Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Environment and Nuclear Programs | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment and Nuclear Programs Environment and Nuclear Programs Environment and Nuclear Programs Cooling Tower Reflection | Credit: DOE Archives Cooling Tower Reflection | Credit: DOE Archives Offices of the Deputy General Counsel for Environment and Nuclear Programs Office of the Assistant General Counsel for Environment (GC-51) Office of the Assistant General Counsel for Civilian Nuclear Programs (GC-52 ) Office of the Assistant General Counsel for International and National Security Programs (GC-53) Office of NEPA Policy and Compliance (GC-54) Office of Standard Contract Management (GC-55) Litigation and Enforcement Environment and Nuclear Programs Environment Civilian Nuclear Programs International and National Security Programs NEPA Policy and Compliance Standard Contract Management Technology Transfer and Procurement

2

Nuclear Power and the Environment - Energy Explained, Your Guide To  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From

3

Nuclear Energy  

Science Journals Connector (OSTI)

Nuclear Energy ... A brief summary of the history and key concepts of nuclear energy. ... Nuclear / Radiochemistry ...

Charles D. Mickey

1980-01-01T23:59:59.000Z

4

Centring radiological protection on today's global challenges in energy, climate change, environment and health—with nuclear energy playing a key role  

Science Journals Connector (OSTI)

......environment and health-with nuclear energy playing a key role Sylvain Saint-Pierre...greater challenges than increasing nuclear energy. International Energy Agency's...exposure to ionising radiation from nuclear energy continues to pose a serious hindrance......

Sylvain Saint-Pierre

2011-07-01T23:59:59.000Z

5

Role of nuclear fusion in future energy systems and the environment under future uncertainties  

Science Journals Connector (OSTI)

Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050–2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO2 concentration constraint.

Koji Tokimatsu; Jun’ichi Fujino; Satoshi Konishi; Yuichi Ogawa; Kenji Yamaji

2003-01-01T23:59:59.000Z

6

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network [OSTI]

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy utilities, government organizations and various branches of industry - including the nuclear, financial services and medical sectors

Lindken, Ralph

7

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Programs >> Nuclear Energy Error Error Nuclear Energy Home - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Energy Home - RCC * Increasing...

8

Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics  

E-Print Network [OSTI]

The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

Kálmán, Péter

2015-01-01T23:59:59.000Z

9

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

10

Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics  

E-Print Network [OSTI]

The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted reactions. The electron assisted neutron exchange processes in pure $Ni$ and $Li-Ni$ composite systems (in the Rossi-type E-Cat) are analyzed and it is concluded that these reactions may be responsible for recent experimental observations.

Péter Kálmán; Tamás Keszthelyi

2015-02-05T23:59:59.000Z

11

Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment  

E-Print Network [OSTI]

In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

Boschini, M J; Gervasi, M; Giani, S; Grandi, D; Ivantchenko, V; Pensotti, S; Rancoita, P G; Tacconi, M

2011-01-01T23:59:59.000Z

12

Public views on multiple dimensions of security : nuclear waepons, terrorism, energy, and the environment : 2007.  

SciTech Connect (OSTI)

We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support for domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.

Herron, Kerry Gale (University of Oklahoma, Norman, OK); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK)

2008-01-01T23:59:59.000Z

13

Nuclear Energy!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

driver, see the Nuclear Clean Air Energy race car and receive a special clean energy patch on October 21 from 6:30 - 7:30 p.m. Space is limited RSVP by October 4 Hands-on...

14

Nuclear Energy Papers and Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PapersPresentations View Nuclear Energy papers & presentations. Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and...

15

Nuclear Energy & Energy Security  

Science Journals Connector (OSTI)

Safety issues related to use of nuclear energy and secure operation of nuclear installations are mail stones of great importance. Although none of technologies producing energy are absolutely safe it is obvious t...

Jumber Mamasakhlisi

2010-01-01T23:59:59.000Z

16

American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.  

SciTech Connect (OSTI)

We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

Herron, Kerry Gale (University of Oklahoma, Norman, OK); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Silva, Carol L. (University of Oklahoma, Norman, OK)

2011-03-01T23:59:59.000Z

17

Nuclear power and the environment  

Science Journals Connector (OSTI)

Although nuclear power is not, in itself, the full answer to the problems of global warming and acid rain, it is true that nuclear power generation produces no carbon or nitrogen emissions. The wastes that nuclear power does produce are small in volume, and can be adequately isolated from the environment. The aim of this paper is to show that an expansion of the nuclear power industry should be one among several measures taken to reduce the world's use of fossil fuels.

