Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear Energy Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includes Los AlamosEnabling

2

Institute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel  

E-Print Network [OSTI]

facilities · Developing and testing of new measuring techniques May 2 - 6, 2011 #12;Institute for NuclearInstitute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel FAIR and IFMIF liquid metal Power Targetry Workshop, May 3, 2011 #12;Institute for Nuclear and Energy Technologies 2 L. Stoppel, Th

McDonald, Kirk

3

Nuclear Energy Institute (NEI) Ex Parte | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014 EIS-0474:NovemberNuclear Energy

4

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment511LawsVerification

5

World Institute for Nuclear Security Launch | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department ofEnergy IsTestimonials WorkerDepartment ofofEvents

6

Making the World Safe for Nuclear Energy 65 John Deutch, Institute Professor at the Massachusetts Institute of Technology, served as  

E-Print Network [OSTI]

Making the World Safe for Nuclear Energy 65 John Deutch for Nuclear Energy John Deutch,Arnold Kanter,Ernest Moniz and Daniel Poneman The discovery of secret in countries from the United States and some European states to China. To succeed, nuclear energy must overcome

Deutch, John

7

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

8

Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10  

Broader source: Energy.gov [DOE]

Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

9

Development of Fusion Nuclear Technologies at Japan Atomic Energy Research Institute  

SciTech Connect (OSTI)

An overview of the present status of development of fusion nuclear technologies at Japan Atomic Energy Research Institute is presented. A tritium handling system for the ITER was designed, and the technology for each component of this system was demonstrated successfully. An ultraviolet laser with a wavelength of 193 nm was found quite effective for removing tritium from in-vessel components of D-T fusion reactors. Blanket technologies have been developed for the test blanket module of the ITER and for advanced blankets for DEMO reactors. This blanket is composed of ceramic Li{sub 2}TiO{sub 3} breeder pebbles and neutron multiplier beryllium pebbles, whose diameter ranges from 0.2 to 2 mm, contained in a box structure made of a reduced-activation ferritic steel, F82H. Mechanical properties of F82H under a thermal neutron irradiation at up to 50 displacements per atom (dpa) were obtained in a temperature range from 200 to 500 deg. C. Design of the International Fusion Materials Irradiation Facility (IFMIF) has been developed to obtain engineering data for candidate materials for DEMO reactors under a simulated fusion neutron irradiation up to 100 to 200 dpa, and basic development of the key technologies to construct the IFMIF is now under way as an International Energy Agency international collaboration.

Seki, Masahiro; Yamanishi, Toshihiko; Shu, Wataru; Nishi, Masataka; Hatano, Toshihisa; Akiba, Masato; Takeuchi, Hiroshi; Nakamura, Kazuyuki; Sugimoto, Masayoshi; Shiba, Kiyoyuki; Jitsukawa, Shiro; Ishitsuka, Etsuo; Tsuji, Hiroshi [Japan Atomic Energy Research Institute (Japan)

2002-07-15T23:59:59.000Z

10

Meeting Between the Department of Energy and the Nuclear Energy Institute  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM Project Definitionof| Department of Energy

11

Nuclear Energy  

ScienceCinema (OSTI)

Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

Godfrey, Anderw

2014-05-23T23:59:59.000Z

12

Nuclear Energy  

SciTech Connect (OSTI)

Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

Godfrey, Anderw

2014-04-10T23:59:59.000Z

13

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 1693­1709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

Ghoniem, Nasr M.

14

INSTITUTE OF NUCLEAR TECHNOLOGY  

E-Print Network [OSTI]

CENTER FOR SCIENTIFIC RESEARCH #12;1 1. Research Reactor Laboratory (RRL) 1. PEER-REVIEWED JOURNALS 1. Mourtzanos, K., Housiadas, C., Antonopoulos-Domis, M., "Calculation of the moderator temperature coefficient of reactivity for water moderated reactors", Ann. Nucl. Energy, 28, 1773-1782, (2001). 4. Housiadas, C

15

Canadian Nuclear Astrophysics Institute Letter of Intent  

E-Print Network [OSTI]

nuclear physics data as well as astronomical observations, both of which are critically needed in order 1 Canadian Nuclear Astrophysics Institute Letter of Intent Final version April 29, 2011), astrophysics and nuclear physics theory and computational simulation (TC) as well as nuclear physics

Herwig, Falk

16

ENERGY INSTITUTE WILLOWCREEK  

E-Print Network [OSTI]

WISCONSIN ENERGY INSTITUTE WILLOWCREEK 1918 MARSH UNIVERSITY BAY LAKE MENDOTA CLASS OF LOT #65 LOT. TEACHER SCIENCES EDUCATIONAL BAYLISS DAVIS GRAINGER CHADBOURNE HALL HALL BARNARD MUSIC HALLLAW HALL NORTH EDUCATION HALL SCIENCE RADIO & ENGR. LABWATER SCIENCE OF LIMNOLOGY HASLER LAB RAMPS PARKING MADISON CITY

Liblit, Ben

17

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Broader source: Energy.gov (indexed) [DOE]

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and...

18

Nuclear Energy Advisory Committee  

Broader source: Energy.gov [DOE]

The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

19

Nuclear Astrophysics - Research - Cyclotron Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurity ComplexNormanNovemberAdvancesNuclear

20

Nuclear Structure - Research - Cyclotron Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclear Speed-Dating

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Interdisciplinary Institute for Innovation Nuclear reactors' construction  

E-Print Network [OSTI]

Interdisciplinary Institute for Innovation Nuclear reactors' construction costs: The role of lead@mines-paristech.fr hal-00956292,version1-6Mar2014 #12;hal-00956292,version1-6Mar2014 #12;Nuclear reactors' construction reactor construction costs in France and the United States. Studying the cost of nuclear power has often

Paris-Sud XI, Université de

22

NUCLEAR ENERGY  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor NRELhilTon Knoxville Knoxville,

23

The Politically Correct Nuclear Energy Plant  

E-Print Network [OSTI]

The Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology - Small is Beautiful · Nuclear Energy - But Getting Better #12;Politically Correct ! · Natural Safety is a bad idea. · There is no new nuclear energy plant that is competitive at this time. · De-regulation did

24

Nuclear Energy!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls | National

25

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

26

WANGER INSTITUTE FOR SUSTAINABLE ENERGY  

E-Print Network [OSTI]

WANGER INSTITUTE FOR SUSTAINABLE ENERGY RESEARCH (WISER) Strategic Plan Summary #12;WISER Strategic Plan Summary | 1 WANGER INSTITUTE FOR SUSTAINABLE ENERGY RESEARCH (WISER) STRATEGIC PLAN SUMMARY 1 by developing and supporting undergraduate research in energy and sustainability related areas. Develop co

Heller, Barbara

27

Generation IV Nuclear Energy Systems ...  

E-Print Network [OSTI]

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

28

Energy Department - Electric Power Research Institute Cooperation...  

Office of Environmental Management (EM)

- Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency March...

29

Hawaii Natural Energy Institute Energy Programs  

E-Print Network [OSTI]

) · Run-of-river Hydro (limited resource) · Ocean Energy ­ OTEC, Wave (UH National Marine Renewable EnergyHawaii Natural Energy Institute Energy Programs by Rick Rocheleau to Dr. M.R. C. Greenwood December 28, 2009 #12;Outline of Talk · Introduction to HNEI · Hawaii Energy Situation · HNEI Energy

30

Japan Atomic Energy Research Institute/United States Integral Neutronics Experiments and Analyses for tritium breeding, nuclear heating, and induced radioactivity  

SciTech Connect (OSTI)

A large member of integral experiments for fusion blanket neutronics were performed using deuterium-tritium (D-T) neutrons at the Fusion Neutronics Source facility as part of a 10-yr collaborative program between the Japan Atomic Energy Research Institute and the United States. A number of measurement techniques were developed for tritium production, induced radioactivity, and nuclear heating. Transport calculations were performed using three-dimensional Monte Carlo and two-dimensional discrete ordinates codes and the latest nuclear data libraries in Japan and the United States. Significant differences among measurement techniques and calculation methods were found. To assure a 90% confidence level for tritium breeding calculations not to exceed measurements, designers should use a safety factor > 1.1 to 1.2, depending on the calculation method. Such a safety factor may not be affordable with most candidate blanket designs. Therefore, demonstration of tritium self-sufficiency is recommended as a high priority for testing in near-term fusion facilities such as the International Thermonuclear Experimental Reactor (ITER). The radioactivity measurements were performed for > 20 materials with the focus on gamma emitters with half-lives < 5 yr. Most discrepancies were attributed directly to deficiencies in the activation libraries, particularly errors in cross sections for certain reactions. 71 refs., 30 figs., 5 tabs.

Abdou, M.A.; Youssef, M.; Kumar, A. [Univ. of California, Los Angeles, CA (United States)] [and others

1995-08-01T23:59:59.000Z

31

NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398  

E-Print Network [OSTI]

annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

Pázsit, Imre

32

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH Compiled by A.V. Zaytseva,b a Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia b Novosibirsk State University, 630090 Novosibirsk, Russia c Budker Institute of Nuclear Physics, SB RAS #12; Preface 5 1 General surveys

33

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH D.S. Gurov, P.V. Martyshkin, V.V. Petrov, V.V. Zuev Budker Institute of Nuclear Physics 630090, Novosibirsk, Russia M are included. @ Budker Institute of Nuclear Physics SB RAS #12

34

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

35

Massachusetts Institute of Technology Department of Nuclear Engineering  

E-Print Network [OSTI]

Massachusetts Institute of Technology Department of Nuclear Engineering Advanced Reactor Technology of Technology Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-2 Student Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-3 Project Objective

36

AERONAUTICAL, MECHANICAL & NUCLEAR ENGINEERING UNDERGRADUATE HANDBOOK RENSSELAER POLYTECHNIC INSTITUTE  

E-Print Network [OSTI]

1 AERONAUTICAL, MECHANICAL & NUCLEAR ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 RENSSELAER POLYTECHNIC INSTITUTE School of Engineering Aeronautical, Mechanical, & Nuclear Engineering #12;2 AERONAUTICAL, MECHANICAL & NUCLEAR ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 Department of Mechanical, Aerospace

Salama, Khaled

37

University of Delaware Energy Institute  

SciTech Connect (OSTI)

The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nationâ??s pressing energy needs.

Klein, Michael T

2012-09-30T23:59:59.000Z

38

Nuclear | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchivesNuclear Science/NuclearNuclear Nuclear

39

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH V.S. Fadin, R of colours V.S. Fadina , R. Fioreb a Budker Institute of Nuclear Physics, and Novosibirsk State University of Nuclear Physics, SB RAS #12;. 1 Introduction In the BFKL approach [1], impact factors appear

40

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute  

E-Print Network [OSTI]

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute National Research February ­ 1 March, 2014 Petersburg Nuclear Physics Institute (PNPI) conducts the XLVIII Annual Winter Physics · Theoretical Physics School · School on Nuclear Reactor Physics · Accelerator Physics School

Titov, Anatoly

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Physics of Nuclear Medicine Polytechnic Institute of NYU, Brooklyn, NY 11201  

E-Print Network [OSTI]

to undergo radioactive decay, which gives off energy and results in a more stable nucleus #12;EL5823 NuclearPhysics of Nuclear Medicine Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Based on J. L are from the textbook. #12;EL5823 Nuclear Physics Yao Wang, Polytechnic U., Brooklyn 2 Lecture Outline

Suel, Torsten

42

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842  

E-Print Network [OSTI]

annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www of Nuclear Energy 32 (2005) 812­842 background noise is present, this technique is useful to indicate.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G

Demazière, Christophe

43

BIBLIOGRAPHY ON INSTITUTIONAL BARRIERS TO ENERGY CONSERVATION  

E-Print Network [OSTI]

Institutional Barriers to Energy Conservation C. M. York, C.P.R. , 1973. "Energy Conservation in Buildings: ItsS. (eds. ), 1973. Energy Conservation: Implica tions for

York, C.M.

2011-01-01T23:59:59.000Z

44

Institute for Nuclear Theory annual report No. 4, 1 March 1993--28 February 1994  

SciTech Connect (OSTI)

The Institute for Nuclear Theory was created as a national center by the Department of Energy. It began operations March 1, 1990. This annual report summarizes the INT`s activities during its fourth year of operations.

Haxton, W.; Bertsch, G.; Henley, E.M.

1994-06-01T23:59:59.000Z

45

Nuclear Energy Research Brookhaven National  

E-Print Network [OSTI]

Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National&T Department #12;Nuclear Energy Today 435 Operable Power Reactors, 12% electrical generation (100 in US, 19

Ohta, Shigemi

46

Ex Parte Meeting Between the Department of Energy and the Nuclear...  

Energy Savers [EERE]

Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 Ex Parte Meeting Between the Department...

47

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on Nuclear Responsibility on theof the Alliance for Nuclear Responsibility. The information

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

48

Theoretical Nuclear Physics - Research - Cyclotron Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNew class ofTheoretical Nuclear

49

Nuclear Energy Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy Second Quarter4, 2014 Dr.7446AugustJune 1994 ThisNuclear Energy

50

A Career in Nuclear Energy  

ScienceCinema (OSTI)

Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

Lambregts, Marsha

2013-05-28T23:59:59.000Z

51

A Career in Nuclear Energy  

SciTech Connect (OSTI)

Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

Lambregts, Marsha

2009-01-01T23:59:59.000Z

52

International Nuclear Energy Policy and Cooperation | Department...  

Office of Environmental Management (EM)

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation Recent Events 6th US-India Civil Nuclear Energy Working Group Meeting 6th...

53

Nuclear Energy (WFP) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy (WFP) Nuclear Energy (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This will enable the agency to have...

54

Nuclear Energy Papers and Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PapersPresentations View Nuclear Energy papers & presentations. Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and...

55

European Energy Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project) JumpEnergy Institute Jump to:

56

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH V.S. Fadin, R of Nuclear Physics, 630090 Novosibirsk, Russia, and Novosibirsk State University, 630090 Novosibirsk, Russia, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza, Italy c Petersburg Nuclear Physics

57

Alternative Energy Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy Focus AreaValleyEnergyAlteInstitute

58

Symmetry Energy in Nuclear Surface  

E-Print Network [OSTI]

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. The interplay leads to a dependence of the symmetry coefficient, in energy formula, on nuclear mass. Charge symmetry of nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of neutron-proton asymmetry.

Danielewicz, Pawel

2008-01-01T23:59:59.000Z

59

Institutional Research & Development | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

60

The Global Nuclear Energy Partnership | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low Energy Nuclear Reactions?  

E-Print Network [OSTI]

After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

CERN. Geneva; Faccini, R.

2014-01-01T23:59:59.000Z

62

Nuclear Safety News | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety News Nuclear Safety News October 4, 2012 Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations The U.S....

