Developments 6 June 2002: Department selects three U.S. electric utilities (Dominion Energy, Entergy, and Exelon) to participate in joint government/ industry projects to demonstrate NRC's Early Site Permit (ESP) process and seek NRC approval by mid-decade 6 July 2002: Secretary Abraham announces transition of management of the Idaho National Engineering and Environmental Laboratory to Nuclear Energy and revitalization of its nuclear R&D mission 6 September 2002: Generation IV International Forum reaches agreement on six advanced reactor and fuel cycle technologies for joint development Office of Nuclear Energy, Science and Technology

50

Nuclear Fission Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and about 250 kg of 239Pu. Some 40% of the energy produced in the course of a nuclear fuel cycle comes from 239Pu. Since about 20% of the electricity generated in the United...

51

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the...

52

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 13051322  

E-Print Network (OSTI)

annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 1305­1322 www. Demazie`re, I. Pa´zsit / Annals of Nuclear Energy 32 (2005) 1305­1322 Nomenclature ACF autocorrelation`re, I. Pa´zsit / Annals of Nuclear Energy 32 (2005) 1305­1322 amroNli)1(FRIdezamroNli)1(FCAdez 1 0.8 0

Demazière, Christophe

53

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842  

E-Print Network (OSTI)

annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www of Nuclear Energy 32 (2005) 812­842 background noise is present, this technique is useful to indicate. Demazie`re, G. Andhill / Annals of Nuclear Energy 32 (2005) 812­842 noise source could then be derived

Demazière, Christophe

54

High energy nuclear quasielastic reactions: Decisive tests of nuclear binding/pion models of the EMC effect  

SciTech Connect

The light-cone nucleon momentum distributions obtained from non- relativistic spectral functions or given by nuclear binding/pion models are often used to analyze high Q{sup 2} quasi-elastic and deep-inelastic (e,e{prime}) reactions. We demonstrate that in such models the presence of non-nucleonic components causes the scattering from forward and backward moving target protons to be significantly different. Other models do not have this property. The sensitivity of current (e,e{prime}p) and (p,pp) color transparency experiments is sufficient to observe these differences.

Frankfurt, L; Strikman, M [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory AN SSSR, Leningrad (USSR). Inst. Yadernoj Fiziki; Miller, G A [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory

1991-01-01T23:59:59.000Z

55

Nuclear Energy University Program Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program » Nuclear Energy Nuclear Energy University Program » Nuclear Energy University Program Documents Nuclear Energy University Program Documents Documents Available for Download October 31, 2013 FY 2014 Consolidated Innovative Nuclear Research FOA This Funding Opportunity Announcement (FOA) addresses the competitive portion of NE's R&D portfolio as executed through the Nuclear Energy University Programs (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and

56

Office of Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NE Human Capital Plan Revised August 2006 U. S. Department of Energy NE Human Capital Plan i August 2006 Office of Nuclear Energy Table of Contents Executive Summary...................................................................................................................................1 Background .................................................................................................................................................2 NE Human Capital Strategy.....................................................................................................................2 NE Human Capital Plan: At-A-Glance ..................................................................................................3

57

Surface Symmetry Energy of Nuclear Energy Density Functionals.  

E-Print Network (OSTI)

??The thesis studies the bulk deformation properties of the Skyrme nuclear energy densityfunctionals. Following simple arguments based on the leptodermous expansion andliquid drop model, the… (more)

Nikolov, Nikola Iliev

2011-01-01T23:59:59.000Z

58

BOOK: The Nuclear Energy Option  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... This on-line book covers the driving forces for nuclear power, risks of nuclear energy and next generation reactors. SOURCE: Cohen, B. L. The ...

59

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

60

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more proliferation-resistant fuel cycle technologies. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Office of Nuclear Energy | Department of Energy  

NLE Websites -- All DOE Office Websites

(M&S) of commercial nuclear reactors. Read more Blog May 6, 2013 Paving the path for next-generation nuclear energy Nuclear power reactors currently under construction worldwide...

62

2012 Nuclear Energy Enabling Technology Factsheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Enabling Technology Factsheet 2012 Nuclear Energy Enabling Technology Factsheet Learn more about the Nuclear Energy Enabling Technologies (NEET) program, which will...

63

Nuclear Energy (WFP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy (WFP) Nuclear Energy (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This will enable the agency to have...

64

Nuclear | Open Energy Information  

Open Energy Info (EERE)

Nuclear Nuclear Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 82. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 9. Electricy Generating Capacity Table 96. Electricity Generation by Electricity Market Module Region and Source Table 97. Electricity Generation Capacity by Electricity Market Module Region and Source Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has

65

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

66

Nuclear Systems Modeling and Design Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis CAPABILITIES Overview Nuclear Systems Modeling and Design Analysis Nuclear Systems Technologies Risk and Safety Assessments Nonproliferation and National Security Materials Testing Engineering Computation & Design Engineering Experimentation Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Capabilities Nuclear Systems Modeling and Design Analysis Bookmark and Share Reactor Physics and Fuel Cycle Analysis Reactor Physics and Fuel Cycle Analysis We have played a major role in the design and analysis of most existing and past reactor types and of many

67

International Nuclear Energy Research Initiative: Annual Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sitesallmodulescontribredisredis.autoload.inc). You are here Home International Nuclear Energy Research Initiative: Annual Report 2005 International Nuclear Energy...

68

Nuclear Energy Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these reviews provides advice and recommendations on the program's long-range plans, priorities, and strategies to effectively address the scientific and engineering aspects of the research and development efforts. In addition, the committee provides advice on national policy and scientific aspects of

69

Modeling and simulation in analyzing geological repositories for high level nuclear waste  

Science Conference Proceedings (OSTI)

Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms which can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. Electrical ... Keywords: modeling, nuclear energy, nuclear waste, nuclear waste storage, simulation

Dietmar P. F. Möller

2007-07-01T23:59:59.000Z

70

The Global Nuclear Energy Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership A report on the Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S....

71

Symmetry Energy in Nuclear Surface  

E-Print Network (OSTI)

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. The interplay leads to a dependence of the symmetry coefficient, in energy formula, on nuclear mass. Charge symmetry of nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of neutron-proton asymmetry.

Danielewicz, Pawel

2008-01-01T23:59:59.000Z

72

THE GLOBAL NUCLEAR ENERGY PARTNERSHIP:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GLOBAL NUCLEAR ENERGY PARTNERSHIP: GLOBAL NUCLEAR ENERGY PARTNERSHIP: Greater Energy Security in a Cleaner, Safer World The Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S. and global energy security, encourage clean development around the world, reduce the risk of nuclear proliferation, and improve the environment. A plentiful, reliable supply of energy is the cornerstone of sustained economic growth and prosperity. Nuclear power is the only proven technology that can provide abundant supplies of base load electricity reliably and without air pollution or emissions of greenhouse gasses. In order to help meet growing demand for energy at home and encourage the growth of prosperity around the globe, GNEP provides for the safe, extensive expansion of clean nuclear power.

73

Energy: Nuclear Energy Technology - Symposium @ Northwestern...  

NLE Websites -- All DOE Office Websites (Extended Search)

12-14, 2011 (http:ses2011.org) Fluid, Thermal and Energy Track Symposium 2.6, Energy: Nuclear Energy Technology Chair: Roger Blomquist Thursday, Oct 13 Time Topic & description...

74

Office of Nuclear Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Energy Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is

75

Energy Functional for Nuclear Masses.  

E-Print Network (OSTI)

??An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional… (more)

Bertolli, Michael Giovanni

2011-01-01T23:59:59.000Z

76

Office of Nuclear Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United...

77

NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398  

E-Print Network (OSTI)

The general theory of linear reactor kinetics and that of the induced neutron noise is developed for systemsannafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www.elsevier.com/locate/anucene LINEAR REACTOR KINETICS AND NEUTRON NOISE IN SYSTEMS WITH FLUCTUATING BOUNDARIES Imre Pfizsit and Vasiliy

Pázsit, Imre

78

Viscosity of High Energy Nuclear Fluids  

E-Print Network (OSTI)

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

79

Meeting Between the Department of Energy and the Nuclear Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy...

80

The Global Nuclear Energy Partnership: Greater Energy Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership: Greater Energy Security in a Cleaner, Safer World The Global Nuclear Energy Partnership: Greater Energy Security in a Cleaner, Safer World...

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Point of Contact: Doug Kothe CASL Director 865-241-9392 kothe@ornl.gov www.casl.gov A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors  

E-Print Network (OSTI)

Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors CASL became a DOE Energy Innovation energy, and national security; universities with preeminent nuclear engineering programs; and vendor,Tennessee Valley Authority [TVA], and Electric Power Research Institute). As laboratory leaders in science, nuclear

82

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Status 1 Status Presentation to Nuclear Energy Advisory Committee (NEAC) June 15, 2011 Michael Worley, NEUP Program Manager NEUP Funding is Program Driven Program Directed Funding Program Supported Funding Mission Supported Funding Natl. Labs Universities DOE-NE HQ Peer Review DOE NE Program Drivers 2 3 Summary of Improvements and New Programs for FY 2011 * Expand "Blue Sky" Research and Development (R&D) * Initiate Integrated Research Projects (IRP) * Expand and improve peer review data base * Evaluate adoption of NRC and NNSA Metrics as appropriate to NEUP * Conduct peer review at pre-application stage for R&D 2011 Proposed NEUP Budget - $61.8M * Program Directed Integrated Research Projects (IRP) - $12.0M (NEW)

83

Nuclear Energy | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

84

Nuclear Energy University Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy University Program Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy University Programs (NEUP), which was created in 2009 to consolidate university support under one initiative and better integrate university research within NE' technical programs. NEUP engages U.S. colleges and universities to conduct research and development (R&D), enhance infrastructure and support student education

85

Department of Energy Idaho - Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Department of Energy (DOE). DOE headquarters (DOE-HQ) has decided to focus its nuclear energy research and development (R&D) programs in Idaho. We are taking measurable...

86

Nuclear Energy University Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The...

87

Symmetry Energy in Nuclear Surface  

E-Print Network (OSTI)

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

Pawel Danielewicz; Jenny Lee

2008-11-10T23:59:59.000Z

88

United States and Japan Sign Joint Nuclear Energy Action Plan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

89

The Global Nuclear Energy Partnership (GNEP) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership (GNEP) The Global Nuclear Energy Partnership (GNEP) An article that examines the global nuclear energy partnership. The Global Nuclear Energy...

90

Proposal for a High Energy Nuclear Database  

E-Print Network (OSTI)

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

91

THE ENERGY GAP IN NUCLEAR MATTER  

E-Print Network (OSTI)

W-7405-eng-48 THE ENERGY GAP IN NUCLEAR MATTER V. J. Emery31, 1960 .po THE ENERGY GAP IN NUCLEAR HNrTEh V. J. ? :merysingle-particle energy in nuclear matter. The internucleon

Emery, V.J.

2008-01-01T23:59:59.000Z

92

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Nuclear Energy Announces Central Europe Nuclear The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional Nuclear Safety Workshop on Trends in Nuclear Power Plant Safety for Robust Civil Nuclear Programs on Oct. 10-13, 2011 in Prague. U.S. Ambassador Norman Eisen and Department of Energy Assistant Secretary for Nuclear Energy Dr. Pete Lyons will deliver speeches welcoming participants. Representatives from the Czech Republic, Bulgaria, Lithuania,

93

CMCs for Nuclear Energy  

Science Conference Proceedings (OSTI)

Ceramic Matrix Composites (CMCs) are considered to improve the performance and safety of nuclear fusion and fission reactors. Silicon carbide-reinforced ...

94

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

95

Building a Universal Nuclear Energy Density Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

96

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.  

SciTech Connect

This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

2011-02-01T23:59:59.000Z

97

Argonne Historical News Releases about Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Releases Releases About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

98

Nuclear Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

99

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -present East Asian national nuclear energy programs. Withoutfor the Peaceful Use of Nuclear Energy in East Asia by Jor-

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

100

Application of nuclear models to neutron nuclear cross section calculations  

Science Conference Proceedings (OSTI)

Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

Young, P.G.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Global Nuclear Energy Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership (GNEP) GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors...

102

Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).  

Science Conference Proceedings (OSTI)

This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

2010-09-01T23:59:59.000Z

103

Nuclear Liability | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Liability Liability Nuclear Liability 1. Price-Anderson Act (PAA) GC-52 provides legal advice to DOE regarding issues arising under the PAA, which governs nuclear liability in the United States and establishes a system of financial protection for persons who may be liable for and persons who may be injured by a nuclear incident. GC-52 is also responsible for developing regulations implementing any amendments to the PAA. As necessary, GC-52 attorneys coordinate with other US and international agencies. Applicable Laws Atomic Energy Act of 1954, Section 170 Report to Congress on the Price-Anderson Act 2. Extraordinary Contractual Relief for Nuclear Risks GC-52 advises DOE on providing indemnification under Public Law 85-804 for DOE and National Nuclear Security Administration (NNSA) contractors for

104

Symmetry energy of warm nuclear systems  

E-Print Network (OSTI)

The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature-Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

Agrawal, B K; Samaddar, S K; Centelles, M; Viñas, X

2013-01-01T23:59:59.000Z

105

Symmetry energy of warm nuclear systems  

E-Print Network (OSTI)

The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature-Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

B. K. Agrawal; J. N. De; S. K. Samaddar; M. Centelles; X. Viñas

2013-08-26T23:59:59.000Z

106

Nuclear methods in environmental and energy research  

SciTech Connect

The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

Vogt, J.R. (ed.)

1977-01-01T23:59:59.000Z

107

DOE's Office of Nuclear Energy Honored  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's Office of Nuclear Energy Honored The U.S. Department of Energy's Office of Nuclear Energy was among those honored by the Partnership for Science and Technology (PST) as...

108

ARTICLES: Global Nuclear Energy Partnership - TMS  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... The Global Nuclear Energy Partnership (GNEP) was established to be an equal and voluntary international partnership for developing nuclear ...

109

SRNL Project Supports Nuclear Energy Research  

will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, meet the need for advanced nuclear energy

110

Department of Energy Established | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Department of Energy Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

111

Office of Nuclear Energy Launches New Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website February 11, 2013 - 4:01pm Addthis The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy What does this mean for me? Visit the new Office of Nuclear Energy website at energy.gov/ne. The Office of Nuclear Energy (NE) is pleased to introduce our new, updated public website: energy.gov/ne. The new site was designed to help facilitate users' access to NE

112

GE Hitachi Nuclear Energy | Open Energy Information  

Open Energy Info (EERE)

GE Hitachi Nuclear Energy GE Hitachi Nuclear Energy Jump to: navigation, search Name GE Hitachi Nuclear Energy Place Wilmington, North Carolina Zip 28402 Sector Efficiency, Services Product GE Hitachi Nuclear Energy develops advanced light water reactors and offers products and services used by operators of boiling water reactor (BWR) nuclear power plants to improve efficiency and boost output. Coordinates 42.866922°, -72.868494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866922,"lon":-72.868494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

NUCLEAR DEFORMATION ENERGIES  

E-Print Network (OSTI)

= .9807 ENERGY 598.24 SPAC I NG NG t I I ! t I I I I ! ! ! ! I I1 ! I I I " II " II SPAC I NG I I ! 1 ! ! ! I I [ I ! ! ! "

Blocki, J.