Hans Blix

1990-01-01T23:59:59.000Z

18

Nuclear and Non-Ionizing Energy-loss of Electrons with Low and Relativistic Energies in Materials and Space Environment  

E-Print Network [OSTI]

The treatment of the electron-nucleus interaction based on the Mott differential cross section was extended to account for effects due to screened Coulomb potentials, finite sizes and finite rest masses of nuclei for electrons above 200 keV and up to ultra high energies. This treatment allows one to determine both the total and differential cross sections, thus, subsequently to calculate the resulting nuclear and non-ionizing stopping powers. Above a few hundreds of MeV, neglecting the effect due to finite rest masses of recoil nuclei the stopping power and NIEL result to be largely underestimated; while, above a few tens of MeV the finite size of the nuclear target prevents a further large increase of stopping powers which approach almost constant values.

Boschini, M J; Gervasi, M; Giani, S; Grandi, D; Ivanchenko, V; Nieminem, P; Pensotti, S; Rancoita, P G; Tacconi, M

2011-01-01T23:59:59.000Z

19

Nuclear and Non-Ionizing Energy-loss of Electrons with Low and Relativistic Energies in Materials and Space Environment  

E-Print Network [OSTI]

The treatment of the electron-nucleus interaction based on the Mott differential cross section was extended to account for effects due to screened Coulomb potentials, finite sizes and finite rest masses of nuclei for electrons above 200 keV and up to ultra high energies. This treatment allows one to determine both the total and differential cross sections, thus, subsequently to calculate the resulting nuclear and non-ionizing stopping powers. Above a few hundreds of MeV, neglecting the effect due to finite rest masses of recoil nuclei the stopping power and NIEL result to be largely underestimated; while, above a few tens of MeV the finite size of the nuclear target prevents a further large increase of stopping powers which approach almost constant values.

M. J. Boschini; C. Consolandi; M. Gervasi; S. Giani; D. Grandi; V. Ivanchenko; P. Nieminem; S. Pensotti; P. G. Rancoita; M. Tacconi

2011-12-06T23:59:59.000Z

20

Energy/Environment/Commissioning  

E-Print Network [OSTI]

//NESTECNESTEC Nobuo NakaharaNobuo Nakahara ICEBO/APCBCAsia Pacific Conference on Building Commissioning 2006.11.7 Opening AddressOpening AddressEnergy/Environment/CommissioningEnergy/Environment/Commissioning Call for Call... Commissioning PrincipleCommissioning Principle Evaluation PrincipleEvaluation Principle How Building & Urban Energy System How Building & Urban Energy System shall be completed and maintained?shall be completed and maintained? Mechanism of Urban Environment...

Nakahara, N.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments  

SciTech Connect (OSTI)

The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

Timothy Shaw; Vaugh Whisker

2004-02-28T23:59:59.000Z

22

High Energy Nuclear Events  

Science Journals Connector (OSTI)

......research-article Articles High Energy Nuclear Events Enrico Fermi Institute...Distribution of Pions produced in High Energy Nuclear Collisions Yoshihiro Yamamoto...Possible Interpretation of High Energy Nuclear Events Nobuo Yajima, Shuji Takagi......

Enrico Fermi

1950-07-01T23:59:59.000Z

23

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network [OSTI]

The bilateral nuclear and security agreement between theThe bilateral nuclear and security agreement between thein East Asia's security, nuclear energy, and environment. It

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

24

Nuclear Energy Advisory Committee  

Broader source: Energy.gov [DOE]

The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

25

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report  

SciTech Connect (OSTI)

Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

26

THE GLOBAL NUCLEAR ENERGY PARTNERSHIP:  

Broader source: Energy.gov (indexed) [DOE]

GLOBAL NUCLEAR ENERGY PARTNERSHIP: GLOBAL NUCLEAR ENERGY PARTNERSHIP: Greater Energy Security in a Cleaner, Safer World The Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S. and global energy security, encourage clean development around the world, reduce the risk of nuclear proliferation, and improve the environment. A plentiful, reliable supply of energy is the cornerstone of sustained economic growth and prosperity. Nuclear power is the only proven technology that can provide abundant supplies of base load electricity reliably and without air pollution or emissions of greenhouse gasses. In order to help meet growing demand for energy at home and encourage the growth of prosperity around the globe, GNEP provides for the safe, extensive expansion of clean nuclear power.