63

Sandia National Laboratories: Nuclear Energy Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Nuclear Energy Publications Nuclear Energy Safety Fact Sheets Assuring Safe Transportation of Nuclear and Hazardous Materials Human Reliability Assessment (HRA)...

64

World Institute for Nuclear Security Workshop at Y-12 Brings...  

National Nuclear Security Administration (NNSA)

Institute for Nuclear Security Workshop at Y-12 Brings Together More than 20 Countries OAK RIDGE, TENN. - This week, more than 20 countries are represented at the first-ever...

65

Institut Mines-Tlcom EPOC : Energy Proportional  

E-Print Network [OSTI]

? ? Renewable energy #12;Institut Mines-Télécom29/11/13 Green@Days Lille 28-29 Novembre 2013 Problem 5 time Workload Renewable energy ? ? regular electric #12;Institut Mines-Télécom29/11/13 Green@Days Lille 28Institut Mines-Télécom EPOC : Energy Proportional and Opportunistic Computing system 1 Labex Comin

Lefèvre, Laurent

66

Minority Serving Institutions | Department of Energy  

Office of Environmental Management (EM)

Institutions Map by Matt Loveless, Department of Energy. Our Office of Minority Economic Impact works daily to tap into the talents of students and faculty attending our...

67

Interdisciplinary Institute for Innovation The risk of a major nuclear  

E-Print Network [OSTI]

Interdisciplinary Institute for Innovation The risk of a major nuclear accident: calculation #12;1/37 The risk of a major nuclear accident: calculation and perception of probabilities François in the United States, reached this level of severity. The explosion of reactor 4 at the Chernobyl plant

Boyer, Edmond

68

Energy Functional for Nuclear Masses.  

E-Print Network [OSTI]

??An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional (more)

Bertolli, Michael Giovanni

2011-01-01T23:59:59.000Z

69

Nuclear Energy Density Optimization  

E-Print Network [OSTI]

We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

M. Kortelainen; T. Lesinski; J. Mor; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

2010-05-27T23:59:59.000Z

70

Symmetry Energy in Nuclear Surface  

E-Print Network [OSTI]

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

Pawel Danielewicz; Jenny Lee

2008-12-25T23:59:59.000Z

71

Clean Energy Lending From the Financial Institution Perspective...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Lending From the Financial Institution Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd Edition) Clean Energy Lending From the Financial Institution...

72

Nuclear Energy Page 570Page 570  

E-Print Network [OSTI]

Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

73

Astrophysikalisches Institut Potsdam Probes of Dark Energy  

E-Print Network [OSTI]

Astrophysikalisches Institut Potsdam Probes of Dark Energy using Cosmological Simulations Nonlinear component, called dark energy. This unknown energy causes the expansion of the universe to accelerate theoretical model of dark energy has been developed. Instead a number of models have been proposed that range

74

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munitys ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

75

United States and Japan Sign Joint Nuclear Energy Action Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

76

Nuclear Power Trends Energy Economics and Sustainability  

E-Print Network [OSTI]

Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline · The Problem · Nuclear Energy Trends · Energy Economics · Life Cycle Analysis · Nuclear Sustainability · Nuclear Energy in Greece? #12;National Research

77

Department of Energy Releases Global Nuclear Energy Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC -...

78

Energy Secretary Moniz Announces Formation of Nuclear Energy...  

Office of Environmental Management (EM)

Announces Formation of Nuclear Energy Tribal Working Group Energy Secretary Moniz Announces Formation of Nuclear Energy Tribal Working Group December 12, 2014 - 2:00pm Addthis News...

79

Energy Department Announces New Awards for Advanced Nuclear Energy...  

Energy Savers [EERE]

Announces New Awards for Advanced Nuclear Energy Development Energy Department Announces New Awards for Advanced Nuclear Energy Development April 16, 2015 - 12:46pm Addthis NEWS...

80

Institutional Strain and Precarious Values in Meeting Future Nuclear Challenges  

SciTech Connect (OSTI)

This paper explores the implications of moderately expanding plutonium "pit" production capability within the strongly R&D culture of Los Alamos National Laboratory, especially in terms of the lab's current capacity or "fitness for the future" in which institutional stewardship of the nation's nuclear deterrent capability becomes a primary objective. The institutional properties needed to assure "future fitness" includes the organizational requisites highly reliable operations and sustained institutional constancy in a manner that evokes deep public trust and confidence. Estimates are made of the degree to which the key Division and most relevant Program office in this evolution already exhibits them.

Bruce Matthews; Todd R. LaPorte

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Atomic Energy and Nuclear Materials Program (Tennessee)  

Broader source: Energy.gov [DOE]

The Atomic Energy and Nuclear Materials section of the Tennessee Code covers all of the regulations, licenses, permits, siting requirements, and practices relevant to a nuclear energy development. ...

82

International Framework for Nuclear Energy Cooperation (IFNEC...  

Broader source: Energy.gov (indexed) [DOE]

International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania...

83

Energy Sciences Institute Talks at West Campus  

E-Print Network [OSTI]

such as pumped hydroelectric storage, compressed air energy storage (CAES), flywheels, and electrochemical electric storage devices, but viable battery technology able to store large amounts of electric energyEnergy Sciences Institute Talks at West Campus Jaephil Cho Professor at SAMSUNG SDI-UNIST Future

84

UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute  

E-Print Network [OSTI]

UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute Academic Opportunities: UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute #12 Dublin School of Electrical, Electronic & Communications Engineering UCD Energy Institute The electricity

85

University of California Energy Institute Design Choices in the  

E-Print Network [OSTI]

University of California Energy Institute Design Choices in the Organization of Electricity Markets Electricity Market » Transmission pricing #12;University of California Energy Institute Restructuring Goals of California Energy Institute Organization of Firms · Public vs. Private Ownership ­ Restructuring

California at Berkeley. University of

86

Durham Energy Institute 107 Researchers  

E-Print Network [OSTI]

Gasification CO2 for enhanced oil recovery First Professor of Carbon Capture and Storage East Java Blowout production #12;Bio Energy Energy from municipal waste for continuous methane production [significant landfill

Wirosoetisno, Djoko

87

Minority Serving Institutions Internship Program | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0 AlabamaYearEnergy Minority

88

institutional research | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A en Responding toheu

89

Institute of Nuclear Power Operations 1994 annual report  

SciTech Connect (OSTI)

This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

NONE

1994-12-31T23:59:59.000Z

90

Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings  

SciTech Connect (OSTI)

Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

Ruth, M.; Antkowiak, M.; Gossett, S.

2011-12-01T23:59:59.000Z

91

Recovery Act: Wind Energy Consortia between Institutions of Higher...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

92

Ecologic Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision hasESEInformation SmartEcologic Institute

93

Institutional Change for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institutional Change for Sustainability Institutional Change for Sustainability Institutional Change Continuous Improvement Cycle Institutional Change Continuous Improvement Cycle...

94

Institutional Research & Development | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich1theInstantAdministration

95

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network [OSTI]

Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -Northeast Asian nuclear energy cooperation advanced byAsia). 2 Cooperation on nuclear energy would have a direct

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

96

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network [OSTI]

Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -distinguish cooperation on nuclear energy as a vital first-concerns about nuclear energy (dwindling capacity for waste

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

97

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...  

Office of Environmental Management (EM)

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

98

Changing Western water institutions: energy's role  

SciTech Connect (OSTI)

This paper describes the institutional mechanisms through which physical availability of water, historical pattern of water use, and unresolved water issues combine to constrain and channel the energy industry's use of water. These institutional mechanisms include the developing markets for water rights, the legal and administrative structure governing water allocation, the formation of social attitudes about water, and the political process that often implements concensus. Within this context, the narrow physical interpretation commonly given to the question, Is there enough water, broadens greatly to include the institutional dimension that is the most important component of the question.

Brown, F.L.; Roach, F.

1982-01-01T23:59:59.000Z

99

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than 8 billion in loan guarantees for two new...

100

Nuclear Energy's Renaissance Andrew C. Kadak  

E-Print Network [OSTI]

(1) Beaver Valley (2) 103 Nuclear Power Plants Totaling 97,018 MWe Columbia (1) Diablo Canyon (2) San Nuclear Power Plants Totaling 97,018 MWe 103 Nuclear Power Plants Totaling 97,018 MWe National EnergyNuclear Energy's Renaissance Andrew C. Kadak Professor of the Practice Nuclear Science

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE  

E-Print Network [OSTI]

Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth

Firestone, Jeremy

102

Nuclear | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |Agny JumpNationalNovare BiofuelsNuclear

103

Millennium Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds Jump to:Wind Power

104

Nuclear Fuels | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy Nuclear Fuels

105

Nuclear Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities Nuclear Facilities

106

Nuclear Liability | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear FacilitiesNuclear

107

Advancing Global Nuclear Security | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION Secretary Moniz's Remarks at the 2014 IAEA General Conference...

108

Renewable Energy Institute International | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(California and Hawaii).Inc REC SolarWorkshopInstitute

109

Hawaii Natural Energy Institute Energy Programs  

E-Print Network [OSTI]

Production - CTAHR Gasification & Contaminant Removal - HNEI Technology Assessment Fuel Fit for Purpose (R&D) across many energy technologies · Testing and evaluating (T&E) of renewable generation contaminant mitigation ­ Battery testing, Electric vehicles · Renewable Power Generation ­ Ocean Energy (OTEC

110

An architecture for nuclear energy in the 21st century  

SciTech Connect (OSTI)

Nuclear energy currently plays a significant role in the energy economies of the US and other major industrial nations. Its future (several scenarios are described later) may involve significant growth in developing countries but controversy and debate surrounds future nuclear energy scenarios. In that ongoing debate, proponents and critics both appear to assume that nuclear technologies, practices and institutions will continue over the long term to look much as they do today. This paper discusses possible global and regional nuclear energy scenarios, and proposes changes in the global nuclear architecture that could reshape technologies, practices and institutions of nuclear energy over the coming decades. In doing so the array of choices available for exercising the nuclear energy option could be enlarged, making such a potential deployment less problematic and perhaps less controversial. How fuel discharged from power reactors is used and disposed of is a central issue of nuclear energy`s present controversy and central factor in determining its long-term potential. Many proponents of nuclear power, especially outside the US, believe that extracting all the energy available in reactor fuel--and, in particular, recovering the plutonium from discharged fuel for recycling through breeder reactors--is necessary to realize the technology`s ultimate potential as a source of virtually inexhaustible energy. Others consider the plutonium contained in discharged fuel to be a challenge to waste disposal and a potential proliferation risk. Focusing on the back end of the nuclear fuel cycle as a principal arena for improvement represents a fruitful pathway towards creating a significantly improved fuel-cycle architecture.

Arthur, E.D.; Cunningham, P.T.; Wagner, R.L. Jr.

1998-12-01T23:59:59.000Z

111

Nuclear Energy University Programs  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy Second Quarter4, 2014 Dr.7446AugustJune

112

STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS  

E-Print Network [OSTI]

1 STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS - High Energy Physics Energy Physics" BNPI, Novosibirsk, September 2010 #12;2 STATE RESEARCH CENTER OF RUSSIA INSTITUTE

113

Hocking College Energy Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformation RhodeWest Energy,HistoricCollege

114

UC Berkeley- Energy Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to: navigation, search ToolProgramName Energy

115

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network [OSTI]

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

116

Nuclear methods in environmental and energy research  

SciTech Connect (OSTI)

A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

Vogt, J R [ed.

1980-01-01T23:59:59.000Z

117

Institutional Change for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPostingOctober 13,Institutional Change

118

Nuclear Energy | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls | National NuclearDetonationNuclear

119

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms NuclearPublications AnnualNuclear

120

Assessing the Institution of the Nuclear Nonproliferation Regime  

SciTech Connect (OSTI)

The nuclear nonproliferation regime is facing a crisis of effectiveness. During the Cold War, the regime was relatively effective in stemming the proliferation of nuclear weapons and building an institutional structure that could, under certain conditions, ensure continued success. However, in the evolving global context, the traditional approaches are becoming less appropriate. Globalization has introduced new sets of stresses on the nonproliferation regime, such as the rise of non-state actors, broadening extensity and intensity of supply chains, and the multipolarization of power. This evolving global context demands an analytical and political flexibility in order to meet future threats. Current institutional capabilities established during the Cold War are now insufficient to meet the nonproliferation regimes current and future needs. The research was based on information gathered through interviews and reviews of the relevant literature, and two dominant themes emerged. First, that human security should be integrated into the regime to account for the rise of non-state actors and networked violence. Second, confidence in the regimes overall effectiveness has eroded at a time where verification-based confidence is becoming more essential. The research postulates that a critical analysis of the regime that fully utilizes institutional theory, with its focus on rules, normative structures, and procedures will be essential to adapting the regime to the current global context, building mechanisms for generating trust, creating better enforcement, and providing flexibility for the future.

Toomey, Christopher

2010-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Global Energy Network Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation,GigaCrete Inc JumpGland,GlenrockGlobal Energy

122

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Broader source: Energy.gov (indexed) [DOE]

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

123

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy Savers [EERE]

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear...

124

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

125

Asian Development Bank Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio EnergyInstitute Name: Asian Development Bank

126

Mid-Atlantic Regional Wind Energy Institute  

SciTech Connect (OSTI)

As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to address them, wind and wildlife materials and sample model ordinances. Video and presentations from each in-person meeting and webinar recordings are also available on the site. At the end of the two-year period, PennFuture has accomplished its goal of giving a unified voice and presence to wind energy advocates in the Mid-Atlantic region. We educated a broad range of stakeholders on the benefits of wind energy and gave them the tools to help make a difference in their states. We grew a database of over 500 contacts and hope to continue the discussion and work around the importance of wind energy in the region.

Courtney Lane

2011-12-20T23:59:59.000Z

127

Nuclear Safety | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission,

128

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green WasteThe Energy-Water Nexus,

129

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green WasteThe Energy-Water

130

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On SeptemberNuclear Energy Videos On March

131

Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a hybrid system that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for integrated system options; 5. Identify experimental needs to develop and demonstrate nuclear-renewable energy systems.

Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

2014-08-01T23:59:59.000Z

132

Materials Challenges in Nuclear Energy  

SciTech Connect (OSTI)

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

2013-01-01T23:59:59.000Z

133

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and  

E-Print Network [OSTI]

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

134

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

the potential of nuclear power to combat global warming havecompetitive today, and for nuclear power to succeed, it must

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

135

Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-01T23:59:59.000Z

136

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for...

137

Environmental Law Institute Webinar to Promote Superior Energy...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy in partnership with the American National Standards Institute (ANSI), ANSI-ASQ National Accreditation Board (ANAB) and U.S. Council for Energy-Efficient...

138

The FEMP Awards Program: Fostering Institutional Change and Energy...  