2009-01-01T23:59:59.000Z

114

Nuclear Energy 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Pot? A turbine and generator makes electricity using the energy of the steam. A condenser turns the used steam back to water. Condenser Turbine Generator Images: www.tva.gov...

115

DOE Hydrogen and Fuel Cells Program: Office of Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Office of Nuclear Energy Printable...

116

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will...

117

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEUP FY2011 Process Presentation to NEAC December 9, 2010 Marsha Lambregts, NEUP-IO Manager FUNDED R&D PROPOSALS BY STATE 2010 * Awards/Full Submissions - 42/128 * Awards to PIs for first time - 29 * Awards to junior faculty - 20 * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of awards with lab partners - 20 * Number of universities receiving awards for first time - 8 2 2010 INFRASTRUCTURE * Major Reactor: 4 awards for a total of $3.75 M * Minor Reactor: 12 awards for $1.95 M * General Scientific Infrastructure: 33 award for $7.47 M * Since 2009, $ 19.438 M has been awarded in General Scientific Infrastructure (did not issue Major or Minor Reactor calls in 2009).

118

Occupation-number-based energy functional for nuclear masses  

Science Conference Proceedings (OSTI)

We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to 2049 nuclear masses yields a root-mean-square deviation of =1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

Bertolli, Michael G. [University of Tennessee, Knoxville (UTK); Papenbrock, Thomas F [ORNL; Wild, S. M. [Argonne National Laboratory (ANL)

2012-01-01T23:59:59.000Z

119

Occupation number-based energy functional for nuclear masses  

E-Print Network (OSTI)

We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to nuclear masses yields a root-mean-square deviation of \\chi = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

Bertolli, M; Wild, S

2011-01-01T23:59:59.000Z

120

Occupation number-based energy functional for nuclear masses  

E-Print Network (OSTI)

We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to nuclear masses yields a root-mean-square deviation of \\chi = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

M. Bertolli; T. Papenbrock; S. Wild

2011-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NE - Nuclear Energy - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY (NE) NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible. Saving an average of 1.5 gallons of gasoline per day per person (e.g., 13 miles per work x 2 = 26 miles, an average of 17 mpg), on a normal workday, NE employees save (56 percent of 145 = 71 times 1.2 days per pay period = 85.2 workdays x 1.5 gals = 127.8 gallons/pay

122

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Liu, Min; Li, Zhuxia; Zhang, Fengshou

2010-01-01T23:59:59.000Z

123

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

124

Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy  

E-Print Network (OSTI)

The Fermi transition (\\Delta L=\\Delta S=0 and \\Delta T=1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p,n) or (3He,t) reaction, can be considered as "elastic" scattering of proton or 3He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p,n) or (3He,t) scattering cross-section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3He optical potential to the cross section of the charge-exchange (p,n) or (3He,t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p,n) or (3He,t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence.

Dao T. Khoa; Bui Minh Loc; Dang Ngoc Thang

2013-07-01T23:59:59.000Z

125

Sensitivity of nuclear stopping towards density dependent symmetry energy  

E-Print Network (OSTI)

The effect of density dependent symmetry energy on nuclear-stopping is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin-dependent cross-section with soft(S) equation of state for the systems having different isostopic content, to explore the various aspects of nuclear stopping. The aim is to pin down the nature of the nuclear stopping with density dependent symmetry energy. Nuclear stopping is found to be sensitive towards the various forms of the density dependent symmetry energy. The nuclear stopping tends to decrease for the stiffer equation of state (EOS), i.e. larger values of gamma.

Karan Singh Vinayak; Suneel Kumar

2011-10-11T23:59:59.000Z

126

Sensitivity of nuclear stopping towards density dependent symmetry energy  

E-Print Network (OSTI)

The effect of density dependent symmetry energy on nuclear-stopping is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin-dependent cross-section with soft(S) equation of state for the systems having different isostopic content, to explore the various aspects of nuclear stopping. The aim is to pin down the nature of the nuclear stopping with density dependent symmetry energy. Nuclear stopping is found to be sensitive towards the various forms of the density dependent symmetry energy. The nuclear stopping tends to decrease for the stiffer equation of state (EOS), i.e. larger values of gamma.

Vinayak, Karan Singh

2011-01-01T23:59:59.000Z

127

Nuclear models on a lattice  

E-Print Network (OSTI)

We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.

F. De Soto; J. Carbonell; C. Roiesnel; Ph. Boucaud; J. P. Leroy; O. Pene

2005-11-04T23:59:59.000Z

128

Nuclear methods in environmental and energy research  

SciTech Connect

A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

Vogt, J R [ed.

1980-01-01T23:59:59.000Z

129

Global Nuclear Energy Partnership Fact Sheet | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet Global Nuclear Energy Partnership Fact Sheet The Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S....

130

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

131

2006 Nuclear Energy Research Initiative Awards | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006...

132

GNEP Element:Minimize Nuclear Waste | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste The Global Nuclear Energy Partnership: Greater Energy Security in a Cleaner, Safer...

133

Nuclear & Uranium - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Today in Energy - Nuclear. Short, timely articles with graphs about recent nuclear energy issues and trends . Monthly Energy Review - Nuclear Section

134

department of energy also moving on nuclear  

Science Conference Proceedings (OSTI)

Energy Secretary Steven Chu has announced the selection of 42 university-led research and development projects in nuclear energy for awards totaling $38 million. ... “We are taking action to restart the nuclear industry as part of a broad ...

135

Waste Form Performance Modeling [Nuclear Waste Management using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

136

Unit Process Modeling [Nuclear Waste Management using Electrometallurg...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

137

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

138

EIA - State Nuclear Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections integrated across all ...

139

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network (OSTI)

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Oyamatsu, Kazuhiro

2010-01-01T23:59:59.000Z

140

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network (OSTI)

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Kazuhiro Oyamatsu; Kei Iida

2010-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

International Nuclear Energy Policy and Cooperation | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United...

142

PDF: The History of Nuclear Energy  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... This 28-page report, produced by the U. S. Department of Energy, reviews the history of nuclear energy from the discovery of fission through ...

143

Net energy from nuclear power  

SciTech Connect

An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered. (auth)

Rotty, R.M.; Perry, A.M.; Reister, D.B.

1975-11-01T23:59:59.000Z

144

Global Nuclear Energy Partnership Strategic Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan A report describing the United States Global Nuclear Energy Partnership which: "will build the Global Nuclear Energy Partnership to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe,clean nuclear energy to help meet the growing global energy demand." Global Nuclear Energy Partnership Strategic Plan

145

Climate Control Using Nuclear Energy  

E-Print Network (OSTI)

We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

Moninder Singh Modgil

2008-01-01T23:59:59.000Z

146

Nuclear Materials Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

147

Materials Challenges in Nuclear Energy  

SciTech Connect

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL; Was, Gary [University of Michigan

2013-01-01T23:59:59.000Z

148

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

clear; second, nuclear power plants are stated terroristinvesting in new nuclear power plants because they do notas things stand, new nuclear power plants will not be cost

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

149

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

radioactive spent nuclear fuel is stored at commercialmost polluting part of the nuclear fuel cycle. It would notthe reprocessing of spent nuclear fuel will face technical,

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

150

Global Nuclear Energy Partnership Fact Sheet - Demonstrate More...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Global Nuclear Energy Partnership Fact Sheet - Demonstrate More...

151

1 iiNuclear Energy Advisory Committee  

E-Print Network (OSTI)

task, NEAC formed two subcommittees, one devoted to nuclear energy policy and one focused on nuclear energy technology. The report calls attention to the role of nuclear power and its impact on energy security, the environment, and nonproliferation. A strategy for nuclear energy policy and technology should be considered not in years but decades. This report identifies important benchmarks in both the policy and technology areas. Importantly, progress on nuclear energy will require bipartisan efforts and our members are representative of both political parties and are drawn from different professional backgrounds. The committee is composed of eminent scientists including a Nobel Prize winner; former senior officials of the U.S. Department of Energy, the Nuclear Regulatory Commission, the U.S. State Department, NASA and the National Security Council; distinguished professors in the field of nuclear energy, including a university president; as well as industry leaders and important non-governmental organizations, such as the Nuclear Threat Initiative, the Natural Resources Defense Council, the Nuclear Energy Institute, and the Eisenhower Institute. The Department of Energy has played and will continue to play an integral role in securing safe nuclear power for our Nation, including a very important and fundamental role in advancing technology. Nuclear power is experiencing a dramatic expansion internationally that will require safe construction and operation as well as compliance with nonproliferation objectives. Our report emphasizes that a global approach is vital to ensure a sustained U.S. nuclear program

Dr. Samuel Bodman

2008-01-01T23:59:59.000Z

152

Dealing With the Issues of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy September 17, 2010 - 12:39pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? The U.S. is working to reduce our own reliance on nuclear weapons and to lock down dangerous nuclear material so terrorists can't use it. Editorial Note: This has been cross-posted from Huffington Post. Next week I have the honor of leading the U.S. delegation to an annual conference that is critical to our national and energy security. Every year, the International Atomic Energy Agency (IAEA), the nuclear watchdog arm of the UN, gathers ministers from around the world to discuss ways to promote nuclear energy, strengthen efforts to keep other countries from illegally acquiring nuclear weapons, reduce stockpiles of nuclear

153

Peaceful uses of nuclear energy  

SciTech Connect

It is now a quarter of a century since nuclear energy was introduced to the public. Its introduction was made in the most dramatic, but unfortunately in the most destructive way - through the use of a nuclear weapon. Since that introduction enormous strides have been made in developing the peaceful applications of this great and versatile force. Because these strides have always been overshadowed by the focusing of public attention on the military side of the atom, the public has never fully understood or appreciated the gains and status of the peaceful atom. This booklet is an attempt to correct, in some measure, this imbalance in public information and attitude. It is a compilation of remarks, and excerpts of remarks, that I have made in recent years in an effort to bring to the public the story of the remarkable benefits the peaceful atom has to offer man. This is a story that grows with the development and progress of the peaceful atom. It must be told so that we can learn to use the power of nuclear energy wisely and through this use help to build a world in which the military applications of the atom will never again be a threat to mankind.

Seaborg, Glenn T.

1970-01-01T23:59:59.000Z

154

Long-term global nuclear energy and fuel cycle strategies  

SciTech Connect

The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

1997-09-24T23:59:59.000Z

155

Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement on the Global Nuclear Energy Partnership and Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Ministers and other senior officials representing the respective governmental agencies of China, France, Japan, Russia, and the United States met in Washington, D.C., on May 21, 2007 to address the prospects for international cooperation in peaceful uses of nuclear energy, including technical aspects, especially in the framework of the Global Nuclear Energy Partnership (GNEP). The International Atomic Energy Agency (IAEA) also attended as an observer. Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation More Documents & Publications Ministerial Conference

156

China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guangdong Nuclear Solar Energy Co Ltd Guangdong Nuclear Solar Energy Co Ltd Jump to: navigation, search Name China Guangdong Nuclear Solar Energy Co Ltd Place China Sector Solar Product China Guangdong Nuclear's division on solar project development. References China Guangdong Nuclear Solar Energy Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Guangdong Nuclear Solar Energy Co Ltd is a company located in China . References ↑ "China Guangdong Nuclear Solar Energy Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=China_Guangdong_Nuclear_Solar_Energy_Co_Ltd&oldid=343500" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

157

Meeting between Department of Energy Contractor and the Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting between Department of Energy Contractor and the Nuclear Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

158

Meeting between Department of Energy Contractor and the Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

between Department of Energy Contractor and the Nuclear between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

159

Technology Pathways Toward Nuclear Energy in a Sustainable Energy System: Interim Report  

Science Conference Proceedings (OSTI)

This study investigates the potential role of nuclear power and advanced nuclear reactor and fuel system technologies in the context of the global energy system and climate change. It extends the capabilities of an integrated assessment model, and it explores long-term scenarios in which nuclear technology evolves and advances along various pathways, with and without constraints on carbon emissions. Work focuses on how the choice of nuclear fuel cycle, the cost of nuclear technologies, and the presence o...

2005-05-24T23:59:59.000Z

160

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Department of Energy and Nuclear Regulatory Commission Increase...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to...

162

Letter from the Nuclear Energy Institute to DOE GC | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

from the Nuclear Energy Institute to DOE GC Letter from the Nuclear Energy Institute to DOE GC Convention on Supplementary Compensation for Nuclear Damage Contingent Cost...

163

NUCLEI: Nuclear Computational Low-Energy Initiative | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

NUCLEI: Nuclear Computational Low-Energy Initiative NUCLEI: Nuclear Computational Low-Energy Initiative This project seeks to advance large-scale nuclear physics compoutations in...

164

The Nuclear Thomas-Fermi Model  

DOE R&D Accomplishments (OSTI)

The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

Myers, W. D.; Swiatecki, W. J.

1994-08-01T23:59:59.000Z

165

Nuclear Security Conference 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

166

Nuclear Security Conference 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

167

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network (OSTI)

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

168

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network (OSTI)

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

Casinos, I

2008-01-01T23:59:59.000Z

169

Sustainable Energy Through Recycling Used Nuclear Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Through Recycling Used Nuclear Fuel M.A. Williamson, A.V. Guelis, J.L. Willit, C. Pereira and A.J. Bakel Argonne National Laboratory Recycle of used nuclear fuel is central...

170

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Nuclear Energy Categorical Exclusion Determinations: Nuclear Energy Categorical Exclusion Determinations issued by Nuclear Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 2013 CX-010766: Categorical Exclusion Determination Interim Storage Area for Interim Storage Containers (ISCs) at the Radioactive Scrap and Waste Facility (RSWF) CX(s) Applied: B6.6 Date: 08/16/2013 Location(s): Idaho Offices(s): Nuclear Energy August 14, 2013 CX-010767: Categorical Exclusion Determination University Boulevard Water Meter Installation CX(s) Applied: B2.2 Date: 08/14/2013 Location(s): Idaho Offices(s): Nuclear Energy August 12, 2013 CX-010768: Categorical Exclusion Determination ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

171

Energy Department Announces New Nuclear Energy Innovation Investments  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Announces New Nuclear Energy Innovation Investments Sixteen Awards to Advance Cross-cutting R&D, Train Next Generation of Industry Leaders WASHINGTON -...

172

Department of Energy Releases Global Nuclear Energy Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Dennis Spurgeon today released the Global Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation...

173

Nuclear Energy-Depend On It Helping  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Depend On It Helping to Power America for More Than Five Decades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity production in 1957 and now produces approximately 20 percent of our total electricity and 70 percent of our low-carbon electricity from nuclear energy, according to the Energy Information Administration. More than 100 U.S. commercial nuclear power reactors provide reliable, affordable electricity in 31 states. Nuclear energy can help meet our Nation's need for dependable electricity into the future. The use of nuclear power is increasing around the world: z 29 countries worldwide operate a total of 437 nuclear reactors for electricity generation, with 55 new nuclear reactors under construction in 14 countries.

174

Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0  

SciTech Connect

V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors.

