Sample records for nuclear energy industry

  1. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Guangdong Nuclear Power and New Energy Industrial Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment...

  2. Guangdong Nuclear Power and New Energy Industrial Investment Fund

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods |Grundy ElectricGuangdong Meiyan Hydropower

  3. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01T23:59:59.000Z

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  4. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  5. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    Brief 2013-9 January 2013 China’s Nuclear Industry Aftera significant impact on the future of China’s nuclear power.the importance of safety as China builds more nuclear power

  6. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    2013-9 January 2013 China’s Nuclear Industry After FukushimaMarch 2011 Fukushima nuclear accident has had a significanton the future of China’s nuclear power. First, it highlights

  7. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29T23:59:59.000Z

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  8. Long-Term Nuclear Industry Outlook - 2004

    SciTech Connect (OSTI)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30T23:59:59.000Z

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  9. Nuclear Industry Job Descriptions Boilermaker

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838NuclearForensicsIndustry

  10. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    China will continue to pursue nuclear expansion as part of an energy strategy that aims to increase clean and renewable energies (solar,

  11. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  12. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  13. NUCLEAR ENERGY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy NREL:Education &NTSF NUCLEAR

  14. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838Nuclear Detectionmore

  15. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...

  16. Moving Toward Product Line Engineering in a Nuclear Industry Consortium

    E-Print Network [OSTI]

    Boyer, Edmond

    power have special institutions overseeing and regulating nuclear safety. Nuclear industry projects must conform to na- tional safety institutions and international regulations. In many cases, regulatory sophisticated and complex energy systems ever designed. Nuclear safety Permission to make digital or hard copies

  17. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation in buildings

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  19. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    the previous year. NUCLEAR TECHNOLOGY AND FUEL CYCLES China’third-generation nuclear technology and reactor design, withs own third-generation nuclear technology. Westing- house,

  20. Ontario's Industrial Energy Services Program

    E-Print Network [OSTI]

    Ploeger, L. K.

    .8%! ! ! ! OTHER 8.4%! l4.9%! l4.0%! ! ! ! TOTAL 100.0%! 100.0%! 100.0%! ! PROGRAM STRATEGY Ontario's Industrial Energy Services Program was designed to: lead industrial energy consumers to the realization that increased energy efficiency generates... ONTARIO'S INDUSTRIAL ENERGY SERVICES PROGRAM LINDA K. PLOEGER, GENERAL MANAGER, INDUSTRY PROGRAMS ONTARIO MINISTRY OF ENERGY TORONTO, ONTARIO, ABSTRACT The Ontario Ministry of Energy began offering its new Industrial Energy Services Program...

  1. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies ­ Notes for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy · Solar energy · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation

  2. Industrial Energy Use Indices

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01T23:59:59.000Z

    of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

  3. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to Industrial

  4. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to Industrial Energy

  5. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to IndustrialEnergy

  6. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy Savers [EERE]

    Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial...

  7. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01T23:59:59.000Z

    J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusin connection with nuclear fission. The need for a better

  8. Industrial energy use indices

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... the average EUI for an energy type. The combined CoV from all of the industries considered, which accounts for 8,200 plants from all areas of the continental U.S., is 290%. This paper discusses EUIs and their variations based on electricity and natural...

  9. Nuclear Energy

    SciTech Connect (OSTI)

    Godfrey, Anderw

    2014-04-10T23:59:59.000Z

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  10. Nuclear Energy

    ScienceCinema (OSTI)

    Godfrey, Anderw

    2014-05-23T23:59:59.000Z

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  11. The American nuclear power industry. A handbook

    SciTech Connect (OSTI)

    Pearman, W.A.; Starr, P.

    1984-01-01T23:59:59.000Z

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index.

  12. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

  13. Energy Matters: Industrial Energy Efficiency | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Dr. Kathleen Hogan to Host Live Chat on Industrial Energy Efficiency LiveChat Wed, 1116, 2 pm ET: Industrial Energy Efficiency VIDEO: Who Was the Better Inventor, Tesla or Edison?...

  14. Lessons in waste minimization from nuclear industry experience

    SciTech Connect (OSTI)

    Devgun, J.S.; Thuot, J.R.; Vrtis, J.

    1996-07-01T23:59:59.000Z

    The nuclear power industry has been very successful at reducing waste volumes and waste sources. The success has been driven by escalating cost, decreasing disposal ability, and a desire by the industry to achieve excellence. The result has been a cycle of continuing improvement resulting in reduced cost. Many of the examples of Dry Active Waste reduction are applicable to the Department of Energy in both operations and remedial activities. This paper discusses several successful examples of utility applications in this area.

  15. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

  16. Guide to the energy industries. [Index of 2930 items

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    The primary focus of the guide is the identification of marketing and financial data on seven specific energy industries: coal, energy alternatives, hydroelectric power, natural gas, nuclear energy, petroleum, and solar energy. The guide is divided into four parts. Part 1 contains sources of data that concern the seven energy industries. It is arranged alphabetically by industry and, within each industry, by broad geographic region. Part 2 lists publishers of energy industry data and includes an index to sources produced by those publishers. Part 3 contains indexes by SIC code and by subject. Part 4 is a title index.

  17. Zirconium in the nuclear industry

    SciTech Connect (OSTI)

    Franklin, D.G.; Adamson, R.B.

    1984-01-01T23:59:59.000Z

    This book examines the properties of Zircaloy-2, Zircaloy-4, and Zr-2.5Nb with regard to their use as structural materials in nuclear reactors. Topics considered include refinement and fabrication (extractive metallurgy, zirconium and hafnium separation, electron-beam remelting, pressure tube development, cold working and heat treatments), basic metallurgical studies (etching, strain anisotropy, fuel cladding, anneal hardening, recrystallization, hydrides in zirconium alloy tubes), texture and irradiation creep (microstructure, ultrasonic velocity, in-reactor creep, fuel rods, deformation), irradiation growth (proton and neutron bombardment, high-fluence irradiation growth), corrosion (ZrO/sub 2/ films, aqueous corrosion kinetics, corrosive effects of lithium hydroxide, oxidation films, hydridation), fracture studies (stress-corrosion cracking, hydrogen cracking), and high-temperature and transient effects (cladding deformation in LOCA, high-temperature behavior of fuel rods, steam oxidation kinetics, dissolution of solid UO/sub 2/ by molten Zircaloy-4).

  18. Whistleblower litigation: A potential explosion in the nuclear industry

    SciTech Connect (OSTI)

    Kowitt, A.J.; Panich, D. (Mayer, Brown, Platt, Chicago, IL (United States))

    1990-07-05T23:59:59.000Z

    This article examines the protection offered nuclear employees and the limits of a nuclear employer's liability under section 210 of the Energy Reorganization Act. The author's warn that review by the US Supreme Court is not necessary but could only serve to expose the nuclear industry to an onslaught of litigation resulting from the assertion by an employee subjected to an adverse employment decision that the employee was engaged in a protected activity and as a result has a right to protection from retaliation by the employer.

  19. Oklahoma Industrial Energy Management Program

    E-Print Network [OSTI]

    Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

  20. 1/6/10 4:14 PMThe nuclear energy industry's communication problem Page 1 of 4http://www.thebulletin.org/print/web-edition/features/the-nuclear-energy-industrys-communication-problem

    E-Print Network [OSTI]

    Fischhoff, Baruch

    by the Chernobyl and Three Mile Island reactor accidents, the Washington Public Power Supply System financial fairly. The following principles, drawn from research and experience, specify what it takes to be seen communities, and elected officials). Following these principles won't be easy for an industry that has often

  1. Global nuclear power supply chains and the rise of China's nuclear industry

    E-Print Network [OSTI]

    Metzler, Florian

    2012-01-01T23:59:59.000Z

    China has embarked on a massive expansion of nuclear power that may fundamentally change the global nuclear industry, for better or for worse. Some industry observers argue that the incumbent nuclear power companies are ...

  2. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National Nuclear Data Center - 1952* High Flux Beam Reactor - 1964 Technical Support for NRC - 1974

  3. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”Emerging Energy-Efficient Technologies for Industry Ernst

  4. Emerging Energy-Efficient Technologies for Industry

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. “Emerging Energy-Efficient Industrial Technologies,”

  5. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”Emerging Energy-Efficient Technologies for Industry Ernst

  6. NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398

    E-Print Network [OSTI]

    Pázsit, Imre

    annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

  7. Energy Department Partners with Industry to Train Federal Energy...

    Office of Environmental Management (EM)

    Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs...

  8. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect (OSTI)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01T23:59:59.000Z

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  9. Nuclear | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclearNuclear Nuclear An error

  10. Idaho National Laboratory/Nuclear Power Industry Strategic Plan for Light Water Reactor Research and Development An Industry-Government Partnership to Address Climate Change and Energy Security

    SciTech Connect (OSTI)

    Electric Power Research

    2007-11-01T23:59:59.000Z

    The dual issues of energy security and climate change mitigation are driving a renewed debate over how to best provide safe, secure, reliable and environmentally responsible electricity to our nation. The combination of growing energy demand and aging electricity generation infrastructure suggests major new capacity additions will be required in the years ahead.

  11. Student Trainee (Energy Industry)

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is an independent regulatory agency that regulates and oversees various aspects of the energy markets within the United States. We value independence...

  12. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    energy rather than nuclear fission for electricityand an increased emphasis on nuclear fission for electricityfor electricity supplied by nuclear fission. in scenario 1.

  13. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    areas. Proposals on a low carbon energy technology which is not covered below will be considered and storage · Energy materials · Grid and networks · Energy utilisation in buildings · Carbon Capture The Energy Technology Partnership (ETP) has established an Energy Industry Doctorate Programme

  14. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01T23:59:59.000Z

    , and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due...

  15. CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION

    E-Print Network [OSTI]

    PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminalCALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING

  16. Outlook for Industrial Energy Benchmarking 

    E-Print Network [OSTI]

    Hartley, Z.

    2000-01-01T23:59:59.000Z

    OUTLOOK FOR INDUSTRIAL ENERGY BENCHMARKING Zoe Hartley Environmental Protection Specialist U.S. Environmental Protection Agency Washington, DC ABSTRACT The U.S. Environmental Protection Agency is exploring options to sponsor an ~d~ ~~gy...

  17. Outlook for Industrial Energy Benchmarking

    E-Print Network [OSTI]

    Hartley, Z.

    The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

  18. Energy conservation guide for industrial processes

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Th Energy Conservation Guide for industrial processes has simple instructions to survey energy use areas at Navy industrial activities like shipyards, Naval air rework facilities and government owned, contractor operated (GOCO) plants. This guide includes information and procedures on: organizing and conducting an industrial energy survey; evaluating purchased energy data; descriptions of industrial systems; and evaluation of industrial processes for conservation.

  19. Industrial energy conservation technology

    SciTech Connect (OSTI)

    Schmidt, P.S.; Williams, M.A. (eds.)

    1980-01-01T23:59:59.000Z

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  20. Industrial Energy Conservation Technology

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  1. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North American

  2. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North AmericanStudy Could

  3. Industrial energy use indices

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2009-05-15T23:59:59.000Z

    , plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department...

  4. Oklahoma Industrial Energy Management Program

    E-Print Network [OSTI]

    Turner, W. C.; Estes, C. B.

    1982-01-01T23:59:59.000Z

    In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often...

  5. Industrial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida: EnergyStudyInducedTechnology

  6. Towards A Unified HFE Process For The Nuclear Industry

    SciTech Connect (OSTI)

    Jacques Hugo

    2012-07-01T23:59:59.000Z

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  7. Energy Industry Analyst

    Broader source: Energy.gov [DOE]

    This position is located in the Northeast Satellite Office of the Office of Energy Market Regulation (OEMR)/Division of Electric Power Regulation, East. OEMR works to promote and maintain...

  8. EPRI's Industrial Energy Management Program

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... are funded at a level in excess of SlO million annually. By providing technical guidance and sponsoring research and development projects, these Centers and Offices are a key element in EPRI's role of improving the value of electricity to consumers...

  9. Industrial Geospatial Analysis Tool for Energy Evaluation

    E-Print Network [OSTI]

    Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

    2013-01-01T23:59:59.000Z

    of manufacturing industries based on each type of industries using information from DOE's Industrial Assessment Center database (IAC-DB) and DOE's Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition...

  10. Effective Transfer of Industrial Energy Conservation Technologies

    E-Print Network [OSTI]

    Clement, M.; Vallario, R. W.

    1983-01-01T23:59:59.000Z

    , and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing...

  11. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimate ChangeLicense

  12. Energy Department Announces New Minorities in Energy Industry...

    Office of Environmental Management (EM)

    Minorities in Energy Industry Partner Network Energy Department Announces New Minorities in Energy Industry Partner Network November 18, 2014 - 11:35am Addthis News Media Contact...