Broader source: Energy.gov (indexed) [DOE]

provides an assessment of the Federal Energy Management Program's (FEMP) Energy and Water Management Awards program to identify the institutional elements of award-winning...

139

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford...

140

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

. Abstract definition of energy consists of two parts: Energy = Exergy +Anergy Exergy is a part of energyNews Letter Institute of Advanced Energy, Kyoto University ISSN 1342-3193 IAE-NL-2014 No.54 http -- 2,709 2013 2013 Institute of Advanced Energy, Kyoto University #12; 25 25 11 20

Takada, Shoji

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vinyl Siding Institute (VSI) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona,HamptonVinland, Wisconsin: EnergySiding Institute

142

Asian Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources Jump to: navigation,Ashton-SandyLeibo- TransportInstitute

143

Stockholm Environment Institute (SEI) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen Energy Information 2)Institute (SEI)

144

World Watch Institute Feed | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison, NJWorld Watch Institute

145

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green Waste inNorwegianSandia

146

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green Waste inNorwegianSandiaTwo

147

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green Waste

148

Institutional Research & Development News | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77Nuclear SecurityFAPAC-NMNRCAdministration

149

Institutional Research & Development Reports | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77Nuclear

150

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear  

E-Print Network [OSTI]

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear Science & Engineering ­ Development of novel techniques/tools using particle transport theory methodologies with Alireza Haghighat, Nuclear Engineering Program, Mechanical Engineering Department Virginia

Crawford, T. Daniel

151

Nuclear Energy: Policies and Technology for the 21st Century...  

Broader source: Energy.gov (indexed) [DOE]

Energy: Policies and Technology for the 21st Century Nuclear Energy: Policies and Technology for the 21st Century The Department of Energy (DOE) Nuclear Energy Advisory Committee...

152

Georgia Nuclear Energy Financing Act (Georgia)  

Broader source: Energy.gov [DOE]

The Georgia Nuclear Energy Financing Act, amends existing Georgia law to allow a utility to recover from its customers the costs of financing associated with the construction of a nuclear plant...

153

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network [OSTI]

379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special funds: OFFICE OF THE ADMINISTRATOR For necessary expenses of the Office of the Administrator in the National Nuclear Security Administration, including official reception and representation expenses

154

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network [OSTI]

361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special funds: OFFICE OF THE ADMINISTRATOR For necessary expenses of the Office of the Administrator in the National Nuclear Security Administration, including official reception and representation expenses (not

155

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

156

www.abdn.ac.uk/energy Energy Institute in  

E-Print Network [OSTI]

. So when a new technology arrives on the scene boasting considerably faster drilling speeds 6/7 new Institute of energy 8 Politics of oil & gas 9 my view: giving something back 10/11 new to take forward an industry continuing to innovate and to probe and tackle new remote and deep frontiers

Pym, David J.

157

NREL: Energy Executive Leadership Academy - Leadership Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravisAcademy

158

Sandia National Laboratories: Hawaii Natural Energy Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at ExploraGlobal SandiaVermont

159

The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as  

E-Print Network [OSTI]

Ensuring Dependable Supply ... The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as a resource capable of meeting the Nation's energy, environmental and national security-of-the-box" solutions to the full range of nuclear energy technology issues. zz Generationz

Kemner, Ken

160

University of Geneva, Institute for Environmental Sciences, Energy Group  

E-Print Network [OSTI]

environment. Project and job description: Given the intermittency of many renewable energy sources (e.g. solarUniversity of Geneva, Institute for Environmental Sciences, Energy Group At the Institute of energy storage technologies. The successful applicant will become member of the Energy Group within

Halazonetis, Thanos

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Energy in the U.S.  

Broader source: Energy.gov (indexed) [DOE]

working for the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This paper reflects the views of the authors, and not those of Stanford...

163

Department of Energy National Nuclear Security Administration...  

Broader source: Energy.gov (indexed) [DOE]

Facility at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations 528...

164

Sandia National Laboratories: Advanced Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear Energy The Advanced Nuclear EnergyNuclear

165

Gujarat Energy Research and Management Institute Institute of Seismological Research  

E-Print Network [OSTI]

High Tea 09:40-10:00 #12;#12;#12;SECOND INDO-AUSTRALIAN GEOTHERMAL ENERGY BUILDING CAPACITY-Australian Geothermal Energy Building Capacity workshop was held on 3rd September 2010 at National Geophysical Research in identification of a deep borehole target for exploitation of geothermal energy for electrical power generation

Harinarayana, T.

166

RUSSIAN ACADEMY OF SCIENCE G.I. BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCE G.I. BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH I.I. Averbukh.V. Shikhovtseva,b a Budker Institute of Nuclear Physics b Novosibirsk State University 630090, Novosibirsk, Russia- tained during the ion source testing. 70 mA, 50 keV .. , .. , .. a,b , .. a,b , .. a

167

Theories of Low Energy Nuclear Transmutations  

E-Print Network [OSTI]

Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

Y. N. Srivastava; A. Widom; J. Swain

2012-10-27T23:59:59.000Z

168

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment  

E-Print Network [OSTI]

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

Brownstone, Rob

169

Nuclear Processes at Solar Energy  

E-Print Network [OSTI]

LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

Carlo Broggini

2003-08-29T23:59:59.000Z

170

Hawaii Natural Energy Institute annual report, 1984  

SciTech Connect (OSTI)

Research and development project summaries are given on: biomass energy, geothermal energy, ocean energy, solar energy, wind energy, hydrogen research, other renewable energy. (DLC)

Not Available

1984-01-01T23:59:59.000Z

171

University of California Energy Institute The California Electricity Market  

E-Print Network [OSTI]

of California Energy Institute Transmission Pricing Models · Fixed cost pricing models (cost recovery » Decentralized (Wu and Varaiya) #12;University of California Energy Institute Point: PoolCo and the Nodal Pricing Framework · Energy prices are set by ISO at various locations (nodes or zones) · Transmission prices

California at Berkeley. University of

172

Beijing Solar Energy Research Institute BSERI | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergyJingneng Energy Technology Co LtdResearch Institute

173

BIBLIOGRAPHY ON INSTITUTIONAL BARRIERS TO ENERGY CONSERVATION  

E-Print Network [OSTI]

regulatory process; energy conservation, solar energy andthe use of solar energy and energy conservation. A study ofConservation and Solar Applications, U.S. Department of Energy.

York, C.M.

2011-01-01T23:59:59.000Z

174

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

A Brief History of Nuclear Energy . . . . . . . . NuclearBrief History of Nuclear Energy The history of nuclear powerRisk The history of nuclear energy to date reflects

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

175

Institute for Nuclear Theory. Annual report No. 3, 1 March 1992--28 February 1993  

SciTech Connect (OSTI)

This report briefly discussion the following programs of the Institute for Nuclear Theory: fundamental interactions in nuclei; strangeness in hadrons and nuclei; microscopic nuclear structure theory; nuclear physics in atoms and molecules; phenomenology and lattice QCD; and large amplitude collective motion.

Haxton, W.; Bertsch, G.; Henley, E.M.

1993-07-01T23:59:59.000Z

176

Sandia National Laboratories: Advanced Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear Energy The Advanced Nuclear Energy

177

Energy Praises the Nuclear Regulatory Commission Approval of...  

Office of Environmental Management (EM)

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

178

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Broader source: Energy.gov (indexed) [DOE]

Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

179

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network [OSTI]

The bilateral nuclear and security agreement between theThe bilateral nuclear and security agreement between thein East Asia's security, nuclear energy, and environment. It

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

180

Clean Energy Manufacturing Innovation Institute for Composites...  

Broader source: Energy.gov (indexed) [DOE]

polymer composites. The Institute will target continuous or discontinuous, primarily carbon and glass fiber systems, with thermoset or thermoplastic resin materials. These...

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ministry of Environment and Energy National Environmental Research Institute  

E-Print Network [OSTI]

Ministry of Environment and Energy National Environmental Research Institute The DMU-ATMI THOR Air Publisher: Ministry of Environment and Energy National Environmental Research Institute URL: http urban and rural monitoring programmes and will be used for emission reduction scenarios supporting

182

BIBLIOGRAPHY ON INSTITUTIONAL BARRIERS TO ENERGY CONSERVATION  

E-Print Network [OSTI]

to energy conservation. The Springfield, Illinois Cityof Illinois, 1977. Public Reactions to Wind Energy Devices.

York, C.M.

2011-01-01T23:59:59.000Z

183

University of Delaware Institute of Energy Conversion | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States: EnergyInstitutionalNewJump

184

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

185

Viscosity of High Energy Nuclear Fluids  

E-Print Network [OSTI]

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

186

The Future of Energy from Nuclear Fission  

SciTech Connect (OSTI)

Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the worlds electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

Kim, Son H.; Taiwo, Temitope

2013-04-13T23:59:59.000Z

187

Energy/National Nuclear Security Administration (NNSA) Career...  

Energy Savers [EERE]

Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

188

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Office of Environmental Management (EM)

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

189

International Framework for Nuclear Energy Cooperation to Hold...  

Energy Savers [EERE]

Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

190

Nuclear Energy Research Advisory Committee (NERAC) agenda 11...  

Broader source: Energy.gov (indexed) [DOE]

agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

191

Role of inorganic chemistry on nuclear energy examined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical...

192

Professor Emeritus of Nuclear Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), syip@mit.edu  

E-Print Network [OSTI]

CV SIDNEY YIP Professor Emeritus of Nuclear Science and Engineering Massachusetts Institute.S. (Nuclear Engineering, 1959), and Ph.D. (Nuclear Engineering, 1962), all from the University of Michigan Professor (1965-69), Department of Nuclear Engineering, MIT, Research Associate (1963-65, Cornell University

Chen, Sow-Hsin

193

Energy Department - Electric Power Research Institute Cooperation...  

Broader source: Energy.gov (indexed) [DOE]

energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. "Through ongoing...

194

Energy Department - Electric Power Research Institute Cooperation...  

Broader source: Energy.gov (indexed) [DOE]

by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. "Through...

195

Roundtables Is nuclear energy different than other  

E-Print Network [OSTI]

-energy sources. Given the need to curb greenhouse-gas emissions and avoid fossil fuels, comparing nuclear power -- from real prices that are much higher than those of renewables. Why the subsidies? Partly because subsidies ($165 billion) to commercial nuclear than to wind and solar combined ($5 billion), if one counts

Shrader-Frechette, Kristin

196

Nuclear Fusion Energy Research Ghassan Antar  

E-Print Network [OSTI]

to address these issues. In particular there has been consistent emphasis on nuclear reactor accidents since the Chernobyl accident by the International Atomic Energy Agency (IAEA) and the World Meteorological

Shihadeh, Alan

197

Investing in Clean, Safe Nuclear Energy  

ScienceCinema (OSTI)

President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

President Obama

2010-09-01T23:59:59.000Z

198

Department of Energy Nuclear Safety Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

2011-02-08T23:59:59.000Z

199

Nuclear Safety at the Department of Energy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Nuclear Safety is a core value of the Department of Energy. As our management principle state: "We will pursue our mission in a manner that is safe, secure, legally and ethically sound, and fiscally responsible."

2011-12-05T23:59:59.000Z

200

Investing in Clean, Safe Nuclear Energy  

SciTech Connect (OSTI)

President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

President Obama

2010-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Manpower development for new nuclear energy programs  

E-Print Network [OSTI]

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

202

Nuclear power grows in China`s energy mix  

SciTech Connect (OSTI)

China`s rapid economic growth in the past two decades has caused the nations`s demand for electricity to exceed its capacity. AS of 1992, with power shortages as high as 25 percent, {open_quotes}power plant operators were often forced to resort to rolling brownouts to avoid complete system breakdowns,{close_quotes} says Xavier Chen, an assistant professor with the Asian Institute of Technology`s Energy Program in Bangkok, Thailand. To keep pace with China`s economic development, Chen estimates that {open_quotes}China must increase its electricity capacity 6 to 8 percent a year each year into the foreseeable future.{close_quotes} For now, coal is transported to power plants in the rapidly developing eastern coastal provinces at great expense. Chen also notes that the environmental disadvantages of coal make it a less desirable source of energy than nuclear. Development of nuclear energy is likely to go forward for another reason: In China, there is much less opposition to nuclear power plants than in other developing nations. {open_quotes}Nuclear energy likely will plan an important role in China`s future energy mix and help close the gap between electricity production and demand,{close_quotes} Chen says.

Chen, Xavier [Institute of Technology`s Energy Program, Bangkok (Thailand)

1996-07-01T23:59:59.000Z

203

Nuclear diffractive structure functions at high energies  

E-Print Network [OSTI]

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

204

FREEMAN SPOGLI INSTITUTE FOR INTERNATIONAL STUDIES PROGRAM ON ENERGY AND  

E-Print Network [OSTI]

and pricing of coal, and coal's long-term role in the world's energy mix. Other research interests includeFREEMAN SPOGLI INSTITUTE FOR INTERNATIONAL STUDIES PROGRAM ON ENERGY AND SUSTAINABLE DEVELOPMENT the Program on Energy and Sustainable Development The Program on Energy and Sustainable Development (PESD

Sheldon, Nathan D.

205

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network [OSTI]

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

206

Nuclear and gravitational energies in stars  

E-Print Network [OSTI]

The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M 8 Msol), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

Meynet, Georges; Ekstrm, Sylvia

2013-01-01T23:59:59.000Z

207

Nuclear Energy Density Optimization: UNEDF2  

E-Print Network [OSTI]

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-10-30T23:59:59.000Z

208

High density behaviour of nuclear symmetry energy  

E-Print Network [OSTI]

Role of the isospin asymmetry in nuclei and neutron stars, with an emphasis on the density dependence of the nuclear symmetry energy, is discussed. The symmetry energy is obtained using the isoscalar as well as isovector components of the density dependent M3Y effective interaction. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. Implications for the density dependence of the symmetry energy in case of a neutron star are discussed, and also possible constraints on the density dependence obtained from finite nuclei are compared.

D. N. Basu; Tapan Mukhopadhyay

2006-12-27T23:59:59.000Z

209

Symmetry energy in nuclear density functional theory  

E-Print Network [OSTI]

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

210

Intermediate-energy nuclear chemistry workshop  

SciTech Connect (OSTI)

This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

1981-05-01T23:59:59.000Z

211

Northwest Energy Education Institute Lane Community College  

E-Print Network [OSTI]

Commercial Building Energy Audits 2. Trains Students To Install Renewable Energy Systems, Solar Thermal - Second Year ­ Electrical Theory 1 & 2 ­ Renewable Energy Systems ­ Solar Thermal Design and Installation 1 & 2 ­ Solar PV Design and Installation 1 & 2 ­ Energy Investment Analysis #12;Northwest Energy

212

Hawaii Natural Energy Institute annual report, 1984  

SciTech Connect (OSTI)

This tenth anniversary special reviews each project over the past 10 years, with research in progress included for FY83-84 for biomass, geothermal, ocean energy, solar energy, wind research and other renewable energy research. (PSB)

Not Available

1984-01-01T23:59:59.000Z

213

Job advertisement Faculty 08 (Physics, Mathematics and Computer Science), Institute of Nuclear Physics, has an  

E-Print Network [OSTI]

Job advertisement Faculty 08 (Physics, Mathematics and Computer Science), Institute of Nuclear and astroparticle physics, nuclear chemistry and precision physics with ultracold neutrons and ion traps. We Physics, has an opening within the framework of the Cluster of Excellence PRISMA for a University

van Straten, Duco

214

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR...  