Greg Weirs; Hyung Lee

2011-09-01T23:59:59.000Z

175

NEAC Recommended Goals for Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy Nuclear energy currently provides approxi- mately 20 percent of the electricity for the U.S. The primary alternative for power generation is fossil fuels. Though still controversial, evidence continues to mount about the negative health and environmental effects of carbon emissions. Nuclear power is the most significant technology available for meeting anticipated energy needs while reducing emissions to the environment. Nuclear energy is an essential component to a secure and prosperous future for the U.S. and the world. The reliance on fossil fuels for the growing energy usage of an expanding world population will bring about enormous global environmental problems. Nuclear energy is the single largest tool

176

Department of Energy Releases Global Nuclear Energy Partnership Strategic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Assistant Secretary for Nuclear Energy Dennis Spurgeon today released the Global Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation strategy. The Plan outlines a path forward to enable worldwide increase in the use of safe, emissions-free nuclear energy without contributing to the spread of nuclear weapons capabilities in a manner that responsibly addresses the waste produced. "For the United States, GNEP is good policy; for industry, it could be very good business," Assistant Secretary Spurgeon said. "Releasing GNEP's

177

Energy Department Announces New Nuclear Energy Innovation Investments |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Innovation Nuclear Energy Innovation Investments Energy Department Announces New Nuclear Energy Innovation Investments July 17, 2012 - 12:29pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitments to restarting the nation's nuclear industry and promoting education in science, technology, engineering and math, the Energy Department announced today nearly $13 million in new nuclear energy innovation investments. "Today's awards will help train and educate our future nuclear energy scientists and engineers, while advancing the technological innovations we need to make sure America's nuclear industry stays competitive in the 21st century," said Energy Secretary Steven Chu. "These investments in U.S. universities, national labs and industry advance the Obama

178

International Nuclear Energy Policy and Cooperation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both bilaterally and multilaterally to accomplish this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United States and 70% of our low-carbon production, avoiding over 600 million metric tons of carbon emissions. With approximately 440 commercial reactors operating in 30 countries-and 300 more valued at $1.6 trillion

179

"Ask Argonne" - Dave Grabaskas, Nuclear Engineer, Part 2 | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

--Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas --Nuclear energy ---Nuclear energy modeling & simulation...

180

Nuclear Asset Management (NAM) Process Model  

Science Conference Proceedings (OSTI)

Nuclear asset management (NAM) is the process of making operational, resource allocation, and risk management decisions at all levels of a nuclear generation business to maximize nuclear power plant value to stakeholders, while maintaining safety to the public and the plant staff. To support nuclear utilities in achieving these goals, the Nuclear Energy Institute (NEI) issued NEI AP 940, Nuclear Asset Management Process Description and Guideline, in May 2005. This document provides high-level guidance. H...

2007-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Security & Nonproliferation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety » Nuclear Security & Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy and National Nuclear Security Administration’s effort to assist Japanese personnel with nuclear issues related to the Fukushima nuclear power plant. Above, scientists, technicians and engineers from the National Nuclear Security Administration’s Nevada Site Office board an Air Force C-17. | Photo courtesy of NNSA. Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy

182

THE ENERGY GAP IN NUCLEAR MATTER  

E-Print Network (OSTI)

energy gap for nuclear matter with a vieVi to gaining some ins ight into the possible results of extending the theory

Emery, V.J.

2008-01-01T23:59:59.000Z

183

Nuclear Filter Technology | Open Energy Information  

Open Energy Info (EERE)

located in Golden, CO. References Retrieved from "http:en.openei.orgwindex.php?titleNuclearFilterTechnology&oldid379255" Categories: Clean Energy Organizations Companies...

184

Today, nuclear energy is the largest...  

NLE Websites -- All DOE Office Websites (Extended Search)

Today, nuclear energy is the largest non-carbon electricity production method in use, but the nation must effectively address economic and waste management concerns to enable its...

185

WEB RESOURCE: Global Nuclear Energy Partnership - TMS  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This site provides general news and information on the Global Nuclear Energy Partnership, a U.S. initiative that seeks to develop worldwide ...

186

WEB RESOURCE: Generation IV Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This web site provides offers a broad overview of the Department of Energy's activities in exploring the development of next generation nuclear ...

187

ARTICLE: Expanding Nuclear Energy the Right Way  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This article from Los Alamos National Laboratory reviews the United States' Global Nuclear Energy Partnership. Los Alamos contributions are ...

188

Structural Materials in Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

Apr 28, 2008 ... Structural Materials in Advanced Nuclear Energy Systems: The Need for ... of functionalized interfaces for optimization of materials properties.

189

SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS  

Science Conference Proceedings (OSTI)

We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

2010-12-20T23:59:59.000Z

190

Meeting between Department of Energy Contractor and the Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear...

191

Theories of Low Energy Nuclear Transmutations  

E-Print Network (OSTI)

Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

Y. N. Srivastava; A. Widom; J. Swain

2012-10-27T23:59:59.000Z

192

Theories of Low Energy Nuclear Transmutations  

E-Print Network (OSTI)

Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

Srivastava, Y N; Swain, J

2012-01-01T23:59:59.000Z

193

Nuclear Energy Page 570Page 570  

E-Print Network (OSTI)

appropriation, NE has ten programs: University Reactor Infrastructure and Education Assistance, Nuclear Energy of commercial spent nuclear fuel and use that material as fuel in fast spectrum reactors to generate additional will lead multi-national research and development projects to usher forth next-generation nuclear reactors

194

Nuclear Processes at Solar Energy  

E-Print Network (OSTI)

LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

Carlo Broggini

2003-08-29T23:59:59.000Z

195

Nuclear energy at the turning point  

DOE Green Energy (OSTI)

In deciding the future course of nuclear energy, it is necessary to re-examine man's long-term energy options, in particular solar energy and the breeder reactor. Both systems pose difficultiies: energy from the sun is likely to be expensive as well as limited, whereas a massive world-wide deployment of nuclear breeders will create problems of safety and of proliferation. Nuclear energy's long-term success depends on resolving both of these problems. Collocation of nuclear facilities with a system of resident inspectors are measures that ought to help increase the proliferation-resistance as well as the safety of a large-scale, long-term nuclear system based on breeders. In such a long-term system a strengthened International Atomic Energy Agency (IAEA) is viewed as playing a central role.

Weinberg, A.M.

1977-07-01T23:59:59.000Z

196

Nuclear Energy Research Advisory Subcommittee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Minutes for the to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting September 30 to October 1, 2002 MEMORANDUM To: Chairman, Nuclear Energy Research Advisory Committee (NERAC) From: Thomas B. Cochran, Member of NERAC Date: October 16, 2002 Subject: "A Technology Roadmap on Generation IV Nuclear Energy Systems," a report of the NERAC Subcommittee on Generation IV Technology Planning Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon- usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by

197

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

A Brief History of Nuclear Energy . . . . . . . . NuclearBrief History of Nuclear Energy The history of nuclear powerRisk The history of nuclear energy to date reflects

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

198

Nuclear symmetry energy: An experimental overview  

E-Print Network (OSTI)

The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article, we review experimental studies carried out up-to-date and their current status.

Shetty, D V

2010-01-01T23:59:59.000Z

199

The Future of Nuclear Energy: Facts and Fiction Chapter I: Nuclear Fission Energy Today  

E-Print Network (OSTI)

Nuclear fission energy is considered to be somewhere between the holy grail, required to solve all energy worries of the human industrialized civilization, and a fast path directly to hell. Discussions about future energy sources and the possible contribution from nuclear energy are often dominated by variations of fundamentalists and often irrational approaches. As a result, very little is known by the general public and even by decision makers about the contribution of nuclear energy today, about uranium supplies, uranium resources and current and future technological challenges and limitations. This analysis about nuclear energy and its contribution for tomorrow tries to shed light on the nuclear reality and its limitations in the near and long term future. The report, presented in four chapters, is based essentially on the data provided in the documents from the IAEA (International Atomic Energy Administration) and the NEA (the Nuclear Energy Agency from the OECD countries, the WNA (World Nuclear Associat...

Dittmar, Michael

2009-01-01T23:59:59.000Z

200

Nuclear energy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy Nuclear energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing world’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

202

Energy Praises the Nuclear Regulatory Commission Approval of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

203

Nuclear Engineering (NE) and the Energy Engineering and Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and...

204

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

The bilateral nuclear and security agreement between theThe bilateral nuclear and security agreement between thein East Asia's security, nuclear energy, and environment. It

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

205

In-medium nuclear interactions of low-energy hadrons  

E-Print Network (OSTI)

Experimental and theoretical developments of the last decade in the study of exotic atoms and some related low-energy reactions are reviewed, in order to provide information on the in-medium hadron-nucleon t matrix over a wide range of densities up to central nuclear densities. In particular, we review pionic deeply bound atomic states and related evidence for partial restoration of chiral symmetry in dense nuclear matter. The case for relatively narrow deeply bound atomic states for antikaons and antiprotons is made, based on the physics of strong nuclear absorption. Recent experimental suggestions for signals of antikaon-nuclear deeply bound states are reviewed, and dynamical models for calculating binding energies, widths and densities of antikaon nuclear states are discussed. Specific features of low-energy in-medium interactions of kaons, antiprotons and of Sigma hyperons are discussed, and suggestions to study experimentally Cascade atoms are reviewed.

Friedman, E

2007-01-01T23:59:59.000Z

206

In-medium nuclear interactions of low-energy hadrons  

E-Print Network (OSTI)

Experimental and theoretical developments of the last decade in the study of exotic atoms and some related low-energy reactions are reviewed, in order to provide information on the in-medium hadron-nucleon t matrix over a wide range of densities up to central nuclear densities. In particular, we review pionic deeply bound atomic states and related evidence for partial restoration of chiral symmetry in dense nuclear matter. The case for relatively narrow deeply bound atomic states for antikaons and antiprotons is made, based on the physics of strong nuclear absorption. Recent experimental suggestions for signals of antikaon-nuclear deeply bound states are reviewed, and dynamical models for calculating binding energies, widths and densities of antikaon nuclear states are discussed. Specific features of low-energy in-medium interactions of kaons, antiprotons and of Sigma hyperons are discussed, and suggestions to study experimentally Cascade atoms are reviewed.

E. Friedman; A. Gal

2007-05-27T23:59:59.000Z

207

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Description President Obama announces more than 8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and...

208

Georgia Nuclear Energy Financing Act (Georgia) | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Georgia Nuclear Energy Financing Act (Georgia) No revision has been approved for this page. It is...

209

Department of Energy Office of Nuclear Safety and Environmental Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Office of Nuclear Safety and Environmental Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS All new construction required to follow the provisions of Department of Energy (DOE) Order 420. lB, Facility Safety, must comply with national consensus industry standards and the model building codes applicable for the state or region in which the facility is located. Certain individuals in the fire community requested

210

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10/03/02 10/03/02 Appendix A to the Minutes for the Nuclear Energy Research Advisory Committee Meeting September 30 to October 1, 2002 Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report October 3, 2002 The Roadmap Context The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV

211

Nuclear Systems Modeling, Simulation & Validation | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from single processors to the world's largest supercomputers. The DOE Nuclear Energy Hub (CASL, the Consortium for Advanced Simulation of Light Water Reactors) is a prominent...

212

Nuclear Systems Modeling & Simulation | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from single processors to the world's largest supercomputers. The DOE Nuclear Energy Hub (CASL, the Consortium for Advanced Simulation of Light Water Reactors) is a prominent...

213

JETS OF NUCLEAR MATTER FROM HIGH ENERGY HEAVY ION COLLISIONS  

E-Print Network (OSTI)

of the Office of High Energy and Nuclear Physics of the U.S.distributions and energy flux in violent nuclear collisions.of the Office of High Energy and Nuclear Physics of the U.S.

Stocker, H.

2013-01-01T23:59:59.000Z

214

United States-Japan Joint Nuclear Energy Action Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan An outline on the United States and Japan's joint nuclear energy action...

215

Office of Nuclear Energy Fiscal Year 2014 Budget Request  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Nuclear Energy (NE) supports the diverse civilian nuclear energy programs of the U.S. Government, leading Federal efforts to research and develop nuclear energy technologies,...

216

Nuclear symmetry energy effects on liquid-gas phase transition in hot asymmetric nuclear matter  

E-Print Network (OSTI)

The liquid-gas phase transition in hot asymmetric nuclear matter is investigated within relativistic mean-field model using the density dependence of nuclear symmetry energy constrained from the measured neutron skin thickness of finite nuclei. We find symmetry energy has a significant influence on several features of liquid-gas phase transition. The boundary and area of the liquid-gas coexistence region, the maximal isospin asymmetry and the critical values of pressure and isospin asymmetry all of which systematically increase with increasing softness in the density dependence of symmetry energy. The critical temperature below which the liquid-gas mixed phase exists is found higher for a softer symmetry energy.

Bharat K. Sharma; Subrata Pal

2010-01-14T23:59:59.000Z

217

Nuclear Energy CFD Application Management System  

Science Conference Proceedings (OSTI)

In modeling and simulation (M&S), it is virtually impossible to separately evaluate the effectiveness of the model from the data used because the results produced rely heavily on the interaction between the two. Both the data and the simulation are responsible for achieving the ultimate goal of providing defensible research and development (R&D) products and decisions. It is therefore vital that data verification and validation (V&V) activities, along with stringent configuration management, be considered part of the overall M&S accreditation process. In support of these goals is the Nuclear Energy CFD Application Management System (NE-CAMS) for nuclear system design and safety analysis. Working with Bettis Laboratory and Utah State University, a plan of action is being developed by the Idaho National Laboratory (INL) that will address the highest and most immediate needs to track and manage computational fluid dynamics (CFD) models and experimental data in an electronic database. The database will intrinsically incorporate the Nuclear Regulatory Commission (NRC) approved policies and procedures for quality. The quality requirements will be such that the model and data must conform to the quality specifications outlined by the NRC before they can be entered into the database. The primary focus of this database is CFD V&V for nuclear industry needs and will, in practice, serve as the best practice guideline that will accommodate NRC regulations. Such a database, along with a prescriptive methodology for how to utilize it, will provide the NRC with accepted CFD results that could potentially be used for licensing. NE-CAMS will incorporate data V&V as key precursors to the distribution of nuclear systems design and safety data, ensuring that these data are appropriate for use in a particular M&S application. Verification will be conducted to provide a level of confidence that the data selected are the most appropriate for the simulation and are properly prepared, i.e., they are complete, correct and conform to predefined procedures and requirements. Validation will ensure that the data accurately represent the real world activity that is being simulated, ensuring the analytical quality of the data. The level of detail and stringency applied against the data V&V activities will be based on a graded approach principle; the higher the risk, the more rigorous the V&V activities. For the V&V activities to be complete, it will be necessary to scrutinize the physical and statistical properties of the extracted data during the overall process. Regardless of the specific technique or methodology, data V&V will be an important component of NE-CAMS.

Hyung Lee; Kimberlyn C. Mousseau

2001-09-01T23:59:59.000Z

218

Nuclear energy field fascinates David Parkinson, chemical engineer  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy field fascinates David Parkinson, chemical engineer Nuclear energy field fascinates David Parkinson, chemical engineer Chemical engineer undergraduate designs and...

219

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop...

220

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Los Alamos expertise integral to nuclear energy innovation hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy innovation hub Los Alamos expertise integral to nuclear energy innovation hub The information gained through this effort will help extend the life and improve the...

