National Library of Energy BETA

Sample records for nuclear energy industry

  1. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Nuclear Power and New Energy Industrial Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment Fund...

  2. 1/6/10 4:14 PMThe nuclear energy industry's communication problem Page 1 of 4http://www.thebulletin.org/print/web-edition/features/the-nuclear-energy-industrys-communication-problem

    E-Print Network [OSTI]

    Spirtes, Peter

    1/6/10 4:14 PMThe nuclear energy industry's communication problem Page 1 of 4http://www.thebulletin.org/print/web-edition/features/the-nuclear-energy-industrys-communication-problem The nuclear energy. Working the crowd is essential for a technology such as nuclear energy, which depends on the public

  3. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    continue to pursue nuclear expansion as part of an energythe rapid expansion of China’s nuclear industry requires a

  4. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  5. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  6. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    2013-9 January 2013 China’s Nuclear Industry After FukushimaMarch 2011 Fukushima nuclear accident has had a significanton the future of China’s nuclear power. First, it highlights

  7. Generation IV Nuclear Energy Systems ...

    E-Print Network [OSTI]

    Kemner, Ken

    Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

  8. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  9. Long-Term Nuclear Industry Outlook - 2004

    SciTech Connect (OSTI)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  10. Sandia Energy - Brayton Cycle Workshop and Industry Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brayton Cycle Workshop and Industry Day Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops Brayton Cycle Workshop and Industry Day Brayton Cycle Workshop and...

  11. Department Of Energy Offers $60 Million to Spur Industry Engagement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear Energy Partnership Department Of Energy Offers 60 Million to Spur Industry Engagement in...

  12. Argentina`s nuclear industry

    SciTech Connect (OSTI)

    NONE

    1988-02-01

    Argentina occupies a somewhat unusual position among the world`s nuclear nations, in that, while possessing a rather diverse nuclear industry, it has managed to remain largely outside the system of international controls, and is not a signatory of the Nuclear Non-Proliferation Treaty. Argentina currently has two operating reactors, Atucha Unit 1 (335-MWe PHWR) and Embalse (600-MWe CANDU), with another under unit, Atucha Unit 2 (698-MWe PHWR) under construction. Commercial nuclear development is primarily under the control of the Comision Nacional de Energia Atomica (CNEA), which also manages a modest uranium production industry. Fuel cycle facilities, notably an enrichment plant at Pilcaniyeu and a pilot reprocessing plant at Ezeiza, are under development.

  13. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  14. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2009-05-15

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  15. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  16. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    the previous year. NUCLEAR TECHNOLOGY AND FUEL CYCLES China’third-generation nuclear technology and reactor design, withs own third-generation nuclear technology. Westing- house,

  17. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    generation of Chinese nuclear submarines continues to sufferalready) benefit its nuclear submarine propulsion. Forwas based on the naval submarine nuclear reactor. There have

  18. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    power plants must meet nuclear safety standards and adoptapplications; review of nuclear safety regula- tions; andpower development plans. Nuclear safety was placed front and

  19. NUCLEAR ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy009At26-2009NSRC_MOU.pdffactsNUCLEAR ENERGY

  20. Emergence of the nuclear industry and associated crime. Master's thesis

    SciTech Connect (OSTI)

    Vaught, J.W.

    1991-08-01

    Nuclear energy, in weapons production and electrical power generation, is a technology that has endured public scrutiny since the late 1940s. Societal acceptance of this industry has been affected by controversy in the following areas: health effects of exposure to radiation, possible consequences resulting from accidents, and nuclear nonproliferation. The literature review begins in Chapter 2 by examining the changing public perceptions of nuclear energy over the last forty years. Support for the ideals and practices of the industry has often wavered, due to media representation of incidents, accidents, and potential catastrophic events. The second part of the chapter highlights the crimes associated with nuclear energy in a chronological order of concern by nuclear industry security specialists. Research has found certain types of crime to be more prevalent during particular eras than others. Crimes instigated by spies, peace activists, terrorists, and the insider (employee) are reviewed, with an emphasis on insider crime.

  1. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  2. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

    1979-01-01

    series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy...

  3. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  4. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    on the future of China’s nuclear power. First, it highlightsas China builds more nuclear power plants. The challengesto manage, run, and inspect nuclear power plants across the

  5. Industrial energy savers

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This is a series of technical bulletins developed as a quick reference to various energy-saving technologies. Each bulletin provides information on economics, benefits, and applications. Topics are chiller optimization and energy-efficient chillers, evaporative cooling, economizer cycles, thermal energy storage for cooling systems, boiler room energy conservation, cogeneration, industrial heat pumps, steam trap maintenance, energy-efficient motors, and variable speed drive motors.

  6. Roundtables Is nuclear energy different than other

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    subsidies ($165 billion) to commercial nuclear than to wind and solar combined ($5 billion), if one countsRoundtables Is nuclear energy different than other energy sources? #12;Cheaper, safer alternatives than nuclear fission Kristin Shrader-Frechette 19 August 2011 If reactors were safe, nuclear industries

  7. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01

    nuclear energies in the absence of a proximity contribution.contributions represent the major part of the potential energy of a nuclear

  8. Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  9. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Industrial facilities seeking...

  10. Energy Technology Partnership (ETP) Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Energy Technology Partnership (ETP) Energy Industry Doctorates in Low Carbon Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry for `industry-ready', post-doctoral researchers to enhance energy industry innovation and knowledge exchange

  11. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Estes, C. B.; Turner, W. C.

    1980-01-01

    this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program...

  12. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  13. Nuclear Industry Job Descriptions Boilermaker

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 survey includes degrees grantedFuelIndustry

  14. Industrial Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to Industrial Energy Efficiency Report to

  15. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01

    J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusof macroscopic aspects of nuclear fission and of collisions

  16. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    Stimulating R&D of industrial energy-efficient technology;Turnover, Retrofit and Industrial Energy Efficiency. Energyprograms perform at improving industrial energy efficiency.

  17. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    IEA) 7 July 2006 Industrial motor systems energy efficiency:of energy-efficient equipment in industrial motor systems isin industrial energy efficiency, especially motor, steam,

  18. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

  19. Nuclear Energy

    ScienceCinema (OSTI)

    Godfrey, Anderw

    2014-05-23

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  20. Nuclear Energy

    SciTech Connect (OSTI)

    Godfrey, Anderw

    2014-04-10

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  1. Global nuclear power supply chains and the rise of China's nuclear industry

    E-Print Network [OSTI]

    Metzler, Florian

    2012-01-01

    China has embarked on a massive expansion of nuclear power that may fundamentally change the global nuclear industry, for better or for worse. Some industry observers argue that the incumbent nuclear power companies are ...

  2. Nuclear Energy In the United States Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Status and Outlook for Nuclear Energy In the United States Executive Summary The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear...

  3. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  4. Innovating for Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovating for Nuclear Energy Innovating for Nuclear Energy March 9, 2015 - 11:02am Addthis Innovating for Nuclear Energy Nuclear energy is an important part of our nation's energy...

  5. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Environmental Management (EM)

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment...

  6. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  7. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Environmental Management (EM)

    Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This...

  8. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect (OSTI)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  9. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National...

  10. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01

    The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

  11. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis An error occurred. Try...

  12. Towards A Unified HFE Process For The Nuclear Industry

    SciTech Connect (OSTI)

    Jacques Hugo

    2012-07-01

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  13. Office Of Nuclear Energy

    Broader source: Energy.gov (indexed) [DOE]

    Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors Troy Unruh Idaho National...

  14. Idaho National Laboratory/Nuclear Power Industry Strategic Plan for Light Water Reactor Research and Development An Industry-Government Partnership to Address Climate Change and Energy Security

    SciTech Connect (OSTI)

    Electric Power Research

    2007-11-01

    The dual issues of energy security and climate change mitigation are driving a renewed debate over how to best provide safe, secure, reliable and environmentally responsible electricity to our nation. The combination of growing energy demand and aging electricity generation infrastructure suggests major new capacity additions will be required in the years ahead.

  15. Ontario's Industrial Energy Services Program 

    E-Print Network [OSTI]

    Ploeger, L. K.

    1987-01-01

    stream_source_info ESL-IE-87-09-69.pdf.txt stream_content_type text/plain stream_size 13674 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-69.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ONTARIO'S INDUSTRIAL... ENERGY SERVICES PROGRAM LINDA K. PLOEGER, GENERAL MANAGER, INDUSTRY PROGRAMS ONTARIO MINISTRY OF ENERGY TORONTO, ONTARIO, ABSTRACT The Ontario Ministry of Energy began offering its new Industrial Energy Services Program (IESP) in early 1987...

  16. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    last 50 years, nuclear energy subsidies have totaled nearlyof subsidies. Never- theless, claims that nuclear power is a

  17. Energy Department Partners with Industry to Train Federal Energy...

    Office of Environmental Management (EM)

    Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs...

  18. NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398

    E-Print Network [OSTI]

    Pázsit, Imre

    2000-01-01

    annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

  19. Outlook for Industrial Energy Benchmarking 

    E-Print Network [OSTI]

    Hartley, Z.

    2000-01-01

    The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

  20. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    energy savings are related to energy price changes through1997 dollars. All energy prices and savings were evaluatedthe relationship of energy prices to industry-wide energy

  1. The development of nuclear energy in the Philippines

    SciTech Connect (OSTI)

    Aleta, C. )

    1992-01-01

    The paper traces the development of nuclear energy in the Philippines and outlines the program on the peaceful uses of nuclear energy in the country as well as the problems and prospects of nuclear energy development. Nuclear power is at a standstill but the other areas of nuclear energy development are underway. The projects on the application of nuclear energy in agriculture, industry, public health and safety, are being pursued. Technology transfer to end users is sometimes hampered by public acceptance issues, such as irradiated food being believed to become radioactive, dislike with anything associated with radiation, and plain inherent fear of nuclear energy.

  2. Student Trainee (Energy Industry)

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is an independent regulatory agency that regulates and oversees various aspects of the energy markets within the United States. We value independence...

  3. Industrial Energy Conservation Technology

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  4. Industrial energy conservation technology

    SciTech Connect (OSTI)

    Schmidt, P.S.; Williams, M.A.

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  5. ENERGY SMART INDUSTRIAL PARTNER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 KansasMarketsHanford Tank |Policy10

  6. EPRI's Industrial Energy Management Program 

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    1992-01-01

    supporting national objectives for a clean environment and a strong economic future. The Electric Power Research Institute (EPRI) recognizes that the management of energy use and the environmental impacts of industrial activity are of national importance... in municipal water and sewage treatment plants, field evaluation of advanced reverse osmosis to recycle electroplating waste water, and cross divisional analysis and assessment of EPRI-developed technology for industrial customer applications. SUMMARY...

  7. Industrial Distributed Energy: Combined Heat & Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  8. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01

    Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

  9. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    E-Print Network [OSTI]

    Therkelesen, Peter

    2014-01-01

    Energy  Use   and  Energy  Efficiency  Improvement  Summer   Study  on  Energy  Efficiency  in  Industry.  Summer  Study  on  Energy  Efficiency  in  Industry.  

  10. Sandia Energy - Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Fuel Cycle Options Catalog Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops Nuclear Fuel Cycle Options Catalog Nuclear Fuel Cycle Options CatalogAshley...

  11. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

  12. Industrial Energy Procurement Contracts 

    E-Print Network [OSTI]

    Thompson, P.; Cooney, K.

    2000-01-01

    suppliers: from the commodity broker to the full range energy services provider. But these contracts are not the same old preordained "service agreements" -where all the real risks were already allocated by the PUC in the terms and conditions section... first decide on which supplier they would prefer to deal with on the basis of customer service, types of customers, ability to meet firm power needs, financial solvency etc. Only after identifying a short list of "qualified suppliers" does the firm...

  13. Industry program needed for nuclear accident management

    SciTech Connect (OSTI)

    Klopp, G.T

    1989-05-01

    This paper addresses the need for a management program for nuclear power accidents. According to the author, the tools and technology for severe accident management exist. The need for a clear, realistic definition of nuclear accident program requirements is discussed.

  14. Benchmarks for industrial energy efficiency

    SciTech Connect (OSTI)

    Amarnath, K.R. [Electric Power Research Inst., Palo Alto, CA (United States); Kumana, J.D. [Linnhoff March, Inc., Houston, TX (United States); Shah, J.V. [Electric Power Research Inst., Pittsburgh, PA (United States). Chemicals and Petroleum Center

    1996-12-31

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  15. Sandia Energy - Nuclear Energy Systems Laboratory (NESL) / Brayton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Systems Laboratory (NESL) Brayton Lab Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Nuclear Energy Systems Laboratory (NESL) Brayton Lab...

  16. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE)...

  17. Sandia Energy - Nuclear Energy Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW DatabaseNuclear FuelsNuclear Energy

  18. Cyber security best practices for the nuclear industry

    SciTech Connect (OSTI)

    Badr, I.