  13. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    for U.S. Department of Energy’s Office of IndustrialLaboratory. Burlington, MA: Office of Energy Efficiencyand Renewable Energy. (Food-4) (Motorsys-8) (Overview)

  14. Industrial Distributed Energy: Combined Heat & Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  15. Industrial Energy Procurement Contracts

    E-Print Network [OSTI]

    Thompson, P.; Cooney, K.

    , TECO can recover revenue shortfalls from customers.) TYPES OF CONTRACTS Commodity Purchase From the Wholesale Power Pool or Power Marketer. The ability of an end-user to effectively manage risk in commodity style contracts depends... is receiving what it bargained for. Sales Tax The point at which title to energy is taken affects tax liability. Many states automatically exempt manufacturers from sales tax on power transactions if the purchase transaction is construed as a wholesale...

  16. ENERGY SMART INDUSTRIAL PARTNER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJerseyMarketsWhyPressPolicy

  17. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

  18. Benchmarks for industrial energy efficiency

    SciTech Connect (OSTI)

    Amarnath, K.R. [Electric Power Research Inst., Palo Alto, CA (United States); Kumana, J.D. [Linnhoff March, Inc., Houston, TX (United States); Shah, J.V. [Electric Power Research Inst., Pittsburgh, PA (United States). Chemicals and Petroleum Center

    1996-12-31T23:59:59.000Z

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  19. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01T23:59:59.000Z

    Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

  20. Energy Programs of the Texas Industrial Commission 

    E-Print Network [OSTI]

    Heare, J.; dePlante, L. E.

    1979-01-01T23:59:59.000Z

    workshops and seminars; an annual Industrial Energy Technology Conference; the coordination of a university program for the training of industrial energy auditors; and organizational assistance in the establishment of regional energy conservation groups...

  1. NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842

    E-Print Network [OSTI]

    Demazière, Christophe

    annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G evenly distrib- uted throughout the core of a commercial nuclear reactor. The novelty

  2. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

  3. Canada's Voluntary Industrial Energy Conservation Program

    E-Print Network [OSTI]

    Wolf, C. A., Jr.

    1980-01-01T23:59:59.000Z

    Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

  4. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE)...

  5. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    J. , Nadel, S. , 2000. “Emerging Energy-Efficient IndustrialThorne, J. , 1998. “Emerging Energy-Saving Technologies andand Policy Implications of Energy and Material Efficiency

  6. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    J. , Nadel, S. , 2000. “Emerging Energy-Efficient IndustrialThorne, J. , 1998. “Emerging Energy-Saving Technologies andand Policy Implications of Energy and Material Efficiency

  7. Emerging Energy-Efficient Technologies for Industry

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Thorne, J. , 1998. “Emerging Energy-Saving Technologies andand Policy Implications of Energy and Material EfficiencyD. Ed. 1999. “Industrial Energy Efficiency Policies:

  8. Characterizing emerging industrial technologies in energy models

    E-Print Network [OSTI]

    Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-01-01T23:59:59.000Z

    Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies,” Lawrenceinformation about energy efficiency technologies, their

  9. Shrenik Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik Industries Jump to: navigation, search

  10. Ventower Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:ShreniksourceVentower Industries Jump to:

  11. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy OffshoreDeveloperEnertechEolica Cajueiro daIndustrial

  12. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may be key to "fastTwistTypes of Nuclear Industry

  13. Sandia Energy - Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafetyAdvanced

  14. A Career in Nuclear Energy

    SciTech Connect (OSTI)

    Lambregts, Marsha

    2009-01-01T23:59:59.000Z

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  15. A Career in Nuclear Energy

    ScienceCinema (OSTI)

    Lambregts, Marsha

    2013-05-28T23:59:59.000Z

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  16. Nuclear Energy Advisory Committee

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview |November 2013 NewsNuclear Energy Advisory Committee December

  17. Nuclear Energy University Programs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview |November 2013 NewsNuclear EnergyResearch and Development

  18. Jax Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital Partners JumpMissouri:Java -Jax Industries

  19. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) |RGGIRehobeth, Alabama:Reid

  20. Energy Programs of the Texas Industrial Commission

    E-Print Network [OSTI]

    Heare, J.; dePlante, L. E.

    1979-01-01T23:59:59.000Z

    The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least...

  1. Guiding Principles for Successfully Implementing Industrial Energy...

    Energy Savers [EERE]

    Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations This implementation guide provides key principles and...

  2. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, News & Events, Nuclear Energy, Systems Analysis Jeff Cardoni (in the Severe Accident Analysis Dept.) presented the paper "MELCOR Simulations of the Severe Accident at...

  3. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2012, in Digital Instrument and Control (I&C) is an integral part of the nuclear power industry in the United States. I&C systems monitor the safe, reliable and secure...

  4. Industrial Customer Perspectives on Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Customer Perspectives on Utility Energy Efficiency Programs Industrial Customer Perspectives on Utility Energy Efficiency Programs These presentations from ATK Aerospace Systems,...

  5. Industry Leaders Saving Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartmentEnergy AprilWith theIndustrial Sector

  6. Energy Industries of Ohio | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum, Idaho(1)EmpowersEnergy Industries

  7. Draft Advanced Nuclear Energy Projects Solicitation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced Nuclear Energy Projects Solicitation More Documents & Publications Draft...

  8. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    SciTech Connect (OSTI)

    Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

    2004-10-04T23:59:59.000Z

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies & challenges to nuclear options.

  9. MIT and Energy Industries MIT Industry Brief

    E-Print Network [OSTI]

    Polz, Martin

    and demand, security and environmental impact. MITEI's interdisci- plinary research program focuses on: 1 of nanotechnology to solar and thermoelectric energy conversion. The mission of the MIT Photovoltaic Research synthesizes and characterizes commer- cial and next-generation photovoltaic materials and devices, engineering

  10. Department of Energy Wind Vision: An Industry Preview | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Wind Vision: An Industry Preview Department of Energy Wind Vision: An Industry Preview The "Department of Energy Wind Vision: An Industry Preview,"...

  11. Sandia National Laboratories: Nuclear Energy Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Nuclear Energy Publications Nuclear Energy Safety Fact Sheets Assuring Safe Transportation of Nuclear and Hazardous Materials Human Reliability Assessment (HRA)...

  12. Pulp & Paper Industry- A Strategic Energy Review

    E-Print Network [OSTI]

    Stapley, C. E.

    The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could...

  13. Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG26588°,SocorromercurySolaireInformation

  14. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect (OSTI)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02T23:59:59.000Z

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  15. Low Energy Nuclear Reactions?

    E-Print Network [OSTI]

    CERN. Geneva; Faccini, R.

    2014-01-01T23:59:59.000Z

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  16. Industrial energy efficiency policy in China

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-05-01T23:59:59.000Z

    Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

  17. Duke Energy- Small Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

  18. Progress Energy Carolinas- Commercial and Industrial Energy-Efficiency Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

  19. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect (OSTI)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01T23:59:59.000Z

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  20. Identifying Opportunities for Industrial Energy Conservation

    E-Print Network [OSTI]

    Hoffman, A. R.

    1981-01-01T23:59:59.000Z

    The Energy Productivity Center of the Mellon Institute is engaged in a 2-year study to identify opportunities for improved U.S. industrial energy productivity. A distinguishing feature is the focus on energy services provided when fuels are consumed...

  1. Industrial Energy Efficiency Programs: Development and Trends

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01T23:59:59.000Z

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

  2. Energy Technical Assistance: Industrial Processes Program

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  3. Industrial Energy Efficiency Programs: Development and Trends 

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01T23:59:59.000Z

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs ...

  4. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  5. Energy Analysis and Diagnostics Data Analysis From Industrial Energy Assessments for Manufacturing Industries

    E-Print Network [OSTI]

    Gopalakrishnan, B.; Plummer, R. W.; Srinath, S.; Meffe, C. M.; Ipe, J. J.; Veena, R.

    . The data shows the types of industries in our geographical area which have benefited from the industrial assessments and outlines the relationships between these industry types and variables such as energy consumption, types of recommendations, sales, plant...

  6. Nuclear Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play...

  7. Business Opportunities in the Energy Industry | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Business Opportunities in the Energy Industry Business Opportunities in the Energy Industry An opportunity for small businesses to network with industry professionals, sponsored by...

  8. Office of Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation...

  9. Unitil- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

  10. Program Name: Energy Smart Industrial (ESI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remote industrial facilities with limited staff resources. Energy Efficiency-Demand Response (EE-DR) Demonstration Demonstration project to investigate the effects and...

  11. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activities, processes or procedures that are "above and beyond" the requirements of ISO 50001. Superior Energy Performance Industrial Facility Best Practice Scorecard...

  12. Nuclear Energy Density Optimization

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

    2010-05-27T23:59:59.000Z

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  13. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13T23:59:59.000Z

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  14. The Texas Industrial Energy Conservation Program 

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01T23:59:59.000Z

    cesses listed. Chart1-lndustrial Target Groups SIC CODE INDUSTRY 201 Meat Products 204 Feed and Grain 207 Fats and Oils 26 Paper and Allied Products 28 Chemicals and Allied Products 30 Rubber and Plastics 33 Primary Metals 34 Fabricated Metals... industry seminars. In the preparation of workbooks for industrial processes, a screening of engineering firms was 763 ESL-IE-82-04-139 Proceedings from the Fourth Industrial Energy Technology Conference, Houston, TX, April 4-7, 1982 conducted in order...

  15. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  16. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  17. Symmetry Energy in Nuclear Surface

    E-Print Network [OSTI]

    Pawel Danielewicz; Jenny Lee

    2008-12-25T23:59:59.000Z

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

  18. Nuclear Energy Page 570Page 570

    E-Print Network [OSTI]

    Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

  19. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    SciTech Connect (OSTI)

    none,

    1980-06-01T23:59:59.000Z

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage. (DMC)

  20. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01T23:59:59.000Z

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  1. Industrial Conservation Technology Energy Savings Monitoring System

    E-Print Network [OSTI]

    Crowell, J. J.; Phipps, H. R., Jr.

    1980-01-01T23:59:59.000Z

    A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

  2. Industrial Energy Audit Training for Engineers 

    E-Print Network [OSTI]

    Russell, B. D.; Willis, G.; Colburn, B.

    1982-01-01T23:59:59.000Z

    The field of engineering energy conservation has witnessed an explosion of concern and activity during the last three years throughout the United States. In Texas, such activities have been enhanced by comprehensive industrial energy auditor...

  3. Developing a solar energy industry in Egypt

    E-Print Network [OSTI]

    AbdelMessih, Sherife (Sherife Mohsen)

    2009-01-01T23:59:59.000Z

    This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

  4. The Texas Industrial Energy Conservation Program

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01T23:59:59.000Z

    Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would...

  5. Joint Statement on the Global Nuclear Energy Partnership and...

    Office of Environmental Management (EM)

    Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation...

  6. Nuclear Power Trends Energy Economics and Sustainability

    E-Print Network [OSTI]

    Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline · The Problem · Nuclear Energy Trends · Energy Economics · Life Cycle Analysis · Nuclear Sustainability · Nuclear Energy in Greece? #12;National Research

  7. The Role of Thermal Energy Storage in Industrial Energy Conservation

    E-Print Network [OSTI]

    Duscha, R. A.; Masica, W. J.

    1979-01-01T23:59:59.000Z

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely...

  8. Atomic Energy and Nuclear Materials Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Atomic Energy and Nuclear Materials section of the Tennessee Code covers all of the regulations, licenses, permits, siting requirements, and practices relevant to a nuclear energy development. ...

  9. International Framework for Nuclear Energy Cooperation (IFNEC...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania...

  10. Sandia National Laboratories: Nuclear Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos Nuclear Energy Videos The Nuclear Energy Capabilities video is 40 minutes long, but is broken into video segments for each capability. You may select a specific capability...

  11. Energy Savings in Industrial Buildings

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2001 5. Environmental Protection Agency (EPA), ENERGY STAR program, 2007. ?Useful Facts and Figures.? http://www.energystar.gov/index.cfm?c=energy_awareness.bus_energy_use 6. Navigant Consulting Inc. (2003), Energy Savings Estimate of Light Emitting... Diodes in Niche Lighting Applications, Prepared for Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. 7. National Renewable Energy Laboratory (NREL) (2006), Energy Sector Market Analysis, NREL/TP 620-40541 8. Sentech, Inc...

  12. Innovative Energy Efficient Industrial Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01T23:59:59.000Z

    factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design...