27

Nuclear Fusion, World Environment, and the Energy Problem: The Path of Minimum Risk  

Science Journals Connector (OSTI)

The generation of energy by fusing together the isotopes of hydrogen, namely deuterium and tritium, is an objective pursued for the past 50 years by virtually all nations. In principle, it is the same process ...

E. Panarella

1998-01-01T23:59:59.000Z

28

The MacNuclide nuclear data environment  

SciTech Connect (OSTI)

Advance in technology have produced intriguing tools that can be applied to problems in nuclear science. Information management in nuclear science is an example of how technology is not quickly exploited. The U.S. Department of Energy supports an extensive program to evaluate published nuclear properties and store them in an electronic data base. Much of the evaluation effort has focused on producing the journal Nuclear Data Sheets and the publication Table of Isotopes. Although the electronic data base can itself be a valuable source of information, the software used to access is was designed using decades-old technologies. The authors of this paper have developed a novel data-base management system for nuclear properties. The application is known as MacNuclide. It is a nuclear data-base environment that uses the highly interactive and intuitive windowing environmentsof desk-top computers. The environment is designed around that image of the chart of nuclides. Questions are posed to the data base by placing constraints on properties and defining collections of nuclides to be used in data-base seraches. Results are displayed either as a simple list of nuclides that meet the imposed constraints or as a color chart of nuclides.

Stone, C.A. (San Jose State Univ., CA (United States))

1992-01-01T23:59:59.000Z

29

Centring radiological protection on today's global challenges in energy, climate change, environment and health—with nuclear energy playing a key role  

Science Journals Connector (OSTI)

......from nuclear energy continues to...International Atomic Energy Agency Basic...electricity while reducing the climate...impacts of the energy sources supplying...pollution and greenhouse gas emissions. This paper...demand and on related climate change......

Sylvain Saint-Pierre

2011-07-01T23:59:59.000Z

30

NUCLEAR ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Research Institute FE DOE-Office of Fossil Energy GDP Gross domestic product GHG Greenhouse gas GWe Gigawatt (electric) GWe-yr Gigawatt-year (electric) HTGR...

31

On Nuclear Energy Levels  

Science Journals Connector (OSTI)

...research-article On Nuclear Energy Levels K. M. Guggenheimer The formula for the energy levels of the rigid rotator...nuclei. Two kinds of nuclear rotation are discussed...an A relation for the energy levels of different nuclei...

1942-01-01T23:59:59.000Z

32

Nuclear energy | Open Energy Information  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Nuclear energy is energy in the nucleus of an atom.1 References "EIA: Uranium (nuclear) Basics" External links...

33

Nuclear Safety Information Agreement Between the U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, and the U.S. Department of Energy, Office of Environment, Health, Safety and Security  

Broader source: Energy.gov [DOE]

On December 15, Matt Moury, Associate Under Secretary, Office of Environment, Health, Safety and Security (EHSS DOE) and EHSS Office of Nuclear Safety staff met with the NRC Executive Director for Operations, the Deputy Executive Director for Operations, and the Director, Office of Nuclear Materials Safety and Safeguards to sign a nuclear safety information exchange agreement between NRC Office of Nuclear Materials Safety and Safeguards and the Office of Environment, Health, Safety and Security.

34

Nuclear Energy  

SciTech Connect (OSTI)

Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

Godfrey, Anderw

2014-04-10T23:59:59.000Z

35

INTERNATIONAL ENERGY AND ENVIRONMENT  

E-Print Network [OSTI]

in a heat pump cooling system, thereby alleviating peak electricity consumption and associated emissions substituting for banned fluorocarbon refrigerants, coping with carbon costing and reducing water consumptionINTERNATIONAL ENERGY AND ENVIRONMENT FOUNDATION Computational Fluid Dynamics Modeling

36

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

37

Nuclear Energy Institutes  

Science Journals Connector (OSTI)

Nuclear Energy Institutes ... The Atomic Energy Commission and the American Society for Engineering Education offer their nuclear energy courses for engineering and science teachers again in the summer of 1960. ... At least 160 college and university teachers will study nuclear science in the seven institutes scheduled. ...

1960-01-11T23:59:59.000Z

38

Nuclear rearrangement energy  

Science Journals Connector (OSTI)

The concept of rearrangement energy in nuclear particle removal is carefully defined by specifying several energies associated with the process and its analysis. Connection is made between the present definition and closely related concepts apt to be confused with "rearrangement energy" so defined. Remarks are made concerning the implications of rearrangement to analysis and interpretation of experimental data.NUCLEAR STRUCTURE Nuclear rearrangement energy theoretically defined and differentiated from related energies. Reaction theories examined regarding rearrangement.