    2012-07-01

    When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)

  19. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

  20. Supporting industries energy and environmental profile

    SciTech Connect (OSTI)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  1. Industrial Energy Use Indices 

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01

    data and present the results of the study. ____________________________ 1 This material is based upon work supported by the Department of Energy under award numbers DE-FC36-02GO12086 and DE-FC36-06GO16067. This report was prepared based on work....04 25 0.97 1.49 0.98 26 0.46 0.56 0.53 27 1.04 0.89 1.56 28 0.65 0.74 1.13 29 2.38 1.05 2.40 30 1.15 1.01 1.60 32 0.86 1.34 0.92 33 1.03 1.01 0.99 34 1.40 1.10 1.75 35 1.08 1.07 1.03 36 1.03 0.98 1.15 37 0.90 1.08 1.07 38 2.11 2.41 1.25 39 1.12 1.36 1...

  2. Emerging Energy-Efficient Technologies for Industry 

    E-Print Network [OSTI]

    Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

    2001-01-01

    consists of all industrial activity outside of agriculture, mining, and construction, accounts for 70% of industrial value added (4). In 1998, the United States consumed 94 Quadrillion Btu (99 EJ) of primary energy or 25% of world primary energy use..., mining, construction, energy intensive industries, and non-energy intensive manufacturing. Energy is necessary to help our industries create useful products; however, we are increasingly confronted with the challenge of moving society toward a...

  3. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW Database

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    pp. IEA, 2006b: Industrial motor systems energy efficiency:industrial energy efficiency. Presented at Energy Efficiency in Motorenergy-efficient electric motors and motor-systems. These include: (1) industrial

  5. Energy Programs of the Texas Industrial Commission 

    E-Print Network [OSTI]

    Heare, J.; dePlante, L. E.

    1979-01-01

    The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least...

  6. A Career in Nuclear Energy

    ScienceCinema (OSTI)

    Lambregts, Marsha

    2013-05-28

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  7. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield1989) JumpLiteratureReid Industries Jump

  8. Assessing the Energy Efficiency Potential of Industrial Motor Systems

    E-Print Network [OSTI]

    McKane, Aimee

    2014-01-01

    2003. Energy-efficient motor systems in the industrial andpotential for energy efficiency in industrial motor systemspotential for energy efficiency in industrial motor systems

  9. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H Session Application of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes Agency (IEA) - Agreements "Heat Pump Programme" "Industrial Energy-related Technologies and Systems #12

  10. Sandia Energy - Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Options Catalog Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Nuclear Fuel Cycle Options Catalog Nuclear Fuel Cycle Options CatalogAshley...

  11. Industrial Customer Perspectives on Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Customer Perspectives on Utility Energy Efficiency Programs Industrial Customer Perspectives on Utility Energy Efficiency Programs These presentations from ATK Aerospace Systems,...

  12. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.gov...

  13. MIT and Energy Industries MIT Industry Brief

    E-Print Network [OSTI]

    Polz, Martin

    and demand, security and environmental impact. MITEI's interdisci- plinary research program focuses on: 1 of nanotechnology to solar and thermoelectric energy conversion. The mission of the MIT Photovoltaic Research synthesizes and characterizes commer- cial and next-generation photovoltaic materials and devices, engineering

  14. Pulp & Paper Industry- A Strategic Energy Review 

    E-Print Network [OSTI]

    Stapley, C. E.

    1997-01-01

    The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could...

  15. Industry Professional | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant ServicesIndustry

  16. Shrenik Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co Ltd JumpShrenik Industries

  17. Contribution of domestic industry to the Spanish nuclear program

    SciTech Connect (OSTI)

    Palacios, L.

    1988-01-01

    The incorporation of nuclear system to the Spanish electricity supply system dates back to the 1960's, when the industrial infrastructure of the country was being modernized. The first round of nuclear power plants was ordered on a turnkey basis from foreign established vendors and the participation of domestic suppliers of mechanical and electrical equipment was smaller than that of engineering, construction and erection companies. The present situation is one of maturity in the design and manufacturing capacity for most components, with the exception of some raw materials and specialized items for which the economic threshold far exceeds the domestic needs. The Spanish industry has assimilated many lessons derived from the introduction of nuclear technology in Spain in a relatively short period of time. As a consequence, it is well prepared to undertake the following phases of the nuclear program and also to transfer experiences of interest to other countries.

  18. Sandia Energy - Gulf Nuclear Energy Infrastructure Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gulf Nuclear Energy Infrastructure Institute Class of 2012 Kicks Off with 20 Students from the Gulf Cooperation Council Home Energy Assurance Infrastructure Security Infrastructure...

  19. The Global Nuclear Energy Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

  20. Innovative Energy Efficient Industrial Ventilation 

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01

    This paper was written to describe an innovative “on-demand” industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130...

  1. Fort Collins Utilities - Commercial and Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  2. Energy Conservation in China North Industries Corporation 

    E-Print Network [OSTI]

    You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

    1985-01-01

    IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy conservation in China... North Industries Corporation. It shows how the corporation improves energy effi ciencies and how it changes constitution of fuel-- converting oil consumption to coal. Energy management organization, energy balance in plants and several specific...

  3. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    serious risks of their own; third, nuclear power will notrisks associated with the opera- tion of nuclear powernuclear power can be considered as a rational solution to our energy needs. There are risks

  4. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    nuclear plants will divert private and public investment from the cheaper and readily available renewable and energy efficiencyenergy efficiency and conservation can be more cost effective and can be deployed much sooner than new nuclear

  5. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect (OSTI)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  6. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    in the Pulp and Paper Industry: An Energy Benchmarkingin the Pulp and Paper Industries. Integrated Pollutionin the Pulp and Paper Industry: An Energy Benchmarking

  7. Policy modeling for industrial energy use

    E-Print Network [OSTI]

    2003-01-01

    CO 2 Taxation in OECD . Energy Policy 29, no. 6 (2001): 489-Economic Activity. Energy Policy 6-7 28 pp.351-501 Worrell,and Paper Industry", Energy Policy, Vol. 25, Nos. 7-9, pp.

  8. Industrial energy efficiency policy in China

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-01-01

    Economic Indicators," Energy Policy 25(7'-9): 727-744. X u ,Best Practice Energy Policies in the Industrial Sector, Mayand Intensity Change," Energy Policy 22(3): Sinton, J.E.

  9. Identifying Opportunities for Industrial Energy Conservation 

    E-Print Network [OSTI]

    Hoffman, A. R.

    1981-01-01

    The Energy Productivity Center of the Mellon Institute is engaged in a 2-year study to identify opportunities for improved U.S. industrial energy productivity. A distinguishing feature is the focus on energy services provided when fuels are consumed...

  10. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    7 th European Council for an Energy Efficient Economy SummerVoluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, West

  11. Industrial Energy Efficiency Programs: Development and Trends 

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

  12. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  13. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Heat Recovery and Energy Saving in a Bakery. ” Project No.energy in the baking industry. (Heat recovery without food contamination in a bakery. )”energy-intensive process step was used in another process step. At bakeries,

  14. Energy Intensity Indicators: Industrial Source Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  15. Low Energy Nuclear Reactions?

    E-Print Network [OSTI]

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  16. Industry Leaders Saving Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to Industrial EnergyTheJoshua DeLung

  17. Building a State Industrial Energy Efficiency Network 

    E-Print Network [OSTI]

    Ferland, K.

    2005-01-01

    Energy Efficiency Network? Kathey Ferland Project Manager Texas Industries of the Future University of Texas at Austin (512)232-4823 or kferland@mail.utexas.edu http://TexasIOF.ces.utexas.edu Texas Industries of the Future brings the tools... industrial energy users. The presentation will cover recent activities of the program, technology highlights from a conference on NOx reduction and energy efficiency, and upcoming events. ...

  18. Solar Energy Education. Industrial arts: student activities....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition You are...

  19. NGNP Nuclear-Industrial Facility and Design Certification Boundaries White Paper

    SciTech Connect (OSTI)

    Thomas E. Hicks

    2011-07-01

    The Next Generation Nuclear Plant (NGNP) Project was initiated at Idaho National Laboratory by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act and based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is helium cooled and graphite moderated and can operate at reactor outlet temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, in addition to producing electricity, which is the principal application of current LWRs. These varied industrial applications may involve a standard HTGR modular design using different Energy Conversion Systems. Additionally, some of these process heat applications will require process heat delivery systems to lie partially outside the HTGR operator’s facility.

  20. Electrical Energy Monitoring in an Industrial Plant 

    E-Print Network [OSTI]

    Dorhofer, F. J.; Heffington, W. M.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-04 REPRINTED WITH PERMISSION ELECTRICAL ENERGY MONITORING IN AN INDUSTRIAL PLANT Frank J. Dorhofer and Warren M. Heffington Energy Systems Laboratory Department of Mechanical Engineering Texas A...&M University College Station, Texas ABSTRACT The Energy Systems Laboratory (ESL) at Texas A&M University is currently monitoring the electrical energy use of a metal fabrication facility in Houston, Texas. This paper deals with the installation of the data...

  1. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

  3. Argonne's Major Nuclear Energy Milestones | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Intelligence Analysis Nuclear Engineering Nuclear Milestones Argonne's Major Nuclear Energy Milestones Argonne's reactor tree Argonne's reactor tree December 2, 1942:...

  4. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

  5. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  6. Nuclear Energy Page 570Page 570

    E-Print Network [OSTI]

    Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

  7. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    SciTech Connect (OSTI)

    none,

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage. (DMC)

  8. Energy Department Announces New Awards for Advanced Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces New Awards for Advanced Nuclear Energy Development Energy Department Announces New Awards for Advanced Nuclear Energy Development April 16, 2015 -...

  9. Developing a solar energy industry in Egypt

    E-Print Network [OSTI]

    AbdelMessih, Sherife (Sherife Mohsen)

    2009-01-01

    This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

  10. Effective Transfer of Industrial Energy Conservation Technologies 

    E-Print Network [OSTI]

    Clement, M.; Vallario, R. W.

    1983-01-01

    Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the ...

  11. Industrial Energy Systems Laboratory Mechanical Engineering

    E-Print Network [OSTI]

    Psaltis, Demetri

    in pulp and paper industry are insight-based approaches limited to local sections of the mill as they lack of Water and Energy (SOWE) Adapting SOWE to pulp and paper industry Conclusions Master's Thesis MAZIARIndustrial Energy Systems Laboratory School of Mechanical Engineering Ressources naturelles Canada

  12. The Texas Industrial Energy Conservation Program 

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01

    Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would...

  13. Symmetry Energy in Nuclear Surface

    E-Print Network [OSTI]

    Pawel Danielewicz; Jenny Lee

    2008-12-25

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

  14. Fusion Energy An Industry-Led Initiative

    E-Print Network [OSTI]

    business not big science InternationalCompetitivenessissue - $26T/yr energy market with $300B/yr futureFusion Energy An Industry-Led Initiative September 10,1993 ATeam Effort TRW General Dynamics;Energy Supply and Needs Global per capita energy usage Global Per Capita energy usage will increase even

  15. Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and

    E-Print Network [OSTI]

    Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

  16. ITP Industrial Distributed Energy: Combined Heat and Power: Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power:...

  17. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 1980–1997 Energy price bias (standard error)

  18. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    temperature (and thus the best energy-efficiency) and lowBest practices/case studies - Indian Industries, Energy-Best practices/case studies - Indian Industries, Energy-

  19. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Productivity trends in India's energy-intensive industries,estimates. However, in India, the energy trend is negativefor several energy-intensive industries in India and South

  20. Nuclear Energy Density Optimization

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

    2010-05-27

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  1. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    Energy- efficient Motor Systems: A Handbook on Technology, Program, and Policy. New Energy and Industrial

  2. Proposal for a High Energy Nuclear Database

    E-Print Network [OSTI]

    Brown, David A.; Vogt, Ramona

    2005-01-01

    Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?compilations of high-energy nuclear data for applications

  3. Proposal for a High Energy Nuclear Database

    E-Print Network [OSTI]

    Brown, David A.; Vogt, Ramona

    2005-01-01

    Proposal for a High Energy Nuclear Database XML documentsProposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?

  4. Roundtables Is nuclear energy different than other

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    Roundtables Is nuclear energy different than other energy sources? #12;Myths about nuclear claims -- the Nuclear Energy Institute (NEI), Entergy, NEI again, and the World Nuclear Association (WNA radiation releases. · Costs. Third, without citation, Pietrangelo claims, "Once a nuclear energy facility

  5. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  6. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01

    Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

  7. Otter Tail Power Company - Commercial & Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebate Program Otter Tail Power Company - Commercial & Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Agricultural Savings Category Geothermal...

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    specified in the ‘Energy Technology List’ during the yearenergy consumers in the chemical industry, and list examples of technology

  9. Process modeling and industrial energy use

    SciTech Connect (OSTI)

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  10. Nuclear Energy Research and Development Roadmap | Department...

    Broader source: Energy.gov (indexed) [DOE]

    NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and Technology Committee Appendix B to the Minutes for the Nuclear Energy Research Advisory...