  13. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  14. Energy Conservation in China North Industries Corporation

    E-Print Network [OSTI]

    You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

    . In some plants which have stable steam consumption we have established small scale power and steam cogeneration. This has improved boilers' efficiencies and utilization of energy. For further reduction oil firing, we have been studying on alternative... ENERGY CONSERVATION IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy...

  15. State Level Analysis of Industrial Energy Use 

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    2003-01-01T23:59:59.000Z

    in the global aluminum market. Similarly, increases in electricity prices combined with declining old-growth timber inventories lead to a decline in the wood products and primary paper industries. The outlook for these industries is equally uncertain.... Available: http://www.eia.doe.gov/cneaf/electricity/esr/ esr sum.html. Washington, D.C.: USDOE. [DOE/EIA] Department of Energy, Energy Information Administration. 2000. Annual Energy Outlook 2001. DOE/EIA 0383(2001). Washington, D.C.: Department...

  16. Radiation issues for the nuclear industry

    SciTech Connect (OSTI)

    Harward, E.D. (ed.)

    1983-01-01T23:59:59.000Z

    These proceedings are organized under the following categories: Radiation Control: New Issues; Exploring the Use of a De Minimus Concept in Radiation Protection; Evolving Radiation Protection Standards; Occupational Radiation Protection: Are We Doing Enough; and Emergency Planning: the Potassium Iodide Issue. A separate abstract was prepared for each of 22 papers for the Energy Data Base (EDB) and for Energy Abstracts for Policy Analysis (EAPA); 6 of the papers are included in Energy Research Abstracts (ERA). Three papers were processed earlier.

  17. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01T23:59:59.000Z

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  18. Qualification of NDE personnel in the nuclear industry

    SciTech Connect (OSTI)

    Epps, T.N.

    1984-06-01T23:59:59.000Z

    There has been evidence of ineffective programs for certifying nondestructive examination (NDE) personnel who conduct periodic inservice examinations in nuclear power plants under ASME Section XI Code requirements. This was brought to the attention of a group from the electric utility industry, the Electric Power Research Institute (EPRI), some NDE consultants and representatives from the American Society of Mechanical Engineers (ASME) by the Nuclear Regulatory Commission (NRC) in a May, 1982 meeting in Bethesda, Maryland. One problem pointed out by the NRC was the lack of a clear definition of qualification requirements for certification of NDE personnel who conduct ASME Section XI Inservice Inspection work in nuclear power plants. The NRC requested that the nuclear industry resolve this problem by formulating definitive qualification requirements for personnel certification that could be made an industry requirement. In June, 1982 the EPRI NDE Subcommittee held a general meeting for utility representatives to discuss the results of the May, 1982 meeting to develop a plan for industry response to the issue. The consensus was that an Ad Hoc Committee of utility representatives be convened to develop a document outlining qualification requirements for vertification of NDE personnel. The Ad Hoc Committee was formally convened on September 29, 1982.

  19. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    SciTech Connect (OSTI)

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01T23:59:59.000Z

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  20. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Experimental Testing On March 9, 2012, in Multi-scale and Multi-process Testing Large-Scale Validation Experiments Multi-scale and Multi-process Testing Exploring...

  1. Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01T23:59:59.000Z

    Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -distinguish cooperation on nuclear energy as a vital first-concerns about nuclear energy (dwindling capacity for waste

  2. Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01T23:59:59.000Z

    Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -present East Asian national nuclear energy programs. WithoutNortheast Asian nuclear energy cooperation advanced by

  3. Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness

    E-Print Network [OSTI]

    Glaser, C.

    /Process Changes Buildings and Grounds Non-Energy Related Cost Savings Alternate Fuels The University City Science Center examines and critiques every audit report generated by the EADCs to ensure high quality work. They also periodically accompany the EADC...INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY...

  4. A Role for Industry in Promoting Nuclear Security and Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.; Elkhamri, Oksana O.

    2009-11-01T23:59:59.000Z

    Industry has a unique opportunity and critical role to play in strengthening governmental efforts to prevent the spread of nuclear, radiological, and dual-use materials and technologies that could be used in a nuclear or radiological weapon. Governmental regulations and policies are in effect at both the national and international levels to inhibit access to such materials and technologies by illegitimate end-users. However, the discovery of an illegal nuclear network, spearheaded by Pakistani scientist A Q Khan, increased international concern about what more could be done to prevent proliferation. Industry is well-poised and has a strong incentive to take a more proactive role to complement existing governmental efforts. Companies can be a tremendous help in ensuring that illicit diversions do not occur by increasing their oversight over the supply chain.

  5. Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities

    E-Print Network [OSTI]

    Kelly, R. L.

    1980-01-01T23:59:59.000Z

    As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

  6. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Environmental Management (EM)

    Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

  7. NGNP Nuclear-Industrial Facility and Design Certification Boundaries White Paper

    SciTech Connect (OSTI)

    Thomas E. Hicks

    2011-07-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Project was initiated at Idaho National Laboratory by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act and based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is helium cooled and graphite moderated and can operate at reactor outlet temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, in addition to producing electricity, which is the principal application of current LWRs. These varied industrial applications may involve a standard HTGR modular design using different Energy Conversion Systems. Additionally, some of these process heat applications will require process heat delivery systems to lie partially outside the HTGR operator’s facility.

  8. Industrial Energy Management: Doing More with Less 

    E-Print Network [OSTI]

    Sheppard, J.; Tisot, A.

    2006-01-01T23:59:59.000Z

    INDUSTRIAL ENERGY MANAGEMENT: DOING MORE WITH LESS Jason Sheppard, Industrial Market Segment Manager Anthony Tisot, Communications Manager Power Monitoring and Control SCHNEIDER ELECTRIC Victoria, BC, Canada ABSTRACT The cost of doing... and quality of electricity can significantly affect operations and profits, it has traditionally been accepted as a non-negotiable business expense — the utility bill is paid each month without question, and the cost goes unchallenged. But energy is not a...

  9. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01T23:59:59.000Z

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  10. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1990-02-01T23:59:59.000Z

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  11. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    on solar thermal-electric generation. ERDA has contractedSolar Thermal-Electric Power Plants Energy Generation fromthermal-electric power plants and waste-fired electricity genera- A large block of nuclear power generation

  12. Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

  13. Top U.S. Nuclear Official Commends Industry for Submitting 3rd...

    Energy Savers [EERE]

    Top U.S. Nuclear Official Commends Industry for Submitting 3rd Combined Construction & Operating License Application to the NRC Top U.S. Nuclear Official Commends Industry for...

  14. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Estes, C. B.; Turner, W. C.

    1980-01-01T23:59:59.000Z

    usage continues to rise. With this informa tion, Oklahoma embarked upon a program to help indus try (particularly small to medium sized ones) meet the challenge. Program Objectives The primary objective of the program can be stated simply as: "To... for the country and necessary for her to be competitive in the International marketplace. PROGRAM DESCRIPTION The first step was to develop a symbol that year tenure of the.program. The conferences have concentrated on the industrialized areas of Tulsa...

  15. Industrial-energy-conservation technology

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Sixty-one papers presented at the meeting are included in this volume. A separate abstract was prepared for each paper for Energy Research Abstracts (ERA); nineteen were included in Energy Abstracts for Policy Analysis (EAPA). (LCL)

  16. China's Energy Management System Program for Industry

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01T23:59:59.000Z

    En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 4 * Includes fuel for electricity generation and T&D losses ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... y En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 Total Non-OECD Total OECD China U.S. India 5 ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May...

  17. China's Energy Management System Program for Industry 

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01T23:59:59.000Z

    En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 4 * Includes fuel for electricity generation and T&D losses ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... y En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 Total Non-OECD Total OECD China U.S. India 5 ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May...

  18. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

  19. Energy Storage Solutions Industrial Symposium | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

  20. Government and Industry A Force for Collaboration at the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

  1. CenterPoint Energy- Commercial and Industrial Standard Offer Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

  2. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Broader source: Energy.gov (indexed) [DOE]

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

  3. USDA, Departments of Energy and Navy Seek Input from Industry...

    Office of Environmental Management (EM)

    Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry...

  4. Department of Energy Launches Initiative with Industry to Better...

    Office of Environmental Management (EM)

    of Energy Launches Initiative with Industry to Better Protect the Nation's Electric Grid from Cyber Threats Department of Energy Launches Initiative with Industry to Better...

  5. Energy Department Develops Tool with Industry to Help Utilities...

    Energy Savers [EERE]

    Energy Department Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities...

  6. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01T23:59:59.000Z

    Efficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial Technologies

  7. Sandia Energy - Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear Energy

  8. The US glass industry: An energy perspective

    SciTech Connect (OSTI)

    Babcock, E.; Elaahi, A.; Lowitt, H.E.

    1988-09-01T23:59:59.000Z

    This report investigates the state of the US glass industry in terms of energy consumption and conservation. The specific objectives were: to update and verify energy consumption and production data for the various process steps in 1985; to determine the potential energy savings attainable by replacing current practices with state-of-the-art and advanced (year 2010) production practices and technologies; and to identify areas of research and development opportunity that will enable these potential future savings to be achieved. The results of this study concluded that for the year 2010 production level, there is potential to save between 21 and 44 percent of the projected energy use by replacing current technology practices with state-of-the-art and advanced technologies. RandD needs and opportunities were identified for the industry. Potential RandD candidates for DOE involvement were selected from the identified list, primarily based on their energy savings potential and the opinions of industry experts. 100 refs.

  9. Sandia Energy » Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategic Petroleum

  10. Despatch Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore

  11. DMI Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:WindOilCowal Wind EnergyDFSTWDMI

  12. Industrial-energy-conservation technology

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Fifty-nine papers presented at the meeting are included in this volume. A separate abstract was prepared for each, with all of the abstracts appearing in Energy Research Abstracts (ERA); 21 abstracts were selected for Energy Abstracts for Policy Analysis (EAPA). (LCL)

  13. Nuclear energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNovaNMRENuclear Power Corp

  14. Shenzhen Chuangyin Industrial Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: Energy ResourcesShelton,Chuangyin Industrial Company

  15. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  16. Energy Flow Models for the Steel Industry

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  17. Aluminum industry energy conservation workshop V papers

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This book contains papers given at a recent meeting sponsored by The Aluminum Association. The focus of the meeting is on energy conservation in the aluminum industry. Topics include recovery of waste heat, more energy efficient design of plants, and government policies.

  18. Industrial Energy Systems Laboratory Gnie mcanique

    E-Print Network [OSTI]

    of the building. This enables the computation of distances and the integration of networks (i.e. district heatingIndustrial Energy Systems Laboratory SECTION DE Génie mécanique Intelligent Generation of Eco-District of increasing energy consumption and the growing high populated urban areas is challenging urban district

  19. Proceedings of EPRI/DOE workshop on nuclear industry valve problems

    SciTech Connect (OSTI)

    Sprung, J.L. (ed.) [ed.

    1981-01-01T23:59:59.000Z

    Representatives from 29 nuclear industry organizations (11 valve manufacturers, 4 nuclear steam supply system vendors, 5 utilities, 3 national laboratories, 2 architect/engineering firms, the Department of Energy (DOE), EPRI, and 2 others) attended the workshop. Working sessions on key valves and on valve stem and seat leakage developed the following recommendations: (1) establish a small permanent expert staff to collect, analyze, and disseminate information about nuclear valve problems; (2) perform generic key valve programs for pressurized water reactors and for boiling water reactors, and several plant specific key valve programs, the latter to demonstrate the cost-effectiveness of such studies; (3) confirm the identity of, define, and initiate needed longer term research and development programs dealing with seat and stem leakage; and (4) establish an industry working group to review and advise on these efforts. Separate abstracts were prepared for three papers which are included in the appendix. (DLC)

  20. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergy InformationGrupo Urbas

  1. Industry Professional | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open Energy InformationProfessional Jump to:

  2. Greenline Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder JumpIowa: EnergyGreenleafGreenlight

  3. Energy Efficient Industrial Building Design

    E-Print Network [OSTI]

    Holness, G. V. R.

    1983-01-01T23:59:59.000Z

    " or precooled air concept of ventilation, with a high temperature hot-water/chilled-water changeover piping system. Extensive energy recovery systems would be provided for production equipment and oil mist control would be by local captive systems, rather...

  4. Nuclear Energy Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinks

  5. Industry Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers

  6. Measuring Energy Efficiency Improvements in Industrial Battery Chargers 

    E-Print Network [OSTI]

    Matley, R.

    2009-01-01T23:59:59.000Z

    Industrial battery chargers have provided the energy requirements for motive power in industrial facilities for decades. Their reliable and durable performance, combined with their low energy consumption relative to other industrial processes, has...