William A. Friedman

1975-07-01T23:59:59.000Z

39

Nuclear Energy University Programs (NEUP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE-NE Fosters Novel International Investments in U.S. Nuclear Energy Research October 14, 2014 Nuclear energy is an international industry, but nuclear research and development...

40

Generation IV Nuclear Energy Systems ...  

E-Print Network [OSTI]

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Energy Program  

Broader source: Energy.gov (indexed) [DOE]

April 15, 2002 April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition Year 6 Nuclear Power 2010 6 Major Program Developments 6 FY 2003 Budget Request Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (3) Nuclear Power 2010 Nuclear Power 2010 Nuclear Power 2010 is a new R&D initiative announced by Secretary Abraham on February 14, 2002. This initiative is designed to clear the way for the construction of new nuclear power plants by 2010. Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (4) Can We Build New U.S. Reactors By 2010? Yes! Can We Build New U.S. Reactors By 2010? Yes! Can Be Deployed by 2010

42

Nuclear | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Five Years of Building the Next Generation of Reactors Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). A two-year update on the Consortium for Advanced Simulation of Light Water Reactors and the progress being made in overcoming barriers to national

43

Nuclear Energy Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

44

Nuclear energy in Argentina  

Science Journals Connector (OSTI)

After early interest in the possible uses of uranium in 1937, Argentina's scientists and politicians showed an inclination to support nuclear development that has kept quite steady compared with other areas. The Argentinean government prohibited the export of uranium in 1945, because of the emerging possibility of producing nuclear energy. The creation of the Atomic Energy Commission soon followed, and the first experimental reactor was set critical in 1958. Since then, nuclear development has allowed the successful operation of two nuclear power reactors, a quite integrated nuclear fuel cycle, and sustained activity in the development, production and use of radioisotopes. Nowadays an Argentinean company competes with success in the experimental nuclear reactor market. After a period in which the nuclear sector has been largely ignored in the official interest, Argentina's authorities have launched a comprehensive plan intended to rehabilitate all aspects of nuclear activity.

Gabriel N. Barcelo

2007-01-01T23:59:59.000Z

45

Energy from nuclear power  

SciTech Connect (OSTI)

Nuclear power should play a pivotal and expanded role in supplying world energy, the authors says. Risks must be minimized by designing a new generation of safe reactors. Atomic energy's vast potential can be harnessed only if issues of safety, waste and nuclear-weapon proliferation are addressed by a globally administered institution. The current situation in nuclear power is described before addressing its future.

Haefele, W.

1990-09-01T23:59:59.000Z

46

NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398  

E-Print Network [OSTI]

annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

Pázsit, Imre

47

Advanced Nuclear Energy Projects Solicitation | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Nuclear Energy Projects Solicitation Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION Solicitation...

48

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

49

Relativistic Nuclear Energy Density Functionals  

Science Journals Connector (OSTI)

......research-article Articles Relativistic Nuclear Energy Density Functionals Dario Vretenar...196, 2012 137 Relativistic Nuclear Energy Density Functionals Dario Vretenar...and P. Ring 2. Relativistic nuclear energy density functionals Even though......

Dario Vretenar; Tamara Niksic; Peter Ring

2012-10-01T23:59:59.000Z

50

Department of Energy Nuclear Safety Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

2011-02-08T23:59:59.000Z

51

Nuclear energy and India  

Science Journals Connector (OSTI)

The Indian nuclear energy programme, based on a closed fuel cycle, comprises three main stages: pressurised heavy water reactors in the first stage, fast breeder reactors in the second stage and thorium-based reactors in the third stage. The economic growth and the concomitant growth in energy requirement in the country have led to various studies mandating a larger role for nuclear energy in the overall energy mix. The nuclear renaissance in the world, driven by the need for sustainable growth, is subjecting available uranium resources to stress and India would need to factor this in when deciding its strategy for growth in nuclear energy. This would influence the choice of the type of reactor and fuel cycle to be followed.