Broader source: Energy.gov (indexed) [DOE]

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND...

215

BIBLIOGRAPHY ON INSTITUTIONAL BARRIERS TO ENERGY CONSERVATION  

E-Print Network [OSTI]

solar energy are discussed briefly, including building codes, model regulations,solar energy and build ing standards; coping with building innovations and environmental considerations; issues in building regulation

York, C.M.

2011-01-01T23:59:59.000Z

216

Climate Control Using Nuclear Energy  

E-Print Network [OSTI]

We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

Moninder Singh Modgil

2008-01-01T23:59:59.000Z

217

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

218

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

Materials Science Workshop" Institute of Advanced Energy, Kyoto University #12; 25 1 22 ASEAN 5 ASEANNational University of SingaporeChulalongkorn UniversityASEAN University Network AUN Nantana Gajaseni Institut Teknologi Bandung Akhmaloka Gajaseni "Student Mobility and ASEAN Credit Transfer System" Agreement

Takada, Shoji

219

atomic energy institute: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy institute First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 INSTITUTE OF PHYSICS PUBLISHING and...

220

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network [OSTI]

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low-energy 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density nuclear physics: the relationship between low-energy, non- perturbative QCD and the rich structure

Weise, Wolfram

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Energy Institute Live Green, Burn Clean  

E-Print Network [OSTI]

Institute Topics CoveredTopics Covered Biodiesel Introduction to Biodiesel Some observations of biodiesel combustion in a Cummins ISB 5.9L MY2000 turbodiesel engine Sources of the "Biodiesel NOx" effect Fuel quality none of the fuel quality concerns associated with biodiesel Ethanol Efficiency and performance issues

Lee, Dongwon

222

Nuclear Hybrid Energy Systems: Challenges and Opportunities  

SciTech Connect (OSTI)

With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

2014-07-01T23:59:59.000Z

223

Solar Energy Research Institute Validation Test House Site Handbook  

SciTech Connect (OSTI)

The Validation Test House at the Solar Energy Research Institute in Golden, Colorado, is being used to collect performance data for analysis/design tool validation as part of the DOE Passive Solar Class A Performance Evaluation Program.

Burch, J.; Wortman, D.; Judkoff, R.; Hunn, B.

1985-05-01T23:59:59.000Z

224

Office of Nuclear Safety | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOakscience-based,OHAGasand FunctionheldNuclearNuclear

225

Request for Proposals Wanger Institute for Sustainable Energy Research (WISER)  

E-Print Network [OSTI]

Request for Proposals Wanger Institute for Sustainable Energy Research (WISER) 2014 of national interest related to energy and sustainability. Proposals based on new and innovative in the area of energy and sustainability are solicited. The proposals should be focused in either: 1) new

Heller, Barbara

226

Energy saving A major research institute is celebrating  

E-Print Network [OSTI]

. The Wellcome Trust/ Cancer Research UK Gurdon Institute has reduced energy consumption beyond its own have shown that it is possible to cut energy consumption by avoiding waste without being detrimental reduce energy use across the University. Complete this survey to help us design this programme ­ tell us

Steiner, Ullrich

227

Solar Workshop: Terawatt Challenge!!? Sponsored by UD Energy Institute  

E-Print Network [OSTI]

Solar Workshop: Terawatt Challenge!!? Sponsored by UD Energy Institute February 28, 2014 Clayton as a Viable Route to Increased Efficiency Solar Energy Conversion Joshua Zide University of Delaware #12; Hall Conference Center - University of Delaware www.energy.udel.edu Time Title of Presentation Speaker

Firestone, Jeremy

228

World Institute for Nuclear Security Workshop at Y-12 Brings...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants and other major nuclear facilities. Workshop topics have relevance to all on-site security officers and off-site tactical response forces that are responsible for protecting...

229

PERGAMON Annals of Nuclear Energy 26 (1999) 1183-1204 NUCLEAR ENERGY  

E-Print Network [OSTI]

PERGAMON Annals of Nuclear Energy 26 (1999) 1183-1204 annalsof NUCLEAR ENERGY LOCALISATION of Reactor Phystcs, Chalmers Umverslty of Technology S-412 96 Goteborg, Sweden Received 8 December 1998 conditions and it is inferred that the instablhty most probably ts a locahsed self-sustained density wave

Pzsit, Imre

1999-01-01T23:59:59.000Z

230

Energy Sciences Institute Talks West Campus  

E-Print Network [OSTI]

are the backbone of many renewable energy strategies. Solar cells, batteries, and fuel cells can utilize in nanostructured materials, we can learn how to design materials with optimal performance and energy conversion

231

BIBLIOGRAPHY ON INSTITUTIONAL BARRIERS TO ENERGY CONSERVATION  

E-Print Network [OSTI]

energy policy, (author) Booz, Allen & Hamilton, Inc. , 1978.Bethesda, M D : Booz, Allen & Hamilton, Inc. The objective

York, C.M.

2011-01-01T23:59:59.000Z

232

Institute for Mineral and Energy Resources  

E-Print Network [OSTI]

and sustainable use and development of the world's mineral and energy resources for the benefit of society; · Advance the science and technology needed to lower the cost and enhance cleaner energy generation, storage and energy systems; bioenergy generation, conversion and storage; control of sound and vibration; physical

233

Commitment Institutional Change Principle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial|Institutional Change »

234

Financial Institution Lending Programs | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergyFinal FY 2009 NEUPStructures » Financial

235

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

fired power plant per unit of electrical energy. Wind powerpower plants will not be cost competitive with other electricity-generating alternatives. For example, wind

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

236

Instabilities in the Nuclear Energy Density Functional  

E-Print Network [OSTI]

In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

M. Kortelainen; T. Lesinski

2010-02-05T23:59:59.000Z

237

Nuclear and gravitational energies in stars  

SciTech Connect (OSTI)

The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ?}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ?}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

Meynet, Georges; Ekstrm, Sylvia [Astronomical Observatory of Geneva University (Switzerland); Courvoisier, Thierry [ISDC, Astronomical Observatory of Geneva University (Switzerland)

2014-05-09T23:59:59.000Z

238

Coal and nuclear power: Illinois' energy future  

SciTech Connect (OSTI)

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

239

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

Bioenerg. Res. (010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advance

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

240

Accelerator Driven Nuclear Energy - The Thorium Option  

SciTech Connect (OSTI)

Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

Rajendran Raja

2009-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Accelerator Driven Nuclear Energy - The Thorium Option  

ScienceCinema (OSTI)

Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

Rajendran Raja

2010-01-08T23:59:59.000Z

242

Supporting safe and secure nuclear research as part of the world energy mix 1  

E-Print Network [OSTI]

#12;Contents Supporting safe and secure nuclear research as part of the world energy mix 1 Opening and the region of Burgundy are famous not only for mustard and wine but for the beautiful "toits bourguignons, was organized by the European consortium--the French Atomic Energy Commission (CEA), the Institute

243

National Environmental Research Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBus JumpEnvironmental Research Institute Jump to:

244

Leadership Institutional Change Principle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXXLocated atPenrose C.Institutional

245

Demand Management Institute (DMI) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin JumpTexas Elec CoopInstitute

246

Nuclear Safety | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOakscience-based, applied engineeringTVA WattsOffice of

247

India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear fission  

E-Print Network [OSTI]

India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear posed by reactors, the accident liability laws and regulatory structure governing nuclear energy, Wednesday, Oct 29th 4:00 PM (Tea/Coffee at Seminar Hall, TCIS Colloquium India's Nuclear Energy Program

Shyamasundar, R.K.

248

What Will it Take to Revive Nuclear Energy ?  

E-Print Network [OSTI]

What Will it Take to Revive Nuclear Energy ? [Assuming you want to] Andrew C. Kadak Professor;Present Situation · It doesn't get any better than this for nuclear energy! ­ Very Good Nuclear Regulatory rhetoric from the President and Congress about need for nuclear energy for environment, security

249

www.inl.gov A Future of Nuclear Energy  

E-Print Network [OSTI]

www.inl.gov A Future of Nuclear Energy: The Nuclear Renaissance, the Role of INL, and Potential in Nuclear Energy · Electrical Generation Supply/Demand · Global Warming, Greenhouse Gas Emissions/kilowatt-hour) Facts regarding nuclear energy in the US #12;· Standardized designs based on modularization producing

250

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

Canada N1G 2W1 e-mail: jtrevors@uoguelph.ca Water Air Soil Pollut (2010) 208:13 over 50 billion US dollars, and renewable energy

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

251

Nuclear Fuel Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities Nuclear

252

Nuclear Fuel Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities NuclearCycle

253

Nuclear Fuel Facts: Uranium | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities NuclearCycleFacts:

254

Nuclear Power Facilities (2008) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear FacilitiesNuclearNavy

255

Nuclear Security Conference 2010 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission,Science andNuclear

256

Sandia National Laboratories: Nuclear Energy Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More GreenWorkshops Nuclear Energy

257

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

258

Nuclear Energy Policy University of Nevada ? Reno 27 March...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Safe, effective disposition of spent nuclear fuel not yet demonstrated What's driving nuclear expansion * Rapid increase in global energy demand * Rising importance of carbon...

259

Nuclear Energy University Program: A Presentation to Vice Presidents...  

Office of Environmental Management (EM)

Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

260

Energy Department Announces New Investments in Advanced Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors October 31, 2014 - 12:20pm Addthis NEWS...

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Role of inorganic chemistry on nuclear energy examined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues surrounding nuclear power production and waste...

262

Not in our backyard : the dangers of nuclear energy.  

E-Print Network [OSTI]

??Despite seeing the destruction caused by nuclear accidents at Three Mile Island, Chernobyl, and Fukushima, many people still believe that nuclear energy is necessary to (more)

McGeown, Emily Elizabeth, 1990-

2012-01-01T23:59:59.000Z

263

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network [OSTI]

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Dario Vretenar

2008-02-06T23:59:59.000Z

264

Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH  

E-Print Network [OSTI]

role increasing the ``cold fusion'' probability in electronic molecules whose nuclear constituents have. Therefore, widths of such resonances giving a probability of a fusion of the nu­ clear constituents for the molecules LiD and H 2 O. There exists also a well­known exam­ ple [?] of muon catalyzed fusion of deuteron

265

Interdisciplinary Institute for Innovation Estimating the costs of nuclear  

E-Print Network [OSTI]

on this topic is fairly confusing. Some present electricity production using nuclear power as an affordable of costs and draw a distinction between a private cost and a social cost. The private cost is what evaluating the costs it is impossible to establish the cost price, required to compare electricity production

Paris-Sud XI, Université de

266

Nuclear Energy Advisory Committee | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCutWorkersNiketaEfficiencyApril 24,

267

Nuclear Energy Enabling Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCutWorkersNiketaEfficiencyApril

268

Nuclear Energy Technical Assistance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCutWorkersNiketaEfficiencyApril"The

269

Nuclear Energy University Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak

270

Statement of Peter Lyons Assistant Secretary for Nuclear Energy  

Office of Environmental Management (EM)

Statement of Peter Lyons Assistant Secretary for Nuclear Energy U.S. Department of Energy Before the Subcommittee on Energy and Water Development, and Related Agencies Committee on...

271

Nuclear energy is an important source of power, supplying 20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from...

272

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect (OSTI)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

273

Nuclear energy density optimization: Shell structure  

E-Print Network [OSTI]

Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-04-28T23:59:59.000Z

274

Remediation of old environmental liabilities in the Nuclear Research Institute Rez plc  

SciTech Connect (OSTI)

The Nuclear Research Institute Rez plc (NRI) is a leading institution in all areas of nuclear R and D in the Czech Republic. The NRI's activity encompasses nuclear physics, chemistry, nuclear power, experiments at research nuclear reactors and many other topics. The NRI operates two research nuclear reactors, many facilities as a hot cell facility, research laboratories, technology for radioactive waste (RAW) management, radionuclide irradiators, an electron accelerator, etc. After 50 years of activities in the nuclear field, there are some environmental liabilities that shall be remedied in the NRI. There are three areas of remediation: (1) decommissioning of old obsolete facilities (e.g. decay tanks, RAW treatment technology, special sewage system), (2) treatment of RAW from operation and dismantling of nuclear facilities, and (3) elimination of spent fuel from research nuclear reactors operated by the NRI. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Based on this postulate, optimal remedial actions have been selected and recommended for the environmental remediation. Remediation of the environmental liabilities started in 2003 and will be finished in 2012. Some liabilities have already been successfully remedied. The most significant items of environmental liabilities are described in the paper together with information about the history, the current state, the progress, and the future activities in the field of remediation of environmental liabilities in the NRI. (authors)

Podlaha, J. [Nuclear Research Institute Rez plc (Czech Republic)

2007-07-01T23:59:59.000Z

275

Symmetry energy from nuclear multifragmentation  

E-Print Network [OSTI]

The ratio of symmetry energy coefficient to temperature $C_{sym}/T$ is extracted from different prescriptions using the isotopic as well as the isobaric yield distributions obtained in different projectile fragmentation reactions. It is found that the values extracted from our theoretical calculation agree with those extracted from the experimental data but they differ very much from the input value of the symmetry energy used. The best possible way to deduce the value of the symmetry energy coefficient is to use the fragment yield at the breakup stage of the reaction and it is better to use the grand canonical model for the fragmentation analysis. This is because the formulas that are used for the deduction of the symmetry energy coefficient are all derived in the framework of the grand canonical ensemble which is valid only at the break-up (equilibrium) condition. The yield of "cold" fragments either from the theoretical models or from experiments when used for extraction of the symmetry energy coefficient using these prescriptions might lead to the wrong conclusion.

Swagata Mallik; Gargi Chaudhuri

2013-01-23T23:59:59.000Z

276

Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies  

E-Print Network [OSTI]

We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

T. Niksic; D. Vretenar; P. Ring

2008-09-08T23:59:59.000Z

277

Honda Research Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: Energy Resources JumpboroughHonCo Ltd

278

Muroran Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum| Open EnergyMunro Solar

279

Institute for Environmental Solutions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels JumpSafety (IBHS) Jump

280

Biomass IBR Fact Sheet: Renewable Energy Institute International  

Broader source: Energy.gov [DOE]

The Renewable Energy Institute International, in collaboration with Red Lion Bio-Energy and Pacific Renewable Fuels, is demonstrating a pilot, pre-commercial-scale integrated biorefinery for the production of high-quality, synthetic diesel fuels from agriculture and forest residues using advanced thermochemical and catalytic conversion technologies.