222

International Framework for Nuclear Energy Cooperation to Hold...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

223

Getting to Know Nuclear Energy: The Past, Present & Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use...

224

Agenda for September 16,2007 Global Nuclear Energy Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agenda for September 16,2007 Global Nuclear Energy Partnership (GNEP) Ministerial Meeting Austria Centre Agenda for September 16,2007 Global Nuclear Energy Partnership (GNEP)...

225

Energy Department Announces New Investments in Advanced Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear...

226

United States -Japan Joint Nuclear Energy Action Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan...

227

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

228

Energy/National Nuclear Security Administration (NNSA) Career...  

NLE Websites -- All DOE Office Websites (Extended Search)

Students & Recent Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways...

229

Energy/National Nuclear Security Administration (NNSA) Career...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern Program The...

230

Georgia Nuclear Energy Financing Act (Georgia) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Financing Act (Georgia) Georgia Nuclear Energy Financing Act (Georgia) Eligibility Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility...

231

Nuclear Energy Research Advisory Committee (NERAC) agenda 11...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

232

Renewing America's Nuclear Power Partnership for Energy Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

233

Nuclear Facility Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Operations Facility Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program laboratory In addition to enabling the Office of Nuclear Energy to develop space power systems and advanced fuel cycle and reactor technologies, INL facilities are used by the National Nuclear Security Administration and other DOE offices, together with other Federal agencies such as the Department of

234

Small Modular Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

235

Roundtables Is nuclear energy different than other  

E-Print Network (OSTI)

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

Shrader-Frechette, Kristin

236

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network (OSTI)

Flow in Central High Energy Nuclear Collisions H. Stockera,under Contract High energy nuclear collisions offer a uniquesidewards flow·in high-energy nuclear collisions. The

Stocker, H.

2012-01-01T23:59:59.000Z

237

Nuclear Energy - Idaho National Laboratory - Technology Transfer ...  

Nuclear Energy Hydrogen Production Using Reduced Temperature. Related Patents: 8,132,410. Contact: David R. Anderson . Phone: (208) 526-0837 . E-mail: Send E-mail

238

Development of Nuclear Energy Systems and Fuels  

Science Conference Proceedings (OSTI)

Mar 2, 2011 ... Session Chair: Meimei Li, Argonne National Lab; Matthew Kerr, US ... The realization of advanced nuclear reactors as a national source of reliable energy .... 2Illinois Institute of Technology; 3Argonne National Laboratory

239

Manpower development for new nuclear energy programs  

E-Print Network (OSTI)

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

240

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

242

A Holographic Energy Model  

E-Print Network (OSTI)

We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

P. Huang; Yong-Chang Huang

2012-12-30T23:59:59.000Z

243

A Holographic Energy Model  

E-Print Network (OSTI)

We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

Huang, P

2013-01-01T23:59:59.000Z

244

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs. Speakers President Obama, Steven Chu Duration 10:42 Topic Energy Economy Loans Energy Policy Credit Video courtesy of WhiteHouse.gov PRESIDENT BARACK OBAMA: Good morning, everybody. AUDIENCE MEMBERS: Good morning. PRESIDENT OBAMA: Before I begin, let me just acknowledge some of the people who are standing behind me here. First of all, two people who've been working really hard to make this day happen, Secretary Steven Chu, my energy secretary - Steven Chu - (applause) - and my White House

245

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

Marquet, C; Lappi, T; Venugopalan, R

2008-01-01T23:59:59.000Z

246

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

247

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

248

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

Nazarewicz, W; Satula, W; Vretenar, D

2013-01-01T23:59:59.000Z

249

Analytical relations between nuclear symmetry energy and single-nucleon potentials in isospin asymmetric nuclear matter  

E-Print Network (OSTI)

Using the Hugenholtz-Van Hove theorem, we derive general expressions for the quadratic and quartic symmetry energies in terms of single-nucleon potentials in isospin asymmetric nuclear matter. These analytical relations are useful for gaining deeper insights into the microscopic origins of the uncertainties in our knowledge on nuclear symmetry energies especially at supra-saturation densities. As examples, the formalism is applied to two model single-nucleon potentials that are widely used in transport model simulations of heavy-ion reactions.

Xu, Chang; Chen, Lie-Wen; Ko, Che Ming

2010-01-01T23:59:59.000Z

250

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Advisory Committee, Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

251

Intermediate-energy nuclear chemistry workshop  

SciTech Connect

This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

1981-05-01T23:59:59.000Z

252

Why Nuclear Energy? - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

253

2013 Annual Planning Summary for the Office of Nuclear Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual Planning Summary for the Office of Nuclear Energy 2013 Annual Planning Summary for the Office of Nuclear Energy 2013 Annual Planning Summary for the Office of Nuclear...

254

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the world’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

255

Stochastic Jet Quenching in High Energy Nuclear Collisions  

E-Print Network (OSTI)

Energy losses of fast color particles in random inhomogeneous color medium created in high energy nuclear collisions are estimated.

Kirakosyan, M R

2008-01-01T23:59:59.000Z

256

A Clean Nuclear Energy Using Hydrogen and Condensed Matter Nuclear Science  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Xing Z. Li; Zhan M. Dong; Chang L. Liang; Han Yi; Yun P. Fu

257

First Report from New Nuclear Energy Standards Group ...  

Science Conference Proceedings (OSTI)

First Report from New Nuclear Energy Standards Group Released. For Immediate Release: August 11, 2009. ...

2010-12-29T23:59:59.000Z

258

Education of Nuclear Energy Systems at Åbo Akademi  

Science Conference Proceedings (OSTI)

Education, Economics, and Sustainability / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Tom Lönnroth

259

Advanced Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key structures like coolant pipes; pumps and tanks including their surrounding steel framing; and concrete containment and support structures. The Reactors Product Line within NEAMS is concerned with modeling the reactor vessel as well as those components of a complete power plant that

260

First Office of Nuclear Energy -Tribal Leader Dialogue | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue November 14, 2013 - 4:48pm Addthis First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy On October 30th, I hosted Tribal Leaders from all over the United States at the first Office of Nuclear Energy (NE) and Tribal Leader Dialogue (Dialogue) in New Orleans, Louisiana. The Dialogue was a great success! The Tribal Leaders and I were able sit down together to discuss the issues surrounding nuclear energy in the

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

First Office of Nuclear Energy -Tribal Leader Dialogue | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue November 14, 2013 - 4:48pm Addthis First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy On October 30th, I hosted Tribal Leaders from all over the United States at the first Office of Nuclear Energy (NE) and Tribal Leader Dialogue (Dialogue) in New Orleans, Louisiana. The Dialogue was a great success! The Tribal Leaders and I were able sit down together to discuss the issues surrounding nuclear energy in the

262

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

cost competitive with other electricity-generating alternatives. For example, wind power and other renewable technologies, combined with energy

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

263

First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model  

Science Conference Proceedings (OSTI)

We present the first Gogny-Hartree-Fock-Bogoliubov (HFB) model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast with the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies are included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2149 measured masses is 798 keV. In addition, the new Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces.

Goriely, S.; Hilaire, S.; Girod, M.; Peru, S. [Institut d'Astronomie et d'Astrophysique, CP-226, Universite Libre de Bruxelles, 1050 Brussels (Belgium); CEA, DAM, DIF, F-91297, Arpajon (France)

2009-06-19T23:59:59.000Z

264

The History of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

History of Nuclear Energy History of Nuclear Energy The History of Nuclear Energy Although they are tiny, atoms have a large amount of energy holding their nuclei together. Certain isotopes of some elements can be split and will release part of their energy as heat. This splitting is called fission. The heat released in fission can be used to help generate electricity in powerplants. Uranium-235 (U-235) is one of the isotopes that fissions easily. During fission, U-235 atoms absorb loose neutrons. This causes U-235 to become unstable and split into two light atoms called fission products. The combined mass of the fission products is less than that of the original U-235. The reduction occurs because some of the matter changes into energy. The energy is released as heat. Two or three neutrons

265

Small Power Cells Based on Low Energy Nuclear Reactor (LENR) - A New Type of "Green" Nuclear Energy  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

George H. Miley; Xiaoling Yang; Heinrich Hora

266

Building Energy Modeling Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

267

Platts 4th Annual Nuclear Energy Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference February 5, 2008 - 11:13am Addthis Remarks as Prepared for Delivery for Assistant Secretary Spurgeon Thank you, and thank you to Platts for inviting me to address this conference. This morning you have heard much about the state of new nuclear power in the U.S. and with some of the notable speakers here, probably everything about U.S. expansion that needs to be said has been said, it just hasn't been said by everyone. But I am here to give you the Federal perspective on this exciting time in nuclear power, not only here in the United States but around the world. I also stand before you in the last year of an Administration, one that since its first day in office has

268

Platts 4th Annual Nuclear Energy Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference February 5, 2008 - 11:13am Addthis Remarks as Prepared for Delivery for Assistant Secretary Spurgeon Thank you, and thank you to Platts for inviting me to address this conference. This morning you have heard much about the state of new nuclear power in the U.S. and with some of the notable speakers here, probably everything about U.S. expansion that needs to be said has been said, it just hasn't been said by everyone. But I am here to give you the Federal perspective on this exciting time in nuclear power, not only here in the United States but around the world. I also stand before you in the last year of an Administration, one that since its first day in office has

269

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.  

SciTech Connect

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

2011-01-01T23:59:59.000Z

270

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

model . . . . . . . . . . . . . . . . . . . . . Nuclear fuelU.S. spent nuclear fuel2 The Nuclear Fuel Cycle

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

271

TEPP - Spent Nuclear Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Spent Nuclear Fuel - Spent Nuclear Fuel TEPP - Spent Nuclear Fuel This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel. This exercise manual is one in a series of five scenarios developed by the Department of Energy Transportation Emergency Preparedness Program. Responding agencies may include several or more of the following: local municipal and county fire, police, sheriff, and Emergency Medical Services (EMS) personnel; state, local, and federal emergency response teams; emergency response contractors;and other emergency response resources that could potentially be provided by the carrier and the originating facility (shipper). Spent Nuclear Fuel.docx More Documents & Publications

272

Nuclear Safety Workshop Summary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Summary Workshop Summary Nuclear Safety Workshop Summary September 19-20, 2012 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme was Post Fukushima Initiatives and Results, and included technical breakout sessions focused on beyond design basis events (BDBEs) analysis and response, safety culture, and risk assessment and management.

273

Nuclear Deployment Scorecards | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiatives Nuclear Reactor Technologies Nuclear Deployment Scorecards Nuclear Deployment Scorecards January 1, 2014 Quarterly Nuclear Deployment Scorecard - January 2014 The...

274

Nuclear energy: The civilians take charge - Argonne's Historical News  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy: The civilians take charge Nuclear energy: The civilians take charge About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

275

Why are Some People Afraid of Nuclear Energy?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why are some people afraid of Nuclear Energy? Why are some people afraid of Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

276

The development of nuclear energy in the Philippines  

SciTech Connect

The paper traces the development of nuclear energy in the Philippines and outlines the program on the peaceful uses of nuclear energy in the country as well as the problems and prospects of nuclear energy development. Nuclear power is at a standstill but the other areas of nuclear energy development are underway. The projects on the application of nuclear energy in agriculture, industry, public health and safety, are being pursued. Technology transfer to end users is sometimes hampered by public acceptance issues, such as irradiated food being believed to become radioactive, dislike with anything associated with radiation, and plain inherent fear of nuclear energy.

Aleta, C. (Philippine Nuclear Research Institute, Quezon, City (Philippines))

1992-01-01T23:59:59.000Z

277

Instabilities in the Nuclear Energy Density Functional  

E-Print Network (OSTI)

In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

M. Kortelainen; T. Lesinski

2010-02-05T23:59:59.000Z

278

nuclear energy in the spotlight  

Science Conference Proceedings (OSTI)

In the House, the Science and Technology Subcommittee on Energy and the ... a comprehensive approach to waste management, including research into fuel ...

279

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

alternatives. For example, wind power and other renewableof electrical energy. Wind power and other renewables, suchcarbon per dollar as wind power. Recent studies analyzing

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

280

Parity Dependent Shell Model Level Densities for Nuclear Astrophysics  

E-Print Network (OSTI)

Recently, we developed a methodology [1-4] of calculating the spin and parity dependent shell model nuclear level density, which is a very useful ingredient in the Huaser-Feshbach theory for calculating reaction rates for nuclear astrophysics[5]. We developed new techniques based on nuclear statistical spectroscopy [6] to calculate the spin and parity projected moments of the nuclear shell model Hamiltonian, that can be further used to obtain an accurate description of the nuclear level density up to about 15 MeV excitation energy. These techniques were fully tested for the sd-shell nuclei and some light f p-shell nuclei, by comparing with the level density obtained from exact shell model diagonalization. Here we present for the first time comparisons with the exact shell model diagonalization for nuclei heavier than 56 Ni, in a model space spanned by the f 5/2, p 3/2, p 1/2 and g 9/2 orbits. The ratio of nuclear level densities of opposite parities is also discussed. This analysis was possible due to a new and very efficient nuclear shell model code [7] that can provide a large number of states of given spin and parity. PoS(NIC X)132

Mike Scott; Mihai Horoi; Mike Scott

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coal and nuclear power: Illinois' energy future  

SciTech Connect

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

282

Criteria for Global Nuclear Energy Development  

Science Conference Proceedings (OSTI)

Global energy consumption will at least double over the next fifty years due to population growth, increased consumption, and an urgent need to improve the standard of living in under-developed countries. Thirty percent of this growth will be for electricity. At the same time, carbon emissions must be significantly reduced to respond to concerns regarding global warming. The use of nuclear energy to meet this growing electricity demand without carbon emissions is an obvious solution to many observers, however real concerns over economics, safety, waste and proliferation must be adequately addressed. The issue is further complicated by the fact that developing countries, which have the most pressing need for additional electricity generation, have the least capability and infrastructure to deploy nuclear energy. Nevertheless, if the specific needs of developing countries are appropriately considered now as new generation reactors are being developed, and institutional arrangements based upon the fundamental principles of President Eisenhower's 1953 Atoms For Peace speech are followed, nuclear energy could be deployed in any country. From a technical perspective, reactor safety and accessibility of special nuclear material are primary concerns. Institutionally, plant and fuel ownership and waste management issues must be addressed. International safety and safeguards authority are prerequisites. While the IAEA's IMPRO program and the United States' Generation IV programs are focusing on technical solutions, institutional issues, particularly with regard to deployment in developing countries, are not receiving corresponding attention. Full-service, cradle-to-grave, nuclear electricity companies that retain custody and responsibility for the plant and materials, including waste, are one possible solution. Small modular reactors such as the Pebble Bed Modular Reactor could be ideal for such an arrangement. While waste disposal remains a major obstacle, this is already true for numerous nuclear programs even in developed countries with limited geologically suitable formations. Fortunately, several organizations are currently pursuing international solutions to the nuclear waste disposal problem. While the capability to deploy nuclear energy in a specific country may not be desirable for a number of reasons, we should not develop nuclear hardware that can only benefit and serve technically and economically advanced countries. The potential benefits of nuclear energy are global, and we should not unduly limit that potential by inattention today to the requirements necessary for global deployment. (authors)

Lawrence, Michael J. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

2002-07-01T23:59:59.000Z

283

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

nuclear energy programs are exploring the possibility of permanent waste disposalNuclear energy is a proven energy source, but can it overcome issues of waste disposal,nuclear energy can lessen the environmental degradation from fossil energy use, but will problems of radioactive waste disposal

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

284

2009 Annual Reports Issued for Nuclear Energy Research Initiative and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 Annual Reports Issued for Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative July 2, 2010 - 11:49am Addthis On July 2, 2010, the Department of Energy's (DOE) Office of Nuclear Energy (NE) issued annual reports for its Nuclear Energy Research Initiative (NERI) andInternational Nuclear Energy Research Initiative (I-NERI), describing accomplishments achieved in 2009. The NERI and I-NERI programs have furthered DOE goals for the past decade, conducting research into many of the key technical issues that impact the expanded use of advanced nuclear energy systems. Researchers have fostered innovative ideas

285

Nuclear Fuel Cycle | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

286

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support.