R.B. Grover; B. Purniah; S. Chandra

2008-01-01T23:59:59.000Z

52

Nuclear Energy Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

December 9, 2010 L'Enfant Plaza Hotel Washington, D.C. Committee Members Participating John Ahearne Raymond Juzaitis Ashok Bhatnagar William Martin, Chair Dana Christensen Carl Paperiello Thomas Cochran Burton Richter Michael Corradini John Sackett Marvin Fertel Allen Sessoms Donald Hintz Neil Todreas Committee Members Absent Brew Barron Susan Ion Other Participants: Richard Black, Director, Office of Advanced Reactor Concepts, Office of Nuclear Energy, USDOE Nancy Carder, Medical University of South Carolina, NEAC Support Staff David Hill, Director, Institute for Nuclear Energy Science and Technology, Idaho National Laboratory Shane Johnson, Chief Operating Officer, Office of Nuclear Energy, USDOE

53

NEAC Recommended Goals for Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy Nuclear energy currently provides approxi- mately 20 percent of the electricity for the U.S. The primary alternative for power generation is fossil fuels. Though still controversial, evidence continues to mount about the negative health and environmental effects of carbon emissions. Nuclear power is the most significant technology available for meeting anticipated energy needs while reducing emissions to the environment. Nuclear energy is an essential component to a secure and prosperous future for the U.S. and the world. The reliance on fossil fuels for the growing energy usage of an expanding world population will bring about enormous global environmental problems. Nuclear energy is the single largest tool

54

What Will it Take to Revive Nuclear Energy ?  

E-Print Network [OSTI]

What Will it Take to Revive Nuclear Energy ? [Assuming you want to] Andrew C. Kadak Professor;Present Situation · It doesn't get any better than this for nuclear energy! ­ Very Good Nuclear Regulatory rhetoric from the President and Congress about need for nuclear energy for environment, security

55

Nuclear Energy Program  

Broader source: Energy.gov (indexed) [DOE]

September 30, 2002 September 30, 2002 NERAC Fall 2002 Meeting Office of Nuclear Energy, Science and Technology Major Program Developments Major Program Developments 6 June 2002: Department selects three U.S. electric utilities (Dominion Energy, Entergy, and Exelon) to participate in joint government/ industry projects to demonstrate NRC's Early Site Permit (ESP) process and seek NRC approval by mid-decade 6 July 2002: Secretary Abraham announces transition of management of the Idaho National Engineering and Environmental Laboratory to Nuclear Energy and revitalization of its nuclear R&D mission 6 September 2002: Generation IV International Forum reaches agreement on six advanced reactor and fuel cycle technologies for joint development Office of Nuclear Energy, Science and Technology

56

Nuclear Symmetry Energy  

Science Journals Connector (OSTI)

The energy of nuclear matter is determined for ?=(N-Z)(N+Z) in the range of 0 to 0.60. The results are applicable to superheavy nuclei and to problems of astrophysical interest.

Keith A. Brueckner; Sidney A. Coon; Janusz Dabrowski

1968-04-20T23:59:59.000Z

57

Energy requirements for nuclear transformations  

Science Journals Connector (OSTI)

Energy requirements for nuclear transformations ... There are several conservation requirements that must be met in nuclear reactions, including the conservation of energy (E = mc2), charge, angular and linear momentum. ... Nuclear / Radiochemistry ...

Benjamin Carrol; Peter F. E. Marapodi

1951-01-01T23:59:59.000Z

58

Chapter 7 - Nuclear Energy  

Science Journals Connector (OSTI)

Abstract Nuclear energy grew rapidly during the 1960–1975 period in countries such as France, the United States, and Norway. But nuclear energy ran into problems in the 1970s because of public concern over the radioactive waste it generates, and this concern suppressed the further expansion of nuclear power. The public perception had begun to change in recent years, as concern about atmospheric carbon dioxide levels led to a renewed interest in energy sources not reliant on hydrocarbons. But, in 2010, a tsunami in Japan led to an accident at the Fukushima nuclear power plant, and the ensuing release of radioactive materials once again raised concerns about safety. At the same time, limited supplies of uranium have caused the price of that fuel material to go up. The solution to the shortage and resulting price increase is fast breeder reactors that use both uranium and thorium fuels. Unfortunately, this technology has not yet been perfected and commercialized.

Brian F. Towler

2014-01-01T23:59:59.000Z

59

Energy and Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other bio and fossil energy systems, advances renewable energy technologies, and develops alternative energy sources and transportation fuels. For example, EES&T leads the nation's...