  11. International Nuclear Energy Policy and Cooperation | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Nuclear Energy Policy and Cooperation Recent Events United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering...

  12. International Framework for Nuclear Energy Cooperation (IFNEC...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania...

  13. Energy Department Partners with Industry to Train Federal Energy...

    Energy Savers [EERE]

    of Energy Finalizes Regulations to Increase Energy Efficiency in New Federal Buildings by 30% Department of Energy Awards 2.2 Million to Save Energy in the Pulp and Paper Industry...

  14. The Role of Thermal Energy Storage in Industrial Energy Conservation 

    E-Print Network [OSTI]

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely...

  15. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    SciTech Connect (OSTI)

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  16. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  17. The Use of Electricity in Industry and Energy Saving - The Gamma Co-Efficient 

    E-Print Network [OSTI]

    Wolf, R.; Froehlich, R.

    1983-01-01

    Use of electricity in manufacturing processes is not only limited to its specific utilizations as motion power, lighting, electrolysis. Worldwide energy troubles involve in France a great voluntee to substitute in industrial processes the nuclear...

  18. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Vuik, Kees

    for energy, environment, and health. NRG offers a wide range of services to energy utilities, governmentNuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors

  19. Lean Analysis of Industrial Energy Assessment 

    E-Print Network [OSTI]

    Viera, R. J.; Lee, J.; McInerny, S.

    2015-01-01

    Energy Assessments Raul Viera, Jim Lee, Sally Ann McInerny, and Zahra Sardoueinasab Mechanical Engineering University of Louisiana at Lafayette IETC Conference June 2015 ESL-IE-15-06-19 Proceedings of the Thrity-Seventh Industrial Energy Technology... Conference New Orleans, LA. June 2-4, 2015 Research for a reason. LOUISIANA SMART AND SECURE ENERGY LABORATORY (LASSEL) Replacement to Louisiana Industrial Assessment Center (LIAC): • LIAC at UL Lafayette from1999-2012, Funded by the DOE • Last year...

  20. Energy Industry Days- Performance Contracting- Sacramento, CA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy is hosting several Energy Industry Day events to promote and publicize opportunities for small businesses seeking to meet DOE support requirements. Opportunities will be available for attendees to learn of potential partnerships with prime and subcontracting companies. These Energy Industry Day events would both support the agency's commitment to DOE's "Small Business First Policy" and would provide dedicated sessions that introduce Energy Service Companies (ESCOs) and other prime contract holders with small business.

  1. Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01

    Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -Northeast Asian nuclear energy cooperation advanced byAsia). 2 Cooperation on nuclear energy would have a direct

  2. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  3. Energy Secretary Moniz Announces Formation of Nuclear Energy...

    Office of Environmental Management (EM)

    Formation of Nuclear Energy Tribal Working Group Energy Secretary Moniz Announces Formation of Nuclear Energy Tribal Working Group December 12, 2014 - 2:00pm Addthis News Media...

  4. Energy Department Announces New Awards for Advanced Nuclear Energy...

    Office of Environmental Management (EM)

    Awards for Advanced Nuclear Energy Development Energy Department Announces New Awards for Advanced Nuclear Energy Development April 16, 2015 - 12:46pm Addthis NEWS MEDIA CONTACT...

  5. Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness 

    E-Print Network [OSTI]

    Glaser, C.

    1992-01-01

    AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY, WASHINGTON, D.C. ABSTRACT..., economically sou environmentally sustainable fut wareness at nal Energy g 1991, has ficiency 1 in building nd, and ure ( I} ? The U.S. Department of Energy (DOE ) , Office of Industrial Technologies (OIT), number of programs that are all goals...

  6. Industry Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE Supports the deployment ofIndustry

  7. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    Tracking Industrial Energy Efficiency and CO2 Emissions: Aapplication of Energy Efficiency in Industry, Vienna,for Promoting Industrial Energy Efficiency in Developing

  8. NUCLEAR FISSION AND FUSION 6.A Nuclear Binding Energies

    E-Print Network [OSTI]

    Boal, David

    CHAPTER 6 NUCLEAR FISSION AND FUSION 6.A Nuclear Binding Energies A nucleus is characterized emphasis on the nuclear charge, the mass number of a nucleus plays a large role in its binding energy, and is denoted by 7Li. Some further items from the nuclear lexicon: nuclei with the same Z and differing N

  9. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    Efficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial Technologies

  10. Office Of Nuclear Energy

    Energy Savers [EERE]

    irradiation effect * Demonstrate the TEG-powered WSN prototype 3 Background and motivation * TEG is very compact and reliable * Heat sources are very abundant in nuclear power...

  11. Office Of Nuclear Energy

    Broader source: Energy.gov (indexed) [DOE]

    Attributes of Software-Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants) (Carol Smidts) (The Ohio State University) (NEET 2) October 28-29, 2015...

  12. Solar Industry Scorches Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Solar Industry Scorches Records March 6, 2014 - 5:24pm Addthis Workers install a solar energy system on the rooftop of a home in Golden, Colorado. More than 4,751...

  13. DOE Announces First Companies to Receive Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces First Companies to Receive Industrial Energy Efficiency Certification DOE Announces First Companies to Receive Industrial Energy Efficiency Certification December 9,...

  14. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Office of Environmental Management (EM)

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

  15. Energy Storage Solutions Industrial Symposium | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

  16. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

  17. Government and Industry A Force for Collaboration at the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

  18. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  19. Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities 

    E-Print Network [OSTI]

    Kelly, R. L.

    1980-01-01

    As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

  20. Financing of Industrial Energy Efficiency Through State Energy Offices 

    E-Print Network [OSTI]

    Elliott, R. N.; Weidenbaum, A.

    1994-01-01

    The New York State Energy Office Energy Investment Loan Program has a uniquely successful track record on financing industrial energy efficiency projects. The program is conducted in cooperation with 105 financial institutions in New York State...

  1. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  2. Comprehensive Energy Efficiency in the Process Industries 

    E-Print Network [OSTI]

    Rossiter, A.

    2015-01-01

    Efficiency in the Process Industries Alan Rossiter Rossiter & Associates alan@rossiters.org Beth Jones LyondellBasell (ret) ESL-IE-15-06-15a Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 The Main.... June 2-4, 2015 Keys to Improvement •Behavioral changes ? people and organizations ? no-cost savings •Process improvements ? typically capital projects ESL-IE-15-06-15a Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans...

  3. INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR DATA SERVICES

    E-Print Network [OSTI]

    Cullen, Red

    INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR DATA SERVICES DOCUMENTATION SERIES OF THE IAEA NUCLEAR data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; nuclear data 2014) by Dermott E. Cullen National Nuclear Data Center, BNL, alumnus Nuclear Data Section, IAEA

  4. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities safety of nuclear facilities could benefit from the use of smart materials technologies in both

  5. October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

  6. Energy Efficiency Programs for Small and Medium Sized Industry 

    E-Print Network [OSTI]

    Shipley, A. M.; Elliott, R. N.

    2001-01-01

    Abundant, low-cost energy efficiency opportunities exist in industries with a high representation of small and medium-sized manufacturers. Small industrial facilities with fewer than 250 employees consume 25% of all industrial energy. Designing...

  7. Financing the growth of energy efficiency service industry in Shanghai

    E-Print Network [OSTI]

    Lin, Jiang; Gilligan, Donald; Zhao, Yinghua

    2005-01-01

    capacity to use to finance an energy-saving project. Becausefinance for other reasons. Industrial customers typically expected a very short payback on energyfinance industrial and commercial projects. The resistance of commercial and industrial customers to implementing energy

  8. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    Cost Reduction in the Pulp and Paper Industry: An EnergyTechniques in the Pulp and Paper Industries. IntegratedCost Reduction in the Pulp and Paper Industry: An Energy

  9. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  10. Mechanical Engineering Industrial Energy Systems Laboratory

    E-Print Network [OSTI]

    Candea, George

    's operation consists of two succeeding cycles, heat-pump and thermal- engine which represents the chargingSchool of Mechanical Engineering Industrial Energy Systems Laboratory Study of the Integration of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR

  11. Energy Flow Models for the Steel Industry 

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    1998-01-01

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  12. Integrated Systems Plus Principles Approach to Industrial Energy Efficiency

    E-Print Network [OSTI]

    Kissock, Kelly

    Integrated Systems Plus Principles Approach to Industrial Energy Efficiency Tim Raffio, Hang Zhang the environmental impacts of energy use drive improvements in manufacturing energy efficiency. This paper presents a systematic approach for improving industrial energy efficiency that breaks complicated manufacturing

  13. Motech Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoeOhio:LightNewIndustries Jump

  14. Despatch Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals Ltd BHELEuropeLage LandenDespatch Industries Jump

  15. California Industrial Energy Efficiency Potential

    E-Print Network [OSTI]

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

    2005-01-01

    Bakery - Process (Mixing) - O&M O&M / Drives Spinning Machines O&M - Extruders/Injection Molding All Power recovery Energy

  16. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    Industrial Technologies Program provides many software tools for assessing energy efficiency of motors,

  17. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    implementation of energy-efficiency and greenhouse gasWorking Group on Energy-Efficiency and Clean EnergyTracking Industrial Energy Efficiency and CO2 Emissions.

  18. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Pharmaceutical Industry .17 5.1 Energy Managementthe U.S. pharmaceutical industry. General Energy managementpharmaceutical industry. A focused and strategic energy management

  20. A Strategy for Nuclear Energy Research and Development

    SciTech Connect (OSTI)

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

  1. Nuclear symmetry energy at subnormal densities from measured nuclear masses

    E-Print Network [OSTI]

    Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

    2010-11-17

    The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

  2. Student Trainee (Energy Industry Analyst)

    Broader source: Energy.gov [DOE]

    Are you seeking challenging assignments working for a dynamic agency while gaining real-world experience? We are looking for the best and brightest to help us shape the future of the energy...

  3. Energy Conservation Through Improved Industrial Ventilation in Small and Medium-Sized Industrial Plants 

    E-Print Network [OSTI]

    Saman, N. F.; Nutter, D. W.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-03 REPRINTED WITH PERMISSION ENERGY CONSERVATION THROUGH IMPROVED INDUSTRIAL VENTILATION IN SMALL AND MEDIUM-SIZED INDUSTRIAL PLANTS Namir Saman, Ph.D., P.E. Visiting Assistant Professor Energy System... Laboratory Texas A&M University ABSTRACT This paper discusses energy conservation projects in the area of industrial ventilation that have been recommended by the Texas A&M University Energy Analysis and Diagnostic Center (EADQ to small and medium...

  4. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind CareerEnergy NuclearNuclear Safety

  5. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Li, Cheng; Tsang, M B; Zhang, Feng-Shou

    2015-01-01

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  6. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Cheng Li; S. R. Souza; M. B. Tsang; Feng-Shou Zhang

    2015-05-18

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  7. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  8. Sandia Energy - Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |Education STEMA GreenAdvanced Nuclear

  9. High Energy Physics and Nuclear Physics Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01

    High Energy Physics and Nuclear Physics Network RequirementsCalifornia. High Energy Physics and Nuclear Physics Networkof High Energy Physics and Nuclear Physics, DOE Office of

  10. Draft Advanced Nuclear Energy Solicitation Fact Sheet | Department...

    Energy Savers [EERE]

    Draft Advanced Nuclear Energy Solicitation Fact Sheet Draft Advanced Nuclear Energy Solicitation Fact Sheet Draft Advanced Nuclear Energy Projects Solicitation Fact Sheet...

  11. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  12. The US textile industry: An energy perspective

    SciTech Connect (OSTI)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  13. Innovative Software Tackles Nuclear Industry Challenges | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice| Department of Energy Review of Windfor NuclearEnergy

  14. Jax Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:SouthLLCJavaJax

  15. Nuclear Power Trends Energy Economics and Sustainability

    E-Print Network [OSTI]

    Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear Nuclear Today · 439 nuclear power reactors (31 countries) · Over 12,000 years of operating experience · Nuclear reactors supply 16% of the world's electricity as base-load power (372,000 MWe of total capacity

  16. Nuclear methods in environmental and energy research

    SciTech Connect (OSTI)

    Vogt, J R

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  17. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  18. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Turner, W. C.; Estes, C. B.

    1982-01-01

    definitions were given (BTU, Therm, etc.), along with the basic laws of thermodYnamics. Then, some conversion figures were given to compare var ious forms of energy. Finally, a brief tutorial on meter reading, demand charge, power factor, and other...

  19. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water Purification Process As...

  20. Energy Department Partners with State, City and Industry Stakeholders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State, City and Industry Stakeholders to Help Hoboken Region Improve Its Electric Grid in the Aftermath of Hurricane Sandy Energy Department Partners with State, City and Industry...

  1. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure |Cafés NovemberServices »Nuclear

  2. Nuclear | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work FeaturedNuclearNP Homenuclear

  3. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  4. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Onsite Energy: CHP System Provides Reliable Energy for a Verizon Telecommunications Switching Center csverizon.pdf More Documents & Publications Case Study: Fuel Cells...