287

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next for Nuclear Energy? MIT Students Discuss Path Forward Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support. Investing in the next generation isn't just about technology -- it's

288

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Fossil Energy; Information Technology; Manufacturing ... The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ...

289

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from...

290

Nuclear energy in Southeast Asia pull rods or scram .  

E-Print Network (OSTI)

??Southeast Asia is experiencing a nuclear energy renaissance. Why have some Southeast Asian countries chosen to pursue nuclear power, while others have not? Among those… (more)

Somboonpakron, Pasit.

2009-01-01T23:59:59.000Z

291

Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Explosions As part of the Plowshare program seeking to develop peaceful uses for nuclear explosives, the Atomic Energy Commission conducts the Sedan test at the Nevada...

292

International Nuclear Energy Learning Resources for Home and...  

NLE Websites -- All DOE Office Websites (Extended Search)

'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012,...

293

Secretary Chu Announces Nuclear Energy University Program Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Secretary Chu Announces Nuclear Energy University Program Awards Nearly 9 Million to Benefit Nuclear Science and Engineering Students and University Research Infrastructure...

294

Nuclear Energy University Program: A Presentation to Vice Presidents...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

295

Not in our backyard : the dangers of nuclear energy.  

E-Print Network (OSTI)

??Despite seeing the destruction caused by nuclear accidents at Three Mile Island, Chernobyl, and Fukushima, many people still believe that nuclear energy is necessary to… (more)

McGeown, Emily Elizabeth, 1990-

2012-01-01T23:59:59.000Z

296

Argonne OutLoud Public Lecture Series: Nuclear Energy | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Share Description On November 15, 2012, Argonne National Laboratory opened its doors to the public for a presentationdiscussion titled "Getting to Know Nuclear:...

297

Department of Energy Cites Savannah River Nuclear Solutions,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Nuclear Solutions, LLC for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions, LLC for Worker Safety and Health...

298

Nuclear & Uranium - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... Nuclear power plants generate approximately 20 percent of U.S. electricity, ...

299

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

300

Charles Duncan Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Charles Duncan Sworn in as Secretary of Energy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Spencer Abraham Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Spencer Abraham Sworn in as Secretary of Energy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

302

Frederico Pena Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Frederico Pena Sworn in as Secretary of Energy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

303

President Carter Calls for Department of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Carter Calls for Department of Energy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

304

James Edwards Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Edwards Sworn in as Secretary of Energy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

305

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

306

The role of nuclear energy in mitigating greenhouse warming  

SciTech Connect

A behavioral, top-down, forced-equilibrium market model of long-term ({approximately} 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.

Krakowski, R.A.

1997-12-31T23:59:59.000Z

307

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network (OSTI)

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Vretenar, Dario

2008-01-01T23:59:59.000Z

308

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network (OSTI)

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Dario Vretenar

2008-02-06T23:59:59.000Z

309

Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.  

SciTech Connect

This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

2011-03-01T23:59:59.000Z

310

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

311

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

312

International Nuclear Energy Research Initiative (I-NERI) Annual Reports |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports August 13, 2013 International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the

313

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

314

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program Awards Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

315

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

316

Department of Energy Announces New Nuclear Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Announces New Nuclear Initiative of Energy Announces New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists.

317

Department of Energy and Nuclear Regulatory Commission Increase Cooperation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Regulatory Commission Increase Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP) through a Memorandum of Understanding (MOU) that was signed on Friday by DOE's GNEP Deputy Program Manager Paul Lisowski and NRC Executive Director for Operations Luis Reyes. The MOU establishes the foundation for increased cooperation between DOE and NRC on technological research and engineering studies and marks another important milestone

318

Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies  

E-Print Network (OSTI)

We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

T. Niksic; D. Vretenar; P. Ring

2008-09-08T23:59:59.000Z

319

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 6, 2010 May 6, 2010 CX-002327: Categorical Exclusion Determination Central Facility Area and Advanced Test Reactor-Complex Analytical and Research and Development Laboratory Operation (Overarching) CX(s) Applied: B3.6 Date: 05/06/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002192: Categorical Exclusion Determination Site Wide Well Abandonment Activities CX(s) Applied: B2.5, B3.1 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002584: Categorical Exclusion Determination Nuclear Fabrication Consortium CX(s) Applied: B3.6, A9, A11 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 12, 2010 CX-001627: Categorical Exclusion Determination

320

Energy-consumption modelling  

SciTech Connect

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Symmetry energy coefficients for asymmetric nuclear matter  

E-Print Network (OSTI)

Symmetry energy coefficients of asymmetric nuclear matter are investigated as the inverse of nuclear matter polarizabilities with two different approaches. Firstly a general calculation shows they may depend on the neutron-proton asymmetry itself. The choice of particular prescriptions for the density fluctuations lead to certain isospin (n-p asymmetry) dependences of the polarizabilities. Secondly, with Skyrme type interactions, the static limit of the dynamical polarizability is investigated corresponding to the inverse symmetry energy coefficient which assumes different values at different asymmetries (and densities and temperatures). The symmetry energy coefficient (in the isovector channel) is found to increase as n-p asymmetries increase. The spin symmetry energy coefficient is also briefly investigated.

Fábio L. Braghin

2003-12-16T23:59:59.000Z

322

Modeling Nuclear Fuels with a Combined Potts-Phase Field Model  

Science Conference Proceedings (OSTI)

Symposium, Materials Science Challenges for Nuclear Applications. Presentation Title, Modeling Nuclear Fuels with a Combined Potts-Phase Field Model.

323

Department of Energy Announces New Nuclear Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Nuclear Initiative New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists. "GNEP brings the promise of virtually limitless energy to emerging

324

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

sale of nuclear-related equipment to Pakistan. At the 1997nuclear energy, including Australia (the United States, Canada, India, and PakistanPakistan and Iran. How Could an East Asian Regional Compact for Nuclear

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

325

Data requirements for intermediate energy nuclear applications  

SciTech Connect

Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.

Pearlstein, S.

1990-01-01T23:59:59.000Z

326

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

327

Intermediate energy nuclear physics with electrons  

SciTech Connect

Inclusive electron scattering has made an enormous contribution to our understanding of hadron and of nuclear structure and to defining the questions which are driving the field in new directions. With intense CW intermediate energy electron beams and with the opportunity to exploit spin observables, central contributions to many of the most crucial questions are anticipated. (AIP)

Moniz, E.J.

1987-10-10T23:59:59.000Z

328

Studies in Low-Energy Nuclear Science  

Science Conference Proceedings (OSTI)

This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

Carl R. Brune; Steven M. Grimes

2010-01-13T23:59:59.000Z

329

Nuclear Science and Engineering Education Sourcebook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science and Engineering Education Sourcebook Science and Engineering Education Sourcebook Nuclear Science and Engineering Education Sourcebook The Nuclear Science and Engineering Education Sourcebook is a repository of critial information on nuclear engineering programs at U.S. colleges and universities. It includes detailed information such as nuclear engineering enrollments, degrees, and faculty expertise. In this latest edition, science faculty and programs relevant to nuclear energy are also included. NuclearScienceEngineeringSourcebook2013.pdf More Documents & Publications University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee The Future of University Nuclear Engineering Programs and University Research and Training Reactors Clark Atlanta Universities (CAU) Energy Related Research Capabilities

330

Microsoft PowerPoint - Why Nuclear Energy New Template  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Nuclear Energy? Why Nuclear Energy? Why Nuclear Energy? Nuclear energy already meets a significant share of the world's energy needs * There are 441 nuclear reactors in operation in 31 countries * These plants generate electricity for nearly a billion people, and account for 17% of the world's electricity production * The U.S. has 103 operating reactors producing 20% of the nation's electricity * Illinois leads all states with the highest share of nuclear (51%) * Technology significantly developed at Argonne forms the basis of all nuclear energy systems used worldwide Nuclear power is reliable and economical * In 2001, U.S. nuclear plants produced electricity for 1.68 cents per kilowatt-hour on average, second only to hydroelectric power among baseload generation options * U.S. nuclear power plant performance has steadily

331

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services GNEP would build and strengthen a reliable international fuel services consortium under which "fuel supplier nations" would choose to operate both nuclear power plants and fuel production and handling facilities, providing reliable fuel services to "user nations" that choose to only operate nuclear power plants. This international consortium is a critical component of the GNEP initiative to build an improved, more proliferation-resistant nuclear fuel cycle that recycles used fuel, while Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services More Documents & Publications

332

Nuclear Energy in the 21st Date 12 and 13 March 2012  

E-Print Network (OSTI)

Nuclear Energy in the 21st Century Date 12 and 13 March 2012 Organised by Professor Roger Cashmore organiser 09.05 Ian Emsley Current nuclear landscape and uranium resource 13.30 Duncan Forbes The challenge for SMR 09.00 Alex Larzelere The Role of advanced modeling and simulation for nuclear reactor design

Rambaut, Andrew

333

Economics of Nuclear and Renewable Electricity Energy Science Coalition  

E-Print Network (OSTI)

Nuclear energy arose as a ‘spin-off ’ from nuclear weapons. Its use grew rapidly during the 1960s, nurtured by huge subsidies and the belief that nuclear electricity would soon become ‘too cheap to meter’. According to the International Atomic Energy Agency, at the end of 2009 there were 438 operating nuclear power reactors in the world, total

Dr Mark Diesendorf

2010-01-01T23:59:59.000Z

334

Office of Nuclear Safety | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Office of Nuclear Safety Mission The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of...

335

Equips Nucleares SA | Open Energy Information  

Open Energy Info (EERE)

Nucleares, SA Place Madrid, Spain Zip 28006 Sector Services Product ENSA is a Spanish nuclear components and nuclear services supply company. References Equips Nucleares, SA1...

336

Nuclear Power and the World's Energy Requirements  

E-Print Network (OSTI)

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

337

How can work done by Argonne make nuclear energy cheaper and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do...

338

Sixty-Eight Students to Receive Nuclear Energy Scholarships and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships July 17, 2013 - 10:30am...

339

Nuclear Energy University Program: A Presentation to Vice Presidents of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program: A Presentation to Vice Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy An overview of the Office of Nuclear Energy's university programs Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy More Documents & Publications Meeting Materials: December 18, 2009 Meeting Materials: June 9, 2009 June 2011, Report of the Fuel Cycle Subcommittee of NEAC

340

Technical Basis for U. S. Department of Energy Nuclear Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1, 711 Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1,...

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nuclear Energy Advisory Committee Meeting Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Advisory Committee Meeting Materials Nuclear Energy Advisory Committee Meeting Materials Nuclear Energy Advisory Committee Meeting Materials November 26, 2013 MEETING MATERIALS: DECEMBER 19, 2013 Washington Marriott at Metro Center Ballroom A 775 12th Street, NW Washington, DC 20005 June 13, 2013 MEETING MATERIALS: JUNE 13, 2013 L'Enfant Plaza Hotel Ballroom D, (Main Floor) Washington, D.C. 20024 December 6, 2012 Meeting Materials: December 6, 2012 L'Enfant Plaza Hotel Quorum Room, (Main Floor) Washington, D.C. 20024 June 12, 2012 Meeting Materials: June 12, 2012 L'Enfant Plaza Hotel Monet Ballroom, (2nd Floor), Washington, D.C. 20024 December 13, 2011 Meetings Materials: December 13, 2011 L'Enfant Plaza Hotel Ballroom A - 1st Floor Washington, D.C. 20024 June 15, 2011 Meeting Materials: June 15, 2011 L'Enfant Plaza Hotel

342

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 21, 2012 March 21, 2012 CX-008252: Categorical Exclusion Determination Central Facilities Area (CFA) Shoot House Panel Installation CX(s) Applied: B2.1 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy March 21, 2012 CX-008251: Categorical Exclusion Determination International Way Office Building Lease Termination CX(s) Applied: B1.24 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy March 15, 2012 CX-008253: Categorical Exclusion Determination Materials and Fuels Complex (MFC) Contaminated Equipment Storage Building (CESB) Conversion Scope Change CX(s) Applied: B1.31 Date: 03/15/2012 Location(s): Idaho Offices(s): Nuclear Energy November 28, 2011 CX-007774: Categorical Exclusion Determination Rensselaer Infrastructure Upgrade to Enhance Research and Education in

343

PIA - Savannah River Nuclear Solution (SRNS) Energy Employees...  

NLE Websites -- All DOE Office Websites (Extended Search)

Employees Occupational Illness Compensation Program Act (EEOICPA) PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational Illness Compensation Program Act...

344

Potential Role of Nanotechnologies in Advanced Nuclear Energy ...  

Science Conference Proceedings (OSTI)

Office of Fuel Cycle Technologies. Office of Nuclear Energy. February 28, 2012. Nanotechnology Workshop. Rice University, Houston, Texas ...

345

Nuclear Energy: Processes and Policies - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium, Nuclear Energy: Processes and Policies. Sponsorship, The Minerals  ...

346

High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.  

SciTech Connect

The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub-models for overall analysis of the system. It also provides control over key user input parameters and the ability to effectively consolidate vital output results for uncertainty/sensitivity analysis and optimization procedures. The preliminary analysis has shown promising advanced fuel cycle scenarios that include Pressure Water Reactors Pressurized Water Reactors (PWRs), Very High Temperature Reactors (VHTRs) and dedicated HEST waste incineration facilities. If deployed, these scenarios may substantially reduce nuclear waste inventories approaching environmentally benign nuclear energy system characteristics. Additionally, a spent fuel database of the isotopic compositions for multiple design and control parameters has been created for the VHTR-HEST input fuel streams. Computational approaches, analysis metrics, and benchmark strategies have been established for future detailed studies.

Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

2009-09-01T23:59:59.000Z

347

1970s Beyond Nuclear Energy to Support All Forms of Energy |...  

Office of Scientific and Technical Information (OSTI)

70s Beyond Nuclear Energy to Support All Forms of Energy 1970s Beyond Nuclear Energy to Support All Forms of Energy Back to history 1970 New educational poster innovation launched,...