60

Office of Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

NE Human Capital Plan Revised August 2006 U. S. Department of Energy NE Human Capital Plan i August 2006 Office of Nuclear Energy Table of Contents Executive Summary...................................................................................................................................1 Background .................................................................................................................................................2 NE Human Capital Strategy.....................................................................................................................2 NE Human Capital Plan: At-A-Glance ..................................................................................................3

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842  

E-Print Network [OSTI]

annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www of Nuclear Energy 32 (2005) 812­842 background noise is present, this technique is useful to indicate.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G

Demazière, Christophe

62

Nuclear symmetry energy  

Science Journals Connector (OSTI)

To study the nuclear symmetry energy, we extend the Dirac-Brueckner approach with a Bonn one-boson-exchange nucleon-nucleon interaction to the general case of asymmetric nuclear matter. We extract the symmetry energy coefficient at the saturation to be about 31 MeV, which is in good agreement with the empirical value of 30±4 MeV. The symmetry energy is found to increase almost linearly with the density, which differs considerably from the results of nonrelativistic approaches. This finding also supports the linear parametrization of Prakash, Ainsworth, and Lattimer. We find, furthermore, that the higher-order dependence of the nuclear equation of state on the asymmetry parameter is unimportant.

C.-H. Lee; T. T. S. Kuo; G. Q. Li; G. E. Brown

1998-06-01T23:59:59.000Z

63

Nuclear Energy Research Brookhaven National  

E-Print Network [OSTI]

Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National&T Department #12;Nuclear Energy Today 435 Operable Power Reactors, 12% electrical generation (100 in US, 19

Ohta, Shigemi

64

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia-UC Davis Collaboration Funded by DOE Office of Fusion Energy On March 4, 2014, in Energy, News, News & Events, Nuclear Energy, Partnership, Research & Capabilities, Systems...

65

DOE Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy DOE Office of Nuclear Energy DOE Office of Nuclear Energy More Documents & Publications Section 180(c) Ad Hoc Working Group Nuclear Fuel Storage and...

66

Nuclear Symmetry Energy  

Science Journals Connector (OSTI)

On the basis of a phenomenological theory proposed in an earlier paper the nuclear symmetry energy is recalculated. The value obtained is smaller than the one given before, which was incorrect. A relativistic calculation of the energy with the radius parameter r0=1.07×10-13 cm of the electron scattering experiments yields about the correct symmetry energy. Compensating uncertainties due to inaccuracy in r0, corrections due to the exclusion principle, and a possible difference in the radius of proton and neutron distributions make an accurate comparison with the empirical symmetry energy meaningless.

Hans-Peter Duerr

1958-01-01T23:59:59.000Z

67

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as...

68

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

69

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more proliferation-resistant fuel cycle technologies. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale

70

International Nuclear Energy Policy and Cooperation | Department...  

Office of Environmental Management (EM)

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation Recent Events 6th US-India Civil Nuclear Energy Working Group Meeting 6th...

71

2012 Nuclear Energy Enabling Technology Factsheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Enabling Technology Factsheet 2012 Nuclear Energy Enabling Technology Factsheet Learn more about the Nuclear Energy Enabling Technologies (NEET) program, which will...

72

A Career in Nuclear Energy  

ScienceCinema (OSTI)

Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

Lambregts, Marsha

2013-05-28T23:59:59.000Z

73

Nuclear Energy (WFP) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy (WFP) Nuclear Energy (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This will enable the agency to have...

74

Nuclear | Open Energy Information  

Open Energy Info (EERE)

Nuclear Nuclear Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 82. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 9. Electricy Generating Capacity Table 96. Electricity Generation by Electricity Market Module Region and Source Table 97. Electricity Generation Capacity by Electricity Market Module Region and Source Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has

75

EEI Environment Meetings Presentation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EEI Environment Meetings Presentation EEI Environment Meetings Presentation EEI Environment Meetings Presentation More Documents & Publications U.S. Energy Association Presentation...

76

Energy Gap in Nuclear Matter  

Science Journals Connector (OSTI)

......research-article Articles Energy Gap in Nuclear Matter Takeshi Ishihara a...Research, Kokubunji, Tokyo An energy gap in nuclear matter is studied. The nucleon-nucleon...1966) pp. 1026-1042 Nuclear Force and Energy Gap in Finite Nuclei Hiroharu......

Takeshi Ishihara; Ryozo Tamagaki; Hajime Tanaka; Masaru Yasuno

1963-11-01T23:59:59.000Z

77

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

for nuclear cooperation with Russia", The Nonproliferationof nuclear energy see for Russia, Trenin Dmitri. "Russia`s Nuclear Policy in the 21 st Century Environment",

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

78

Energy, Environment and Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S E C U R I T Y * E N E R G Y & E N V I R O N M E N T * H E A L T H * C Y B E R S E C U R I T Y SAIC. All rights reserved. Uncertainty in Solar Energy Estimates Presented at the...

79

Nuclear Energy Enabling Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

80

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced...