  5. Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Nuclear Safety The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and guidance including policy and requirements relating to...

  6. Greenline Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to: navigation, Logo: Greenlight EnergyGreenline

  7. Ventower Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind PowerUnisonEnergia eVentower

  8. Benteler Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado: Energy Resources Jump to:Benteler

  9. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy Resources Jump to: navigation, search

  10. Energy Efficiency in the Microelectronics Industry 

    E-Print Network [OSTI]

    Bhatti, B.

    1998-01-01

    Distnbution and how a system approach to understanding these can result in developing energy efficient sites for this industry. OVERVIEW Almost all sites trend and trdck their electric demand KW and KWH profile along with their electric utility bill... selected buildings with utility rdtes and air and plant system simulated data generdting a variety of outputs to display total energy use information. We will use this to generdte KW, KWH profIles and then component annual electric costs. igure 3...

  11. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    SciTech Connect (OSTI)

    J. Stephen Herring

    2010-10-01

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  12. Fact Sheet INDUSTRIAL SUPERIOR ENERGY PERFORMANCE (SEP) RATEPAYER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL SUPERIOR ENERGY PERFORMANCE (SEP) RATEPAYER-FUNDED ACCELERATOR Learn more at energy.govbetterbuildings What Is Strategic Energy Management (SEM)? Many companies use...

  13. Value Capture in the Global Wind Energy Industry

    E-Print Network [OSTI]

    Dedrick, Jason; Kraemer, Kenneth L.

    2011-01-01

    investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

  14. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

  15. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for integrated system options; 5. Identify experimental needs to develop and demonstrate nuclear-renewable energy systems.

  16. Setting the Standard for Industrial Energy Efficiency

    SciTech Connect (OSTI)

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement, documentation, and continuousimprovement.

  17. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment|ReserveofIndustrial

  18. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  19. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...

    Office of Environmental Management (EM)

    Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities...

  20. Energy Analysis and Diagnostics Data Analysis From Industrial Energy Assessments for Manufacturing Industries 

    E-Print Network [OSTI]

    Gopalakrishnan, B.; Plummer, R. W.; Srinath, S.; Meffe, C. M.; Ipe, J. J.; Veena, R.

    1997-01-01

    m fil o N (") QFORSIC32 Figure 6. Energy consumption for SIC 32 SIC 35 type of industry, which is associated with machinery manufacture. This is probably due to the need for adequate lighting for precision inspection and the possibility...

  1. Nuclear energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishiCleanAlincaUK LtdCorp L T JV Jump

  2. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution Distributed Fiber-Optic

  3. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution Distributed

  4. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution DistributedOperator

  5. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution DistributedOperator(A

  6. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial Resolution

  7. Office Of Nuclear Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHigh Spatial ResolutionMicro-Pocket Fission

  8. Department of Energy Announces 24 Nuclear Energy Research Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm...

  9. Department of Energy Announces 24 Nuclear Energy Research Awards...

    Office of Environmental Management (EM)

    24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

  10. Changing Industrial Energy Behavior Via Education: Case Study of an Energy Efficiency Refrigeration Certification

    E-Print Network [OSTI]

    McClaren, Mersiha; Phoutrides, Steve; O'Neil, Nick; McRae, Marjorie

    2015-01-01

    Changing Industrial Energy Behavior Via Education: Casewith the operation of industrial refrigeration plants,aim was to encourage industrial refrigeration professionals

  11. Industrial Energy Use and Energy Efficiency in Developing Countries 

    E-Print Network [OSTI]

    Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

    1996-01-01

    The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

  12. DOE/Industrial Matching Grant to Support Nuclear Engineering and Nuclear-Related /Disciplines

    SciTech Connect (OSTI)

    Slaughter, David M. (Principal Investigator)

    2002-08-31

    Final Report - Assurance is given that monies received through the matching grant were, in general, disburse as outlined in the original proposal. Specifically, the grant funded graduate students who participated in the nuclear engineering course opinions. The contract provided for a number of research stipends and student salaries for graduates working with industrial partners affiliated with the CENTER/NEP program (i.e., Envirocare, E-cubed, Aerotest, Little Mountain/Boeing). When necessary, supplies were purchased that supported these student activities. No funds were distributed for faculty or staff salaries.

  13. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishiCleanAlincaUK LtdCorp L T JV

  14. Nuclear Energy Advisory Committee

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008 MEMORANDUM FOR DISTRIBUTION Aof December 9, 2010

  15. Nuclear Energy University Programs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008 MEMORANDUM FOR DISTRIBUTION AofDepartment

  16. Nuclear Energy University Programs

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e OfficeResearch and Development

  17. Riverland Energy Cooperative - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    units, and agricultural equipment. All rebates except for the lighting rebates require load management control. Rebates also exist for home energy audits, implementation of...

  18. Software Certification Experience in the Canadian Nuclear Industry: Lessons for the Future

    E-Print Network [OSTI]

    Lawford, Mark

    Keywords nuclear, software certification, safety-critical software 1. INTRODUCTION The computer controlled the first nuclear safety systems in Canada that were software based. This posed a problem for the regulatorsSoftware Certification Experience in the Canadian Nuclear Industry: Lessons for the Future Alan

  19. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and...

  20. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Environmental Management (EM)

    Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation presentation.pdf...

  1. Measuring the Social Rate of Return to R&D in the Energy Industry: A Study of the OECD Countries

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    and development in the energy industry using a similar approach to Jones and Williams (1998). Our model tries1 Measuring the Social Rate of Return to R&D in the Energy Industry: A Study of the OECD Countries in the manufacturing of coal, petroleum products and nuclear fuel sector for a number of OECD countries. Using a panel

  2. DOE Selects 26 Universities to Assess Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Selects 26 Universities to Assess Industrial Energy Efficiency DOE Selects 26 Universities to Assess Industrial Energy Efficiency July 24, 2006 - 4:32pm Addthis Smart use of...

  3. Adaptive Management in the Marine Renewable Energy Industry Webinar...

    Office of Environmental Management (EM)

    Adaptive Management in the Marine Renewable Energy Industry Webinar Adaptive Management in the Marine Renewable Energy Industry Webinar December 10, 2015 8:30AM to 10:00AM PST As...

  4. Carbon Fiber and Clean Energy: 4 Uses for Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber and Clean Energy: 4 Uses for Industry Carbon Fiber and Clean Energy: 4 Uses for Industry February 7, 2014 - 3:27pm Addthis Oxidized fibers move to a high temperature...

  5. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  6. Process Energy Audit for Large Industries 

    E-Print Network [OSTI]

    Chari, S.

    1993-01-01

    of the auditor, process improvements would be identified. A systems approach would be used in identifying process improvement. Task 12 ? Identification of Demand Side Management Technologies A derivative of Task 12 would be the identification of DSM... will consist of results of all the tasks. Example Audits. Having discussed the general audit procedure for a comprehensive audit, the following on a few energy intensive industries such as: ? cement ? chloralkalies ? foundry ? paper manufacturing...

  7. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  8. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  9. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    first, investments in nuclear power are risky as indicatedto stay clear; second, nuclear power plants are statedrisks of their own; third, nuclear power will not reduce our

  10. Mining Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utilities, the primary metals industry, non-metallic minerals industry (glass, cement, lime), and the construction industry. Employment Mining operations are often the leading...

  11. Nuclear Reactions at Intermediate Energies

    E-Print Network [OSTI]

    Shyam, Radhey

    2015-01-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant $\\alpha_s$ is large enough ($\\sim$ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss applications of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  12. INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE

    E-Print Network [OSTI]

    INDUSTRIAL ENERGY DATA COLLECTION IN CANADA: EXISTING SYSTEM AND PROPOSED FUTURE DEVELOPMENT. Parminder S. Sandhu Paul Willis October 1994 #12;Industrial Energy Data Collection in Canada: Existing. INTRODUCTION 1 3. NEED FOR INDUSTRIAL ENERGY DATA COLLECTION 2 PART 1 EVALUATION OF EXISTING DATA COLLECTION

  13. The Use of Thorium within the Nuclear Power Industry - 13472

    SciTech Connect (OSTI)

    Miller, Keith [The UK's National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington WA3 6AE (United Kingdom)] [The UK's National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington WA3 6AE (United Kingdom)

    2013-07-01

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ?0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, from the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)

  14. Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects

    E-Print Network [OSTI]

    2001-01-01

    industrial energy- efficiency and electric power projects.of Industrial Energy-Efficiency and Electric Power Projectsof Industrial Energy-Efficiency and Electric Power Projects

  15. Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergy InformationDepot IncHome Jump to:Solar

  16. Colorado Industrial Energy Challenge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof theAction No. 08-cv-01624 (FebruaryThe

  17. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    installations in the paper industry. In: Proceedings 1995in the pulp and paper industry, food processing, industrialIndustry Number of case studies Food manufacturing Building materials Steel manufacturing Paper

  18. Anomalies in Proposed Regulations for the Release of Redundant Material from Nuclear and Non-nuclear Industries

    SciTech Connect (OSTI)

    Menon, S.

    2002-02-26

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of T ENORM, specially the activity levels and quantities arising in so many nonnuclear industries. The first reaction of international organizations seems to have been to propose ''double'' standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are, however, many significant strategic issues that need to be discussed and resolved. An interesting development, for both the nuclear and non-nuclear industries, is the increased scientific scrutiny that the populations of naturally high background dose level areas of the world are being subject to. Preliminary biological studies have indicated that the inhabitants of such areas, exposed to many times the permitted occupational doses for nuclear workers, have not shown any differences in cancer mortality, life expectancy, chromosome aberrations or immune function, in comparison with those living in normal background areas. The paper discusses these and other strategic issues regarding the management of nuclear and non-nuclear radioactive material, underlining the need for consistency in regulatory treatment.

  19. Barriers to Industrial Energy Efficiency - Report to Congress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress, June 2015 Barriers to Industrial Energy Efficiency - Report to Congress, June 2015 This report examines barriers that impede the adoption of energy efficient...

  20. Barriers to Industrial Energy Efficiency - Study (Appendix A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study (Appendix A), June 2015 Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015 This study examines barriers that impede the adoption of energy efficient...

  1. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  2. Industrial Energy Efficiency and Combined Heat and Power Fact Sheet

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2012-07-16

    Provides an overview of the State and Local Energy Efficiency Action Network's (SEE Action) Industrial Energy Efficiency and Combined Heat and Power Working Group.

  3. Global Energy Efficient IT Equipment Industry 2015 Market Research...

    Open Energy Info (EERE)

    Global Energy Efficient IT Equipment Industry 2015 Market Research Report Home Gosreports's picture Submitted by Gosreports(70) Contributor 30 June, 2015 - 20:07 Global Energy...

  4. Sandia Energy - JBEI Research Receives Strong Industry Interest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Receives Strong Industry Interest in DOE Technology Transfer Call Home Renewable Energy Energy Biofuels Facilities Partnership JBEI News News & Events Research &...

  5. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  6. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  7. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  8. Millennium Energy Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump

  9. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01

    company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry – Danish Energy

  10. Harry Potter, Oxford and Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford...

  11. An Overview of the Regulation of Low Dose Radiation in the Nuclear and Non-nuclear Industries

    SciTech Connect (OSTI)

    Menon, Shankar; Valencia, Luis; Teunckens, Lucien

    2003-02-27

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of TENORM, specially the activity levels and quantities arising in so many non-nuclear industries. The first reaction of international organizations seems to have been to propose different standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to thirty to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are significant strategic issues that need to be discussed and resolved. Some examples of these are: - Disposal aspects of long-lived nuclides, - The use of radioactive residues in building materials, - Commercial aspects of differing and discriminating criteria in competing power industries in a world of deregulated electric power production. Of even greater importance is the need for the discussion of certain basic issues, such as - The quantitative risk levels of exposure to ionizing radiation, - The need for in-depth studies on populations of the naturally high background dose level areas of the world, - The validity of the various calculation codes currently used to arrive at mass specific clearance levels for redundant material. The paper discusses these and other strategic issues regarding the management of redundant low radiation material from both the nuclear and non-nuclear industries, underlining the need for consistency in regulatory treatment.

  12. Advanced Nuclear Energy Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram Manager DirectoryofDOEAccomplishmentsAdv.Advanced Nuclear Energy Projects

  13. Industry, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant

  14. Industry, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant(Redirected from

  15. Energy Industries of Ohio | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko,ServiziEnergyIndexFinancing Incof Ohio

  16. Advanced Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSA Jump to:Adani Enterprises Ltd

  17. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect (OSTI)

    Scharf, Mesa P.; Bower, Ward Isaac; Mills-Price, Michael A.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Industrial Electric Motor Systems Market Opportunities Assessment. Prepared for the United States Department of Energy’Motor. Office of Energy Efficiency and Renewable Energy, Industrial

  19. Could energy intensive industries be powered by carbonfree electricity?

    E-Print Network [OSTI]

    MacKay, David J.C.

    requirements. Keywords: power per unit area; wind; nuclear; bioenergy 1. Overview Industry accounts for roughly of countries in 2005, and on the horizontal axis their population densities.) So, I will focus on per

  20. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  1. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    in the iron and steel industry include pumps for circulatingU.S. textile industry steam and motor-driven systems (pumps,Industry Program for Energy Conservation (CIPEC), 2007b.Team up for energy savings-Fans and Pumps.