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear Safety Workshop Summary | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor Technology Subcommittee of NEACSummary Nuclear Safety

282

Nuclear Waste Policy Act | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor Technology Subcommittee of NEACSummary NucleariNuclear

283

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and ...

Vogt, D A B R

2005-01-01T23:59:59.000Z

284

Symmetry energy coefficients for asymmetric nuclear matter  

E-Print Network [OSTI]

Symmetry energy coefficients of asymmetric nuclear matter are investigated as the inverse of nuclear matter polarizabilities with two different approaches. Firstly a general calculation shows they may depend on the neutron-proton asymmetry itself. The choice of particular prescriptions for the density fluctuations lead to certain isospin (n-p asymmetry) dependences of the polarizabilities. Secondly, with Skyrme type interactions, the static limit of the dynamical polarizability is investigated corresponding to the inverse symmetry energy coefficient which assumes different values at different asymmetries (and densities and temperatures). The symmetry energy coefficient (in the isovector channel) is found to increase as n-p asymmetries increase. The spin symmetry energy coefficient is also briefly investigated.

Fbio L. Braghin

2003-12-16T23:59:59.000Z

285

Enhancement Mechanisms of Low Energy Nuclear Reactions  

E-Print Network [OSTI]

The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy of external fields may stimulate LENR [3]. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics,... The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical ...

Gareev, F A

2005-01-01T23:59:59.000Z

286

Nuclear Safety Enforcement Documents | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear

287

Data requirements for intermediate energy nuclear applications  

SciTech Connect (OSTI)

Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.

Pearlstein, S.

1990-01-01T23:59:59.000Z

288

Microsoft PowerPoint - Project Briefing for Nuclear Energy Advisory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Next Generation Nuclear Plant . Project Briefing for . Nuclear Energy Advisory Committee uc ea e gy d so y Co ttee Greg Gibbs Director NGNP Project...

289

Nuclear Energy In the United States Executive Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Status and Outlook for Nuclear Energy In the United States Executive Summary The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear...

290

Hydraulic Institute Member Benefits | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7,HowHowScience &Member

291

Australian Solar Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: Texas Service Territory:and Ore ReservesSolar

292

Catalog, Classification Training Institute | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy-ChevronSeveral salesCarolyn L.in aData

293

Climate Change Science Institute | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global EnergyClimate Change Science

294

Climate Change Science Institute | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global EnergyClimate Change

295

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September

296

Molten salts and nuclear energy production Christian Le Bruna*  

E-Print Network [OSTI]

Molten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches, thorium cycle 1. Introduction The main characteristic of nuclear energy production is the large energy

Boyer, Edmond

297

Application of Nuclear Energy to Bitumen Upgrading and Biomass Conversion  

SciTech Connect (OSTI)

Key drivers for the increasing use of nuclear energy are the need to mitigate global warming and the requirement for energy security. Nuclear energy can be applied not only to generate electricity but also as a heat source. Moreover, nuclear energy can be applied for hydrogen as well as water production. The application of nuclear energy to oil processing and biomass production is studied in this paper. (authors)

Mamoru Numata; Yasushi Fujimura [JGC Corporation (Japan); Takayuki Amaya [Ministry of Education, Culture, Sports, Science and Technology - MEXT, Japan 2-5-1 Marunouchi Chiyoda-ku, Tokyo 100-8959 (Japan); Masao Hori [Nuclear Systems Association, 1-7-6 Toranomon Tokyo, 105-0001 (Japan)

2006-07-01T23:59:59.000Z

298

Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind  

E-Print Network [OSTI]

from renewables (wind power, solar power, hydropower, geothermal, ocean wave & tidal power, biomass energy resources (coal 43%, natural gas 19%, oil 6%, cogeneration 7%); ~21% by nuclear fission power the Moon. #12;ADVANTAGES OF FUSION · Abundant Supply of Fuel (deuterium and tritium) · No Risk of Nuclear

Chen, Yang-Yuan

299

GE Hitachi Nuclear Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to:Wilmette, ILFyreStormGDI

300

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26,EFRCNewsRange of

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26,EFRCNewsRange ofScientific

302

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26,EFRCNewsRange

303

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26,EFRCNewsRangeCyber-Based

304

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

305

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .microparticles. Annals of Nuclear Energy, [96] F.B. Brown,In Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

306

Paul Scherrer Institut | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoag Utility District

307

Stevens Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriPrograms | Open EnergyInformationStevens

308

Classification Training Institute | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical Officer ChiefDepartment

309

Community Association Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaftColumbiaCommercial

310

Form:Research Institution | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy

311

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia|Indonesia:IndurTechnology

312

Office of Nuclear Energy | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo Fear ActOfficeOfficeOffice

313

Innovating for Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through a variety of cross-cutting programInnovating

314

Department of Energy Idaho - Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The Desert Southwest RegionInside ID InsideLaboratory

315

Community Development Finance Institutions-Opportunities for Partnerships with Energy Efficiency Programs Transcript.doc  

Broader source: Energy.gov [DOE]

Community Development Finance Institutions-Opportunities for Partnerships with Energy Efficiency Programs Transcript.doc

316

Community Development Finance Institutions- Opportunities for Partnerships with Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Community Development Finance Institutions- Opportunities for Partnerships with Energy Efficiency Programs

317

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS  

E-Print Network [OSTI]

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS Hiroyasu EJIRI Nuclear Physics Laboratory@rcnp.osaka-u.ac.jp (H. Ejiri). Physics Reports 338 (2000) 265}351 Nuclear spin isospin responses for low-energy Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567 Japan. E-mail address: ejiri

Washington at Seattle, University of

318

Nuclear Cargo Detector - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includes Los Alamos April 7, 2014Nuclear

319

Nuclear Speed-Dating | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclear Speed-Dating Nuclear

320

Cornell Fuel Cell Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, IncKilauea Jump to:Cornelius is

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Danish Technological Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, search GEOTHERMALDaleMaryland: EnergyDaniaDanielson,Danish

322

Classification Training Institute Catalog | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu Issues CallBulletin

323

Massachusetts Institute of Technology Hydrodynamics | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoading map...(Redirected25. ItMassacCompany

324

Massachusetts Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoading map...(Redirected25. ItMassacCompanyJump

325

World Resources Institute (WRI) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison, NJ Information(Redirected

326

World Watch Institute (WWI) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison, NJ

327

World Resources Institute (WRI) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodson County,Worden, Montana: Energy|Datasets

328

GHG Management Institute curriculum | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create aGA SNC Solarcurriculum Jump

329

Battelle Memorial Institute Technology Marketing Summaries - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Study ofJ UBasicsQueuesInnovation

330

Victoria Transport Policy Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValeroTrans Co Inc JumpVerveVictoria

331

Steven's Institute Solar Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: Energy Resources JumpStepover or RelaySteubenSteven's

332

Nuclear Power and the World's Energy Requirements  

E-Print Network [OSTI]

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

333

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements  

Broader source: Energy.gov [DOE]

As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research...

334

What's Next for Nuclear Energy? MIT Students Discuss Path Forward...  

Broader source: Energy.gov (indexed) [DOE]

What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons,...

335

Ushasi Datta Pramanik Saha Institute Of Nuclear Physics, Kolkata , India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdates byUser Guide PrintUsers' ExecutiveCoulomb

336

Minority Serving Institution Internship Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxfordVeterans | NationalSafeguardsLong

337

Monthly/Annual Energy Review - nuclear section  

Reports and Publications (EIA)

Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

2015-01-01T23:59:59.000Z

338

Hawaii Natural Energy Institute: Annual report, 1992  

SciTech Connect (OSTI)

This progress report from the University of Hawaii at Manoa's School of Ocean and Earth Science and Technology describes state of the art research in tapping the energy in and around the Hawaiian Islands. Researchers are seeking new ways of generating electricity and producing methanol from sugarcane waste and other biomass. They are finding ways to encourage the expanded use of methanol as a transportation fuel. They are creating innovative and cost-efficient methods of producing and storing hydrogen gas, considered the fuel of the future''. Researchers are also developing the techniques and technologies that will enable us to tap the unlimited mineral resources of the surrounding ocean. they are testing methods of using the oceans to reduce the carbon dioxide being discharged to the atmosphere. And they are mapping the strategies by which the seas can become a major source of food, precious metals, and space for living and for industry. The achievements described in this annual report can be attributed to the experience, creativity, painstaking study, perseverance, and sacrifices of our the dedicated corps of researchers.

Not Available

1992-01-01T23:59:59.000Z

339

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

Essentials, March 2007. OECD/Nuclear Energy Agency. "Nuclear Energy and the Kyoto Protocol"OECD/IEA Report OECD/Nuclear Energy Agency. "Nuclear Energy

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

340

Nuclear Energy: Where do we go from here? Keith Bradley  

E-Print Network [OSTI]

11.30am Nuclear Energy: Where do we go from here? Keith Bradley Argonne National Laboratories Abstract For the past several decades, nuclear energy has proven to be one of the most reliable and cost technical opportunities for cutting-edge R&D. A snapshot of the current state of nuclear energy research

Levi, Anthony F. J.

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy  

E-Print Network [OSTI]

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983

Laughlin, Robert B.

342

Master's programme in Nuclear Energy Engineering Programme outline  

E-Print Network [OSTI]

Master's programme in Nuclear Energy Engineering Programme outline The two-year Master's programme to work abroad. career ProsPects Nuclear power is a significant part of the current energy balance.With advances in science and technology, nuclear energy is increasingly re- garded as an eminent part

Haviland, David

343

Getting to Know Nuclear Energy: The Past, Present & Future  

E-Print Network [OSTI]

Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

Kemner, Ken

344

Role of inorganic chemistry on nuclear energy examined  

E-Print Network [OSTI]

- 1 - Role of inorganic chemistry on nuclear energy examined July 31, 2013 The journal Inorganic Chemistry published a special Forum issue on the role of inorganic chemistry in nuclear energy. John Gordon and Argonne National Laboratory collaborated on the work. The DOE Office of Nuclear Energy and the Office

345

Office of Nuclear Energy, Science and Technology Executive Summary  

E-Print Network [OSTI]

Office of Nuclear Energy, Science and Technology Executive Summary Mission As we become more in this new century, the benefits of nuclear fission as a key energy source for both the near- and long method of generating energy from nuclear fission in both the United States and the world. A key mission

346

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network [OSTI]

THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

Birmingham, University of

347

"THE NUCLEAR OPTION IN GREEK NATIONAL ENERGY POLICY  

E-Print Network [OSTI]

"THE NUCLEAR OPTION IN GREEK NATIONAL ENERGY POLICY: A RENAISSANCE OR A DJA VUE" by RAPHAEL MOISSIS? · the Commission: · Recognizes the contribution of nuclear energy in CO2 emission reduction. · Underlines of nuclear energy generation is reduced, it is essential that this reduction be phased

348

AEC and Oak Ridge Institute for Nuclear Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)

349

Texas Transportation Institute Energy Management and Conservation Plan  

E-Print Network [OSTI]

and continues to improve its in-house preventive maintenance program. #12;Texas Transportation Institute Energy efficiency, TTI maintains an in-house preventive maintenance program for all fleet vehicles. Preventive methods to improve its preventive maintenance program · Consideration of fuel efficiency rating when

350

Hawaii Natural Energy Institute www.hnei.hawaii.edu  

E-Print Network [OSTI]

three UAV Systems Novel Partial Hybrid (PH) System Non-Hybrid (Load Following (LF)) and Full Hybrid-Battery Partial Hybrid System Design for Unmanned Aerial Vehicle Application #12;2Hawaii Natural Energy Institute Hybridization of Fuel Cell Systems Why? Rationale for Novel Partial Hybrid System Novel Partial Hybrid

351

IntegratedEnergySysteminHotel (GasTechnologyInstitute)  

E-Print Network [OSTI]

confidence in the traditionally risk adverse hotel building design community that integrated CHP systemsIntegratedEnergySysteminHotel (GasTechnologyInstitute) ProjectOverview Benefits: BenefitsofIntegratedComfortTM system is pre-engineered to include four Capstone microturbines integrated with a double

Oak Ridge National Laboratory

352

Professor Richard Davies Durham Energy Institute; Department of Earth  

E-Print Network [OSTI]

the Data #12;Shale Gas ­ Mining the Data In the early 1990s the oil and gas industry in Texas startedProfessor Richard Davies Durham Energy Institute; Department of Earth Sciences Shale Gas ­ Mining to produce gas by drilling into deeply-buried shale layers. They found that creating underground fractures

Wirosoetisno, Djoko

353

Strategies for Achieving Institutional Change | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization of AdvancedResidentialInstitutional

354

Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...  

Broader source: Energy.gov (indexed) [DOE]

growing energy demands. Addressing this market is essential to safely expanding nuclear energy in developing nations and small-grid markets without increasing proliferation...

355

Department of Energy Issues Requests for Applications for Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Issues Requests for Applications for Nuclear-Related Science and Engineering Scholarships and Fellowships Department of Energy Issues Requests for Applications...

356

Nuclear Energy Research Advisory Committee (NERAC) Meeting of...  

Broader source: Energy.gov (indexed) [DOE]

Meeting of November 3 and 4, 2003 Nuclear Energy Research Advisory Committee (NERAC) Meeting of November 3 and 4, 2003 The agenda for the National Energy Research Advisory...

357

Generation IV Advanced Nuclear Energy Systems By Jacques Bouchard...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation IV Advanced Nuclear Energy Systems By Jacques Bouchard, French Commissariat a l'Energie Atomique, France and Ralph Bennett, Idaho National Laboratory. Generation IV...

358

New institute promotes nuclear security | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutrons usedDOENewNewNew global HIVimagingNew

359

Project Management Institute Highlights Savannah River Nuclear Solutions in  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID Project Name FY TotalLDRD

360

Role of bulk energy in nuclear multifragmentation  

SciTech Connect (OSTI)

Because of thermal expansion and residual interactions, hot nuclear fragments produced in multifragmentation reactions may have nucleon density lower than the equilibrium density of cold nuclei. In terms of a liquid-drop model this effect can be taken into account by reducing the bulk energy of fragments. We study the influence of this change on fragment yields and isotope distributions within the framework of the statistical multifragmentation model. Similarities and differences with previously discussed modifications of symmetry and surface energies of nuclei are analyzed.