  7. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Cheng Li; S. R. Souza; M. B. Tsang; Feng-Shou Zhang

    2015-05-09T23:59:59.000Z

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  8. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Li, Cheng; Tsang, M B; Zhang, Feng-Shou

    2015-01-01T23:59:59.000Z

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  9. Sandia Energy - Nuclear Energy Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimate

  10. Enviromech Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergy Arkansas IncEnthone

  11. Feezol Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman AerospaceEfficiencyInformation

  12. Melink Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II Jump to:Inc

  13. Motech Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) JumpMorro Bay,Moscow,

  14. Barriers to Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG:Background:Bagdad Plant1Department

  15. Benteler Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,InformationBenson,

  16. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special in the National Nuclear Security Administration, including official reception and representation expenses (not Reactors appropriations including the National Nuclear Security Administration field offices. This account

  17. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special in the National Nuclear Security Administration, including official reception and representation expenses, and Naval Reactors appropriations including the National Nuclear Security Administration (NNSA) field of

  18. Nuclear Energy University Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinksNuclear EnergyEnergy

  19. October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

  20. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    Cold Storage Facilities. ? Proceedings of the 2005 ACEEE Summer Study on Energy efficiency in Industry,

  1. Nuclear power industry in the United States: status and projections

    SciTech Connect (OSTI)

    Connolly, T.J.

    1988-01-01T23:59:59.000Z

    One sixth of the electricity in the United States is now being generated in nuclear power plants, a remarkable achievement for a technology whose basic nuclear reaction was not even known 50 years ago. On the other hand, many of the nation's electric utilities are experiencing great difficulties completing the construction of their nuclear plants; 41 partially constructed plants have been abandoned. Those abandoned plants plus about 110 in operation and 15 still to be completed comprise the first generation of nuclear power plants in the United States. When, and even if, there will be a second generation is much in doubt. Data are presented to show that the absence of a second generation of nuclear plants will place large demands on the fossil fuels, with attendant high energy prices and high environmental costs the expected outcome. It appears that the future will bring large economic forces to start new orders for nuclear plants. On the other hand, the opposing institutional forces appear equally strong. Among the problems creating these institutional forces are the difficulty the United States is having in finding a politically acceptable approach to nuclear waste disposal and the vulnerability of power plant builders and operators to litigation and high financial risk. At present, the issue of a second generation of nuclear plants is stalemated. 17 references.

  2. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01T23:59:59.000Z

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  3. Videocon Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging Jump to:Vicksburg,Videocon Industries Ltd

  4. Nuclear methods in environmental and energy research

    SciTech Connect (OSTI)

    Vogt, J R [ed.

    1980-01-01T23:59:59.000Z

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  5. A Strategy for Nuclear Energy Research and Development

    SciTech Connect (OSTI)

    Ralph G. Bennett

    2008-12-01T23:59:59.000Z

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

  6. Emerging energy-efficient technologies for industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

    2004-01-01T23:59:59.000Z

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

  7. The US textile industry: An energy perspective

    SciTech Connect (OSTI)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01T23:59:59.000Z

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  8. Nuclear symmetry energy at subnormal densities from measured nuclear masses

    E-Print Network [OSTI]

    Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

    2010-11-17T23:59:59.000Z

    The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

  9. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNovaNMRENuclear Power

  10. Industrial Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign In

  11. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07T23:59:59.000Z

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  12. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

  13. Nuclear Energy Technical Assistance | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinksNuclear Energy

  14. Energy resource management for energy-intensive manufacturing industries

    SciTech Connect (OSTI)

    Brenner, C.W.; Levangie, J.

    1981-10-01T23:59:59.000Z

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  15. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHome Energy ScoreITIndustrial Energy Efficiency

  16. Nuclear Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclear EnergyNuclear

  17. The US steel industry: An energy perspective

    SciTech Connect (OSTI)

    Azimi, S. A.; Lowitt, H. E.

    1988-01-01T23:59:59.000Z

    This report investigates the state of the US steel industry in terms of energy consumption and conservation. The specific objectives were: to update and verify energy and materials consumption data at the various process levels in 1983; to determine the potential energy savings attainable with current (1983), state-of-the-art, and future production practices and technologies (2000); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. The results of this study concluded that in year 2000, there is a potential to save between 40% and 46% of the energy used in current production practices, dependent on the projected technology mix. R and D needs and opportunities were identified for the industry. Potential R and D candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  18. Industrial Energy Systems Laboratory (LENI) Gnie mcanique

    E-Print Network [OSTI]

    Candea, George

    -Liquid Heat Exchanger For Waste Heat Recovery In Exhaust Gases Author: Antoine Breton Supervisors: Prof contained in wasted hot gases will allow to reduce industrial energy consumption. Heat recovery. Hot wasted exhaust gases Cold Water Polymer Spiral Film Gas Liquid Heat Exchanger Cold exhaust gases

  19. US Energy Service Company Industry: History and Business Models

    Broader source: Energy.gov (indexed) [DOE]

    Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases *...

  20. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    energy efficiency in the petrochemical industry,” Chapter 3steel, petroleum and petrochemical, chemical, non-ferrousintensive process in the petrochemical industry with an

  1. NREL: Energy Systems Integration - NREL Handbook Helps Industry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Handbook Helps Industry Collect and Interpret Solar Resource Data for Solar Energy Applications Comprehensive handbook is a valuable resource for the solar industry on the...

  2. State Level Analysis of Industrial Energy Use

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    industrial energy use data is not readily available. The only data available is at the national or census regional level (DOE/EIA 200Ia). As a result, a methodology was developed based upon state-level economic activity data and national energy intensity... data reported in the 1998 Manufacturing Energy Consumption Survey (MECS)(DOE/EIA 2001a) and value of shipments data reported in the 1998 Annual Survey of Manufacturing (ASM)(Department of Commerce 2000) are used to estimate energy data from...

  3. Clyde Industrial, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCieloClyde Industrial, LLC

  4. Canyon Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway ElectricCambridgeCanneltonCanyon Industries

  5. Nuclear industry strategic asset management: Managing nuclear assets in a competitive environment

    SciTech Connect (OSTI)

    Mueller, H. [EPRI, Palo Alto, CA (United States); Hunt, E.W. Jr. [Commonwealth Edison, Downers Grove, IL (United States); Oatman, E.N.

    1999-09-01T23:59:59.000Z

    The former Electric Power Research Institute took the lead in developing an approach now widely known as strategic asset management (SAM). The SAM methodology applies the tools of decision/risk analysis used in the financial community to clarify effective use of physical assets and resources to create value: to build a clear line of sight to value creation. SAM processes have been used in both the power and other industries. The rapid change taking place in the nuclear business creates the need for competitive decision making regarding the management of nuclear assets. The nuclear industry is moving into an era in which shareholder value is determined by the net revenues earned on power marketed in a highly competitive and frequently low-priced power market environment.

  6. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01T23:59:59.000Z

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  7. Industry, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open Energy InformationProfessional Jump7335°,

  8. Industry, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open Energy InformationProfessional

  9. Advanced Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4thColorado Zip: 80525 Sector:

  10. Solar Industry Scorches Records | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and|WaterEnergyFieldHotSolar

  11. Department of Energy Announces 24 Nuclear Energy Research Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

  12. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    SciTech Connect (OSTI)

    J. Stephen Herring

    2010-10-01T23:59:59.000Z

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  13. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities safety of nuclear facilities could benefit from the use of smart materials technologies in both

  14. Energy use and energy intensity of the U.S. chemical industry

    E-Print Network [OSTI]

    Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

    2000-01-01T23:59:59.000Z

    H.L. , et al. , 1985, “Energy Analysis of 108 IndustrialOTA), 1993. "Industrial Energy Efficiency," Washington, DC:on International Comparisons of Energy Efficiency in the

  15. Energy Efficient Industrialized Housing Research Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  16. Green Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:Ethanol LLCEmpowerment

  17. Millennium Energy Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town, Hawaii:Mille LacsInformation TOU

  18. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

  19. Value Capture in the Global Wind Energy Industry

    E-Print Network [OSTI]

    Dedrick, Jason; Kraemer, Kenneth L.

    2011-01-01T23:59:59.000Z

    investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

  20. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for integrated system options; 5. Identify experimental needs to develop and demonstrate nuclear-renewable energy systems.

  1. GEA Industry Briefing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFull Text ManagementDOEGEGEA Industry

  2. Hirschfeld Industries LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy ResourcesNewHirschfeld Industries LP

  3. Industrial Technology Research Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open Energy Information IndonesiaIndurIndustrial

  4. Cathay Industrial Biotech Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang Corporation Trina SolarCathay Industrial

  5. South Jersey Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix JapanCalifornia: EnergyHuntington, New Place:

  6. Rotem Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan: EnergyRosendaleRossie,Roswell,

  7. Impact of Tight Energy Markets on Industrial Energy Planning

    E-Print Network [OSTI]

    Elliott, R. N.

    2006-01-01T23:59:59.000Z

    not come as a surprise. We initially became aware of impending energy problems in the winter of 2000-2001, when limited supplies of hydro-electric power and tight natural gas combined with a cold winter to force natural gas prices to record high...IMPACT OF TIGHT ENERGY MARKETS ON INDUSTRIAL ENERGY PLANNING R. NEAL ELLIOTT, PH.D., P.E., INDUSTRIAL PROGRAM DIRECTOR, AMERICAN COUNCIL FOR AN ENERGY-EFFICIENT ECONOMY, WASHINGTON, D.C. ABSTRACT The past five years have seen growing...

  8. Shenzhen Sumoncle Solar Energy Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncle Solar Energy Industrial Co Ltd Jump to:

  9. Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and

    E-Print Network [OSTI]

    Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

  10. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...

    Office of Environmental Management (EM)

    Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities...

  11. Characterizing emerging industrial technologies in energy models

    SciTech Connect (OSTI)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29T23:59:59.000Z

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  12. Materials Challenges in Nuclear Energy

    SciTech Connect (OSTI)

    Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

    2013-01-01T23:59:59.000Z

    Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

  13. Energy Efficiency and Pollution Prevention: Industrial Efficiency Strategies

    E-Print Network [OSTI]

    Pye, M.; Elliott, R. N.

    . Beginning in the late 1980s, some in the industrial energy efficiency arena recognized that significant energy savings could be realized from P2 programs. Notable program examples are EPRI's (Electric Power Research Institute)2 Partnership... for Industrial Competitiveness program, and DOE's Industrial Assessment Center (lAC) program. EPRI's Partnership for Industrial Competitiveness (EPIC) program focuses on maximizing energy efficiency, pollution prevention and industrial competitiveness...

  14. Colorado Industrial Energy Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal Combustion Products CoalEnergy Âťrepresenting 43%State

  15. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJune

  16. Sandia Energy - Nuclear Energy Safety Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry

  17. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    the potential of nuclear power to combat global warming havecompetitive today, and for nuclear power to succeed, it must

  18. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01T23:59:59.000Z

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  19. Energy Praises the Nuclear Regulatory Commission Approval of...

    Energy Savers [EERE]

    Energy Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval...

  20. Department of Energy and Nuclear Regulatory Commission Increase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to...

  1. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  2. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  3. Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01T23:59:59.000Z

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  4. Sanyo Chemical Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSaltonSprings, California:Santon GmbH Jump

  5. PRAJ Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to: navigation,PRAJ Industries

  6. Phoenix Bio Industries LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenix Bio Industries LLC Jump to:

  7. TWS Industrial Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwaterTMA Global WindTWDBTWS Industrial

  8. Toray Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitatandWindToray Industries

  9. TG Agro Industrial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP Jump to: navigation,TG Agro

  10. Thompson Technology Industries TTI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyo Jump to:ThermosolarThompson Technology

  11. Solkar Solar Industry Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkar Solar Industry Ltd Jump to:

  12. Solventus Industrial SL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkar Solar IndustrySolutions

  13. Unichem Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle AirshipsUnalakleet Valley ElecChem Co

  14. WAPA Participates in Business Opportunities in the Energy Industry...

    Broader source: Energy.gov (indexed) [DOE]

    WAPA Participates in Business Opportunities in the Energy Industry WAPA Participates in Business Opportunities in the Energy Industry October 28, 2014 9:00AM to 12:00PM MDT PPA...

  15. Understanding and reducing energy and costs in industrial cooling systems

    E-Print Network [OSTI]

    Muller, M.R.; Muller, M.B.

    2012-01-01T23:59:59.000Z

    Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE...

  16. Nuclear Energy's Renaissance Andrew C. Kadak

    E-Print Network [OSTI]

    23% 22% 3% 8% 3% 41% Electricity Production Source: EIA Gas 15% Hydro 8% Coal 51% Oil 3% Other 2 Policy calls for expansion of Nuclear Energy Oil Coal Natural Gas Hydro Nuclear Other Renewables #12

  17. Entergy Arkansas- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Entergy Arkansas has several programs to help commercial and industrial customers increase the energy efficiency of eligible facilities.