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Energy Advisory Committee | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these reviews provides advice and recommendations on the program's long-range plans, priorities, and strategies to effectively address the scientific and engineering aspects of the research and development efforts. In addition, the committee provides advice on national policy and scientific aspects of

82

The Global Nuclear Energy Partnership | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

83

Materials Challenges in Nuclear Energy  

SciTech Connect (OSTI)

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

2013-01-01T23:59:59.000Z

84

Symmetry Energy in Nuclear Surface  

E-Print Network [OSTI]

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. The interplay leads to a dependence of the symmetry coefficient, in energy formula, on nuclear mass. Charge symmetry of nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of neutron-proton asymmetry.

Danielewicz, Pawel

2008-01-01T23:59:59.000Z

85

Nuclear Safety News | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety News Nuclear Safety News October 4, 2012 Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations The U.S....

86

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Population Impacts of Geothermal Energy Development in theuse of coal, nuclear and geothermal energy sources. Overall,of indigenous renewable and geothermal energy re- sources in

Cairns, E.J.

2010-01-01T23:59:59.000Z

87

Nuclear Energy: Promise or Peril?  

Science Journals Connector (OSTI)

This book represents the outcome of a Peer Review Workshop of the Pugwash Conferences on Science and World Affairs on `The Prospects of Nuclear Energy' held in Paris in December 1998. It is intended to address, in a manner accessible to the non-expert, the contribution that electricity production from nuclear power might make to resolving the dilemma in which an increasing demand for energy to fuel global economic development confronts an energy production policy that has not, as yet, fully taken into account the impacts on the environment and the depletion of the reserves of non-renewable (both fossil and nuclear) fuels. It is accepted that nuclear energy has both negative (e.g. the production of long-lived radioactive wastes and a potential for weapons proliferation) and positive (e.g. a relatively minor contribution to the problem of global warming) aspects. The influences of these factors on the potential of nuclear energy to continue to contribute to the global energy production mix are explored in detail. During the two days of the conference, each of the chapters was exposed to critical discussion by all of the authors contributing to the book, as well as a smaller independent group of scientists and others from a range of relevant disciplines. It is in this sense that the material presented is said to be `peer reviewed', a process that is probably at least as valid as that for a journal article. The text comprises an introductory preface, 18 substantive chapters, a brief summary by the editors, a short, but useful, appendix of technical notes and units, an (obligatory) summary of abbreviations and acronyms, a listing of the affiliations of the conference participants and a comprehensive index. The first chapter provides a simple introduction to the basics of nuclear energy, reactor systems and their radionuclide inventories, the health hazards of radiation and a brief indication of possible future developments (expanded by others in later chapters). It also summarises the current status of the global nuclear programme for electricity production in the context of the costs of the present and future uranium supply requirements, and the economic considerations that will influence the acceptability of this power source. The next two chapters discuss, respectively, the role of nuclear energy in preventing climate change, and the inter-relationship between global energy use and climate change in this century. The conclusion is that the predicted increase in world energy demand (a six-fold rise, fuelled by population growth and the fulfilment of development objectives) cannot be met by carbon-free sources, and that these - including the nuclear option - require substantial investment in R and D to yield their full potential in an environmentally and socially acceptable way. It is noted that the developed world will probably be able to increase gross national product with little, if any, increase in energy consumption through improvements in energy efficiency - the subject of the next chapter. This is, however, concerned with more than just improving the output per unit energy input. It is firmly concluded that the risks inherent in applying the successful, but energy-rich, approach of the present developed nations to the remainder of the developing world are unacceptable. The author, therefore, envisages a decoupling of economic growth from energy consumption, and a parallel application of intelligence and effort towards achieving desired development goals within a scenario of decreasing energy utilisation, i.e. the engineering of substantial policy and cultural change. Chapters 5 and 6 examine the possible role of nuclear power in the economic advancement of the developing countries; both authors are in agreement that this energy source will be required to supply a proportion of the variable electricity demand that will differ between countries. The following, very short chapter of just 4 pages makes some observations on the safety of nuclear power. In the context of the objectives of this book, a more substantial offe

D S Woodhead

2000-01-01T23:59:59.000Z

88

Office of Nuclear Energy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Nuclear Energy Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is

89

Density content of nuclear symmetry energy from nuclear observables  

Science Journals Connector (OSTI)

The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. The density content of nuclear symmetry energy remains poorly co...