Buyukcizmeci, N.; Ogul, R. [Department of Physics, University of Selcuk, 42079 Konya (Turkey); Botvina, A. S. [Institute for Nuclear Research, Russian Academy of Sciences, RU-117312 Moscow (Russian Federation); Frankfurt Institute for Advanced Studies, J. W. Goethe University, D-60438 Frankfurt am Main (Germany); Mishustin, I. N. [Frankfurt Institute for Advanced Studies, J. W. Goethe University, D-60438 Frankfurt am Main (Germany); Kurchatov Institute, Russian Research Center, RU-123182 Moscow (Russian Federation)

2008-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nuclear Safety Regulatory Framework | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission, Office of

362

National Nuclear Security Administration | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing andNancy AnneAdministration National Nuclear

363

Princeton Plasma Physics Lab - Nuclear energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary Author Lastenergy Energy that originates

364

Multiple Motivations Institutional Change Principle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a Peaceful NuclearBatteries |Institutional Change »

365

Nuclear Safety Information Dashboard | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting...

366

Building a Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-30T23:59:59.000Z

367

Research Institute for Environment, Energy and Economics Annual Report, 2009 2010  

E-Print Network [OSTI]

Research Institute for Environment, Energy and Economics Annual Report, 2009, Energy and Economics Mission 3 Research Priorities and Activities 4 Appalachian Energy Center 7 Mission & History 7 Programs

Rose, Annkatrin

368

Proposal for a High Energy Nuclear Database  

SciTech Connect (OSTI)

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

Brown, David A.; Vogt, Ramona

2005-03-31T23:59:59.000Z

369

Enhancement Mechanisms of Low Energy Nuclear Reactions  

E-Print Network [OSTI]

The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy of external fields may stimulate LENR [3]. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics,... The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong. Our main conclusions:

F. A. Gareev; I. E. Zhidkova

2005-05-08T23:59:59.000Z

370

www.energy.psu.edu The EMS Energy Institute at Penn State is a leading research  

E-Print Network [OSTI]

www.energy.psu.edu The EMS Energy Institute at Penn State is a leading research and development organization focused on energy science and engineering. We are committed to: -- Providing academic and technical leadership in the development and assessment of energy technologies, -- Providing Penn State

Lee, Dongwon

371

Management of the Department of Energy Nuclear Weapons Complex  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

2005-06-08T23:59:59.000Z

372

SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS  

SciTech Connect (OSTI)

We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

2010-12-20T23:59:59.000Z

373

Global Nuclear Energy Partnership Waste Treatment Baseline  

SciTech Connect (OSTI)

The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

2008-05-01T23:59:59.000Z

374

Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials  

SciTech Connect (OSTI)

Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.

Hassaneen, Kh.S.A., E-mail: khs_94@yahoo.com [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Abo-Elsebaa, H.M.; Sultan, E.A. [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Mansour, H.M.M. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

2011-03-15T23:59:59.000Z

375

Colorado School of Mines - Colorado Energy Research Institute | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS) | OpenEnergyGovernor s Energy OfficeIrr

376

Experimental energy-dependent nuclear spin distributions  

SciTech Connect (OSTI)

A new method is proposed to determine the energy-dependent spin distribution in experimental nuclear-level schemes. This method compares various experimental and calculated moments in the energy-spin plane to obtain the spin-cutoff parameter {sigma} as a function of mass A and excitation energy using a total of 7202 levels with spin assignment in 227 nuclei between F and Cf. A simple formula, {sigma}{sup 2}=0.391 A{sup 0.675}(E-0.5Pa{sup '}){sup 0.312}, is proposed up to about 10 MeV that is in very good agreement with experimental {sigma} values and is applied to improve the systematics of level-density parameters.

Egidy, T. von [Physik-Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Bucurescu, D. [Horia Hulubei National Institute of Physics and Nuclear Engineering, R-76900 Bucharest (Romania); Academy of Romanian Scientists, 54 Splaiul Independentei, Bucharest (Romania)

2009-11-15T23:59:59.000Z

377

Lao Institute for Renewable Energy LIRE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean AirjoinLakeshoreLambLangdon II -Institute

378

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions  

E-Print Network [OSTI]

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

Peletier, Reynier

379

Overview of Nuclear Energy: Present and Projected Use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Alexander Stanculescu

2011-09-01T23:59:59.000Z

380

Overview of nuclear energy: Present and projected use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

IllInoIs InstItute of technology's WInd energy research consortIum  

E-Print Network [OSTI]

IllInoIs InstItute of technology's WInd energy research consortIum Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U.S. Department of Energy has invested $8 Million in the IIT-led Wind Energy Consortium to improve wind generation

Heller, Barbara

382

University of Delaware EnErgy InstItUtE syMPOsIUM  

E-Print Network [OSTI]

Institute, and Symposium Objectives Mark A. Barteau Director, UD Energy Institute The Sustainable Energy. Birkmire Director, Institute of Energy Conversion Solar Demonstration Project Robin Morgan Dean for High Energy and Power Density I George Hadjipanayis Chair, Physics and Astronomy Novel Materials

Firestone, Jeremy

383

Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy CrisisEnergy Crisis  

E-Print Network [OSTI]

Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy Crisis.maclellan@strath.ac.uk Introduction and Motivation What is Nuclear Fusion? Laser Plasma Interactions The world, and particularly is harnessing the power of nuclear fusion. It is however, extremely difficult to sustain a fusion reaction

Strathclyde, University of

384

Nuclear Energy Response in the EMF27 Study  

SciTech Connect (OSTI)

The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

Kim, Son H. [Joint Global Change Research Institute, College Park, MD (United States); Wada, Kenichi [Research Inst. of Innovative Technology for the Earth, Kizagawa-Shi, Kyoto (Japan); Kurosawa, Atsushi [Inst. of Applied Energy, Minato-ku, Tokyo (Japan ); Roberts, Matthew [Stanford University, Stanford, CA (United States)

2014-02-28T23:59:59.000Z

385

Kumasi Institute of Technology and Environment (KITE) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of Technology and Environment (KITE)

386

Nuclear energy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclearLife Cycleenergy

387

Presentation: DOE Nuclear Nonproliferation | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point07.06Nucleon Structure

388

Renewability and sustainability aspects of nuclear energy  

SciTech Connect (OSTI)

Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG?PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG?PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG?PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG?PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG?PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG?PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ? 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ? 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG?PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ?160 kg {sup 233}U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ?1.3.

?ahin, Smer, E-mail: ssahin@atilim.edit.tr [Department of Mechanical Engineering, Faculty of Engineering, ATILIM University, 06836 ?ncek, Glba??, Ankara (Turkey)

2014-09-30T23:59:59.000Z

389

Sandia National Laboratories: Nuclear Energy Safety Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green WasteThe

390

Sandia National Laboratories: Nuclear Energy Systems Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green WasteTheSystems Laboratory

391

Sandia National Laboratories: Nuclear Energy Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green

392

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

report, National Nuclear Security Administration, Departmentproliferation and security risks of nuclear energy systemsthe proliferation and security risk posed by nuclear energy

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

393

Studies in Low-Energy Nuclear Science  

SciTech Connect (OSTI)

This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

Carl R. Brune; Steven M. Grimes

2006-03-30T23:59:59.000Z

394

DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA  

SciTech Connect (OSTI)

The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

2009-07-12T23:59:59.000Z

395

Constraining the nuclear symmetry-energy at super-density  

E-Print Network [OSTI]

The nuclear symmetry-energy has broad implications in both nuclear physics and astrophysics. Due to hard work of many people, the nuclear symmetry-energy around saturation density has been roughly constrained. However, the nuclear symmetry-energy at super-density is still in chaos. By considering both the effects of the nucleon-nucleon short-rang correlations and the isospin-dependent in-medium inelastic baryon-baryon scattering cross sections in the transport model, two unrelated experimental measurements are simultaneously analyzed. A soft symmetry-energy at super-density is first consistently obtained by the double comparison of the symmetry-energy sensitive observables.

Yong, Gao-Chan

2015-01-01T23:59:59.000Z

396

2012 Nuclear Energy Enabling Technology Factsheet | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE)2012 Nuclear Energy Enabling Technology

397

University of Delaware Energy Institute Inauguration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment ofEnergy, OfficeDepartment ofDepartment

398

Nuclear energy in a nuclear weapon free world  

SciTech Connect (OSTI)

The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

Pilat, Joseph [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

399

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26,Energy ServiceMexicoNuclear Energy

400

Nuclear Energy Research and Development Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014 EIS-0474:NovemberNuclear

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Global Nuclear Energy Partnership Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the Presidents Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cyclein which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repositoryto a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

R.A. Wigeland

2008-10-01T23:59:59.000Z

402

Foiling the Flu Bug Global Partnerships for Nuclear Energy  

E-Print Network [OSTI]

1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

403

IREC Catalan Institute for Energy Research | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUS Innovative

404

National Institute of Energy Efficiency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof

405

Gansu Natural Energy Research Institute GNERI | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create aGAInformation

406

Fraunhofer Institute for Solar Energy Systems ISE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklinisFranzen,ISE Jump

407

Department of Energy Commends the Nuclear Regulatory Commission...  

Energy Savers [EERE]

Commission's Approval of a Second Early Site Permit in Just One Month Department of Energy Commends the Nuclear Regulatory Commission's Approval of a Second Early Site Permit...

408

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network [OSTI]

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Kazuhiro Oyamatsu; Kei Iida

2010-04-19T23:59:59.000Z

409

United States-Republic of Korea (ROK) International Nuclear Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International...

410

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Broader source: Energy.gov (indexed) [DOE]

Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

411

U.S. Department of Energy National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

2011 EEO Report of Accomplishments U.S. Department of Energy National Nuclear Security Administration Office of Civil Rights 3rd Edition Issued: March 2012 EEO and Diversity -...

412

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that...

413

Theoretical interpretation of high-energy nuclear collisions.  

SciTech Connect (OSTI)

Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions.

Fai, G.

1992-06-01T23:59:59.000Z

414

National Nuclear Security Administration ENERGY U.S. DEPARTMENT...  

National Nuclear Security Administration (NNSA)

Gate, 19 June 2013 Operating Efficiently Engaging Globally The U.S. Department of EnergyNational Nuclear Security Administration's (DOENNSA) Office of Nonproliferation and...

415

Louisiana Nuclear Energy and Radiation Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

416

Role of Nuclear Energy in Japan PostFukushima.  

E-Print Network [OSTI]

?? The purpose of this paper, Role of Nuclear Energy in Japan Post Fukushima: Alternatives and their Impact onJapans GHG Emission Targets, is to (more)

Niazi, Zarrar

2013-01-01T23:59:59.000Z

417

Precourt Institute for Energy Efficiency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder RiverPratt, Kansas:PrebleTable JumpPrecourt

418

The Energy and Resources Institute (TERI) Feed | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:InnovationFunds-Business Guide Jump to:inCoopEnergyTERI)

419

Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads  

SciTech Connect (OSTI)

The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

NONE

2013-07-01T23:59:59.000Z

420

Nuclear and High-Energy Astrophysics  

E-Print Network [OSTI]

There has never been a more exciting time in the overlapping areas of nuclear physics, particle physics and relativistic astrophysics than today. Orbiting observatories such as the Hubble Space Telescope, Rossi X-ray Timing Explorer (RXTE), Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended our vision tremendously, allowing us to see vistas with an unprecedented clarity and angular resolution that previously were only imagined, enabling astrophysicists for the first time ever to perform detailed studies of large samples of galactic and extragalactic objects. On the Earth, radio telescopes (e.g., Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary techniques have exceeded previous expectations of what can be accomplished from the ground. The gravitational wave detectors LIGO, LISA VIRGO, and Geo-600 are opening up a window for the detection of gravitational waves emitted from compact stellar objects such as neutron stars and black holes. Together with new experimental forefront facilities like ISAC, ORLaND and RIA, these detectors provide direct, quantitative physical insight into nucleosynthesis, supernova dynamics, accreting compact objects, cosmic-ray acceleration, and pair-production in high energy sources which reinforce the urgent need for a strong and continuous feedback from nuclear and particle theory and theoretical astrophysics. In my lectures, I shall concentrate on three selected topics, which range from the behavior of superdense stellar matter, to general relativistic stellar models, to strange quark stars and possible signals of quark matter in neutron stars.

Fridolin Weber

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Required Assets for a Nuclear Energy Applied R&D Program  

SciTech Connect (OSTI)

This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development CapabilitiesAn Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facility requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelles request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs, a viable work force, and well-equipped specialized facilities.

Harold F. McFarlane; Craig L. Jacobson

2009-03-01T23:59:59.000Z

422

Symmetry Energy Effects on the Nuclear Landscape  

E-Print Network [OSTI]

While various mean-field models predict similar two-proton drip line in the nuclear landscape, their predictions for the two-neutron drip line involve extreme extrapolations and exhibit a significant variation. We demonstrate that this variation is mainly due to the different values of the symmetry energy $E_{\\rm{sym}}(\\rho_{\\rm{c}})$ at the subsaturation cross density $\\rho_{\\rm{c}}\\approx 0.11$ fm$^{-3}$ for different interactions. Based on the recent accurate constraint on $E_{\\rm{sym}}(\\rho_{\\rm{c}})$, we obtain a quite precise prediction for the location of the two-neutron drip line and thus a very precise estimate of $1981 \\pm 76$ for the number of bound even-even nuclei with proton number between $2$ and $120$ among which only $799$ have so far been discovered experimentally.

Rui Wang; Lie-Wen Chen

2014-10-09T23:59:59.000Z

423

Institutional Change for Sustainability Case Studies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummaryInstalling aofInstitutional

424

CSU - Institute for the Built Environment | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline Rock -COPPE IncubatorCSU - Institute for the

425

Initiative in Nuclear Theory at the Variable Energy Cyclotron Centre  

E-Print Network [OSTI]

We recall the path breaking contributions of the nuclear theory group of the Variable Energy Cyclotron Centre, Kolkata. From a beginning of just one person in 1970s, the group has steadily developed into a leading group in the country today, with seminal contributions to almost the entire range of nuclear physics, viz., low energy nuclear reactions, nuclear structure, deep inelastic collisions, fission, liquid to gas phase transitions, nuclear matter, equation of state, mass formulae, neutron stars, relativistic heavy ion collisions, medium modification of hadron properties, quark gluon plasma, and cosmology of early universe.

D. K. Srivastava; J. Alam; D. N. Basu; A. K. Chaudhuri; J. N. De; K. Krishan; S. Pal

2005-06-24T23:59:59.000Z

426

Department of Energy Issues Final $12.5 Billion Advanced Nuclear...  

Energy Savers [EERE]

Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation Department of Energy Issues Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation December...