  18. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from theLiabilityEnergyNuclear

  19. Emerging energy-efficient technologies for industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-03-20T23:59:59.000Z

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

  20. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01T23:59:59.000Z

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  1. Harry Potter, Oxford and Nuclear Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on...

  2. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  3. Sandia Energy - JBEI Research Receives Strong Industry Interest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Receives Strong Industry Interest in DOE Technology Transfer Call Home Renewable Energy Energy Biofuels Facilities Partnership JBEI News News & Events Research &...

  4. Sandia National Laboratories: real-time industrial energy management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid integration of renewable-energy resources, real-time residential and industrial energy management and control, lifetime degradation and science and various forms of advanced...

  5. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  6. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in...

  7. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect (OSTI)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01T23:59:59.000Z

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  8. Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    of Industrial Energy-Efficiency and Electric Power Projectsof Industrial Energy-Efficiency and Electric Power ProjectsOf Industrial Energy-Efficiency And Electric Power Projects

  9. Process Energy Audit for Large Industries

    E-Print Network [OSTI]

    Chari, S.

    can provide the necessary feedback signal to the VSO. Cement Manufacture. Figure 2 illustrates the basic generic flow diagram ofPortland cement manufacture (both wet and dry processes). Table 1 is the electricity consumption for various processes... for 230 ESL-IE-93-03-32 Proceedings from the Fifteenth National Industrial Energy Technology Conference, Houston, Tx, March 24-25, 1993 Figure 2 Process Flow Diagram for a Portland Cement Plant SHALE Attl IAON llAE -----+r------ll"'~~ ..., Il...

  10. Tuesday Webcasts for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarch 4; RSVP by Feb.DepartmentWorking with

  11. Industries & Technologies | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014Information Resources » Industries

  12. Solar Industry Scorches Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2 SolarSolar Industry Scorches Records

  13. Department of Energy National Nuclear Security Administration...

    Broader source: Energy.gov (indexed) [DOE]

    of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Office of Los...

  14. Department Of Energy Offers $60 Million to Spur Industry Engagement...

    Energy Savers [EERE]

    two years (FY'07-'08), to engage industry experts in the conceptual design of the initial nuclear fuel recycling center and advanced recycling reactor as part of President Bush's...

  15. Innovative Software Tackles Nuclear Industry Challenges | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy InformationSavings for Airline Industry

  16. Theories of Low Energy Nuclear Transmutations

    E-Print Network [OSTI]

    Y. N. Srivastava; A. Widom; J. Swain

    2012-10-27T23:59:59.000Z

    Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

  17. A Field Tested Model of Industrial Energy Conservation Assistance to Small Industries

    E-Print Network [OSTI]

    Jendrucko, R. J.; Mitchell, D. S.; Snyder, W. T.; Symonds, F. W.

    1980-01-01T23:59:59.000Z

    The University of Tennessee is one of three universities selected by the Industrial Energy Conservation Program of the Department of Energy to develop and demonstrate the concept of an Energy Analysis and Diagnostics Center (EADC). The objective...

  18. Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology

    E-Print Network [OSTI]

    Leads Technical Leads - evaluation of nuclear hydrogen production methods and system/infrastructure Programmatic Overview Nuclear Hydrogen InitiativeNuclear Hydrogen Initiative #12;Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative

  19. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

  20. atomic energy industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy industry First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MIT and Energy Industries MIT Industry...

  1. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01T23:59:59.000Z

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  2. Nuclear Processes at Solar Energy

    E-Print Network [OSTI]

    Carlo Broggini

    2003-08-29T23:59:59.000Z

    LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

  3. Our Favorite Energy Management Opportunities: A Review of Over 150 Energy Audits of Industrial Firms

    E-Print Network [OSTI]

    Webb, R. E.; Lewis, M.; Spivey, V.; Knight, N.; Turner, W. C.

    For five years the Oklahoma Industrial Energy Management Program at Oklahoma State University has been serving industry by offering energy audits and energy management conferences. To date, more than 50 conferences and 170 energy audits have been...

  4. Optimization Applications in the Energy and Power Industries November 2009

    E-Print Network [OSTI]

    McCalley, James D.

    -emission generation, especially nuclear and "clean coal"; and shifting transportation from fossil fuels to electricity, electric lighting and cooking appliances, as well as modern conveniences such as televisions, computers and power industries. Even so, many have come to associate these industries with waste and pollution

  5. Industrial Energy Auditing - A Short Course for Engineers 

    E-Print Network [OSTI]

    Witte, L. C.

    1979-01-01T23:59:59.000Z

    This paper describes an intensive five day short course, directed toward engineers currently working in industry, which provides the participants with the rudiments of industrial energy auditing. Experience has shown that this format of training can...

  6. Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint

    E-Print Network [OSTI]

    Jackson, C. E.

    1984-01-01T23:59:59.000Z

    Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some...

  7. Energy Management Services for the Industrial Market Segment at TVA

    E-Print Network [OSTI]

    Hamby, R. E.; Knight, V. R.

    1984-01-01T23:59:59.000Z

    The Tennessee Valley Authority has provided energy management surveys (EMSs) to commercial and industrial power consumers since 1979. A significant number of EMSs have been performed to a variety of industry types and sizes. As in all developmental...

  8. Online Modeling in the Process Industry for Energy Optimization

    E-Print Network [OSTI]

    Alexander, J.

    "This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

  9. Energy Secretary Moniz Announces Formation of Nuclear Energy...

    Energy Savers [EERE]

    of Nuclear Energy (NE) in October 2013, which focused on topics such as the management of spent nuclear fuel and high-level radioactive waste, to include transportation and related...

  10. A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    potential in Turkish textile industry: Case study for city of Bursa. ” Renewable and Sustainable Energy

  11. Measuring Energy Efficiency Improvements in Industrial Battery Chargers

    E-Print Network [OSTI]

    Matley, R.

    Measuring Energy Efficiency Improvements in Industrial Battery Chargers Ryan Matley, Sr. Program Manager, Pacific Gas and Electric Company, San Francisco, CA ABSTRACT Industrial battery chargers have provided the energy requirements... to 100 GWh per year. There are three areas of energy losses in the battery and charger system: ? Power Conversion Efficiency (energy out of charger vs. energy into charger) ? Charge Return (energy out of battery vs. energy into battery): some...

  12. Measuring the Social Rate of Return to R&D in the Energy Industry: A Study of the OECD Countries

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    for biomass energy R&D, with clearly demarcated support for both pre-commercial research devoted to innovation for renewable energy and energy efficiency, and has declined for fossil fuel and nuclear technology. The 20051 Measuring the Social Rate of Return to R&D in the Energy Industry: A Study of the OECD Countries

  13. Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...

    Broader source: Energy.gov (indexed) [DOE]

    Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

  14. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Energy Savers [EERE]

    nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards...

  15. Amrit Bio Energy Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmite County,Amrit Bio Energy Industries Ltd

  16. Industrial Energy Efficiency in Ukraine: The Business Outlook

    E-Print Network [OSTI]

    Evans, M.

    Ukraine is full of profitable opportunities for energy efficiency. Industry accounts for many of these opportunities because of its high level of energy consumption and its ability to pay for energy efficiency measures in hard currency. This paper...

  17. The Role of Professional Risk in Implementing Industrial Energy Improvements

    E-Print Network [OSTI]

    Russell, C.

    2014-01-01T23:59:59.000Z

    2012-14 for the American Council for an Energy Efficient Economy. The intended reader is anyone who is interested in reconciling industrial energy management tasks with their business and career performance. Energy managers ensure that their facilities...

  18. Incremental Implementation of Energy Management at Industrial Facilities

    E-Print Network [OSTI]

    Brown, M.; Key, G.

    2005-01-01T23:59:59.000Z

    The essential elements of a sustainable energy management program at industrial facilities are defined in the ANSI/MSE 2000 Management System for Energy standard document. Although many organizations have expressed interest in improving their energy...

  19. Tools for Assessing Building Energy Use in Industrial Plants

    E-Print Network [OSTI]

    Martin, M.; MacDonald, M.

    2007-01-01T23:59:59.000Z

    This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits...

  20. Industrial Energy Conservation in Central America and Panama

    E-Print Network [OSTI]

    Oven, M. J.; Pashkevich, P. A.

    The Regional Industrial Energy Efficiency Project (RIEEP) is the largest and most comprehensive energy conservation effort in Central America and Panama. This paper describes the regional economic and energy situation leading up to the project...

  1. India's baseline plan for nuclear energy self-sufficiency.

    SciTech Connect (OSTI)

    Bucher, R .G.; Nuclear Engineering Division

    2009-01-01T23:59:59.000Z

    India's nuclear energy strategy has traditionally strived for energy self-sufficiency, driven largely by necessity following trade restrictions imposed by the Nuclear Suppliers Group (NSG) following India's 'peaceful nuclear explosion' of 1974. On September 6, 2008, the NSG agreed to create an exception opening nuclear trade with India, which may create opportunities for India to modify its baseline strategy. The purpose of this document is to describe India's 'baseline plan,' which was developed under constrained trade conditions, as a basis for understanding changes in India's path as a result of the opening of nuclear commerce. Note that this treatise is based upon publicly available information. No attempt is made to judge whether India can meet specified goals either in scope or schedule. In fact, the reader is warned a priori that India's delivery of stated goals has often fallen short or taken a significantly longer period to accomplish. It has been evident since the early days of nuclear power that India's natural resources would determine the direction of its civil nuclear power program. It's modest uranium but vast thorium reserves dictated that the country's primary objective would be thorium utilization. Estimates of India's natural deposits vary appreciably, but its uranium reserves are known to be extremely limited, totaling approximately 80,000 tons, on the order of 1% of the world's deposits; and nominally one-third of this ore is of very low uranium concentration. However, India's roughly 300,000 tons of thorium reserves account for approximately 30% of the world's total. Confronted with this reality, the future of India's nuclear power industry is strongly dependent on the development of a thorium-based nuclear fuel cycle as the only way to insure a stable, sustainable, and autonomous program. The path to India's nuclear energy self-sufficiency was first outlined in a seminal paper by Drs. H. J. Bhabha and N. B. Prasad presented at the Second United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. The paper described a three stage plan for a sustainable nuclear energy program consistent with India's limited uranium but abundant thorium natural resources. In the first stage, natural uranium would be used to fuel graphite or heavy water moderated reactors. Plutonium extracted from the spent fuel of these thermal reactors would drive fast reactors in the second stage that would contain thorium blankets for breeding uranium-233 (U-233). In the final stage, this U-233 would fuel thorium burning reactors that would breed and fission U-233 in situ. This three stage blueprint still reigns as the core of India's civil nuclear power program. India's progress in the development of nuclear power, however, has been impacted by its isolation from the international nuclear community for its development of nuclear weapons and consequent refusal to sign the Nuclear Nonproliferation Treaty (NPT). Initially, India was engaged in numerous cooperative research programs with foreign countries; for example, under the 'Atoms for Peace' program, India acquired the Cirus reactor, a 40 MWt research reactor from Canada moderated with heavy water from the United States. India was also actively engaged in negotiations for the NPT. But, on May 18, 1974, India conducted a 'peaceful nuclear explosion' at Pokharan using plutonium produced by the Cirus reactor, abruptly ending the era of international collaboration. India then refused to sign the NPT, which it viewed as discriminatory since it would be required to join as a non-nuclear weapons state. As a result of India's actions, the Nuclear Suppliers Group (NSG) was created in 1975 to establish guidelines 'to apply to nuclear transfers for peaceful purposes to help ensure that such transfers would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities. These nuclear export controls have forced India to be largely self-sufficient in all nuclear-related technologies.

  2. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect (OSTI)

    Mark F. Ruth; Owen R. Zinaman; Mark Antkowiak; Richard D. Boardman; Robert S. Cherry; Morgan D. Bazilian

    2014-02-01T23:59:59.000Z

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  3. Policy modeling for industrial energy use

    SciTech Connect (OSTI)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01T23:59:59.000Z

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

  4. Office of Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Nuclear Power in Space Explore the history of nuclear power systems in U.S. space exploration -- from early satellites to the moon, Mars and beyond. May 19, 2015 7th...

  5. The Use of Thorium within the Nuclear Power Industry - 13472

    SciTech Connect (OSTI)

    Miller, Keith [The UK's National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington WA3 6AE (United Kingdom)] [The UK's National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington WA3 6AE (United Kingdom)

    2013-07-01T23:59:59.000Z

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ?0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, from the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  7. Impact of Control System Technologies on Industrial Energy Savings

    E-Print Network [OSTI]

    Parikh, P.; Pasmussen, B. P.