  2. Videocon Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:Standards JumpUSA JumpVideocon Industries Ltd Jump

  3. Industrial Geospatial Analysis Tool for Energy Evaluation 

    E-Print Network [OSTI]

    Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

    2013-01-01

    Technology Conference New Orleans, LA. May 21-24, 2013 23 Presentation name Questions Contact: Nasr Alkadi Industrial Energy Efficiency Oak Ridge National laboratory, ORNL 865-946-1558 636-734-4143 alkadine@ornl.gov or nasr.alkadi@gmail.com ESL-IE-13....D., CEM (ORNL) Michael Starke, Ph.D. (ORNL) Ookie Ma, Ph.D. (DOE) Sachin Nimbalkar, Ph.D. (ORNL) Daryl Cox (ORNL) Kevin Dowling, University of Tennessee, Knoxville Brandon Johnson, University of Tennessee, Knoxville Saqib Khan, University of Texas...

  4. IFB Agro Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro Industries Ltd Jump to:

  5. PRAJ Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to: navigation,GridWisePPLPRAJ Industries Ltd

  6. Integrated Biodiesel Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMaking EnergyIndosolarInnovasolPowerAfricanIndustries Ltd

  7. Toray Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFRTopTen EnergyToray Industries Inc

  8. Ashkelon Technological Industries ATI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelon Technological Industries

  9. Cardinal Glass Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy ResourcesRanchCirculatingGlass Industries

  10. Industrial Assessment Centers (IACs) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice| Department of Energy Review of theapproach is,Industrial

  11. Making glue in high energy nuclear collisions

    E-Print Network [OSTI]

    Alex Krasnitz; Raju Venugopalan

    1999-05-12

    We discuss a real time, non-perturbative computation of the transverse dynamics of gluon fields at central rapidities in very high energy nuclear collisions.

  12. International Nuclear Energy Research Initiative, Fiscal Year...

    Broader source: Energy.gov (indexed) [DOE]

    Area: Reactor Concepts RD&D Project Start Date: January 2011 Project End Date: December 2013 38 | International Nuclear Energy Research Initiative (I-NERI) Fiscal Year 2011...

  13. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  14. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    & Screening of Fuel Cycle Options Advanced Fuel Development · Thorium Fuel Cycles · Silicon Carbide - 1996* Advanced Nuclear Fuels* Materials in Radiation Environments* * Continuing program within NS Nuclear Safety Advanced Nuclear Systems · Radiation Resistant Materials · Accident Tolerant Fuels

  15. International co-operation on industrial energy efficiency

    E-Print Network [OSTI]

    Ahrendt, Wolfgang

    International co-operation on industrial energy efficiency IEA-IETS WWW.IEA-INDUSTRY.ORG Jan Sandvig Nielsen Weel & Sandvig IEA-IETS chair #12;Outline · International Energy Agency - IEA · IEA in IEA PI activities #12;IEA key activities · Energy statistics ­ Key world energy statistics ­ Country

  16. Understanding the Challenges in the Transition from Film Radiography in the Nuclear Power Industry

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Moran, Traci L.; Nove, Carol A.; Pardini, Allan F.

    2012-09-01

    Nondestructive examination (NDE) applications in the nuclear power industry using film radiography are shrinking due to the advent of modern digital imaging technologies and advances in alternative inspection methods that do not present an ionizing radiation hazard. Technologies that are used routinely in the medical industry for patient diagnosis are being adapted to industrial NDE applications including the detection and characterization of defects in welds. From the user perspective, non-film inspection techniques provide several advantages over film techniques. It is anticipated that the shift away from the application of film radiography in the nuclear power industry represents an irreversible trend. The U.S. Nuclear Regulatory Commission (NRC) has noted this trend in the U.S. nuclear power industry and will be working to ensure that the effectiveness and reliability of component inspections is not compromised by this transition. Currently, specific concerns are associated with 1) obtaining a fundamental understanding of how inspection effectiveness and reliability may be impacted by this transition and 2) ensuring training standards and qualifications remain compatible with modern industrial radiographic practice. This paper discusses recent trends in industrial radiography and assesses their advantages and disadvantages from the perspective of nuclear power plant component inspections.

  17. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    planning and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, for Weapons Ac- tivities and Defense Nuclear Nonproliferation, and Federal employees at the NNSA service379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

  18. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, and Naval pro- gram direction for Weapons Activities and Defense Nuclear Nonproliferation, and Federal employees361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

  19. Nuclear Energy's Renaissance Andrew C. Kadak

    E-Print Network [OSTI]

    23% 22% 3% 8% 3% 41% Electricity Production Source: EIA Gas 15% Hydro 8% Coal 51% Oil 3% Other 2 (1) Beaver Valley (2) 103 Nuclear Power Plants Totaling 97,018 MWe Columbia (1) Diablo Canyon (2) San Nuclear Power Plants Totaling 97,018 MWe 103 Nuclear Power Plants Totaling 97,018 MWe National Energy

  20. Theories of Low Energy Nuclear Transmutations

    E-Print Network [OSTI]

    Y. N. Srivastava; A. Widom; J. Swain

    2012-10-27

    Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

  1. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    Emissions in the U.S. Pulp and Paper Industry. Berkeley, CA:for the cement and pulp and paper industries. Area b 2030opportunities in the pulp and paper industry consist of

  2. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    in the U.S. Pulp and Paper Industry. Berkeley, CA: Lawrenceand pulp and paper industries. Area b 2030 production (Mt) aPlantation Products and Paper Industry Council,

  3. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    of the size of the paper industry. 2. Prices In addition toparticu- larly the paper industry. However, it is importantin U.S. only H€aVy industry Paper 4-2 Sweden more electric (

  4. Energy Management Services for the Industrial Market Segment at TVA 

    E-Print Network [OSTI]

    Hamby, R. E.; Knight, V. R.

    1984-01-01

    The Tennessee Valley Authority has provided energy management surveys (EMSs) to commercial and industrial power consumers since 1979. A significant number of EMSs have been performed to a variety of industry types and sizes. As in all developmental...

  5. Online Modeling in the Process Industry for Energy Optimization 

    E-Print Network [OSTI]

    Alexander, J.

    1988-01-01

    "This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

  6. Industrial Energy Auditing - A Short Course for Engineers 

    E-Print Network [OSTI]

    Witte, L. C.

    1979-01-01

    This paper describes an intensive five day short course, directed toward engineers currently working in industry, which provides the participants with the rudiments of industrial energy auditing. Experience has shown that this format of training can...

  7. Energy Efficiency Opportunities in the Stone and Asphalt Industry 

    E-Print Network [OSTI]

    Moray, S.; Throop, N.; Seryak, J.; Schmidt, C.; Fisher, C.; D'Antonio, M.

    2006-01-01

    of locations use underground mines. Mining methods involve removing the overburden to extract the underlying rock deposits. Tricone rotary drills, long-hole percussion drills, and churn drills are used to create the blast holes in the rocks. Blasting... Energy & Resource Solutions, Inc. Haverhill, MA Abstract The highly energy-intensive stone mining and crushing industry, grouped with other mining industries, has been one of the focal sectors of the US Department of Energy’s Industries...

  8. Tuesday Webcasts for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tuesday Webcasts for Industry Tuesday Webcasts for Industry Learn about AMO's software tools, technologies, partnership opportunities, and other resources by watching the Tuesday...

  9. Passive Solar Industries Council | Open Energy Information

    Open Energy Info (EERE)

    Passive Solar Industries Council Jump to: navigation, search Name: Passive Solar Industries Council Place: Ashland, OR Information About Partnership with NREL Partnership with NREL...

  10. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

  11. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    R.R. ,et al . (2004) Eco-industrial park initiatives in thea CHP plant) form an eco-industrial park that serves as an

  12. GNEP Element:Minimize Nuclear Waste | Department of Energy

    Office of Environmental Management (EM)

    Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP Element:Demonstrate More Proliferation-Resistant Recycling...

  13. Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value

    E-Print Network [OSTI]

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2008-01-01

    LBNL-58504 http://industrial-energy.lbl.gov/node/294Certifying Industrial Energy Efficiency Performance:Williams, United Nations Industrial Development Organization

  14. Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry 

    E-Print Network [OSTI]

    Lowe, E. T.

    1995-01-01

    . Although many electricity providers will offer their services in a restructure U.S. electricity market, it is not clear which pow r producers industrial customers wil1 buy from. James Rouse, associate director of energy policy for Praxair, Inc., thinks... the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 choices we will have will force [utilities 'J rates down" (1). Electric Industry Restructuring in the United Kingdom The open access system for electricity being implemented...

  15. Industrial Energy Efficiency in Ukraine: The Business Outlook 

    E-Print Network [OSTI]

    Evans, M.

    1996-01-01

    Ukraine is full of profitable opportunities for energy efficiency. Industry accounts for many of these opportunities because of its high level of energy consumption and its ability to pay for energy efficiency measures in hard currency. This paper...

  16. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    well as the potential for the use of renewable energy in thevarious potentials for the use of renewable energy in thepotential in Turkish textile industry: Case study for city of Bursa. ? Renewable and Sustainable Energy

  17. Using DOE Industrial Energy Audit Data for Utility Program Design 

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    1993-01-01

    The U.S. Department of Energy (DOE), Energy Analysis and Diagnostic Center Program has offered no-cost energy conservation audits to industrial plants since 1976. The EADC program has maintained a database of detailed plant and audit information...

  18. Incremental Implementation of Energy Management at Industrial Facilities 

    E-Print Network [OSTI]

    Brown, M.; Key, G.

    2005-01-01

    The essential elements of a sustainable energy management program at industrial facilities are defined in the ANSI/MSE 2000 Management System for Energy standard document. Although many organizations have expressed interest in improving their energy...

  19. Energy Challenges and Conservation Achievements in the Aluminum Industry 

    E-Print Network [OSTI]

    Sheldon, A. C.

    1979-01-01

    Energy is a vital resource in the production of aluminum. It is economically essential that producers use it efficiently. The aluminum industry developed historically in an economy of energy surplus or abundance. It has responded to energy...

  20. Industrial Energy Conservation in Central America and Panama 

    E-Print Network [OSTI]

    Oven, M. J.; Pashkevich, P. A.

    1985-01-01

    The Regional Industrial Energy Efficiency Project (RIEEP) is the largest and most comprehensive energy conservation effort in Central America and Panama. This paper describes the regional economic and energy situation leading up to the project...

  1. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    S. , 1990. Energy Outlook in West Germany’s Cement Industry.Energy, Emissions, Savings Potential and Policy Actions, Fraunhofer Institute for Systems Technology and Innovation, Karlsruhe, Germany.Wiesbaden, Germany: 296-304. Caffal, C. 1995. Energy

  2. A Field Tested Model of Industrial Energy Conservation Assistance to Small Industries 

    E-Print Network [OSTI]

    Jendrucko, R. J.; Mitchell, D. S.; Snyder, W. T.; Symonds, F. W.

    1980-01-01

    industrial energy audits of Tennessee manufacturing firms from which over 150 feasible ECO's have been identified and analyzed. The process consists of the following steps: (1) Analyzing energy consumption and costs for a two year period; (2) Conducting a one...

  3. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  4. India's baseline plan for nuclear energy self-sufficiency.