427

The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's  

E-Print Network [OSTI]

The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the Alliance for Sustainable Energy, LLC. The Joint Institute for Strategic Energy Analysis 15013 Denver West

428

Occupation number-based energy functional for nuclear masses  

E-Print Network [OSTI]

We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to nuclear masses yields a root-mean-square deviation of \\chi = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

M. Bertolli; T. Papenbrock; S. Wild

2011-10-19T23:59:59.000Z

429

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future  

E-Print Network [OSTI]

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, Clean Energy Can Deliver More Energy than Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 America Has Enormous Clean Energy Potential . . . . . . . . . . . . . . . . 22

Laughlin, Robert B.

430

Institutional implications of establishing safety goals for nuclear power plants. [PWR; BWR  

SciTech Connect (OSTI)

The purpose of this project is to anticipate and address institutional problems that may arise from the adoption of NRC's proposed Policy Statement on Safety Goals for Nuclear Power Plants. The report emphasizes one particular category of institutional problems: the possible use of safety goals as a basis for legal challenges to NRC actions, and the resolution of such challenges by the courts. Three types of legal issues are identified and analyzed. These are, first, general legal issues such as access to the legal system, burden of proof, and standard of proof. Second is the particular formulation of goals. Involved here are such questions as sustainable rationale, definitions, avoided issues, vagueness of time and space details, and degree of conservatism. Implementation brings up the third set of issues which include interpretation and application, linkage to probabilistic risk assessment, consequences as compared to events, and the use of results.

Morris, F.A.; Hooper, R.L.

1983-07-01T23:59:59.000Z

431

Energy Department Announces New Nuclear Energy Innovation Investments |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. StevenSolar Power |HealthNuclearDepartment of

432

Novel Nuclear Powered Photocatalytic Energy Conversion  

SciTech Connect (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

433

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network [OSTI]

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

434

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

435

Energy Loss in Nuclear Drell-Yan Process  

E-Print Network [OSTI]

By means of the nuclear parton distributions which can be used to provide a good explanation for the EMC effect in the whole x range, we investigate the energy loss effect in nuclear Drell-Yan process. When the cross section of lepton pair production is considered varying with the center-of-mass energy of the nucleon-nucleon collision, we find that the nuclear Drell-Yan(DY) ratio is suppressed due to the energy loss, which balances the overestimate of the DY ratio only in consideration of the effect of nuclear parton distributions.

Jian-Jun Yang; Guang-Lie Li

1998-05-21T23:59:59.000Z

436

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

Kramer, Kevin James

2010-01-01T23:59:59.000Z

437

Sandia National Laboratories: Solar Energy Research Institute for India and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSitingMolten Salt Test LoopGridthe United

438

Sandia National Laboratories: Stanford Institute of Materials and Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards Solar Thermochemical Hydrogen Production On June

439

Sandia National Laboratories: Joint BioEnergy Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University SandiaJim Speck

440

Environmental Survey preliminary report, Solar Energy Research Institute, Golden, Colorado  

SciTech Connect (OSTI)

This report presents the preliminary findings of the first phase of the Environmental Survey of the US Department of Energy's (DOE) Solar Energy Research Institute (SERI), conducted December 14 through 18, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with SERI. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at SERI, and interviews with site personnel. 33 refs., 22 figs., 21 tabs.

Not Available

1988-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: Nuclear Energy Systems Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in transient nuclear fuels testing, including space nuclear reactor, liquid metal fast reactor and light-water reactor fuels. Due to a large, dry central cavity in the reactor, a...

442

Nuclear Physics A 781 (2007) 317341 Symmetry energies, pairing energies, and mass  

E-Print Network [OSTI]

Nuclear Physics A 781 (2007) 317­341 Symmetry energies, pairing energies, and mass equations J of the respective mass equation since symmetry energies are related to the curvature of the nuclear mass surface and pairing energies of atomic nuclei are related to the differences between the excitation energies

O'Donnell, Tom

443

Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices  

SciTech Connect (OSTI)

The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

NONE

1997-12-01T23:59:59.000Z

444

Summary Report of the INL-JISEA Workshop on Nuclear Hybrud Energy Systems  

SciTech Connect (OSTI)

Hybrid energy systems utilize two or more energy resources as inputs to two or more physically coupled subsystems to produce one or more energy commodities as outputs. Nuclear hybrid energy systems can be used to provide load-following electrical power to match diurnal to seasonal-scale changes in power demand or to compensate for the variability of renewable wind or solar generation. To maintain economical, full rate operation of the nuclear reactor, its thermal energy available when power demand is low could be diverted into making synthetic vehicle fuels of various types. The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development (R&D) directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions - one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group. The workshop's findings are being used initially by INEST to define topics for a research preproposal solicitation.

Mark Antkowiak; Richard Boardman; Shannon Bragg-Sitton; Robert Cherry; Mark Ruth

2012-07-01T23:59:59.000Z

445

New developments in direct nuclear fission energy conversion devices  

SciTech Connect (OSTI)

Some experimental and theoretical results obtained in the investigations undertaken at the Central Institute of Physics (CIP) in Bucharest-Romania concerning the direct nuclear energy conversion into electrical energy are presented. Open-circuit voltages (U /SUB oc/ ) of tens of kV and short-circuit currents (J /SUB sc/ ) of several ..mu..A were obtained in experiments with vacuum fission-electric cells (FEC) developed in the CIP and irradiated in the VVR-S reactor at a 10/sup 9/ neutrons/cm/sup 2/s thermal neutron flux. A gas filled FEC (GAFFC) has been devised and tested in the reactor at the same neutron flux. With this GAFEC U /SUB oc/ of hundreds of kV, J /SUB sc/ of hundreds of ..mu..A and powers of hundreds of mW have been obtained. Our researches pointed out the essential part played by the electrons in the charge transport dynamics occuring in the FEC and the influence of the secondary emission on the FEC operation.

Ursu, I.; Badescu-Singureann, A.I.; Schachter, L.

1983-08-01T23:59:59.000Z

446

INSTITUTE OF NUCLEAR ENERGY RADIATION ANNUAL REPORT 2003  

E-Print Network [OSTI]

Media A. Stubos Computer Simulation of Atmospheric Pollution S. Andronopoulos Analyses & Assessment P. Kritidis Radioecology E. Florou Physicochemical Properties of Atmospheric Aerosol K. Eleftheriadis ENVIRONMENTAL RADIOACTIVITY LABORATORY P. Kritidis Biodosimetry of Ionizing Radiations G. Terzoudi

447

Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...  

Office of Science (SC) Website

Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of...

448

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5Temperatures |Our Grid

449

High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter  

E-Print Network [OSTI]

Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about $% \\rho =0.22$ fm$^{-3}$ and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.

Lie-Wen Chen; Che Ming Ko; Bao-An Li

2005-12-07T23:59:59.000Z

450

White paper on VU for Modeling Nuclear Energy Systems  

SciTech Connect (OSTI)

The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

Klein, R; Turinsky, P

2009-05-07T23:59:59.000Z

451

Role of density dependent symmetry energy in nuclear stopping  

E-Print Network [OSTI]

Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

Karan Singh Vinayak; Suneel Kumar

2011-07-27T23:59:59.000Z

452

A Strategy for Nuclear Energy Research and Development  

SciTech Connect (OSTI)

The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sectors dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energys share will require a coordinated research effortcombining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

Ralph G. Bennett

2008-12-01T23:59:59.000Z

453

Creating a Pathway to Sustainability IIT Wanger Institute for Sustainable Energy Research  

E-Print Network [OSTI]

#12;Creating a Pathway to Sustainability IIT Wanger Institute for Sustainable Energy Research Table of Contents Energy and Sustainability Educational and Research Activities at IIT......................................1 Henry Linden: IIT's Sustainable Energy Architect

Heller, Barbara

454

Sandia National Laboratories: Nuclear Energy Systems Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(NESL) Brayton Lab SCO2 Brayton Cycle Technology Videos Heat Exchanger Development Diffusion Bonding Characterization Mechanical Testing Deep Borehole Disposal Nuclear...

455

United States Department of Energy Nuclear Materials Stewardship  

SciTech Connect (OSTI)

The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

Newton, J. W.

2002-02-27T23:59:59.000Z

456

Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy  

E-Print Network [OSTI]

Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy Master in Nuclear Energy Summary of Research Instruction Research Instruction Application Code Name Major in Nuclear Energy Master's Program Doctoral Program Summary of Research Instruction

Kaji, Hajime

457

Partonic EoS in High-Energy Nuclear Collisions at RHIC  

E-Print Network [OSTI]

Partonic EoS in High-Energy Nuclear Collisions at RHIC Nu Xuproperties. In high-energy nuclear collisions, the term ?owthe early stage of high-energy nuclear collision, both the

Xu, Nu

2006-01-01T23:59:59.000Z

458

TEI Piraeus students' knowledge on the beneficial applications of nuclear physics: Nuclear energy, radioactivity - consequences  

E-Print Network [OSTI]

The recent nuclear accident in Japan revealed the confusion and the inadequate knowledge of the citizens about the issues of nuclear energy, nuclear applications, radioactivity and their consequences In this work we present the first results of an ongoing study which aims to evaluate the knowledge and the views of Greek undergraduate students on the above issues. A web based survey was conducted and 131 students from TEI Piraeus answered a multiple choice questionnaire with questions of general interest on nuclear energy, nuclear applications, radioactivity and their consequences. The survey showed that students, like the general population, have a series of faulty views on general interest nuclear issues. Furthermore, the first results indicate that our educational system is not so effective as source of information on these issues in comparison to the media and internet

Pilakouta, Mirofora

2011-01-01T23:59:59.000Z

459

Baryon Fluctuations in High Energy Nuclear Collisions  

E-Print Network [OSTI]

We propose that dramatic changes in the variances and covariance of protons and antiprotons can result if baryons approach chemical equilibrium in nuclear collisions at RHIC. To explore how equilibration alters these fluctuations, we formulate both equilibrium and nonequilibrium hadrochemical descriptions of baryon evolution. Contributions to fluctuations from impact parameter averaging and finite acceptance in nuclear collisions are numerically simulated.

Sean Gavin; Claude Pruneau

1999-07-09T23:59:59.000Z

460

Nuclear structure studies with intermediate energy probes  

SciTech Connect (OSTI)

Nuclear structure studies with pions are reviewed. Results from a recent study of 1 p-shell nuclei using (e,e{prime}), ({pi}, {pi}{prime}), and ({gamma},{pi}) reactions are reported. Future nuclear structure studies with GeV electrons at CEBAF are also briefly discussed.

Lee, T.S.H.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Genesis of Dark Energy: Dark Energy as a Consequence of Cosmological Nuclear Energy  

E-Print Network [OSTI]

Recent observations on Type-Ia supernovae and low density measurement of matter (including dark matter) suggest that the present day universe consists mainly of repulsive-gravity type exotic-matter with negative-pressure often referred as dark-energy. But the mystery is about the nature of dark-energy and its puzzling questions such as why, how, where & when about the dark- energy are intriguing. In the present paper the author attempts to answer these questions while making an effort to reveal the genesis of dark-energy, and suggests that the cosmological nuclear-binding-energy liberated during primordial nucleo-synthesis remains trapped for long time and then is released free which manifests itself as dark-energy in the universe. It is also explained why for dark energy the parameter w = -2/3. Noting that w=+1for stiff matter and w=+1/3 for radiation; w = - 2/3 is for dark energy, because -1 is due to deficiency of stiff-nuclear-matter and that this binding energy is ultimately released as radiation contributing +1/3, making w = -1 + 1/3 = -2/3. This thus almost solves the dark-energy mystery of negative-pressure & repulsive-gravity. It is concluded that dark-energy is a consequence of released-free nuclear-energy of cosmos. The proposed theory makes several estimates / predictions, which agree reasonably well with the astrophysical constraints & observations.

R. C. Gupta

2004-12-07T23:59:59.000Z

462

The nuclear symmetry energy and other isovector observables from the point of view of nuclear structure  

E-Print Network [OSTI]

In this contribution, we review some works related with the extraction of the symmetry energy parameters from isovector nuclear excitations, like the giant resonances. Then, we move to the general issue of how to assess whether correlations between a parameter of the nuclear equation of state and a nuclear observable are robust or not. To this aim, we introduce the covariance analysis and we discuss some counter-intuitive, yet enlightening, results from it.

G. Colo'; X. Roca-Maza; N. Paar

2015-04-08T23:59:59.000Z

463

The nuclear symmetry energy and other isovector observables from the point of view of nuclear structure  

E-Print Network [OSTI]

In this contribution, we review some works related with the extraction of the symmetry energy parameters from isovector nuclear excitations, like the giant resonances. Then, we move to the general issue of how to assess whether correlations between a parameter of the nuclear equation of state and a nuclear observable are robust or not. To this aim, we introduce the covariance analysis and we discuss some counter-intuitive, yet enlightening, results from it.

Colo', G; Paar, N

2015-01-01T23:59:59.000Z

464

Anatomy of symmetry energy of dilute nuclear matter  

E-Print Network [OSTI]

The symmetry energy coefficients of dilute clusterized nuclear matter are evaluated in the $S$-matrix framework. Employing a few different definitions commonly used in the literature for uniform nuclear matter, it is seen that the different definitions lead to perceptibly different results for the symmetry coefficients for dilute nuclear matter. They are found to be higher compared to those obtained for uniform matter in the low density domain. The calculated results are in reasonable consonance with those extracted recently from experimental data.

J. N. De; S. K. Samaddar; B. K. Agrawal

2010-09-23T23:59:59.000Z

465

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,IndustrialDepartment of

466

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...  

Broader source: Energy.gov (indexed) [DOE]

Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy...