    2014-01-01T23:59:59.000Z

    to 2010 Image: U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS) ESL-IE-14-05-40 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 INDUSTRIAL ENERGY... CONSUMPTION However, there’s still a need to look for newer energy saving ideas Image: U.S. Energy Information Administration's (EIA) http://www.eia.gov/forecasts/ieo/industrial.cfm Fresher energy saving ideas can be realized by focusing on the Control...

  8. NOTICE OF PUBLIC HEARING City of Industry Renewable Energy Resources

    E-Print Network [OSTI]

    NOTICE OF PUBLIC HEARING City of Industry Renewable Energy Resources Procurement Plan & Enforcement a public hearing to consider the adoption of the City of Industry Renewable Energy Resources Procurement to procure a minimum quantity of electricity products from eligible renewable energy resources, including

  9. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    CIEEDAC Canadian Industrial Energy End-use Data and Analysis Centre Prospectus and Business Plan as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian EXECUTIVE SUMMARY CIEEDAC ii Executive Summary 1. Background The Canadian Industrial Energy End-use Data

  10. U.S. Energy Department, Pay-Television Industry and Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - developed through a non-regulatory agreement between the pay-TV industry, the consumer electronics industry and energy efficiency advocates - will improve set-top box efficiency...

  11. Department of Energy Releases Global Nuclear Energy Partnership...

    Energy Savers [EERE]

    Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation strategy. The Plan outlines a path forward to enable...

  12. Barriers to Industrial Energy Efficiency- Study (Appendix A), June 2015

    Broader source: Energy.gov [DOE]

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these...

  13. Barriers to Industrial Energy Efficiency- Report to Congress, June 2015

    Broader source: Energy.gov [DOE]

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome...

  14. Laclede Gas Company- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and Industrial customers can receive rebates for various energy efficiency measures. Customers implementing specified efficiency measures can receive prescriptive rebates. All other...

  15. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  16. Commercial and Industrial Energy Conservation Programs in Illinois

    E-Print Network [OSTI]

    Thomas, S. K.

    1980-01-01T23:59:59.000Z

    This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

  17. Policies and Measures to Realise Industrial Energy Efficiency...

    Open Energy Info (EERE)

    Resource Type: Publications Website: www.unido.orgfileadminusermediaPublicationsPubfreeUNEnergy2009P Policies and Measures to Realise Industrial Energy Efficiency and...

  18. Detroit Public Lighting Department- Commercial and Industrial Energy Wise Program

    Broader source: Energy.gov [DOE]

    The Detroit Public Lighting Department (PLD) offers commercial and industrial customers rebates for energy efficient equipment. Specific rebate amounts, equipment requirements, and applications are...

  19. CEMI Industrial Efficiency (text version) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Efficiency and Energy Productivity Video. Well Legrand is a small to medium sized manufacturer. We make electronic products for power, light, and data in the...

  20. Dakota Electric Association- Commercial and Industrial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Dakota Electric provides low-interest loans to help its commercial and industrial customers finance projects which will improve the energy efficiency of participating facilities. The minimum loan...

  1. Sandia National Laboratories: New Energy and Indus-trial Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and Indus-trial Technology Development Organization Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014,...

  2. Solar Energy LLC Industrial Investors Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG26588°,SocorromercurySolaireInformationIncLLC -

  3. Texas Renewable Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar JumpTennessee/WindPetroleum Storage Tanks Webpage JumpRenewable

  4. US Solar Energy Industries Association SEIA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypefor Africa |Green6NFCRCOpenSEIA Jump

  5. An Overview of the Regulation of Low Dose Radiation in the Nuclear and Non-nuclear Industries

    SciTech Connect (OSTI)

    Menon, Shankar; Valencia, Luis; Teunckens, Lucien

    2003-02-27T23:59:59.000Z

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of TENORM, specially the activity levels and quantities arising in so many non-nuclear industries. The first reaction of international organizations seems to have been to propose different standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to thirty to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are significant strategic issues that need to be discussed and resolved. Some examples of these are: - Disposal aspects of long-lived nuclides, - The use of radioactive residues in building materials, - Commercial aspects of differing and discriminating criteria in competing power industries in a world of deregulated electric power production. Of even greater importance is the need for the discussion of certain basic issues, such as - The quantitative risk levels of exposure to ionizing radiation, - The need for in-depth studies on populations of the naturally high background dose level areas of the world, - The validity of the various calculation codes currently used to arrive at mass specific clearance levels for redundant material. The paper discusses these and other strategic issues regarding the management of redundant low radiation material from both the nuclear and non-nuclear industries, underlining the need for consistency in regulatory treatment.

  6. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Research and Testing (BAM) have been collaborating for over 30 years in the area of Used Nuclear Fuel Storage and Transportation. This site documents the agenda and...

  7. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's nuclear-waste efforts and the goals of the Deep ... Waste Isolation Pilot Plant Accident Investigation Analysis Support On December 3, 2014, in Computational Modeling &...

  8. Energy Department Partners with Industry to Train Federal Energy Managers

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF &DepartmentEnergy NuclearDecathlon 2015 |and

  9. INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE

    E-Print Network [OSTI]

    .4 Hydro Quebec 14 5.5 Energy Research Group, Simon Fraser University 14 5.6 CANMET 15 #12;Industrial. INDUSTRIAL PRIMARY ENERGY DATA COLLECTION FORMATS 27 9.1 Energy Audits 27 9.1.1 Methodology 29 9.1.2 Steps Involved in an Energy Audit 30 9.2 Surveys 31 9.2.1 Detailed Site Energy End-use Survey 32 9.2.2 Equipment

  10. DOE Office of Nuclear Energy Transportation Planning, Route Selection...

    Office of Environmental Management (EM)

    DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

  11. International Framework for Nuclear Energy Cooperation to Hold...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

  12. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To...

  13. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Office of Environmental Management (EM)

    Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop...

  14. Nuclear Energy Research Advisory Committee (NERAC) agenda 11...

    Broader source: Energy.gov (indexed) [DOE]

    agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

  15. Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors GNEP will provide...

  16. Sandia Energy - Sandia Nuclear Power Safety Expert Elected to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power Safety Expert Elected to National Academy of Engineering Home Infrastructure Security Energy Nuclear Energy Capabilities News News & Events Research & Capabilities...

  17. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15T23:59:59.000Z

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  18. Sandia Energy - Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear EnergyNuclear Power

  19. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    integration of energy management into business practices. ItIndustrial Energy Efficiency The principal business of anIn addition, business metrics such as energy performance

  20. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    Comparison of National Energy Management Standards, prepared2007, Industrial Energy Management: Issues Paper, preparedMeeting: Using Energy Management Standards to stimulate

  1. NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

  2. Roundtables Is nuclear energy different than other

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    -energy sources. Given the need to curb greenhouse-gas emissions and avoid fossil fuels, comparing nuclear power -- from real prices that are much higher than those of renewables. Why the subsidies? Partly because subsidies ($165 billion) to commercial nuclear than to wind and solar combined ($5 billion), if one counts

  3. China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    China’s Industrial Energy Consumption Trends and Impacts ofChina’s Industrial Energy Consumption Trends and Impacts ofs industrial energy consumption trends from 1996 to 2010

  4. The Novel ''Controlled Intermediate Nuclear Fusion'' and its Possible Industrial Realization as Predicted by Hadronic Mechanics and Chemistry

    E-Print Network [OSTI]

    Santilli, R M

    2006-01-01T23:59:59.000Z

    In this note, we propose, apparently for the first time, a new type of controlled nuclear fusion called "intermediate" because occurring at energies intermediate between those of the ''cold'' and ''hot'' fusions, and propose a specific industrial realization. For this purpose: 1) We show that known limitations of quantum mechanics, quantum chemistry and special relativity cause excessive departures from the conditions occurring for all controlled fusions; 2) We outline the covering hadronic mechanics, hadronic chemistry and isorelativity specifically conceived, constructed and verified during the past two decades for new cleans energies and fuels; 3) We identify seven physical laws predicted by the latter disciplines that have to be verified by all controlled nuclear fusions to occur; 4) We review the industrial research conducted to date in the selection of the most promising engineering realization as well as optimization of said seven laws; and 5) We propose with construction details a specific {\\it hadron...

  5. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  6. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    Microturbines: What is a Microturbine? ” OIT’s Industrial1999c. Summary of the Microturbine Technology Summit:s Emerging Companies; Microturbine Firm Hopes IPO Generates

  7. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    shown as changes in oil demand for elec- trical energyindustry fuel. ity Oil demand is specified by four majorft /year) II. Annual Oil Demand (10 Transportation Industry

  8. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01T23:59:59.000Z

    ISO 9000/14000 quality and environmental management systems,industrial quality and environmental management systems suchISO 9000/14000 quality and environmental management systems,

  9. ITP Industrial Distributed Energy: Microturbine Power Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    added to internal combustion generator line No Power converter will be purchased from Turbo Genset General Electric, Global Research Center & GE Industrial Developing...

  10. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01T23:59:59.000Z

    demand in the long run. Cogeneration of electricity and heatthe expan- sion of cogeneration, especially just now whencame from industrial cogeneration, 4% in l976 (a recession),

  11. Distributed Wind - Economical, Clean Energy for Industrial Facilities 

    E-Print Network [OSTI]

    Trapanese, A.; James, F.

    2011-01-01T23:59:59.000Z

    Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new...

  12. Government and Industry a Force for Collaboration at the Energy...

    Office of Environmental Management (EM)

    and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Sept. 16, 2009 Energy sector leaders in the public and private sectors have once again come together to...

  13. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  14. Delmarva Power- Commercial and Industrial Energy Savings Program

    Broader source: Energy.gov [DOE]

    The Delmarva Power Commercial and Industrial (C&I) Energy Savings Program is designed to promote and encourage the incorporation of energy efficient equipment, products, and services into non-...

  15. Distributed Wind - Economical, Clean Energy for Industrial Facilities

    E-Print Network [OSTI]

    Trapanese, A.; James, F.

    2011-01-01T23:59:59.000Z

    Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new...

  16. Motor Energy Saving Opportunities in an Industrial Plant

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  17. Value Capture in the Global Wind Energy Industry

    E-Print Network [OSTI]

    Dedrick, Jason; Kraemer, Kenneth L.

    2011-01-01T23:59:59.000Z

    Wind Energy Council, 2011 New installation in 2010 The wind industry value chain Wind turbineWind Energy Council (GWEC, 2011) domestic content in U.S. -deployed turbines

  18. The Gas Utility View of Industrial Energy Conservation

    E-Print Network [OSTI]

    Loberg, T. J.

    1980-01-01T23:59:59.000Z

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  19. Tools for Assessing Building Energy Use in Industrial Plants 

    E-Print Network [OSTI]

    Martin, M.; MacDonald, M.

    2007-01-01T23:59:59.000Z

    Tools for Assessing Building Energy Use in Industrial Plants Michaela Martin and Michael MacDonald Oak Ridge National Laboratory BRIEF SUMMARY: This presentation will cover a brief history of building energy measures savings potential...

  20. Manpower development for new nuclear energy programs

    E-Print Network [OSTI]

    Verma, Aditi

    2012-01-01T23:59:59.000Z

    In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

  1. Department of Energy Nuclear Safety Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-08T23:59:59.000Z

    It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

  2. Nuclear Fusion Energy Research Ghassan Antar

    E-Print Network [OSTI]

    Shihadeh, Alan

    to address these issues. In particular there has been consistent emphasis on nuclear reactor accidents since the Chernobyl accident by the International Atomic Energy Agency (IAEA) and the World Meteorological

  3. Investing in Clean, Safe Nuclear Energy

    ScienceCinema (OSTI)

    President Obama

    2010-09-01T23:59:59.000Z

    President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

  4. Investing in Clean, Safe Nuclear Energy

    Broader source: Energy.gov [DOE]

    President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

  5. Siemens Nuclear Power GmbH AREVA Nuclear Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH Jump to: navigation,GmbH AREVA Nuclear

  6. Understanding the Challenges in the Transition from Film Radiography in the Nuclear Power Industry

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Moran, Traci L.; Nove, Carol A.; Pardini, Allan F.

    2012-09-01T23:59:59.000Z

    Nondestructive examination (NDE) applications in the nuclear power industry using film radiography are shrinking due to the advent of modern digital imaging technologies and advances in alternative inspection methods that do not present an ionizing radiation hazard. Technologies that are used routinely in the medical industry for patient diagnosis are being adapted to industrial NDE applications including the detection and characterization of defects in welds. From the user perspective, non-film inspection techniques provide several advantages over film techniques. It is anticipated that the shift away from the application of film radiography in the nuclear power industry represents an irreversible trend. The U.S. Nuclear Regulatory Commission (NRC) has noted this trend in the U.S. nuclear power industry and will be working to ensure that the effectiveness and reliability of component inspections is not compromised by this transition. Currently, specific concerns are associated with 1) obtaining a fundamental understanding of how inspection effectiveness and reliability may be impacted by this transition and 2) ensuring training standards and qualifications remain compatible with modern industrial radiographic practice. This paper discusses recent trends in industrial radiography and assesses their advantages and disadvantages from the perspective of nuclear power plant component inspections.