348

Nuclear vorticity and the low-energy nuclear response - Towards the neutron drip line  

E-Print Network (OSTI)

The transition density and current provide valuable insight into the nature of nuclear vibrations. Nuclear vorticity is a quantity related to the transverse transition current. In this work, we study the evolution of the strength distribution, related to density fluctuations, and the vorticity strength distribution, as the neutron drip line is approached. Our results on the isoscalar, natural-parity multipole response of Ni isotopes, obtained by using a self-consistent Skyrme-Hartree-Fock + Continuum RPA model, indicate that, close to the drip line, the low-energy response is dominated by L>1 vortical transitions.

P. Papakonstantinou; J. Wambach; E. Mavrommatis; V. Yu. Ponomarev

2004-11-16T23:59:59.000Z

349

Energy Department Announces New Investments in University-Led Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Investments in University-Led Energy Department Announces New Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to deploy every available source of American energy and ensure the U.S. remains competitive globally, the Energy Department announced today more than $13 million in new investments for university-led nuclear innovation projects. The three awards announced today under the Department's Nuclear Energy University Programs (NEUP) will support nuclear energy R&D and student investment at U.S. colleges and universities across the country, ensuring that secure, safe and efficient nuclear energy

350

A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

2011-12-01T23:59:59.000Z

351

United States and Italy Sign Nuclear Energy Agreements | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

352

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2012 Annual International Nuclear Energy Research Initiative: 2012 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs,

353

United States and Italy Sign Nuclear Energy Agreements | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

354

Deputy Secretary Poneman's Remarks at the Nuclear Energy Assembly...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Assembly - As Prepared for Delivery Deputy Secretary Poneman's Remarks at the Nuclear Energy Assembly - As Prepared for Delivery May 11, 2011 - 6:01pm Addthis Deputy...

355

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Fossil Energy; Information Technology; Manufacturing ; Materials; ... Non-Nuclear Energy Method of Producing Hydrogen. Related Patents: 7153489; 7,665,328; 7078012.

356

Department of Energy Issues Requests for Applications for Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Department of Energy Issues Requests for Applications for Nuclear Science and Engineering Scholarships and Fellowships Department of Energy Issues Requests for...

357

Nuclear Energy Research Advisory Committee (NERAC) Meeting of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting of November 3 and 4, 2003 Nuclear Energy Research Advisory Committee (NERAC) Meeting of November 3 and 4, 2003 The agenda for the National Energy Research Advisory...

358

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status ...

359

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... Privacy/Security Copyright & Reuse Accessibility. Related Sites U.S. Department of Energy

360

Nuclear & Uranium - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... Privacy/Security Copyright & Reuse Accessibility. Related Sites U.S. Department of Energy

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of an Integrated Global Energy Model  

Science Conference Proceedings (OSTI)

The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

Krakowski, R.A.

1999-07-08T23:59:59.000Z

362

Thomas Miller Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miller Miller Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 30, 2002 Presentation at the Nuclear Energy Research Advisory Committee Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Office of Nuclear Energy, Science and Technology TMiller/Sept11_02 ESE Project.ppt ( 2) Nuclear Power 2010: Overview Nuclear Power 2010: Overview Goal 6 Achieve industry decision by 2005 to deploy at least one new advanced nuclear power plant by 2010 Cooperative Activities 6 Regulatory Demonstration Projects * Early Site Permit (ESP) * Combined Construction and Operating License (COL) 6 Reactor Technology Development Projects * NRC Design Certification (DC) * First-of-a-kind engineering for a standardized plant

363

Low Energy Nuclear Reactions: Exciting New Science and Potential Clean Energy  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

David J. Nagel; Kamron C. Fazel

364

Pilot Application to Nuclear Fuel Cycle Options | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options The Department of Energy's Office of Nuclear Energy (DOE-NE) invests in research and development (R&D) to ensure that the United States will maintain its domestic nuclear energy capability and scientific and technical leadership in the international community of nuclear power nations in the years ahead. The 2010 Nuclear Energy Research and Development Roadmap presents a high-level vision and framework for R&D activities that are needed to keep the nuclear energy option viable in the near term and to expand its use in the decades ahead. The roadmap identifies the development

365

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Nuclear Energy Research Advisory Committee, of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

366

Summary of "Materials Modeling and Simulations for Nuclear Fuels"  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary of "Materials Modeling and Simulations for Nuclear Fuels" Summary of "Materials Modeling and Simulations for Nuclear Fuels" (MMSNF 2013) workshop Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share "Materials Modeling and Simulations for Nuclear Fuels" (MMSNF 2013) workshop Workshop Summary Presentation during MMSNF Workshop in Chicago

367

A Novel Source of Tagged Low-Energy Nuclear Recoils  

E-Print Network (OSTI)

For sufficiently wide resonances, nuclear resonance fluorescence behaves like elastic photo-nuclear scattering while retaining the large cross-section characteristic of resonant photo-nuclear absorption. We show that NRF may be used to characterize the signals produced by low-energy nuclear recoils by serving as a novel source of tagged low-energy nuclear recoils. Understanding these signals is important in determining the sensitivity of direct WIMP dark-matter and coherent neutrino-nucleus scattering searches.

Joshi, Tenzing H Y

2011-01-01T23:59:59.000Z

368

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

369

Global Nuclear Energy Partnership Triples in Size to 16 Members |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Partnership Triples in Size to 16 Members Nuclear Energy Partnership Triples in Size to 16 Members Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On to International Cooperation for Safe Expansion of Nuclear Energy Worldwide VIENNA, AUSTRIA - U.S. Secretary of Energy Samuel W. Bodman and senior international officials from 16 nations today agreed to increase international nuclear energy cooperation through the Global Nuclear Energy Partnership (GNEP). China, France, Japan, Russia and the United States, who are original GNEP partners, as well as Australia, Bulgaria, Ghana, Hungary, Jordan, Kazakhstan, Lithuania, Poland, Romania, Slovenia, and Ukraine signed a "Statement of Principles", which addresses the prospects of expanding the peaceful uses of nuclear energy, including enhanced

370

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 9, 2011 August 9, 2011 CX-009033: Categorical Exclusion Determination Radiation Resistant Electrical Insulation Materials for Nuclear Reactors Using Novel Nanocomposite Dielectrics - Oak Ridge National Laboratory CX(s) Applied: B3.6 Date: 08/09/2011 Location(s): Tennessee Offices(s): Nuclear Energy August 9, 2011 CX-009040: Categorical Exclusion Determination Radiation Tolerance and Mechanical Properties of Nanostructured Ceramic/metal Composites - University of Nebraska CX(s) Applied: B3.6, B3.10 Date: 08/09/2011 Location(s): Nebraska Offices(s): Nuclear Energy August 9, 2011 CX-009038: Categorical Exclusion Determination Radiation-induced Ductility Enhancement in Amorphous Fe and Al2O3+TiO2 Nanostructured Coatings in Fast Neutron and High Temperature Environments of Next Generation Reactors - Brookhaven National Laboratory

371

CP-1: the Past, Present & Future of Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

CP-1: the Past, Present & Future of Nuclear Energy CP-1: the Past, Present & Future of Nuclear Energy Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share CP-1: the Past, Present & Future of Nuclear Energy Jan. 29, 2013 On January 25, 2013, a lunch program to commemorate the 70th anniversary of the world's first self-sustaining, controlled nuclear chain reaction was

372

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

373

Imprints of Nuclear Symmetry Energy on Properties of Neutron Stars  

E-Print Network (OSTI)

Significant progress has been made in recent years in constraining the density dependence of nuclear symmetry energy using terrestrial nuclear laboratory data. Around and below the nuclear matter saturation density, the experimental constraints start to merge in a relatively narrow region. At supra-saturation densities, there are, however, still large uncertainties. After summarizing the latest experimental constraints on the density dependence of nuclear symmetry energy, we highlight a few recent studies examining imprints of nuclear symmetry energy on the binding energy, energy release during hadron-quark phase transitions as well as the $w$-mode frequency and damping time of gravitational wave emission of neutron stars.

Li, Bao-An; Gearheart, Michael; Hooker, Joshua; Ko, Che Ming; Krastev, Plamen G; Lin, Wei-Kang; Newton, William G; Wen, De-Hua; Xu, Chang; Xu, Jun

2011-01-01T23:59:59.000Z

374

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

MIT - Center for Advanced Nuclear Energy Systems MIT - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name MIT - Center for Advanced Nuclear Energy Systems Address 77 Massachusetts Avenue, 24-215 Place Cambridge, Massachusetts Zip 02139-4307 Phone number (617) 452-2660 Coordinates 42.3613041°, -71.0967653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3613041,"lon":-71.0967653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Ex Parte Meeting Between the Department of Energy and the Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Between the Department of Energy and the Nuclear Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 summary of ex parte meeting with the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 More Documents & Publications Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy Institute

376

Mesoscale to plant-scale models of nuclear waste reprocessing.  

Science Conference Proceedings (OSTI)

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

2010-09-01T23:59:59.000Z

377

Energy Department Announces New Investments in University-Led Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Investments in University-Led New Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to deploy every available source of American energy and ensure the U.S. remains competitive globally, the Energy Department announced today more than $13 million in new investments for university-led nuclear innovation projects. The three awards announced today under the Department's Nuclear Energy University Programs (NEUP) will support nuclear energy R&D and student investment at U.S. colleges and universities across the country, ensuring that secure, safe and efficient nuclear energy

378

Nuclear Reactor Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo...

379

International Nuclear Energy Research Initiative: 2007 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2007 Annual International Nuclear Energy Research Initiative: 2007 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. Information on the program

380

Global Nuclear Energy Partnership Steering Group Members Approve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Steering Group Members Approve Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation June 21, 2010 - 11:59am Addthis The Global Nuclear Energy Partnership Steering Group met in Accra, Ghana on June 16-17, 2010, and approved unanimously several transformative changes to reflect global developments that have occurred since the Partnership was established in 2007. The transformation includes a new name - the International Framework for Nuclear Energy Cooperation -- and the establishment of a new Statement of Mission. Participants in this new International Framework agreed that this

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Global Nuclear Energy Partnership (GNEP) Ministerial Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for September 16,2007 for September 16,2007 Global Nuclear Energy Partnership (GNEP) Ministerial Meeting Austria Centre 8:30 - 10:OO a.m. Registration and Badging 10:OO - 11 :30 a.m. Opening Remarks by Participants [Open to the Media] Hall E 1 1 :30 - 1 1 :45 a.m. Break 11 145 - 12:30 p.m. Acceptance of the GNEP Statement of Principles (Signing) Welcome New GNEP Partners Press Conference [Open to the Media] Hall F 12:30 - 1:30 p.m. Lunch [Closed to the Media] 1 :30 - 1 :45 p.m. Break 1 :45 - 2:30 p.m. Session I: Steps That Could be taken by GNEP Partners in Support of a Global Nuclear Fuel Services [Closed to the Media] Hall E 2:30 - 3: 15 p.m. Session 11: Ways That GNEP Can Support Infrastructure Development Needs of Countries Considering Nuclear Power (e.g., nuclear reactor operation and related training,

382

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network (OSTI)

policy 52 New nuclear stations in the UK 57 The UK nuclear fuel cycle: historic, present and future 63 energy, nuclear research 86 and the fuel cycle The future of waste disposal 88 Public perception failures, can nuclear power stations be built to budget and time? Is public opinion sufficiently resilient

Birmingham, University of

383

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS  

E-Print Network (OSTI)

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS Hiroyasu EJIRI Nuclear Physics Laboratory Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567 Japan. E-mail address: ejiri@rcnp.osaka-u.ac.jp (H. Ejiri). Physics Reports 338 (2000) 265}351 Nuclear spin isospin responses for low

Washington at Seattle, University of

384

Perspectives of Nuclear Energy for Human Development  

SciTech Connect

In this period of expectation and short term viewing, everyone has difficulties to draw long term perspectives. A positive global world vision of sustainable development gives confidence in the preparation of energy future in a moving international context. This presentation proposes to share such a long term vision inside which energy scenarios for nuclear development take their right place. It is founded on a specific analysis of an index of countries global development which is representative of a country efficiency. Human Development Index (HDI) is a composite international index recommended and calculated every year since 1990 by the United Nations Development Program (UNDP). This index is still very dependent of GNP, which ignores the disparities of revenues inside the country. That is why a Country Efficiency Index (CEI) has been defined to better represent the capacity of a country to utilize its resources for welfare of its inhabitants. CEI is a ratio of health and education levels to the capacity of the country to satisfy this welfare. CEI has been calculated for the 70 more populated countries of the world for the year 1997. CEI calculation has been also performed for European Countries, the United States, China and India on the period from 1965 to 1997. It is observed a growth of CEI. for France from 0.6 to 0.78, and from 0.7 to 0.85 for USA. In 1997, CEI of China was 0.46, and 0.38 for India. This index is a good tool to measure the progression of development of the countries and the related energy needs. Comparison of the evolutions of CEI of these different countries shows a similar positive trend with some delay between OECD countries and China or India. A positive scenario for the future is based on a similar curve for these developing countries with learning effect which produces development with less energy consumption. This simulation results however in energy needs that exceed fossil fuel today available resources in 2070. Ultimate fossil resources must be deployed together with the use of nuclear and renewables. CEI level is an indicator of the country structural soundness. A low level does not allow the industrial management of complex technologies such as nuclear or other complex energy systems. There is a limit for nuclear development which increases with the collective management capability of the country. But increasing efficiency index goes with more energy, which, for developing countries, means an economic access to fossil fuels. This necessitates that the fossil fuels access price, which almost entirely depends on imports from OECD countries, be low enough to allow a progression in the collective efficiency of the countries. This is where nuclear energy has a major function in lightening the burden on fossil fuels transactions by taking its full economic position in the countries with high efficiency index. The two messages of this presentation are that collective efficiencies of the countries steadily increase in the long term and that nuclear development in the most efficient countries is a necessity for efficient development of the other countries. (author)

Rouyer, Jean-Loup [Electricite de France, Engineering Division, Cap Ampere 1, Place Pleyel, 93 282 Saint Denis Cedex (France)

2002-07-01T23:59:59.000Z

385

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary to Visit Georgia Nuclear Reactor Site and Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy February 13, 2012 - 6:16pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday, February 15 to highlight steps the Obama Administration is taking to restart America's nuclear energy industry. In Waynesboro, Secretary Chu will join Southern Company CEO Thomas A. Fanning, Georgia Power CEO W. Paul Bowers, and local leaders for a tour of Vogtle units 3 and 4 -- the site of the first two new nuclear power units

386

Why is the nuclear symmetry energy so uncertain at supra-saturation densities?  

E-Print Network (OSTI)

Within the Thomas-Fermi model for isospin asymmetric nuclear matter, the nuclear symmetry energy can be expressed explicitly in terms of the isospin-dependence of the nucleon-nucleon strong interaction. Respective effects of the in-medium three-body interaction and the two-body short-range tensor force due to the $\\rho$ meson exchange as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy are demonstrated in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy at supra-saturation densities are discussed.