    SciTech Connect (OSTI)

    Bucher, R .G.; Nuclear Engineering Division

    2009-01-01

    India's nuclear energy strategy has traditionally strived for energy self-sufficiency, driven largely by necessity following trade restrictions imposed by the Nuclear Suppliers Group (NSG) following India's 'peaceful nuclear explosion' of 1974. On September 6, 2008, the NSG agreed to create an exception opening nuclear trade with India, which may create opportunities for India to modify its baseline strategy. The purpose of this document is to describe India's 'baseline plan,' which was developed under constrained trade conditions, as a basis for understanding changes in India's path as a result of the opening of nuclear commerce. Note that this treatise is based upon publicly available information. No attempt is made to judge whether India can meet specified goals either in scope or schedule. In fact, the reader is warned a priori that India's delivery of stated goals has often fallen short or taken a significantly longer period to accomplish. It has been evident since the early days of nuclear power that India's natural resources would determine the direction of its civil nuclear power program. It's modest uranium but vast thorium reserves dictated that the country's primary objective would be thorium utilization. Estimates of India's natural deposits vary appreciably, but its uranium reserves are known to be extremely limited, totaling approximately 80,000 tons, on the order of 1% of the world's deposits; and nominally one-third of this ore is of very low uranium concentration. However, India's roughly 300,000 tons of thorium reserves account for approximately 30% of the world's total. Confronted with this reality, the future of India's nuclear power industry is strongly dependent on the development of a thorium-based nuclear fuel cycle as the only way to insure a stable, sustainable, and autonomous program. The path to India's nuclear energy self-sufficiency was first outlined in a seminal paper by Drs. H. J. Bhabha and N. B. Prasad presented at the Second United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. The paper described a three stage plan for a sustainable nuclear energy program consistent with India's limited uranium but abundant thorium natural resources. In the first stage, natural uranium would be used to fuel graphite or heavy water moderated reactors. Plutonium extracted from the spent fuel of these thermal reactors would drive fast reactors in the second stage that would contain thorium blankets for breeding uranium-233 (U-233). In the final stage, this U-233 would fuel thorium burning reactors that would breed and fission U-233 in situ. This three stage blueprint still reigns as the core of India's civil nuclear power program. India's progress in the development of nuclear power, however, has been impacted by its isolation from the international nuclear community for its development of nuclear weapons and consequent refusal to sign the Nuclear Nonproliferation Treaty (NPT). Initially, India was engaged in numerous cooperative research programs with foreign countries; for example, under the 'Atoms for Peace' program, India acquired the Cirus reactor, a 40 MWt research reactor from Canada moderated with heavy water from the United States. India was also actively engaged in negotiations for the NPT. But, on May 18, 1974, India conducted a 'peaceful nuclear explosion' at Pokharan using plutonium produced by the Cirus reactor, abruptly ending the era of international collaboration. India then refused to sign the NPT, which it viewed as discriminatory since it would be required to join as a non-nuclear weapons state. As a result of India's actions, the Nuclear Suppliers Group (NSG) was created in 1975 to establish guidelines 'to apply to nuclear transfers for peaceful purposes to help ensure that such transfers would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities. These nuclear export controls have forced India to be largely self-sufficient in all nuclear-related technologies.

  5. DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

  6. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01

    L. 2000. “Potentials for Energy Efficiency Improvement inthe U.S. Cement Industry,” Energy, 25, 1189-1214. Worrell,Benefits of Industrial Energy Efficiency Measures,” Energy

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Efficiency and Renewable Energy, Industrial TechnologiesEnergy Efficiency and Renewable Energy, Building TechnologyEfficiency and Renewable Energy, Industrial Technologies

  8. Nuclear Processes at Solar Energy

    E-Print Network [OSTI]

    Carlo Broggini

    2003-08-29

    LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

  9. Optimizing Process Loads in Industrial Cogeneration Energy Systems 

    E-Print Network [OSTI]

    Ahner, D. J.; Babson, P. E.

    1995-01-01

    W OPTIMIZING PROCESS LOADS IN INDUSTRIAL COGENERAnON ENERGY SYSTEMS DJ. Ahner Manager, Generation Technology Power Tecbnologies, Inc. Schenectady, New York ABSTRACT Optimum dispatcb of energy supply systems can result in large savings... and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system optimization. An example industrial...

  10. Department of Energy Releases Global Nuclear Energy Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan outlines a path forward to enable worldwide increase in the use of safe, emissions-free nuclear energy without contributing to the spread of nuclear weapons capabilities in...

  11. NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01

    Flow in Central High Energy Nuclear Collisions H. Stockera,under Contract High energy nuclear collisions offer a uniquesidewards flow·in high-energy nuclear collisions. The

  12. AMO Industrial Distributed Energy: Summary of EPA Final Rules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of EPA Final Rules for Air Toxic Standards for Industrial, Commercial, and Institutional (ICI) Boilers and Process Heaters ICF International for U.S. Department of Energy...

  13. Government and Industry A Force for Collaboration at the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Act Blog Leadership Budget Our Organization Strategic Plan Our History Offices Roadmap to Secure Control Systems in the Energy Sector Government and Industry A Force for...

  14. Energy and Environmental Profile of the Chemicals Industry

    SciTech Connect (OSTI)

    Pellegrino, Joan L.

    2000-05-01

    This informative report provides an overview of the U.S. Chemical Industry including data on market trends, energy and material consumption, and an environmental overview.

  15. AEP (SWEPCO)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    South Western Electric Power Company (SWEPCO) as part of its C&I solutions program provides various incentives to its commercial and industrial customers to save energy

  16. Energy and Environmental Profile of the Aluminum Industry

    SciTech Connect (OSTI)

    Margolis, Nancy

    1997-07-01

    This detailed report (PDF 2.5 MB) benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  17. IT Industry's Renewable Energy Procurement is Significant, Set...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IT Industry's Renewable Energy Procurement is Significant, Set to Climb August 20, 2015 The percentage of renewable electricity purchased by U.S. companies in the information and...

  18. Commercial and Industrial Energy Conservation Programs in Illinois 

    E-Print Network [OSTI]

    Thomas, S. K.

    1980-01-01

    This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

  19. Industrial Energy Conservation by New Process Design and Efficiency Improvements 

    E-Print Network [OSTI]

    Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

    1983-01-01

    Industrial energy productivity has increased substantially over the last decade. Such measures as implementing efficient housekeeping practices and using retrofit equipment on currently operating production units have ...

  20. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  1. Policies and Measures to Realise Industrial Energy Efficiency...

    Open Energy Info (EERE)

    Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to...

  2. Global Advanced Clean Energy Storage Devices Industry 2015 Market...

    Open Energy Info (EERE)

    Global Advanced Clean Energy Storage Devices Industry 2015 Market Research Report Home There are currently no posts in this category. Syndicate content...

  3. Solar Energy Education. Industrial arts: teacher's guide. Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: teacher's guide. Field test edition. Includes...

  4. Purchasing Energy-Efficient Commercial and Industrial LED Luminaires

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial and industrial light emitting diode (LED) luminaires, a product category covered by FEMP efficiency...

  5. Policy modeling for industrial energy use

    SciTech Connect (OSTI)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Planta- tion Products and Paper Industry Council, Paper Industry, Confederationof European Paper Industries, Brussels, March 2001. CESP,

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    1984). Energy Use and Energy Efficiency in UK Manufacturingin Industry: Energy Use and Energy Efficiency ImprovementExpert System for Energy Efficiency and Pollution Abatement

  8. Improve the Energy Efficiency of Pump Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Pumping System Assessment Tool (PSAT) can help industrial plants identify opportunities to save energy and money in pump systems.

  9. State Level Analysis of Industrial Energy Use 

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    2003-01-01

    industrial policies for these states. This paper will provide an overview of our analytical approach, the data sources that are available, and provide examples of the analysis results to demonstrate the regional diversity of industrial electricity use....

  10. Secretary Chu Announces Nuclear Energy University Program Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 12:00am Addthis WASHINGTON, DC -...

  11. Role of inorganic chemistry on nuclear energy examined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

  12. Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors GNEP will provide...

  13. Sandia Energy - Sandia Nuclear Power Safety Expert Elected to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power Safety Expert Elected to National Academy of Engineering Home Infrastructure Security Energy Nuclear Energy Capabilities News News & Events Research & Capabilities...

  14. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology...

  15. Global Nuclear Energy Partnership Inaugural Steering Group Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress...

  16. International Framework for Nuclear Energy Cooperation to Hold...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

  17. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  18. Energy/National Nuclear Security Administration (NNSA) Career...

    Office of Environmental Management (EM)

    Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

  19. Global Nuclear Energy Partnership Steering Group Members Approve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve...

  20. Nuclear Subsidies in the House Climate bill (H.R. 2454) and Senate Energy bill (S. 1462)

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nuclear Subsidies in the House Climate bill (H.R. 2454) and Senate Energy bill (S. 1462) Subsidy; · Authorizes guarantees for tax- equity and purchase power agreements that could be used for nuclear · Funds out. The nuclear industry has requested $122 billion in guarantees under Title XVII Loan Guarantees

  1. The Novel ''Controlled Intermediate Nuclear Fusion'' and its Possible Industrial Realization as Predicted by Hadronic Mechanics and Chemistry

    E-Print Network [OSTI]

    Ruggero Maria Santilli

    2006-02-17

    In this note, we propose, apparently for the first time, a new type of controlled nuclear fusion called "intermediate" because occurring at energies intermediate between those of the ''cold'' and ''hot'' fusions, and propose a specific industrial realization. For this purpose: 1) We show that known limitations of quantum mechanics, quantum chemistry and special relativity cause excessive departures from the conditions occurring for all controlled fusions; 2) We outline the covering hadronic mechanics, hadronic chemistry and isorelativity specifically conceived, constructed and verified during the past two decades for new cleans energies and fuels; 3) We identify seven physical laws predicted by the latter disciplines that have to be verified by all controlled nuclear fusions to occur; 4) We review the industrial research conducted to date in the selection of the most promising engineering realization as well as optimization of said seven laws; and 5) We propose with construction details a specific {\\it hadronic reactor} (patented and international patents pending), consisting of actual equipment specifically intended for the possible industrial production of the clean energy released by representative cases of controlled intermediate fusions for independent scrutiny by interested colleagues.

  2. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    5.3.2 Nuclear Energy System Model . . . . . . . . . . .scenarios of global nuclear energy demand . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear Fuel

  3. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

  4. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    Comparison of National Energy Management Standards, prepared2007, Industrial Energy Management: Issues Paper, preparedMeeting: Using Energy Management Standards to stimulate

  5. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  6. SUPERIOR ENERGY PERFORMANCE INDUSTRIAL FACILITY BEST PRACTICE SCORECARD

    Broader source: Energy.gov [DOE]

    Facilities seeking to use the Mature Energy Pathway to qualify for Superior Energy Performance® (SEP™) certification will use the SEP Industrial Facility Best Practice Scorecard to assess the...

  7. Motor Energy Saving Opportunities in an Industrial Plant 

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    1999-01-01

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  8. 2015 ACEEE Summer Study on Energy Efficiency in Industry

    Broader source: Energy.gov [DOE]

    The American Council for an Energy-Efficient Economy (ACEEE) is hosting a summer conference that will have six panels with concurrent sessions held over two days, each developed around industry energy efficiency.

  9. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  10. Energy and process substitution in the frozen-food industry:...

    Office of Scientific and Technical Information (OSTI)

    and process substitution in the frozen-food industry: geothermal energy and the retortable pouch Stern, M.W.; Hanemann, W.M.; Eckhouse, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  11. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    technologies. CIEEDAC is responsible for the industrial energy data under this initiative. The Centre operates as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian

  12. Distributed Wind - Economical, Clean Energy for Industrial Facilities 

    E-Print Network [OSTI]

    Trapanese, A.; James, F.

    2011-01-01

    Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new...

  13. Value Capture in the Global Wind Energy Industry

    E-Print Network [OSTI]

    Dedrick, Jason; Kraemer, Kenneth L.

    2011-01-01

    Wind Energy Council, 2011 New installation in 2010 The wind industry value chain Wind turbineWind Energy Council (GWEC, 2011) domestic content in U.S. -deployed turbines

  14. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut Fitesa's energy costs. "The new equipment reduced...

  15. The Gas Utility View of Industrial Energy Conservation 

    E-Print Network [OSTI]

    Loberg, T. J.

    1980-01-01

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  16. The French National Energy Conservation Program - The Case of Industry 

    E-Print Network [OSTI]

    Zyss, J.

    1980-01-01

    France is certainly one of the industrialized countries which has been the most severely affected by the energy crisis. It has thus been necessary since 1974 to plan and execute a bold, far-reaching government policy for energy reconversion...

  17. New Jersey Industrial Energy Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew Jersey is home to energy-intensive industrial

  18. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  19. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    Banerjee, R. , 2005. Energy Efficiency and Demand SideKiln Systems,” Energy Efficiency in the Cement Industry (Ed.of Industrial Energy Efficiency Measures,” Proceedings of

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

  1. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2008-01-01

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy...

  2. The Politically Correct Nuclear Energy Plant

    E-Print Network [OSTI]

    is Sustainable - Coal, Oil and Natural Gas · Natural Gas is a Clean Fuel - relative to what - coal? · RenewablesThe Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology are "clean and free"... · Conservation with sacrifice will work · There is no solution to nuclear waste

  3. Applications of liquid cathode electrochemistry towards the nuclear industry 

    E-Print Network [OSTI]

    Brockie, Nathan

    2011-01-01

    Projections of the World Energy Council indicate a significant increase in global energy consumption in the medium and long term due to a growing world population and rising prosperity whilst global fossil fuel reserves ...

  4. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  5. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  6. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    shown as changes in oil demand for elec- trical energyindustry fuel. ity Oil demand is specified by four majorft /year) II. Annual Oil Demand (10 Transportation Industry

  7. Energy efficiency opportunities in the brewery industry

    E-Print Network [OSTI]

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-01-01

    1999. 1997-Economic Census Breweries, Manufacturing IndustrySavings for United States Breweries, Berkeley, CA: LawrenceSavings for United States Breweries MBAA Technical Quarterly

  8. Biodiesel Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Barbara, California Zip: 93110 Product: Biodiesel producer and facility developer. References: Biodiesel Industries Inc1 This article is a stub. You can help OpenEI by expanding...