  7. atomic energy industrial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy industrial First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MIT and Energy Industries MIT...

  8. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

  9. Medium energy nuclear physics research

    SciTech Connect (OSTI)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01T23:59:59.000Z

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T{sub 20} experiment, the UMass group was able to complete data acquisition on experiments involving 180{degrees} elastic magnetic scattering on {sup 117}Sn and {sup 41}Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e{prime}) measurements were made in November of 1987 on {sup 10}B in order to better determine the p{sub 3/2} wave function from the transition from the J{sup pi} = 3{sup +} ground state to the O{sup +} excited state at 1.74 MeV. In 1988, (e,e{prime}p) coincidence measurements on {sup 10}B were completed. The objective was to obtain information on the p{sub 3/2} wave function by another means.

  10. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    linkage between energy efficiency and productivity. Energyand increased energy efficiency in integrated paper andand Office of Energy Efficiency and Renewable Energy, 1997.

  11. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    the linkage between energy efficiency and productivity.and increased energy efficiency in integrated paper andand Office of Energy Efficiency and Renewable Energy, 1997.

  12. Characterizing emerging industrial technologies in energy models

    E-Print Network [OSTI]

    Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-01-01T23:59:59.000Z

    EIA), 2001. “Annual Energy Outlook 2002,” Energy Informationas forecasted in the Annual Energy Outlook 2002, we estimateQuads based on the Annual Energy Outlook 2002 (AEO 2002) (

  13. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01T23:59:59.000Z

    complete an in-depth energy audit and analysis to baselineof measures identified in the energy audit with a payback ofon energy management, energy audits and analysis, routines

  14. The Soviet uranium industry and exports of nuclear materials and services

    SciTech Connect (OSTI)

    Sagers, M.J.

    1990-08-01T23:59:59.000Z

    The USSR has been offering Western countries, through long-term contracts, services in the processing and enrichment of uranium for their nuclear power industries since 1973. Although known for some time from Western sources, this was confirmed by Boris Semyenov, First Deputy Chairman of the USSR State Committee for the Utilization of Atomic Energy, in 1989. Other sources state that the first service contract was signed in 1971, with initial deliveries beginning in 1973, and that altogether, there are now about 10-12 long-term contracts with firms in various Western European countries that extend to the year 2000 or in some cases to 2010. Although these services are said to remain the mainstay of business with the capitalist countries of the West, the export of enriched uranium materials produced from domestic ore began in 1988. Clients include firms in both the US and Western Europe. Evidently, the severe balance-of-payments problems in Soviet foreign trade operations in recent years have led the Soviets to push alternatives to oil exports as much as possible, notably metals and minerals and chemicals and fertilizers, and this has now extended to the Soviet uranium industry. The paper discusses the USSR uranium industry, uranium mining, uranium enrichment, and plutonium production.

  15. Nuclear diffractive structure functions at high energies

    E-Print Network [OSTI]

    C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

    2008-05-30T23:59:59.000Z

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  16. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01T23:59:59.000Z

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  17. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

  18. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    5.3.2 Nuclear Energy System Model . . . . . . . . . . .scenarios of global nuclear energy demand . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear Fuel

  19. QER- Comment of Industrial Energy Consumer Group

    Broader source: Energy.gov [DOE]

    Thanks Tony. We'll be announcing dates for a number of other meetings in the next few days so hopefully you'll be able to participate in one of those, or have some of your member companies join. Regards, Karen Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 Phone: +1 (202) 586-1347 Cell: +1 (240) 751-8483 From: Buxton, Anthony W. Sent: Thursday, June 12, 2014 11:44 AM To: Wayland, Karen Subject: Re: Save the Date: June 19 QER meeting on Water-Energy Nexus Thank you, Karen. Our participation in the Providence hearing was a very positive and useful experience. IECG will be unable to attend the San Francisco hearing for obvious reasons, though it is always a temptation. IECG appreciates the effort going into and the significance of the Review and will continue to observe and comment as appropriate. We have become increasingly concerned recently about whether the Federal Power Act and related statutes provide adequate authority for the federal government and related energy institutions ( NERC) to take the actions necessary to ensure the supply of energy to America on a reliable and low cost basis. The decision of the D.C. Circuit Court of Appeals invalidating FERC's Order 750 and the consequent challenges to Order 1000 on the same basis exemplify this difficulty. The states are generally without adequate powers and legal authority as well, save for several large states. The RTOs are an ongoing answer from FERC, but they also are limited by the Federal Power Act. We urge attention to this important issue. Thank you again for your New England hearings and for your excellent work. Tony Buxton Counsel to Industrial Energy Consumer Group. From: Wayland, Karen [mailto:Karen.Wayland@Hq.Doe.Gov] Sent: Thursday, June 12, 2014 11:22 AM Eastern Standard Time To: Wayland, Karen Subject: Save the Date: June 19 QER meeting on Water-Energy Nexus Thank you for your interest in the Quadrennial Energy Review (QER), and apologies for any duplicate emails. The next stakeholders meeting for the QER will focus on the Water-Energy Nexus. The meeting will be held at the San Francisco City Hall on June 19 at 9 am. Doors open at 8 am. We will be posting an agenda and background memo on the QER website over the next week at http://www.energy.gov/epsa/events/qer-public-meeting-water-energy-nexus, so check back regularly. We encourage you to attend and participate, and to share the meeting information with your lists. Please note that we are extending the comment period for stakeholders during the open mic session from 3 minutes (as described in the Federal Register notice) to 5 minutes to give stakeholders adequate time to make substantive statements. We look forward to hearing from you! Information on past meetings, including panelists' statements and summaries of discussions, as well the list of upcoming meetings, can be found at www.energy.gov/qer. Regards, Karen Wayland Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 In accordance with Internal Revenue Service Circular 230, we hereby advise you that if this E-mail or any attachment hereto contains any tax advice, such tax advice was not intended or written to be used, and it cannot be used, by any taxpayer for the purpose of avoiding penalties that may be imposed on the taxpayer by the Internal Revenue Service. This E-Mail may contain information that is privileged, confidential and / or exempt from discovery or disclosure under applicable law. Unintended transmission shall not constitute waiver of the attorney-client or any other privilege. If you are not the intended recipient of this communication, and have received it in error, please do not distribute it and notify me immediately by E-mail at abuxton@preti.com or via telephone at 207.791.3000 and delete the original message. Unless expressly stated in this e-mail, noth

  20. U.S. Industrial Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC.DepartmentTexas to CallDepartmentHDV GHG

  1. Intermediate-energy nuclear chemistry workshop

    SciTech Connect (OSTI)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01T23:59:59.000Z

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  2. Nuclear Security & Nonproliferation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclear Science/NuclearSafety

  3. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Energy Research Foundation, Petten, The Netherlands (1997).Energy Research Foundation, Petten, The Netherlands (1995).

  4. Symmetry energy in nuclear density functional theory

    E-Print Network [OSTI]

    W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

    2013-07-22T23:59:59.000Z

    The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

  5. High density behaviour of nuclear symmetry energy

    E-Print Network [OSTI]

    D. N. Basu; Tapan Mukhopadhyay

    2006-12-27T23:59:59.000Z

    Role of the isospin asymmetry in nuclei and neutron stars, with an emphasis on the density dependence of the nuclear symmetry energy, is discussed. The symmetry energy is obtained using the isoscalar as well as isovector components of the density dependent M3Y effective interaction. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. Implications for the density dependence of the symmetry energy in case of a neutron star are discussed, and also possible constraints on the density dependence obtained from finite nuclei are compared.

  6. Nuclear Energy Density Optimization: UNEDF2

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-10-30T23:59:59.000Z

    The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

  7. Office of Nuclear Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 19-20, 2015, in conjunction with the International Conference on Nuclear Engineering (ICONE-23), at Makuhari Messe in Chiba, Japan. March 24, 2015 Moving Forward to Address...

  8. Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional

    E-Print Network [OSTI]

    Weise, Wolfram

    Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low-energy 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density nuclear physics: the relationship between low-energy, non- perturbative QCD and the rich structure

  9. The Energy Services Company (ESCO) industry: Analysis of industry and market trends

    SciTech Connect (OSTI)

    Dayton, D.S.; Goldman, C.A.; Pickle, S.J.

    1998-07-01T23:59:59.000Z

    As retail competition accelerates, energy service companies (ESCOs) are confronting major structural changes in the energy services industry and a business environment in which many large customers are re-thinking their energy-related purchasing practices. This paper analyzes recent trends in the ESCO industry and looks specifically at how traditional performance contracting firms are faring during the transition to a new market structure. The authors also discuss trends in both established and emerging ESCO markets. Key findings include: (1) Independent ESCOs are declining both in number and share of the market for energy-efficiency services; (2) Utility-owned ESCOs and retail energy service companies (RESCOs) are an increasingly significant force in the energy-efficiency services market; and (3) Performance contracting, long a hallmark of the ESCO industry, is being overtaken by other forms of energy service contracts in percentage of total revenue.

  10. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01T23:59:59.000Z

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  11. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect (OSTI)

    Steven E. Aumeier

    2010-10-01T23:59:59.000Z

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: • economic stability – related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; • environmental sustainability – related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; • resource security – related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process applications is certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD&D areas, or “platforms”: • feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); • heat / energy management (e.g. advanced heat exchangers, process design); • energy storage (e.g. H2 production, liquid fuels synthesis); • byproduct management (e.g. CO2 recycle approaches); • systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

  12. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Larsen, Peter

    2014-01-01T23:59:59.000Z

    verification ESCO energy service company ESPC energy savingstrends in the ESCO industry, administrators of ESPC programs

  13. Div ision of T echnology, Industry & Economics Energy Branch Deploying renewable energy

    E-Print Network [OSTI]

    Canet, Léonie

    Div ision of T echnology, Industry & Economics Energy Branch Deploying renewable energy, Industry & Economics Energy Branch 1. Policy landscape 2. Helping transition to Renewable Energy 3 governments are promoting renewable energy. Renewable energy ­ Policy Landscape #12;Div ision of T echnology

  14. Energy efficiency opportunities in the brewery industry

    E-Print Network [OSTI]

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-01-01T23:59:59.000Z

    Series. EC97M-3121D. Energy Information Administration (EIA), U.S. Department of Energy. 1997.Manufacturing Consumption of Energy 1994. Washington, DC.

  15. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    Inc. (Alum-1) [ETSU] Energy Technology Support Unit. 1994.In Encyclopedia of Energy Technology and the Environment.Environmental Energy Technologies Division. (Paper-1) (

  16. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order toassess the impacts of alternative energy futures. In later

  17. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    Energy efficiency and energy awareness in Botswana; ESI,awareness and training was the most frequently identified opportunity for improved energy

  18. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  19. Climate Control Using Nuclear Energy

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2008-01-01T23:59:59.000Z

    We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

  20. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,WBCSD), Geneva, Switzerland. IEA (1997) Voluntary actions

  1. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01T23:59:59.000Z

    bear directly on energy use: the mix of non-energy goods andU.S. long haul mix is less energy intensive but total use isby consumers, and the mix of key energy intensive activities

  2. Energy industries in transition 1985-2000. Part 1

    SciTech Connect (OSTI)

    Weyant, J.P.; Sheffield, D.B. (eds.)

    1984-01-01T23:59:59.000Z

    This conference consisted of 5 plenary sessions and 36 parallel sessions focusing primarily on recent trends in - and future prospects for - the oil, gas, coal, and electric-utility industries. The conference focused on the perspective of private industry. Part 1 consists of 45 papers all of which were selected for the Energy Data Base and Energy Abstracts for Policy Analysis. 5 abstracts appear in Energy Research Abstracts.

  3. Energy industries in transition 1985-2000. Part 2

    SciTech Connect (OSTI)

    Weyant, J.P.; Sheffield, D.B. (eds.)

    1984-01-01T23:59:59.000Z

    This conference consisted of 5 plenary sessions and 36 parallel sessions focusing primarily on recent trends in - and future prospects for - the oil, gas, coal, and electric utility industries. The conference focused on the perspective of private industry. Part 2 consists of 50 papers all of which were selected for the Energy Data Base and Energy Abstracts for Policy Analysis; 5 abstracts appear in Energy Research Abstracts.