Xu, Chang

2009-01-01T23:59:59.000Z

387

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network (OSTI)

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density of Sn and Pb nuclei are studied as test cases for the isospin dependence of the underlying interactions

Weise, Wolfram

388

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Mumbai to Highlight Civil Nuclear Energy in Mumbai to Highlight Civil Nuclear Energy Cooperation Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation March 22, 2006 - 12:10pm Addthis MUMBAI, INDIA - U.S. Secretary of Energy Samuel W. Bodman today met with Dr. Anil Kakodkar, Secretary of the Department of Atomic Energy, in Mumbai to address the United States and India's nuclear cooperation and highlight the countries' ongoing partnership to advance global energy security. Earlier today, Secretary Bodman met with U.S. and Indian venture capitalists to discuss opportunities for investment in clean energy technologies. Secretary Bodman also participated in a roundtable discussion with nuclear industry leaders on the private sector's role in expanding access to clean, safe, and reliable nuclear energy across the

389

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation March 22, 2006 - 12:10pm Addthis MUMBAI, INDIA - U.S. Secretary of Energy Samuel W. Bodman today met with Dr. Anil Kakodkar, Secretary of the Department of Atomic Energy, in Mumbai to address the United States and India's nuclear cooperation and highlight the countries' ongoing partnership to advance global energy security. Earlier today, Secretary Bodman met with U.S. and Indian venture capitalists to discuss opportunities for investment in clean energy technologies. Secretary Bodman also participated in a roundtable discussion with nuclear industry leaders on the private sector's role in expanding access to clean, safe, and reliable nuclear energy across the

390

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Advanced Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating international partners on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents & Publications GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste

391

Overview of Nuclear Energy: Present and Projected Use  

Science Conference Proceedings (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Alexander Stanculescu

2011-09-01T23:59:59.000Z

392

An Assessment of Nuclear Isomers as an Energy Storage Medium  

DOE Green Energy (OSTI)

Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

Hartouni, E P

2008-12-08T23:59:59.000Z

393

Nuclear Energy Panel Discussion at University of Chicago  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Panel Discussion at University of Chicago Nuclear Energy Panel Discussion at University of Chicago Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Nuclear Energy Panel Discussion at University of Chicago Did you miss this event? Watch recording of "Lessons from Fukushima" The event's webcast is over, but you can still watch and/or download the

394

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

395

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 2:00pm Addthis The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

396

Nuclear interactions of 160 MeV protons stopping in copper: A test of Monte Carlo nuclear models  

Science Conference Proceedings (OSTI)

To estimate the influence of nuclear interactions on dose or biological effect one uses Monte Carlo programs which include nuclear models. We introduce an experimental method to check these models at proton therapy energies. We have measured the distribution of charge deposited by 160 MeV protons stopping in a stack of insulated copper plates. A buildup region ahead of the main peak contains ?20% of the total charge and is entirely due to charged secondaries from inelastic nuclear interactions. The acceptance for charged secondaries is 100%. Therefore the data are a good benchmark for nuclear models. We have simulated the stack using GEANT with two nuclear models.FLUKA agrees fairly well with the measurement but GHEISHA

Bernard Gottschalk; Rachel Platais; Harald Paganetti

1999-01-01T23:59:59.000Z

397

Energy Modeling Software | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Energy Modeling Software Commercial Buildings » Energy Modeling Software Energy Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The

398

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

report, National Nuclear Security Administration, Departmentproliferation and security risks of nuclear energy systemsthe proliferation and security risk posed by nuclear energy

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

399

Energy Transition Model | Open Energy Information  

Open Energy Info (EERE)

Energy Transition Model Energy Transition Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Transition Model Agency/Company /Organization: Quintel Intelligence Sector: Energy Topics: Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Website Website: energytransitionmodel.com/ Country: Netherlands Web Application Link: energytransitionmodel.com/ Cost: Free OpenEI Keyword(s): International UN Region: Western Europe References: webservice-energy.org[1] MINES Energy Transition Model[2] Logo: Energy Transition Model The Energy Transition Model is an independent, comprehensive and fact-based energy model that is used by governments, corporations, NGOs and educators in various countries. It is backed by more than 20 partners. There are

400

231A. Hernndez-Sols et al. / Annals of Nuclear Energy 57 (2013) 230245 Lattice calculations use nuclear libraries as input basis data,  

E-Print Network (OSTI)

be used for any reactor physics cal culations. Once evaluated, the nuclear data are added in a specific assemblies), and nuclear models and theory. The covariance is given with respect to point wise cross section#12;231A. Hernández-Solís et al. / Annals of Nuclear Energy 57 (2013) 230­245 Lattice calculations

Demazière, Christophe

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION June 27, 2013 - 10:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 On June 26, 2013, a meeting of the Nuclear Energy and Nuclear Security Working Group of the U.S. - Russia Bilateral Presidential Commission took place. The co-chairs share the view that a considerable amount of work has been done within the four-year period of the group's existence. On January 11, 2011, the Agreement between the Government of the United States of America and the Government of the Russian Federation for

402

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION JOINT STATEMENT OF THE CO-CHAIRS OF...

403

Solar and nuclear energy expertise to be enhanced by research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy frontier research centers Solar and nuclear energy expertise to be enhanced by research centers Los Alamos will be home to two new Energy Frontier Research Centers through a...

404

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants January 31, 2012 - 2:09pm Addthis The Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and the U.S. Nuclear Regulatory Commission (NRC) released a new seismic study today that will help U.S. nuclear facilities in the central and eastern United States reassess seismic hazards. The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities model and report is the culmination of a four-year effort among the participating organizations and replaces previous seismic source models used by industry and government since the late 1980s. The NRC is requesting U.S. nuclear power plants to reevaluate seismic

405

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants January 31, 2012 - 2:09pm Addthis The Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and the U.S. Nuclear Regulatory Commission (NRC) released a new seismic study today that will help U.S. nuclear facilities in the central and eastern United States reassess seismic hazards. The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities model and report is the culmination of a four-year effort among the participating organizations and replaces previous seismic source models used by industry and government since the late 1980s. The NRC is requesting U.S. nuclear power plants to reevaluate seismic

406

The Challenges and Potential of Nuclear Energy for Addressing Climate Change  

SciTech Connect

The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the world’s electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change.

Kim, Son H.; Edmonds, James A.

2007-10-24T23:59:59.000Z

407

2002 EIA Models Directory - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Levelized Nuclear Fuel Cycle Cost Model (LNFCC-PC) Propane Market Model (PPMM) Short-Term Hydroelectric Generation Model (STHGM)

408

GE-Hitachi Nuclear Energy Americas LLC  

E-Print Network (OSTI)

This letter provides information concerning the evaluation now completed by GE Hitachi Nuclear Energy (GEH) regarding a potential non-conservatism in the calculation of Main Steam Line (MSL) choked flow rates. As stated herein, GEH has concluded that this is not a Reportable Condition for all U.S. BWR/2-6 plants in accordance with the requirements of 10 CFR 21.21(d). This letter closes the supplemental 60-Day Interim Report Notification (MFN 12-111 R1), provided on December 12, 2102, per §21.21(a)(2). If you have any questions, please call me at (910) 819-4491. Sincerely,

Dale E. Porter; Dale E. Porter; S. S. Philpott; S. J. Pannier

2013-01-01T23:59:59.000Z

409

Energy Fuels Nuclear, Inc. Arizona Strip Operations  

Science Conference Proceedings (OSTI)

Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U[sub 3]O[sub 8] over the period 1980 through 1991, maintained the company's status as a leading US uranium producer.

Pool, T.C.

1993-05-01T23:59:59.000Z

410

Middle School Energy and Nuclear Science Curriculum Now Available |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available October 30, 2013 - 1:18pm Addthis Andrea Duskas Public Affairs Specialist for the Office of Nuclear Energy A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The essential principles and fundamental concepts in The Harnessed Atom address the latest science standards for crosscutting concepts about energy and matter. The Harnessed Atom teacher's kit is an updated and expanded edition of the

411

Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences  

E-Print Network (OSTI)

Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still of climate model simulations of the response to smoke and dust from a massive nuclear exchange between the superpowers could be summarized as ``nuclear winter,'' with rapid temperature, precipitation, and insolation

Robock, Alan

412

Department of Energy Conference Emphasizes Universities' Role in Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conference Emphasizes Universities' Role in Conference Emphasizes Universities' Role in Nuclear Energy Research Department of Energy Conference Emphasizes Universities' Role in Nuclear Energy Research August 14, 2009 - 1:35pm Addthis This Thursday and Friday, the U.S. Department of Energy hosted a workshop with professors from more than 40 U.S. universities to highlight the role universities can play in advancing the nation's nuclear energy research. U.S. Senator Bob Bennett, R-Utah, delivered closing remarks to the conference, emphasizing the importance of nuclear energy as a clean, carbon-free source of electricity. "The path to a clean energy future is through a balanced energy approach that includes nuclear energy, which provides electricity to one in five homes and businesses," said Bennett, ranking Republican on the Senate

413

Department of Energy Issues Requests for Nuclear Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Science and Nuclear Science and Engineering Scholarships and Fellowships Applications Department of Energy Issues Requests for Nuclear Science and Engineering Scholarships and Fellowships Applications May 7, 2009 - 1:46pm Addthis The U.S. Department of Energy (DOE) today announced two new Requests for Application (RFA) as part of the Department's efforts to recruit and train the next generation of nuclear scientists and engineers - a critical need as the nation moves toward greater use of nuclear energy to meet our energy needs and address the global climate crisis. Under the Nuclear Energy University Program, DOE will provide approximately $2.9 million to fund scholarships and fellowships for students enrolled in two or four year nuclear science and engineering programs at accredited

414

Expanding Options for Nuclear Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expanding Options for Nuclear Power Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department. The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to

415

HEARING ON NUCLEAR ENERGY RISK MANAGEMENT  

E-Print Network (OSTI)

am pleased to discuss the possible health implications of radiation from the Fukushima Daiichi nuclear power plant accident in Japan. Just a few days before the natural disasters struck on March 11, 2011, I was in Hiroshima, Japan as a member of the Radiation Effects Research Foundation's Science Council, reviewing the study of atomic bomb survivors. I would like to begin by expressing my heartfelt sympathy for the families of the tens of thousands who lost their lives as a result of the tsunami and earthquake and for the hundreds of thousands who have been displaced from their homes and livelihoods. The health consequences associated with the radiation exposures emanating from the Fukushima Daiichi plant pale in comparison. As background, I am a radiation epidemiologist and Professor in the Department of Medicine at Vanderbilt University and Scientific Director of the International Epidemiology Institute. I have spent my career studying human populations exposed to radiation, including Chernobyl clean-up workers, patients receiving diagnostic and therapeutic radiation, underground miners exposed to radon, nuclear energy workers, atomic veterans, persons living in areas of high background radiation and U.S. populations living near nuclear power plants and other facilities. I am also a commissioner of the International Commission on Radiological Protection, an emeritus member of the National Council on Radiation Protection and

John D. Boice; Sc. D; Good Morning; Mr. Chairmen; Ranking Members

2011-01-01T23:59:59.000Z

416

Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions |  

National Nuclear Security Administration (NNSA)

Explores Peaceful Uses of Nuclear Explosions | Explores Peaceful Uses of Nuclear Explosions | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions July 06, 1962

417

Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind  

E-Print Network (OSTI)

from renewables (wind power, solar power, hydropower, geothermal, ocean wave & tidal power, biomass energy resources (coal 43%, natural gas 19%, oil 6%, cogeneration 7%); ~21% by nuclear fission power) ~ 5 ~ 7 CO2 Emission (Tons/MW) Current Chinese plants 1.15 Current US plants 1.05 State of the art 0

Chen, Yang-Yuan

418

Annual Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Uranium fuel, nuclear reactors, ... About the National Energy Modeling System (NEMS)

419

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

420

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2006 Department of Energy Strategic Plan - Ensuring America's nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring America's Ensuring America's nuclear security 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials and technology through the NNSA.

422

Global Nuclear Energy Partnership Programmatic Environmental Impact Statement  

SciTech Connect

Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

R.A. Wigeland

2008-10-01T23:59:59.000Z

423

Nuclear Energy Readiness Indicator Index (NERI): A benchmarking tool for assessing nuclear capacity in developing countries  

Science Conference Proceedings (OSTI)

Declining natural resources, rising oil prices, looming climate change and the introduction of nuclear energy partnerships, such as GNEP, have reinvigorated global interest in nuclear energy. The convergence of such issues has prompted countries to move ahead quickly to deal with the challenges that lie ahead. However, developing countries, in particular, often lack the domestic infrastructure and public support needed to implement a nuclear energy program in a safe, secure, and nonproliferation-conscious environment. How might countries become ready for nuclear energy? What is needed is a framework for assessing a country's readiness for nuclear energy. This paper suggests that a Nuclear Energy Readiness Indicator (NERI) Index might serve as a meaningful basis for assessing a country's status in terms of progress toward nuclear energy utilization under appropriate conditions. The NERI Index is a benchmarking tool that measures a country's level of 'readiness' for nonproliferation-conscious nuclear energy development. NERI first identifies 8 key indicators that have been recognized by the International Atomic Energy Agency as key nonproliferation and security milestones to achieve prior to establishing a nuclear energy program. It then measures a country's progress in each of these areas on a 1-5 point scale. In doing so NERI illuminates gaps or underdeveloped areas in a country's nuclear infrastructure with a view to enable stakeholders to prioritize the allocation of resources toward programs and policies supporting international nonproliferation goals through responsible nuclear energy development. On a preliminary basis, the indicators selected include: (1) demonstrated need; (2) expressed political support; (3) participation in nonproliferation and nuclear security treaties, international terrorism conventions, and export and border control arrangements; (4) national nuclear-related legal and regulatory mechanisms; (5) nuclear infrastructure; (6) the utilization of IAEA technical assistance; (7) participation in regional arrangements; and (8) public support for nuclear power. In this paper, the Index aggregates the indicators and evaluates and compares the level of readiness in seven countries that have recently expressed various degrees of interest in establishing a nuclear energy program. The NERI Index could be a valuable tool to be utilized by: (1) country officials who are considering nuclear power; (2) the international community, desiring reassurance of a country's capacity for the peaceful, safe, and secure use of nuclear energy; (3) foreign governments/NGO's, seeking to prioritize and direct resources toward developing countries; and (4) private stakeholders interested in nuclear infrastructure investment opportunities.

Saum-Manning,L.

2008-07-13T23:59:59.000Z

424

The nuclear energy density functional formalism  

E-Print Network (OSTI)

The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a {\\it Hamiltonian-based} picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel $E[g',g]$ at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a {\\it mathematically} meaningful fashion even if $E[g',g]$ does {\\it not} derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making {\\it any} reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a {\\it physical} standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

T. Duguet

2013-09-02T23:59:59.000Z

425

International Nuclear Energy Research Initiative: 2008 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual 8 Annual Report International Nuclear Energy Research Initiative: 2008 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) website:

426

International Nuclear Energy Research Initiative: 2009 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual 9 Annual Report International Nuclear Energy Research Initiative: 2009 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented collaboration that supports advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy Office of Nuclear Energy website.