  9. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    demand in the long run. Cogeneration of electricity and heatthe expan- sion of cogeneration, especially just now whencame from industrial cogeneration, 4% in l976 (a recession),

  10. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    Cogeneration of electricity and heat in industrial plants iscogeneration, especially just now when long term electricity contracts hide the marginal cost of new power from existing plants.

  11. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    Energy Efficiency and Renewable Energy, 1997. 5. M. Pye andGolden, CO: National Renewable Energy Laboratory, 1997. 11.

  12. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    opportunities for petroleum refineries - An ENERGY STARsecondary energy products, such as electricity and petroleummost petroleum refineries can economically improve energy

  13. Department of Energy Nuclear Safety Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-08

    It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Supersedes SEN-35-91.

  14. Nuclear Safety at the Department of Energy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-12-05

    Nuclear Safety is a core value of the Department of Energy. As our management principle state: "We will pursue our mission in a manner that is safe, secure, legally and ethically sound, and fiscally responsible."

  15. Investing in Clean, Safe Nuclear Energy

    ScienceCinema (OSTI)

    President Obama

    2010-09-01

    President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

  16. Manpower development for new nuclear energy programs

    E-Print Network [OSTI]

    Verma, Aditi

    2012-01-01

    In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

  17. Investing in Clean, Safe Nuclear Energy

    Broader source: Energy.gov [DOE]

    President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

  18. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    the linkage between energy efficiency and productivity.and increased energy efficiency in integrated paper andand Office of Energy Efficiency and Renewable Energy, 1997.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanConsortium for Energy Efficiency (CEE) (2007). Energy-

  20. Nuclear diffractive structure functions at high energies

    E-Print Network [OSTI]

    C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

    2008-05-30

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Experiences with Industrial Heat Pumps. Analyses Series #23.of Energy (DOE) (2003). Industrial Heat Pumps for Steam andin the industrial sector. However, geothermal heat pumps may

  2. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect (OSTI)

    Steven E. Aumeier

    2010-10-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: • economic stability – related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; • environmental sustainability – related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; • resource security – related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process applications is certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD&D areas, or “platforms”: • feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); • heat / energy management (e.g. advanced heat exchangers, process design); • energy storage (e.g. H2 production, liquid fuels synthesis); • byproduct management (e.g. CO2 recycle approaches); • systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

  3. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect (OSTI)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  4. QER- Comment of Industrial Energy Consumer Group

    Broader source: Energy.gov [DOE]

    Thanks Tony. We'll be announcing dates for a number of other meetings in the next few days so hopefully you'll be able to participate in one of those, or have some of your member companies join. Regards, Karen Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 Phone: +1 (202) 586-1347 Cell: +1 (240) 751-8483 From: Buxton, Anthony W. Sent: Thursday, June 12, 2014 11:44 AM To: Wayland, Karen Subject: Re: Save the Date: June 19 QER meeting on Water-Energy Nexus Thank you, Karen. Our participation in the Providence hearing was a very positive and useful experience. IECG will be unable to attend the San Francisco hearing for obvious reasons, though it is always a temptation. IECG appreciates the effort going into and the significance of the Review and will continue to observe and comment as appropriate. We have become increasingly concerned recently about whether the Federal Power Act and related statutes provide adequate authority for the federal government and related energy institutions ( NERC) to take the actions necessary to ensure the supply of energy to America on a reliable and low cost basis. The decision of the D.C. Circuit Court of Appeals invalidating FERC's Order 750 and the consequent challenges to Order 1000 on the same basis exemplify this difficulty. The states are generally without adequate powers and legal authority as well, save for several large states. The RTOs are an ongoing answer from FERC, but they also are limited by the Federal Power Act. We urge attention to this important issue. Thank you again for your New England hearings and for your excellent work. Tony Buxton Counsel to Industrial Energy Consumer Group. From: Wayland, Karen [mailto:Karen.Wayland@Hq.Doe.Gov] Sent: Thursday, June 12, 2014 11:22 AM Eastern Standard Time To: Wayland, Karen Subject: Save the Date: June 19 QER meeting on Water-Energy Nexus Thank you for your interest in the Quadrennial Energy Review (QER), and apologies for any duplicate emails. The next stakeholders meeting for the QER will focus on the Water-Energy Nexus. The meeting will be held at the San Francisco City Hall on June 19 at 9 am. Doors open at 8 am. We will be posting an agenda and background memo on the QER website over the next week at http://www.energy.gov/epsa/events/qer-public-meeting-water-energy-nexus, so check back regularly. We encourage you to attend and participate, and to share the meeting information with your lists. Please note that we are extending the comment period for stakeholders during the open mic session from 3 minutes (as described in the Federal Register notice) to 5 minutes to give stakeholders adequate time to make substantive statements. We look forward to hearing from you! Information on past meetings, including panelists' statements and summaries of discussions, as well the list of upcoming meetings, can be found at www.energy.gov/qer. Regards, Karen Wayland Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 In accordance with Internal Revenue Service Circular 230, we hereby advise you that if this E-mail or any attachment hereto contains any tax advice, such tax advice was not intended or written to be used, and it cannot be used, by any taxpayer for the purpose of avoiding penalties that may be imposed on the taxpayer by the Internal Revenue Service. This E-Mail may contain information that is privileged, confidential and / or exempt from discovery or disclosure under applicable law. Unintended transmission shall not constitute waiver of the attorney-client or any other privilege. If you are not the intended recipient of this communication, and have received it in error, please do not distribute it and notify me immediately by E-mail at abuxton@preti.com or via telephone at 207.791.3000 and delete the original message. Unless expressly stated in this e-mail, noth

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    for the European Pulp and Paper Industry, Confederation ofin food and pulp and paper industry wastes, turbines tocement, and pulp and paper industries and in the control of

  6. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  7. Microsoft Word - Advanced_Nuclear_Energy_Projects_Loan_Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 45 Loan Guarantee Solicitation Announcement Advanced Nuclear Energy Projects 1 UNITED STATES DEPARTMENT OF ENERGY FULL ANNOUNCMENT Loan Guarantee...

  8. The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as

    E-Print Network [OSTI]

    Kemner, Ken

    nuclear power as a resource capable of meeting the Nation's energy, environmental and national security nuclear power plants. zz NuclearzEnergyzEnablingzTechnologiesz-- to explore transformative, "out our national and international supplies of fuel for nuclear power plants remain stable

  9. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

    2013-01-01

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  10. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01

    readily available renewable and energy efficiency optionsannual investments in renewable energy capacity are now M.billion US dollars, and renewable energy markets continue to

  11. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    Waste. Office of Energy Efficiency and Renewable Energy,Industry. Office of Energy Efficiency and Renewable Energy,Savings. Office of Energy Efficiency and Renewable Energy,

  12. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development 

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  13. Nuclear Energy Density Optimization: UNEDF2

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-10-30

    The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

  14. Symmetry energy in nuclear density functional theory

    E-Print Network [OSTI]

    W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

    2013-07-22

    The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

  15. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  16. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Broader source: Energy.gov [DOE]

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  17. Nuclear Fuels | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure |CafésNuclearNuclear Fuels Nuclear

  18. Energy Use and Savings in the Canadian Industrial Sector 

    E-Print Network [OSTI]

    James, B.

    1982-01-01

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  19. Evaluating the Energy Saving Potential and Cost-Effectiveness of Industrial Energy Efficiency Initiatives

    E-Print Network [OSTI]

    Evaluating the Energy Saving Potential and Cost-Effectiveness of Industrial Energy Efficiency Initiatives of the Office of Energy Efficiency Prepared for the Office of Energy Efficiency Prepared ............................................................................................. 18 5 SIMULATION OF THE FIVE ENERGY EFFICIENCY PROGRAMS

  20. Div ision of T echnology, Industry & Economics Energy Branch Deploying renewable energy

    E-Print Network [OSTI]

    Canet, Léonie

    Div ision of T echnology, Industry & Economics Energy Branch Deploying renewable energy, Industry & Economics Energy Branch 1. Policy landscape 2. Helping transition to Renewable Energy 3 governments are promoting renewable energy. Renewable energy ­ Policy Landscape #12;Div ision of T echnology

  1. Energy Industry Days- Performance Contracting- San Diego, CA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy is hosting several Energy Industry Day events to promote and publicize opportunities for small businesses seeking to meet DOE support requirements. Opportunities will be available for attendees to learn of potential partnerships with prime and subcontracting companies. These Energy Industry Day events would both support the agency's commitment to DOE's "Small Business First Policy" and would provide dedicated sessions that introduce Energy Service Companies (ESCOs) and other prime contract holders with small business.

  2. India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear fission

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear posed by reactors, the accident liability laws and regulatory structure governing nuclear energy, Wednesday, Oct 29th 4:00 PM (Tea/Coffee at Seminar Hall, TCIS Colloquium India's Nuclear Energy Program

  3. Nuclear Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovember 2014 Postings(NSUF) Gateway to NuclearNuclear

  4. Public opinion and nuclear energy

    SciTech Connect (OSTI)

    Nealey, S.M.; Melber, B.D.; Rankin, W.L.

    1983-01-01

    Public acceptance of a nuclear power plant (NPP) built near one's residence has declined steadily since the early 1970's. Following the TMI accident, this acceptance decreased dramatically. There has been some attitude rebound, however, and through mid-1981, the % who supported continued NPP construction in USA was 5 to 10% more than those in opposition. Men's and women's attitudes are different and were differentially affected by the TMI accident. Beliefs and attitudes about specific nuclear power issues were explored using questionnaires. Reactor-safety concerns were found to be more important than nuclear-waste concerns. Nuclear fuel-supply considerations are believed to be a major advantage of nuclear power. The public was largely unaware of the breeder-reactor concept. The US public generally does not favor selling US reactors abroad. It also greatly underestimates how long it takes to build a NPP. Most people believed solar-generated electricity is cheapest. The public has little information or has misinformation about some areas of nuclear power. (DLC)

  5. Save Energy Now for Maryland Industry | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2ProgramAreaLaboratory |Industries11The

  6. International industrial sector energy efficiency policies

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst

    2000-01-01

    and Opportunities,” Energy Policy 26(11): 859-872. Hall,1999. “Incentives in Energy Policy – A Comparison BetweenVoluntary Agreements in Energy Policy – Implementation and

  7. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Power Solar Thermal-Electric Power Plants Energy Generationfrom new energy tech- nologies, including the solar-thermalsolar thermal- electric power plants and electrical energy

  8. International industrial sector energy efficiency policies

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst

    2000-01-01

    company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

  9. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Annual Incremental Energy and Capacity Savings from Passivein incremental annual energy and capacity savings of 3.1 Xand estimated energy and capacity savings for each.

  10. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    increased use of biomass and energy efficiency improvements,Energy (EJ) Notes 1) Biomass energy included 2) Industrialenergy efficiency improvement, cogeneration, increased use of (self- generated) biomass

  11. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    calcu.lat energy consumption in passive solar houses havesolar heating form a major source of energy supply in the second scenario. The energy consumption

  12. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    Netherlands has an Energy Management System, not a standard,LTAs and must use the Energy Management System. The 150 mostinvolvement. The energy management system (introduced as a

  13. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order toassess the impacts of alternative energy futures. In later

  14. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order tothe impacts of alternative energy futures. In later sections

  15. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Rand Corporation, "Energy Alternatives for California: PathsDoctor et aI. , "Energy Alternatives for California: PathsPrograms Energy Facility Alternatives Discussion . ,

  16. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  17. Industry Participation Sought for Design of Next Generation Nuclear Plant |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation StandardsEnergy

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Industrial Electric Motor Systems Market Opportunities Assessment. U.S. Department of Energy’Energy Now in Your Motor-Driven Systems. Office of Energy Efficiency and Renewable Energy, IndustrialMotor. Office of Energy Efficiency and Renewable Energy, Industrial

  19. Fitness for duty in the nuclear power industry

    SciTech Connect (OSTI)

    Durbin, N.; Moore, C.; Grant, T.; Fleming, T.; Hunt, P.; Martin, R.; Murphy, S.; Hauth, J.; Wilson, R.; Bittner, A.; Bramwell, A.; Macaulay, J.; Olson, J.; Terrill, E.; Toquam, J. )

    1991-09-01

    This report presents an overview of the NRC licensees' implementation of the FFD program during the first full year of the program's operation and provides new information on a variety of FFD technical issues. The purpose of this document is to contribute to appropriate changes to the rule, to the inspection process, and to other NRC activities. It describes the characteristics of licensee programs, discusses the results of NRC inspections, updates technical information covered in previous reports, and identifies lessons learned during the first year. Overall, the experience of the first full year of licensees' FFD program operations indicates that licensees have functioning fitness for duty programs devoted to the NRC rule's performance objectives of achieving drug-free workplaces in which nuclear power plant personnel are not impaired as they perform their duties. 96 refs., 14 tabs.