  4. GUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM

    E-Print Network [OSTI]

    Energy Inc., a U.S. based publicly-traded, green energy technology company. Bartels is a frequent speakerGUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM Chairman, Global Smart Grid Federation Board Member and Former Chairman, GridWise Alliance Guido Bartels heads up IBM's energy

  5. Energy Use and Savings in the Canadian Industrial Sector

    E-Print Network [OSTI]

    James, B.

    1982-01-01T23:59:59.000Z

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  6. Energy Use and Savings in the Canadian Industrial Sector 

    E-Print Network [OSTI]

    James, B.

    1982-01-01T23:59:59.000Z

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  7. External research and energy efficiency in the process industries

    SciTech Connect (OSTI)

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01T23:59:59.000Z

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  8. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    I OOMW[) o o D~I'I 4 HYDROELECTRIC POWER PlINT (200 MWEIreactor Dam and hydroelectric power plant Pumped storagepower plants include coal-fired plants, nuclear reactors, hydroelectric

  9. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    wind power and other renewable technologies, combined with energy efficiency and conservation can be more cost

  10. The Department of Energy's Solar Industrial Program: New ideas for American industry

    SciTech Connect (OSTI)

    Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

    1991-07-01T23:59:59.000Z

    As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

  11. Meaningful Energy Efficiency Performance Metrics for the Process Industries

    E-Print Network [OSTI]

    Kumana, J. D.; Sidhwa, N. R.

    industries have developed standard met- rics for their plant performance. A notable example is the Solomon Energy Intensity Index (EII) for Oil Refining, which builds up the overall plant energy index from the energy indices for individual process units.... Energy Intensity, Oil & Gas Industry 0 10 20 30 40 50 60 70 1999 2000 2001 2002 2003 2004 2005 2006 Ce n t s / BO E Oil & Gas prod'n Oil Refining Gas Processing Figure 11. Energy Intensity Trends for Different Business Units The ?standard energy...

  12. The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as

    E-Print Network [OSTI]

    Kemner, Ken

    PowerAmericaforMoreThanFiveDecades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity--DependOnIt HelpingtoPowerAmericaforMoreThanFiveDecades Past, Present, and Future ... The United States introduced.eia.doe.gov #12;Public Approval is High ... Support for nuclear energy has grown over the past 25 years, according

  13. PERGAMON Annals of Nuclear Energy 26 (1999) 1183-1204 NUCLEAR ENERGY

    E-Print Network [OSTI]

    Pázsit, Imre

    1999-01-01T23:59:59.000Z

    PERGAMON Annals of Nuclear Energy 26 (1999) 1183-1204 annalsof NUCLEAR ENERGY LOCALISATION of Reactor Phystcs, Chalmers Umverslty of Technology S-412 96 Goteborg, Sweden Received 8 December 1998 conditions and it is inferred that the instablhty most probably ts a locahsed self-sustained density wave

  14. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01T23:59:59.000Z

    Waste. Office of Energy Efficiency and Renewable Energy,Industry. Office of Energy Efficiency and Renewable Energy,Savings. Office of Energy Efficiency and Renewable Energy,

  15. Instabilities in the Nuclear Energy Density Functional

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski

    2010-02-05T23:59:59.000Z

    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

  16. UNDERGRADUATE MINOR IN NUCLEAR ENGINEERING The nuclear industry expanded rapidly in the 1960s and early 1970s and during that time hired

    E-Print Network [OSTI]

    Theory (4 credit hours) - WI NE 736 Nuclear Power Plants (3 credit hours) - WI Options (select 3) NE 716 hours) - AU NE 735 Power Plant Operations I (3 credit hours) - WI NE 742 Nuclear RadiationsNEW! UNDERGRADUATE MINOR IN NUCLEAR ENGINEERING The nuclear industry expanded rapidly in the 1960s

  17. MULTI-OBJECTIVE OPTIMISATION APPLIED TO INDUSTRIAL ENERGY PROBLEMS

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    ses applications `a divers probl`emes industriels dans le domaine des syst`emes ´energ´etiques. LMULTI-OBJECTIVE OPTIMISATION APPLIED TO INDUSTRIAL ENERGY PROBLEMS TH `ESE N XXXX (2002) PR ´ESENT the development of a new multi-objective optimisation tool and applies it to a number of industrial problems

  18. India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear fission

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear posed by reactors, the accident liability laws and regulatory structure governing nuclear energy, Wednesday, Oct 29th 4:00 PM (Tea/Coffee at Seminar Hall, TCIS Colloquium India's Nuclear Energy Program

  19. Industrial energy efficiency policy in China

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-01-01T23:59:59.000Z

    and Schaeffer, R. 1997. "Energy Intensity in the Iron andand Economic Indicators," Energy Policy 25(7'-9): 727-744. Xu , F. 2000. Overview of Energy Conservation for Chemical

  20. Reducing Energy Consumption in Industrial Facilities

    E-Print Network [OSTI]

    Whalen, J. M.

    1984-01-01T23:59:59.000Z

    Owners or managers want to conserve energy, however, they have limited funds. Energy conservation must stand on its merits economically if it is to successfully compete for funds. There are two basic types of approaches to achieving energy...

  1. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    optimal average wind velocity and energy costs The capacitytal (;osts Energy Cost in ˘! KWe (1975 ) Average Wind Speed,wind turbine generators (WTG) , and looks at costs of delivered energy

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    actions, develop an energy management plan for business; and38. Caffal, C. (1995). Energy Management in Industry. Centre2005a). Guidelines for Energy Management. United States

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    2005). Guidelines for Energy Management. Washington, D.C.Caffal, C. (1995). Energy Management in Industry. Centre forfor improving your energy management practices. Resources

  5. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Broader source: Energy.gov [DOE]

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  6. Presentations for Industry | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    materials. Energy Management Get Started Profile Your Energy Situation Create a Plan Finance and Implement Measure Progress and Results Reassess to Achieve Continuous...

  7. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01T23:59:59.000Z

    Brazil, Spain, and Korea have also initiated work on an energyBrazil, Korea). This paper presents the current status of energy

  8. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Power Solar Thermal-Electric Power Plants Energy Generationsolar thermal- electric power plants and electrical energyfrom new energy tech- nologies, including the solar-thermal

  9. Nuclear Energy University Program: A Presentation to Vice Presidents...

    Office of Environmental Management (EM)

    Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

  10. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a global nuclear energy infrastructure as envisioned in GNEP to develop innovative nuclear reactor and fuel cycle technologies. GNEP seeks to bring about a significant,...

  11. Argonne OutLoud Public Lecture Series: Nuclear Energy | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Share Description On November 15, 2012, Argonne National Laboratory opened its doors to the public for a presentationdiscussion titled "Getting to Know Nuclear:...

  12. Nuclear Materials Disposition | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear Materials Disposition

  13. Industrial Energy Audit Training for Engineers

    E-Print Network [OSTI]

    Russell, B. D.; Willis, G.; Colburn, B.

    1982-01-01T23:59:59.000Z

    training programs that were conceived and initiated under the guidance of the Texas Industrial Commission. One such program, begun with Texas A&M and expanded throughout the state, has continued to provide a high level of engineering and scientific training...

  14. Energy Efficiency in the Microelectronics Industry

    E-Print Network [OSTI]

    Bhatti, B.

    is utilized to meet the current and future objectives. In the Microelectronics Industry the use of Electricity far outweighs any other utility usage viz. Water, Natural Gas by at least a three to one ratio on a cost basis. Starting with a typical 100,000 S...

  15. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect (OSTI)

    Raja, Rajendran

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  16. Accelerator Driven Nuclear Energy - The Thorium Option

    SciTech Connect (OSTI)

    Rajendran Raja

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  17. Accelerator Driven Nuclear Energy - The Thorium Option

    ScienceCinema (OSTI)

    Rajendran Raja

    2010-01-08T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  18. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect (OSTI)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29T23:59:59.000Z

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  19. Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value

    E-Print Network [OSTI]

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2008-01-01T23:59:59.000Z

    knowledge concerning energy management best practices andapplying and validating energy management best practices inan international industrial energy management standard that

  20. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  1. A Low Cost Energy Management Program at Engelhard Industries Division 

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  2. A Low Cost Energy Management Program at Engelhard Industries Division

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  3. Energy Challenges and Conservation Achievements in the Aluminum Industry

    E-Print Network [OSTI]

    Sheldon, A. C.

    1979-01-01T23:59:59.000Z

    energy requirements. This talk reviews the aluminum industry's and Alcoa's conservation activities of the past five post-embargo years. It highlights smelting improvements, still in the research and development stage, which nonetheless promise significant...

  4. Energy Management in a Multi-Industry Organization

    E-Print Network [OSTI]

    Lawrence, J.

    1981-01-01T23:59:59.000Z

    Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification...

  5. Emerging Industrial Innovations for New Energy Efficient Technologies 

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01T23:59:59.000Z

    as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand...

  6. Energy Conservation and Waste Reduction in the Metal Fabrication Industry

    E-Print Network [OSTI]

    Kirk, M. C. Jr.; Looby, G. P.

    Reductions of energy use and waste generation can help manufacturers to be more profitable and more environmentally acceptable. Industrial Assessment Centers located at universities throughout the United States, funded by the U.S. Department...

  7. Energy Management and Computers in the Pulp and Paper Industry

    E-Print Network [OSTI]

    Sommerfeld, J. T.; Hartley, E. M.

    1981-01-01T23:59:59.000Z

    dryer hood waste heat. o Biomass feedstocks for the production of specialized chemial products. o Crossing of the stone groundwood process with the thermomechanical pulping process. 236 ESL-IE-81-04-42 Proceedings from the Third Industrial Energy...

  8. Radio Frequency & Microwave Energy for the Petro Chemical Industry

    E-Print Network [OSTI]

    Raburn, R.

    Electro-Magnetic Energy has finally made its way into the Petro-Chemical market twenty-five years after market acceptance in the Food Processing Industry. Major factors influencing this change are tighter environmental regulations, price competition...

  9. Emerging Industrial Innovations for New Energy Efficient Technologies

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01T23:59:59.000Z

    as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand...

  10. Industrial Energy Efficiency Technical Review Guidelines and Best Practices

    E-Print Network [OSTI]

    Dalziel, N.

    2013-01-01T23:59:59.000Z

    . Methodology and Scope of Research: 1. Empirical analysis of reported energy savings at the application, reviewed (contracted), measurement and verification (M&V) and evaluation stages for multiple large or industrial incentive programs. a. Assess impact...

  11. Energy Efficiency Opportunities in the Brewery Industry

    E-Print Network [OSTI]

    Worrell, E.; Galitsky, C.; Martin, N.

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy...

  12. Fusion Energy An Industry-Led Initiative

    E-Print Network [OSTI]

    - Sunlight and its derivatives - Fission energy based on breeders - Clean coal (several hundreds of years

  13. Nuclear Fuels | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This

  14. Nuclear Safety | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76Safeguards and

  15. RenewableNY - An Industrial Energy Conservation Initiative

    SciTech Connect (OSTI)

    Lubarr, Tzipora

    2009-09-30T23:59:59.000Z

    The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

  16. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    fired power plant per unit of electrical energy. Wind powerpower plants will not be cost competitive with other electricity-generating alternatives. For example, wind

  17. innovati nNREL's Industry Growth Forum Boosts Clean Energy

    E-Print Network [OSTI]

    innovati nNREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts For more than's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders

  18. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01T23:59:59.000Z

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  19. Nuclear Liability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from theLiability Nuclear Liability 1.

  20. The Novel ''Controlled Intermediate Nuclear Fusion'' and its Possible Industrial Realization as Predicted by Hadronic Mechanics and Chemistry

    E-Print Network [OSTI]

    Ruggero Maria Santilli

    2006-02-17T23:59:59.000Z

    In this note, we propose, apparently for the first time, a new type of controlled nuclear fusion called "intermediate" because occurring at energies intermediate between those of the ''cold'' and ''hot'' fusions, and propose a specific industrial realization. For this purpose: 1) We show that known limitations of quantum mechanics, quantum chemistry and special relativity cause excessive departures from the conditions occurring for all controlled fusions; 2) We outline the covering hadronic mechanics, hadronic chemistry and isorelativity specifically conceived, constructed and verified during the past two decades for new cleans energies and fuels; 3) We identify seven physical laws predicted by the latter disciplines that have to be verified by all controlled nuclear fusions to occur; 4) We review the industrial research conducted to date in the selection of the most promising engineering realization as well as optimization of said seven laws; and 5) We propose with construction details a specific {\\it hadronic reactor} (patented and international patents pending), consisting of actual equipment specifically intended for the possible industrial production of the clean energy released by representative cases of controlled intermediate fusions for independent scrutiny by interested colleagues.