427

ICENES '91:Sixth international conference on emerging nuclear energy systems  

DOE Green Energy (OSTI)

This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

Not Available

1991-01-01T23:59:59.000Z

428

Energy Praises the Nuclear Regulatory Commission Approval of the First  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Praises the Nuclear Regulatory Commission Approval of the Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years March 8, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today commended the Nuclear Regulatory Commission's decision to approve the first-ever Early Site Permit (ESP) for the Exelon Generation Company's Clinton site, in central Illinois. This decision marks a major milestone in the President's plan to expand the use of safe and clean nuclear power. As part of President Bush's Advanced Energy Initiative - which seeks to change the way we power this nation - nuclear power will play an increasingly

429

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the President and Congress to stimulate new nuclear plant construction in the U.S. This will be accomplished by demonstrating the success of the streamlined regulations for siting, constructing and operating new nuclear plants through the Nuclear Power 2010 program, and by implementing incentives enacted through the Energy Policy Act of 2005 (EPACT 2005). At 20 percent of the total electricity supply in the nation, nuclear power is the second largest source of domestic electricity, while seventy percent comes from fossil burning fuels (coal, natural gas, and oil). Increasing the amount of

430

2012 Nuclear Safety Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Nuclear Safety 2012 Nuclear Safety Workshop 2012 Nuclear Safety Workshop 1 of 5 Podonsky This is the Title 2 of 5 This is the Title DOE Deputy Secretary Daniel...

431

Nuclear Waste Policy Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of...

432

Probing the symmetry energy from the nuclear isoscaling  

E-Print Network (OSTI)

Using different parameterizations of the nuclear mass formula, we study the sensitivity of the isoscaling parameters to the mass formula employed in grand-canonical calculations. Previous works on isoscaling have suggested that the symmetry energy implied in such calculations is anomalously smaller than that suggested by fits to nuclear masses. We show that surface corrections to the symmetry energy naturally broadens the isotopic distribution thus allowing for values of the symmetry energy which more closely match those obtained from nuclear masses.

Souza, S R; Donangelo, R; Lynch, W G; Steiner, A W

2008-01-01T23:59:59.000Z

433

Nuclear Power and the Environment - Energy Explained, Your Guide To  

NLE Websites -- All DOE Office Websites (Extended Search)

Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From

434

Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings  

DOE Green Energy (OSTI)

Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

Ruth, M.; Antkowiak, M.; Gossett, S.

2011-12-01T23:59:59.000Z

435

Nuclear photoabsorption and Compton scattering at intermediate energy  

SciTech Connect

Intermediate energy nuclear photoabsorption and Compton scattering within the ..delta..-hole approach are studied. The same ..delta..-nucleus dynamics used to describe a variety of pion-induced reactions are employed. A dynamical model for the photon-nucleon amplitude is constructed, including both resonant-channel and nonresonant backgrounds in addition to ..delta..-excitation. Medium corrections to the full amplitude are included for nuclear scattering. A doorway state expansion allows one to discuss quantiatively the role of various contributions to the ..delta..-hole Hamiltonian, thereby clarifying the level of sensitivity to the structure of the ..delta.. spreading potential. The reactive content of the total cross section is discussed. The results are compared with available photoabsorption data for /sup 4/He, /sup 12/C, and /sup 16/O. We present results for the ..delta.. contribution to the electron scattering transverse response function, for coherent ..pi../sup 0/ photoproduction, and for nuclear elastic Compton scattering. The photoabsorption strength is spread over a larger energy range by the ..delta.. dynamics, in agreement with the data, but is centered at too high at energy. The helicity flip Compton cross section is especially sensitive to the ..delta..-nucleus interaction, such as the spin-orbit potential strength.

Koch, J.H.; Moniz, E.J.; Ohtsuka, N.

1984-04-15T23:59:59.000Z

436

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Nuclear Systems Are Powering Mars Rover Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 12:14pm Addthis Washington, D.C. - The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

437

Statement of Peter Lyons Assistant Secretary for Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lyons Lyons Assistant Secretary for Nuclear Energy U.S. Department of Energy Before the Committee on Energy and Natural Resources U.S. Senate The Nuclear Waste Administration Act of 2012 September 12, 2012 Chairman Bingaman, Ranking Member Murkowski, and Members of the Committee, thank you for the opportunity to appear before you today to discuss nuclear waste management issues and S. 3469, The Nuclear Waste Administration Act of 2012. Thank you for your leadership on this important issue. Nuclear power is an integral part of our "all-of-the-above" energy strategy. It provides twenty percent of our nation's electricity supply, and the Administration is working to expand the safe use of nuclear power through support for new nuclear power plants incorporating state-of-the-art passive safety

438

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear & Uranium Nuclear & Uranium Glossary › FAQS › Overview Data Summary Uranium & Nuclear Fuel Nuclear Power Plants Radioactive Waste International All Nuclear Data Reports Analysis & Projections Most Requested Nuclear Plants and Reactors Projections Uranium All Reports EIA's latest Short-Term Energy Outlook for electricity › chart showing U.S. electricity generation by fuel, all sectors Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Quarterly uranium production data › image chart of Quarterly uranium production as described in linked report Source: U.S. Energy Information Administration, Domestic Uranium Production Report - Quarterly, 3rd Quarter 2013, October 31, 2013. Uprates can increase U.S. nuclear capacity substantially without building

439

DOE P 420.1 Department of Energy Nuclear Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE P 420.1 Department of Energy Nuclear Policy DOE P 420.1 Department of Energy Nuclear Policy DOE P 420.1 Department of Energy Nuclear Policy PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. DOE_P420-1_Final_2-8-11.pdf More Documents & Publications DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1, 7/11

440

Meeting Between the Department of Energy and the Nuclear Energy Institute  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Between the Department of Energy and the Nuclear Energy Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this letter is to memorialize the meeting between the Department of Energy (DOE) and the Nuclear Energy Institute (NEI), held on March 13, 2012. NEI_Ltr_03_20_2012.pdf More Documents & Publications Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Transportation of Nuclear Materials | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

442

Nuclear Deployment Scorecards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 31, 2013 Quarterly Nuclear Deployment Scorecard - October 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. August 8, 2013 Quarterly Nuclear Deployment Scorecard - July 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. May 1, 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, and new plant construction progress.

443

Table 8.1 Nuclear Energy Overview  

U.S. Energy Information Administration (EIA)

"Operable Nuclear Reactors," at end of section. • Nuclear electricity net generation totals may not equal sum of components due to independent rounding.

444

VT Nuclear Services ltd | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon VT Nuclear Services ltd Jump to: navigation, search Name VT Nuclear Services ltd Place...

445

International Nuclear Services Ltd | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon International Nuclear Services Ltd Jump to: navigation, search Name International Nuclear Services Ltd...

446

Office of Nuclear Safety | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Office of Nuclear Safety Organization Office of Health and Safety Office of Environmental Protection, Sustainability Support & Corporate Safety Analysis Office of...

447

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility...

448

Free World Energy Resources--Petroleum, Coal, Nuclear  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... Free World Energy Resources--Petroleum, Coal, Nuclear ... William Pitt the Younger in terms of the development of steam as a source of power.

449

International School focused on peaceful uses of nuclear energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

International School focused on peaceful uses of nuclear energy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia...

450

10 myths about nuclear energy | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

process monitoring tests for pyrochemical systems. Click to enlarge. 10 myths about nuclear energy September 9, 2013 Tweet EmailPrint Reproduced with permission from the...

451

Energy Department Nuclear Systems Are Powering Mars Rover  

NLE Websites -- All DOE Office Websites (Extended Search)

Affairs Media Contact: 202-586-4940 For Immediate Release: Monday, November 28, 2011 Energy Department Nuclear Systems Are Powering Mars Rover 2011 Marks 50th Anniversary of...

452

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establish Reliable Fuel Services Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services GNEP would build and strengthen a reliable international fuel...

453

Developing National Long-Range Nuclear Energy Strategies (INPRO...  

NLE Websites -- All DOE Office Websites (Extended Search)

"Developing National Long-Range Nuclear Energy Strategies (INPRO)" workshop (Aug. 8-19, 2011) Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other...

454

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Idaho National Laboratory Technologies Available for Licensing ... Non-Nuclear Energy Nanoantenna Electromagnetic Collectors. Related Patents: 7,792,644; 8,071,931; ...

455

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Non-Nuclear Energy Cermet Materials, Self-Cleaning Cermet Filters. Related Patents: 6918941; 7,470,393; 7,468,089. Contact: David R. Anderson

456

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility...

457

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Non-Nuclear Energy Reducing Contact Resistance in Tubular Fuel Cell and Electrolysis Cell Geometry Bundles. Related Patents: 8,389,180. Contact: David R. Anderson

458

WEB RESOURCE. Global Nuclear Energy Partnership (GNEP) - TMS  

Science Conference Proceedings (OSTI)

Jun 22, 2007 ... The Global Nuclear Energy Partnership (GNEP) seeks to develop worldwide consensus on enabling expanded use of economical, carbon-free ...

459

Notices DEPARTMENT OF ENERGY National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Register Vol. 76, No. 94 Monday, May 16, 2011 Notices DEPARTMENT OF ENERGY National Nuclear Security Administration Extension of the Public Review and Comment Period and...

460

Notices DEPARTMENT OF ENERGY National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

8222 Federal Register Vol. 76, No. 94 Monday, May 16, 2011 Notices DEPARTMENT OF ENERGY National Nuclear Security Administration Extension of the Public Review and Comment...

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Department of Energy National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

2011 EEO Report of Accomplishments U.S. Department of Energy National Nuclear Security Administration Office of Civil Rights 3rd Edition Issued: March 2012 EEO and Diversity -...

462

Role of Nuclear Energy in Japan Post–Fukushima.  

E-Print Network (OSTI)

?? The purpose of this paper, “Role of Nuclear Energy in Japan Post – Fukushima: Alternatives and their Impact onJapan’s GHG Emission Targets”, is to… (more)

Niazi, Zarrar

2013-01-01T23:59:59.000Z

463

Ceramic Matrix Composites for Nuclear and Fusion Energy  

Science Conference Proceedings (OSTI)

Abstract Scope, Ceramic matrix composites are considered among the key enabling materials for advanced nuclear reactors and fusion energy systems. Silicon ...

464

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by...

465

Louisiana Nuclear Energy and Radiation Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

466

Secretary Chu Announces Nuclear Energy University Program Awards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

teaching and research capabilities University of Nevada, Las Vegas Physical property measurement system and system upgrade for D8 advance x-ray diffraction for nuclear energy fuels...

467

Theoretical studies in high energy nuclear physics. Progress report  

SciTech Connect

This paper is a progress report for the period 1-1-93 to 6-30-95 on a project primarily directed at the application of high energy physics techniques to nuclear structure studies, and the ability to study hadron dynamics through interactions with nuclear targets. This work has included the first legitimate QCD calculations of hard coherent diffractive processes off nucleon (nuclear) targets which established novel features of color transparency phenomenon not anticipated in the previous intuitive or QCD inspired model calculations and predicted the fast increase of the cross section for electroproduction of {rho}-mesons with increase of the energy, which was confirmed very recently by the first HERA data on this reaction. First theoretical demonstration that color transparency phenomenon for the hard diffractive processes follow from QCD in the kinematics when both x{yields}0 and Q{sup 2}{yields}{infinity}. Establishing the pattern of color (cross section) fluctuations in hadrons. Confirmed by the FNAL inelastic diffraction data. Finding that in realistic quark, skyrmion models of a hadron large momentum transfer elastic lepton-hadron scattering occurs through formation of small spatial size configurations. Discovering a novel class of color transparency sensitive double interaction processes which is complementary to quasielastic reactions originally suggested by S. Brodsky and A. Mueller. Adopting ideas suggested elsewhere for hadron initiated reactions they developed a method for taking into account nuclear correlations in (e,e{prime}p) reactions. Such an approach gives practical possibility to overcome ambiguities of optical model approximation used before and to reliably interpret color transparency effects at intermediate Q{sup 2}.

1995-08-01T23:59:59.000Z

468

Bush Administration Moves Forward to Develop Next Generation Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward to Develop Next Generation Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to sign the first multilateral agreement in history aimed at the development of next generation nuclear energy systems. The work of the Generation IV International Forum (GIF) is essential to advancing an important component of the Bush Administration's comprehensive energy strategy in the development of next generation nuclear energy technologies.

469

International Framework for Nuclear Energy Cooperation to Hold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Framework for Nuclear Energy Cooperation to Hold International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:23pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

470

International Framework for Nuclear Energy Cooperation to Hold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Framework for Nuclear Energy Cooperation to Hold Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:10pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

471

Integration of Facility Modeling Capabilities for Nuclear Nonproliferation Analysis  

Science Conference Proceedings (OSTI)

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Humberto E. Garcia

2012-01-01T23:59:59.000Z

472

INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

2011-07-18T23:59:59.000Z

473

Integration of facility modeling capabilities for nuclear nonproliferation analysis  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Garcia, Humberto [Idaho National Laboratory (INL); Burr, Tom [Los Alamos National Laboratory (LANL); Coles, Garill A [ORNL; Edmunds, Thomas A. [Lawrence Livermore National Laboratory (LLNL); Garrett, Alfred [Savannah River National Laboratory (SRNL); Gorensek, Maximilian [Savannah River National Laboratory (SRNL); Hamm, Luther [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Tzanos, Constantine P [ORNL; Ward, Richard C [ORNL

2012-01-01T23:59:59.000Z

474

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Annual 2 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs, maximize safety, minimize proliferation risk, and handle used fuel and

475

2nd Global Nuclear Energy Partnership Ministerial Opening Session |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2nd Global Nuclear Energy Partnership Ministerial Opening Session 2nd Global Nuclear Energy Partnership Ministerial Opening Session 2nd Global Nuclear Energy Partnership Ministerial Opening Session September 16, 2007 - 2:41pm Addthis Remarks As Prepared for Delivery by Secretary Bodman Good morning. I'm Sam Bodman, the United States Secretary of Energy. First, I want to thank you all for coming here today for this momentous occasion. At the first Global Nuclear Energy Partnership Ministerial in May, I said I hoped we would be "laying the groundwork for a new global nuclear power partnership; an international approach that allows developed and developing nations alike to share in (nuclear power's) benefits securely and peacefully." What started with the five leading fuel states - the People's Republic of China, France, Japan, Russia, and the U.S. - coming together in a

476

Paving the path for next-generation nuclear energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Nuclear power reactors currently under construction worldwide boast modern safety and operational enhancements that were designed by the global nuclear energy industry and enhanced through research and development (R&D)

477

Nuclear Power Trends Energy Economics and Sustainability  

E-Print Network (OSTI)

of Greece, May 8, 2008 Peak in Global Oil Production? Bakhtiari, S. A-M. World Oil Production Capacity Model Suggests Output Peak by 2006-07 , Oil and Gas Journal (OGJ), May 2004 After 2020CERA After 2025Shell 2010 8, 2008 2008 Growth in Energy Availability · Petroleum demand · ~ 86 million barrels of oil per day

478

A look back at Union Carbides FIRST 20 Years in Nuclear Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Union Carbide in Nuclear Energy Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated the Atomic Energy CommissionEnergy...

479

Energy recovery linacs in high-energy and nuclear physics  

Science Conference Proceedings (OSTI)

Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

2005-03-01T23:59:59.000Z

480

U.S. Department of Energy Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One the cover: One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for Peaceful Applications ..................................... 7 Chronology of Nuclear Research and Development, 1942-1994 .................................... 13 Selected References ............................................. 23 Glossary ..............................................................

Note: This page contains sample records for the topic "nuclear energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nuclear Safety (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Safety and Operational Guidelines Provider Pennsylvania Department of Environmental Protection The Nucl