467

Raising Investment Funds for Clean Energy Programs & Working with Financial Institutions  

Broader source: Energy.gov [DOE]

PowerPoint presentation of a Techincal Assistance Program webinar entitled, Raising Investment Funds for Clean Energy Programs & Working with Financial Institutions

468

Financial Institution Request for Proposal for Residential Energy Efficiency Loan FacilitiesTemplate  

Broader source: Energy.gov [DOE]

A competitive procurement procedure template to award loan loss reserve funds to a financial institution partner. Author: U.S. Department of Energy

469

Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology  

E-Print Network [OSTI]

Integrate applicable work conducted in programs in the Offices of Nuclear Energy (Gen IV, NERI, I · FY 2010: Complete the design of a commercial-scale nuclear hydrogen production system · FY 2015 to budget uncertainties (risk/benefit) · Guide the development of technology to support decisions Develop

470

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

23 Department of Advanced Energy Nuclear Fusion Research Education Program 22 8 24) (1) (2) (3) (4) (5) (6) (7) (8) #12;- 7 - 23 Guide to Nuclear Fusion Research Education@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12;- 3 - (1) TOEFL TOEIC

Yamamoto, Hirosuke

471

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

24 Department of Advanced Energy Nuclear Fusion Research Education Program 23 8 23 to Nuclear Fusion Research Education Program 277-8561 5-1-5 1 04-7136-4092 http://www.k.u-tokyo.ac.jp/fusion: nemoto@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12

Yamamoto, Hirosuke

472

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

25 Department of Advanced Energy Nuclear Fusion Research Education Program 24 8 21.Yasuhiro@jaxa.jp tel: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 12 http://www. k.u-tokyo.ac.jp/fusion 15 (1) (2) (1) (2) (3) (4) (5) (6) (7) (8) (9) #12;- 8 - 25 Guide to Nuclear

Yamamoto, Hirosuke

473

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

26 Department of Advanced Energy Nuclear Fusion Research Education Program 25 8 20) #12; 26 Guide to Nuclear Fusion Research Education Program 03-5841-6563 E-mail : ae: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 , 7 12 http://www. k.u-tokyo.ac.jp/fusion

Yamamoto, Hirosuke

474

The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's  

E-Print Network [OSTI]

The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable/TP-6A50-60052 February 2014 #12;The Joint Institute for Strategic Energy Analysis is operated Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 · www

475

and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016  

E-Print Network [OSTI]

and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 devices Milan Rajkovi´c1 , Milos Skori´c2 , Knut Sølna3 and Ghassan Antar4 1 Institute of Nuclear Sciences the issue of estimating the variable power law behavior of spectral densities is addressed. The analysis

Solna, Knut

476

Scenarios for a Worldwide Deployment of Nuclear Energy Production  

E-Print Network [OSTI]

to mitigate global warming and fossil fuel shortages while still satisfying a growing demand for energy. We of sustainable, intensive nuclear power generation. Introduction The worldwide demand for primary energy of the primary energy sources liable to respond significantly to the demand. Yet the conditions

Paris-Sud XI, Université de

477

Recent results of. mu. CF experiments at SIN (Swiss Institute For Nuclear Research)  

SciTech Connect (OSTI)

Important topics concerning Muon Catalyzed Fusion were investigated in experiments at the Swiss Institute for Nuclear Research (SIN), including transient and steady state rates for the main d..mu..t cycle as well as detailed information about the competing d..mu..d and t..mu..t fusion branches. The basic kinetic parameters were determined and striking features of the resonant d..mu..t formation process were revealed (density effect, epithermal behavior). DT sticking was measured with independent techniques, i.e., detection of fusion neutrons as well as ..mu..He x-rays after fusion. Fusion yields per muon of 113 +- 10 were observed at liquid conditions, yields exceeding 200 are anticipated for optimal conditions from our results. 43 refs., 8 figs., 3 tabs.

Breunlich, W.H.; Cargnelli, M.; Bistirlich, J.; Crowe, K.M.; Justice, M.; Kurck, J.; Petitjean, C.; Sherman, R.H.; Bossy, H.; Daniel, H.

1986-09-01T23:59:59.000Z

478

Physical Mechanism of Nuclear Reactions at Low Energies  

E-Print Network [OSTI]

The physical mechanism of nuclear reactions at low energies caused by spatial extension of electron is considered. Nuclear reactions of this type represent intra-electronic processes, more precisely, the processes occurring inside the area of basic localization of electron. Distinctive characteristics of these processes are defined by interaction of the own field produced by electrically charged matter of electron with free nuclei. Heavy nucleus, appearing inside the area of basic localization of electron, is inevitably deformed because of interaction of protons with the adjoining layers of electronic cloud, which may cause nuclear fission. If there occur "inside" electron two or greater number of light nuclei, an attractive force appears between the nuclei which may result in the fusion of nuclei. The intra-electronic mechanism of nuclear reactions is of a universal character. For its realization it is necessary to have merely a sufficiently intensive stream of free electrons, i.e. heavy electric current, and as long as sufficiently great number of free nuclei. This mechanism may operate only at small energies of translational motion of the centers of mass of nuclei and electron. Because of the existence of simple mechanism of nuclear reactions at low energies, nuclear reactor turns out to be an atomic delayed-action bomb which may blow up by virtue of casual reasons, as it has taken place, apparently, in Chernobyl. The use of cold nuclear reactions for production of energy will provide mankind with cheap, practically inexhaustible, and non-polluting energy sources.

V. P. Oleinik; Yu. D Arepjev

2003-06-09T23:59:59.000Z

479

Department of Energy and Nuclear Regulatory Commission Increase...  

Office of Environmental Management (EM)

hosted a GNEP Ministerial in Washington, DC, where leaders from China, France, Japan, Russia and the United States agreed to work together to bring the benefits of nuclear energy...

480

Nuclear-renewables energy system for hydrogen and electricity production  

E-Print Network [OSTI]

Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

Haratyk, Geoffrey

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Rethinking the Future Grid: Integrated Nuclear Renewable Energy...  

Office of Scientific and Technical Information (OSTI)

Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint Re-direct Destination: The U.S. DOE is supporting research and development that could lead to more...

482

Nuclear Energy Policy University of Nevada ? Reno 27 March...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 1 Iran 0 1 Current unit expansion in AsiaEurope 2 8 1 6 0 Drivers for additional U.S. nuclear capacity * Safe * Proven performance * Cost effective * Sustainable * Energy...

483

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE  

Broader source: Energy.gov [DOE]

The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOEs nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

484

High energy electrons and nuclear phenomena in petawatt laser-solid experiments  

SciTech Connect (OSTI)

The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approximately}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approximately}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed. {copyright} {ital 1999 American Institute of Physics.}

Cowan, T.E.; Ditmire, T.; Hatchett, S.; Pennington, D.M.; Perry, M.D.; Phillips, T.W.; Wilks, S.C.; Young, P.E. [Lawrence Livermore National Laboratory, Livermore, California (United States)] Dong, B. [University of Alabama, Huntsville, Alabama (United States); Parnell, T.; Takahashi, Y. [Marshall Space Flight Center, Huntsville, Alabama (United States)] Hunt, A.W. [Harvard University, Cambridge, Massachusetts (United States)] Johnson, J. [University Space Research Association, Huntsville, Alabama (United States)] Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

1999-07-01T23:59:59.000Z

485

India's baseline plan for nuclear energy self-sufficiency.  

SciTech Connect (OSTI)

India's nuclear energy strategy has traditionally strived for energy self-sufficiency, driven largely by necessity following trade restrictions imposed by the Nuclear Suppliers Group (NSG) following India's 'peaceful nuclear explosion' of 1974. On September 6, 2008, the NSG agreed to create an exception opening nuclear trade with India, which may create opportunities for India to modify its baseline strategy. The purpose of this document is to describe India's 'baseline plan,' which was developed under constrained trade conditions, as a basis for understanding changes in India's path as a result of the opening of nuclear commerce. Note that this treatise is based upon publicly available information. No attempt is made to judge whether India can meet specified goals either in scope or schedule. In fact, the reader is warned a priori that India's delivery of stated goals has often fallen short or taken a significantly longer period to accomplish. It has been evident since the early days of nuclear power that India's natural resources would determine the direction of its civil nuclear power program. It's modest uranium but vast thorium reserves dictated that the country's primary objective would be thorium utilization. Estimates of India's natural deposits vary appreciably, but its uranium reserves are known to be extremely limited, totaling approximately 80,000 tons, on the order of 1% of the world's deposits; and nominally one-third of this ore is of very low uranium concentration. However, India's roughly 300,000 tons of thorium reserves account for approximately 30% of the world's total. Confronted with this reality, the future of India's nuclear power industry is strongly dependent on the development of a thorium-based nuclear fuel cycle as the only way to insure a stable, sustainable, and autonomous program. The path to India's nuclear energy self-sufficiency was first outlined in a seminal paper by Drs. H. J. Bhabha and N. B. Prasad presented at the Second United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. The paper described a three stage plan for a sustainable nuclear energy program consistent with India's limited uranium but abundant thorium natural resources. In the first stage, natural uranium would be used to fuel graphite or heavy water moderated reactors. Plutonium extracted from the spent fuel of these thermal reactors would drive fast reactors in the second stage that would contain thorium blankets for breeding uranium-233 (U-233). In the final stage, this U-233 would fuel thorium burning reactors that would breed and fission U-233 in situ. This three stage blueprint still reigns as the core of India's civil nuclear power program. India's progress in the development of nuclear power, however, has been impacted by its isolation from the international nuclear community for its development of nuclear weapons and consequent refusal to sign the Nuclear Nonproliferation Treaty (NPT). Initially, India was engaged in numerous cooperative research programs with foreign countries; for example, under the 'Atoms for Peace' program, India acquired the Cirus reactor, a 40 MWt research reactor from Canada moderated with heavy water from the United States. India was also actively engaged in negotiations for the NPT. But, on May 18, 1974, India conducted a 'peaceful nuclear explosion' at Pokharan using plutonium produced by the Cirus reactor, abruptly ending the era of international collaboration. India then refused to sign the NPT, which it viewed as discriminatory since it would be required to join as a non-nuclear weapons state. As a result of India's actions, the Nuclear Suppliers Group (NSG) was created in 1975 to establish guidelines 'to apply to nuclear transfers for peaceful purposes to help ensure that such transfers would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities. These nuclear export controls have forced India to be largely self-sufficient in all nuclear-related technologies.

Bucher, R .G.; Nuclear Engineering Division

2009-01-01T23:59:59.000Z

486

Nuclear symmetry energy effects on liquid-gas phase transition in hot asymmetric nuclear matter  

E-Print Network [OSTI]

The liquid-gas phase transition in hot asymmetric nuclear matter is investigated within relativistic mean-field model using the density dependence of nuclear symmetry energy constrained from the measured neutron skin thickness of finite nuclei. We find symmetry energy has a significant influence on several features of liquid-gas phase transition. The boundary and area of the liquid-gas coexistence region, the maximal isospin asymmetry and the critical values of pressure and isospin asymmetry all of which systematically increase with increasing softness in the density dependence of symmetry energy. The critical temperature below which the liquid-gas mixed phase exists is found higher for a softer symmetry energy.

Bharat K. Sharma; Subrata Pal

2010-01-14T23:59:59.000Z

487

Energy Loss Effect in High Energy Nuclear Drell-Yan Process  

E-Print Network [OSTI]

The energy loss effect in nuclear matter, which is another nuclear effect apart from the nuclear effect on the parton distribution as in deep inelastic scattering process, can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep inelastic scattering experimental data, measured Drell-Yan production cross sections for 800GeV proton incident on a variety of nuclear targets are analyzed within Glauber framework which takes into account energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866.

Chun-Gui Duan; Li-Hua Song; Li-Juan Huo; Guang-Lie Li

2004-05-13T23:59:59.000Z

488

Hawaii Natural Energy Institute annual report, July 1981-June 1982  

SciTech Connect (OSTI)

This report includes brief progress reports on the 35 research and development projects in geothermal energy, ocean energy, biomass energy, wind energy, solar energy, and other renewable energy sources. (DLC)

Brown, N.E. (ed.)

1982-01-01T23:59:59.000Z

489

Method and apparatus for generating low energy nuclear particles  

DOE Patents [OSTI]

A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

Powell, James R. (Shoreham, NY); Reich, Morris (Flushing, NY); Ludewig, Hans (Brookhaven, NY); Todosow, Michael (Miller Place, NY)

1999-02-09T23:59:59.000Z

490

Method and apparatus for generating low energy nuclear particles  

DOE Patents [OSTI]

A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

1999-02-09T23:59:59.000Z

491

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network [OSTI]

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling practices in a nutshell', Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, pp.288 Energy and Nuclear Applications', Göteborg, Sweden, 13­14 October 2011 Copyright © 2013 Inderscience

Demazière, Christophe

492

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

2005. Cowan Robin. "Nuclear Power Reactors: A Study inThe Last Chance for Nuclear Power?" Energy Studies Reviewa National Infrastructure for Nuclear Power", IAEA Nuclear

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

493

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

renewables, including large hydropower, by 2020. In 2009,coal mining and hydropower), iron and steel, machinery, andoil, and natural gas. Hydropower, nuclear, and wind energy

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

494

A study of nuclear stopping in central symmetric nuclear collisions at intermediate energies  

E-Print Network [OSTI]

Nuclear stopping has been investigated in central symmetric nuclear collisions at intermediate energies. Firstly, it is found that the isotropy ratio, Riso, reaches a minimum near the Fermi energy and saturates or slowly increases depending on the mass of the system as the beam energy increases. An approximate scaling based on the size of the system is found above the Fermi energy suggesting the increasing role of in-medium nucleon-nucleon collisions. Secondly, the charge density distributions in velocity space, dZ/dvk and dZ/dv?, reveal a strong memory of the entrance channel and, as such, a sizeable nuclear transparency in the intermediate energy range. Lastly, it is shown that the width of the transverse velocity distribution is proportional to the beam velocity.

C. Escano-Rodriguez; D. Durand; A. Chbihi; J. D. Frankland; the INDRA Collaboration

2005-03-14T23:59:59.000Z

495

Nuclear symmetry energy from the Fermi-energy difference in nuclei  

E-Print Network [OSTI]

The neutron-proton Fermi-energy difference and the correlation to nucleon separation energies for some magic nuclei are investigated with the Skyrme energy density functionals and nuclear masses, with which the nuclear symmetry energy at sub-saturation densities is constrained from 54 Skyrme parameter sets. The extracted nuclear symmetry energy at sub-saturation density of 0.11 fm$^{-3}$ is 26.2 $\\pm$ 1.0 MeV with 1.5 $\\sigma$ uncertainty. By further combining the neutron-skin thickness of 208Pb, ten Skyrme forces with slope parameter of 28energy around saturation densities.

Ning Wang; Li Ou; Min Liu

2013-03-15T23:59:59.000Z

496

Future Directions, Challenges and Opportunities in Nuclear Energy  

SciTech Connect (OSTI)

The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

Andy Klein; Jack Lance

2006-07-01T23:59:59.000Z

497

http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE  

E-Print Network [OSTI]

http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Biocarbons (Charcoal)Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science and Technology Tropical Plant and Soil Science College

498

Bath Institute for Complex Systems Minimal supporting subtrees for the free energy of polymers  

E-Print Network [OSTI]

. We show that, for high temperatures, the free energy is supported by a random tree of positiveBICS Bath Institute for Complex Systems Minimal supporting subtrees for the free energy of polymers on disordered trees Peter M¨orters and Marcel Ortgiese Bath Institute For Complex Systems Preprint 10/08 (2008

Burton, Geoffrey R.

499

BCG Response to UC Davis Policy Institute on Energy, Environment and the Economy May 8, 2013  

E-Print Network [OSTI]

BCG Response to UC Davis Policy Institute on Energy, Environment and the Economy May 8, 2013 We appreciate the work the US Davis Institute for Energy, Environment and the Economy put into its review of the Boston Consulting Group analysis of the cumulative impacts of AB 32 policies on California refiners

California at Davis, University of

500

Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems  

SciTech Connect (OSTI)

The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

2012-07-01T23:59:59.000Z