  20. Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value

    E-Print Network [OSTI]

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2008-01-01

    knowledge concerning energy management best practices andapplying and validating energy management best practices inan international industrial energy management standard that

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Caffal, C. (1995). Energy Management in Industry. Centre forEnergy Management .Management. Federal Energy Management Program, Washington,

  2. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    iron and steel production. IEA Greenhouse Gas R&D Programme,industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,WBCSD), Geneva, Switzerland. IEA (1997) Voluntary actions

  3. Energy Conservation Through Industrial Cogeneration Systems 

    E-Print Network [OSTI]

    Solt, J. C.

    1979-01-01

    This paper traces the development of cogeneration systems in industry, and discusses some early applications. The effect of changing markets and economic conditions is evaluated and specific examples are presented to illustrate the increasingly...

  4. Energy Conservation in Army Industrial Facilities 

    E-Print Network [OSTI]

    Aveta, G. A.; Sliwinski, B. J.

    1984-01-01

    studies for military installations to identify energy conservation projects and develop energy master plans, and (2) the Department of Defense (DOD) Energy Conservation Investment Program (ECIP) and Energy Conservation and Management Program (ECAM...

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    energy efficiency measures available for motors and pumps in industrialEnergy (DOE) (2002e). United States Industrial Electric MotorIndustrial Electric Motor Systems Market Opportunities Assessment. Prepared for the United States Department of Energy

  6. U.S. Department of Energy's Industrial Technologies Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Brown, S. A.

    2011-01-01

    The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy...

  7. Cradle-to-Grave Nuclear Fuel Supply Assurance Workshop: Industry’s Potential Role

    SciTech Connect (OSTI)

    Bengelsdorf, Harold; Hund, Gretchen; Kessler, Carol E.; Mahy, Heidi A.; McGoldrick, Fred; Seward, Amy M.

    2007-09-30

    The Pacific Northwest Center for Global Security hosted a workshop on June 6, 2007 in Washington D.C. to discuss the feasibility, merits and implications of the United States offering cradle-to-grave nuclear fuel cycle services to other countries. The workshop consisted of a small group of senior individuals from the private sector, government and the national laboratories. The workshop is summarized and recommendations given.

  8. NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842

    E-Print Network [OSTI]

    Demazière, Christophe

    2005-01-01

    or density wave oscillation (DWO) in boiling water reactors (BWRs) (Analytis et al., 2001; Lansa°ker, 1997 rods in pressurized water reactors (PWRs). Such noise sources are not considered in this paper.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G

  9. Policy modeling for industrial energy use

    E-Print Network [OSTI]

    2003-01-01

    the market mechanism. Energy suppliers will try to maximizepolicy and program. Energy suppliers and consumers who are

  10. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    I OOMW[) o o D~I'I 4 HYDROELECTRIC POWER PlINT (200 MWEIreactor Dam and hydroelectric power plant Pumped storagepower plants include coal-fired plants, nuclear reactors, hydroelectric

  11. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    adjusted to include OCS oil and gas. Natural gas productionfacilities increased offshore oil and gas production nuclearGas Natural Gas Liquids Oil and Gas Field Services Oil and

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Industrial Technologies, Washington, DC. Motor Systems Tip Sheet United States Department of Energy (Industrial Electric Motor Systems Market Opportunities Assessment. U.S. Department of Energy’Energy Now in Your Motor-Driven Systems. Office of Energy Efficiency and Renewable Energy, Industrial

  13. Nuclear Fusion Energy Research Ghassan Antar

    E-Print Network [OSTI]

    Shihadeh, Alan

    Nuclear Fusion Energy Research at AUB Ghassan Antar Physics Department American University of Beirut #12;Laboratory for Plasma and Fluid Dynamics [LPFD) Dr. G. Antar 2 Students: - R. Hajjar [Physics Advantages of Fusion on other ways to Produce Energy · Abundant Fuel Supply on Earth and Beyond · No Risk

  14. Energy Department Invests $67 Million to Advanced Nuclear Technology...

    Broader source: Energy.gov (indexed) [DOE]

    to high priority nuclear energy research challenges, including instrumentation and vacuum drying systems associated with the storage of used nuclear fuel, an integrated...

  15. Energy Department Announces New Investments in Advanced Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News...

  16. Energy Department Issues Request For Proposal for Nuclear Regulatory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request For Proposal for Nuclear Regulatory Commission Licensed Facilities Procurement Energy Department Issues Request For Proposal for Nuclear Regulatory Commission Licensed...

  17. Nuclear Energy University Program: A Presentation to Vice Presidents...

    Energy Savers [EERE]

    Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

  18. Department of Energy Issues Requests for Applications for Nuclear...

    Office of Environmental Management (EM)

    Requests for Applications for Nuclear-Related Science and Engineering Scholarships and Fellowships Department of Energy Issues Requests for Applications for Nuclear-Related Science...

  19. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Broader source: Energy.gov (indexed) [DOE]

    meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards accelerate our nation's drive towards diverse...

  20. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect (OSTI)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  1. Cleanroom energy benchmarking in high-tech and biotech industries

    SciTech Connect (OSTI)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-04-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems.

  2. Climate Control Using Nuclear Energy

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2008-01-01

    We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

  3. Page 1 of 13 Understanding Industrial Energy Use Through Lean Energy Analysis

    E-Print Network [OSTI]

    Kissock, Kelly

    Page 1 of 13 11SDP-0048 Understanding Industrial Energy Use Through Lean Energy Analysis Abels, B statistical method to statistically disaggregate industrial energy use into production-dependent, weather improving model calibration, quantifying non-productive energy use and identifying energy efficiency

  4. A Low Cost Energy Management Program at Engelhard Industries Division 

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  5. Industrial Energy Efficiency Technical Review Guidelines and Best Practices 

    E-Print Network [OSTI]

    Dalziel, N.

    2013-01-01

    . Methodology and Scope of Research: 1. Empirical analysis of reported energy savings at the application, reviewed (contracted), measurement and verification (M&V) and evaluation stages for multiple large or industrial incentive programs. a. Assess impact...

  6. World Energy Projection System Plus Model Documentation: Industrial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  7. Industrial Distributed Energy R&D Portfolio Review Summary Report

    SciTech Connect (OSTI)

    none,

    2011-12-01

    Summary report of the Industrial Distributed Energy R&D Portfolio Review. The purpose of the review was for project recipients to report on their project goals, approach, and results to date.

  8. Energy Management in a Multi-Industry Organization 

    E-Print Network [OSTI]

    Lawrence, J.

    1981-01-01

    Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification...

  9. Hardening and Resiliency: U.S. Energy Industry Response to Recent...

    Office of Environmental Management (EM)

    Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane Seasons - August 2010 Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane...

  10. RenewableNY - An Industrial Energy Conservation Initiative

    SciTech Connect (OSTI)

    Lubarr, Tzipora

    2009-09-30

    The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

  11. A Practical Approach to a Closed Nuclear Fuel Cycle and Sustained Nuclear Energy - 12383

    SciTech Connect (OSTI)

    Collins, Emory D.; Del Cul, Guillermo D.; Spencer, Barry B.; Williams, Kent A. [Oak Ridge National Laboratory, P.O. Box 2008, MS-6152, Oak Ridge TN 37831 (United States)

    2012-07-01

    Recent systems analysis studies at Oak Ridge National Laboratory (ORNL) have shown that sufficient information is available from previous research and development (R and D), industrial experience, and current studies to make rational decisions on a practical approach to a closed nuclear fuel cycle in the United States. These studies show that a near-term decision is needed to recycle used nuclear fuel (UNF) in the United States, to encourage public recognition that a practical solution to disposal of nuclear energy wastes, primarily UNF, is achievable, and to ensure a focus on essential near-term actions and future R and D. Recognition of the importance of time factors is essential, including the multi-decade time period required to implement industrial-scale fuel recycle at the capacity needed, and the effects of radioactive decay on proliferation resistance, recycling complexity, radioactive emissions, and high-level-waste storage, disposal form development, and eventual emplacement in a geologic repository. Analysis of time factors led to identification of the benefits of processing older fuel and an 'optimum decay storage time'. Further benefits of focused R and D can ensure more complete recycling of UNF components and minimize wastes requiring disposal. Analysis of recycling costs and nonproliferation requirements, which are often cited as reasons for delaying a decision to recycle, shows that (1) the differences in costs of nuclear energy with open or closed fuel cycles are insignificant and (2) nonproliferation requirements can be met by a combination of 'safeguards-by-design' co-location of back-end fuel cycle facilities, and applied engineered safeguards and monitoring. The study shows why different methods of separating and recycling used fuel components do not have a significant effect on nonproliferation requirements and can be selected on other bases, such as process efficiency, maturity, and cost-effectiveness. Finally, the study concludes that continued storage of UNF without a decision to recycle is not a solution to the problem of nuclear waste disposal, but can be a deterrent to public confidence in nuclear energy. In summary, our studies have shown, in contrast to findings of the more prominent studies, that today we do have sufficient knowledge to make informed choices for the values and essential methods of UNF recycling, based on previous research, industrial experience, and current analyses. We have shown the significant importance of time factors, including the benefits of an optimum decay storage time on deploying effective nonproliferation safeguards, enabling reduced recycling complexity and environmental emissions, and optimizing waste management and disposal. Together with the multi-decade time required to implement industrial-scale UNF recycle at the capacity needed to match generation rate, our conclusion is that a near-term decision to recycle as many UNF components as possible is vitally needed. Further indecision and procrastination can lead to a loss of public confidence and favorable perception of nuclear energy. With no near-term decision, the path forward for UNF disposal will remain uncertain, with many diverse technologies being considered and no possible focus on a practical solution to the problem. However, a near-term decision to recycle UNF fuel and to take advantage of processing UNF and surface storing HLW, together with development and incorporation of more-complete recycling of UNF components, can provide the focus needed for a practical solution to the problem of nuclear waste disposal. (authors)

  12. Correlation energy contribution to nuclear masses

    E-Print Network [OSTI]

    S. Baroni; M. Armati; F. Barranco; R. A. Broglia; G. Colo'; G. Gori; E. Vigezzi

    2004-04-07

    The ground state correlation energies associated with collective surface and pairing vibrations are calculated for Pb- and Ca-isotopes. It is shown that this contribution, when added to those predicted by one of the most accurate modern nuclear mass formula (HFBCS MSk7 mass formula), reduces the associated rms error by an important factor, making mean field theory, once its time dependence is taken into account, a quantitative predictive tool for nuclear masses.

  13. Want to Learn Simple Industrial Energy Efficiency Tips?

    E-Print Network [OSTI]

    Want to Learn Simple Industrial Energy Efficiency Tips? Attend a free workshop put can reduce energy usage. This program is valuable to all manufacturing segments. Friday, June 23, 2006 8 a.m. ­ 12 noon Xcel Energy's Technical Services Bldg 550 15th St - Denver, CO 80202 Conference

  14. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    S. , 1990. Energy Outlook in West Germany’s Cement Industry.Energy, Emissions, Savings Potential and Policy Actions, Fraunhofer Institute for Systems Technology and Innovation, Karlsruhe, Germany.Germany) and Mitsui Mining (Japan). Several companies in China also provide optimized information technology for energy

  15. Instabilities in the Nuclear Energy Density Functional

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski

    2010-02-05

    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

  16. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  17. bristol.ac.uk/cabot Implications for the UK nuclear industry of the events at the Fukushima

    E-Print Network [OSTI]

    Bristol, University of

    bristol.ac.uk/cabot Implications for the UK nuclear industry of the events at the Fukushima Dai of the events at the Fukushima Dai- ichi nuclear power station, Japan. The report draws on expertise at the Fukushima Daiichi Nuclear Power Plant (NPP), which has recently been declared a level 7 accident within

  18. Reliability Engineering and System Safety 92 (2007) 609618 The nuclear industry's transition to risk-informed regulation and

    E-Print Network [OSTI]

    2007-01-01

    , USA b Nuclear Power Engineering, Quality and Safety Management Department, Tokyo Electric Power improvement in safety based on Institute of Nuclear Power Operations (INPO) performance indicatorsReliability Engineering and System Safety 92 (2007) 609­618 The nuclear industry's transition

  19. Measuring Energy Efficiency Improvements in Industrial Battery Chargers 

    E-Print Network [OSTI]

    Matley, R.

    2009-01-01

    PG&E and Southern California Edison (SCE) are testing industrial battery chargers according to a California Energy Commission (CEC) approved test procedure. This test procedure, developed with charger manufacturer input as part of the CEC?s... possible by using the SCR controls. TEST PROCEDURE A test procedure was developed for the California Energy Commission?s (CEC) Codes and Standards process. This test procedure was developed with industry stakeholder input for battery and charger...

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    and M. Kushler. (1997). Energy Efficiency in Automotive and22 nd National Industrial Energy Technology ConferenceJr. and G. P. Looby. (1996). Energy Conservation and Waste