B K AGRAWAL

2014-11-01T23:59:59.000Z

90

Does nuclear energy have a future in Europe  

SciTech Connect (OSTI)

Half of the world's nuclear-generated electricity is consumed in Europe. If only Western Europe is considered, the figure is 36%. Obviously, nuclear energy is an important source of energy in Europe. However, this situation varies from one country to another. Using the percentage of nuclear energy in total electricity generation as an indicator, nuclear energy represents 75% of the total electricity generation in France and 61% in Belgium, but 0% in several countries such as Austria, Italy, and Poland. The reasons for this variance result from several different circumstances, including the economy, energy resources, politics, the decision-making process, the environment, and public opinion. These few considerations show that electrical utilities and all the parties concerned with nuclear energy have to support public relations campaigns on nuclear topics to help and favor the development of this source of energy, guaranteeing each country a greater energy independence and a reasonable impact on the environment.

Pollier, P.

1991-01-01T23:59:59.000Z

91

Energy Functional for Nuclear Masses.  

E-Print Network [OSTI]

??An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional… (more)

Bertolli, Michael Giovanni

2011-01-01T23:59:59.000Z

92

Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation...

93

Centring radiological protection on today's global challenges in energy, climate change, environment and health—with nuclear energy playing a key role  

Science Journals Connector (OSTI)

......Agency of the Organization for Economic Co-operation and Development's...reduced. Discounting clean coal energy from the energy increase...Deploying CCS to the existing coal energy capacity is also quite...Organization, Organization for Economic Co-operation and Development......

Sylvain Saint-Pierre

2011-07-01T23:59:59.000Z

94

Meeting Between the Department of Energy and the Nuclear Energy...  

Energy Savers [EERE]

Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy...

95

Nuclear Energy Research and Development Roadmap | Department...  

Broader source: Energy.gov (indexed) [DOE]

Energy Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

96

Nuclear Energy University Programs  

Broader source: Energy.gov (indexed) [DOE]

1 Status 1 Status Presentation to Nuclear Energy Advisory Committee (NEAC) June 15, 2011 Michael Worley, NEUP Program Manager NEUP Funding is Program Driven Program Directed Funding Program Supported Funding Mission Supported Funding Natl. Labs Universities DOE-NE HQ Peer Review DOE NE Program Drivers 2 3 Summary of Improvements and New Programs for FY 2011 * Expand "Blue Sky" Research and Development (R&D) * Initiate Integrated Research Projects (IRP) * Expand and improve peer review data base * Evaluate adoption of NRC and NNSA Metrics as appropriate to NEUP * Conduct peer review at pre-application stage for R&D 2011 Proposed NEUP Budget - $61.8M * Program Directed Integrated Research Projects (IRP) - $12.0M (NEW)

97

Nuclear energy density optimization  

Science Journals Connector (OSTI)

We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set unedf0 results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

2010-08-13T23:59:59.000Z

98

ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

low-Z elements, nitrogen, utilizing protons of sufficient energy to induce the 14N(p,~)llc nuclear reaction.

Cairns, E.L.

2011-01-01T23:59:59.000Z

99

Nuclear Energy University Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy University Program Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy University Programs (NEUP), which was created in 2009 to consolidate university support under one initiative and better integrate university research within NE' technical programs. NEUP engages U.S. colleges and universities to conduct research and development (R&D), enhance infrastructure and support student education

100

Nuclear Energy | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Office of Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first DOE Hub for the modeling and simulation (M&S) of commercial

102

Notes On Nuclear Energy Regulation  

Science Journals Connector (OSTI)

Notes On Nuclear Energy Regulation ... “Geology matters” is a key lesson from the 2011 earthquake and tsunami that hit the coast of Japan, resulting in the meltdown of three nuclear reactors at the Fukushima Daiichi power plant complex, said Allison M. Macfarlane, new head of the U.S. Nuclear Regulatory Commission, at her first press briefing last week. ... In her address to energy reporters, she focused on her top priorities for the commission. ...

JEFF JOHNSON

2012-08-20T23:59:59.000Z

103

Symmetry Energy in Nuclear Surface  

E-Print Network [OSTI]

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

Pawel Danielewicz; Jenny Lee

2008-12-25T23:59:59.000Z

104

Nuclear Energy Page 570Page 570  

E-Print Network [OSTI]

Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

105

Nuclear Energy Production  

Science Journals Connector (OSTI)

We shall limit ourselves here to a very rough summary of the most important features of nuclear reactions in stars. This will suffice completely ... , while the study of particular aspects of nuclear astrophysics...

Professor Dr. Rudolf Kippenhahn…

1990-01-01T23:59:59.000Z

106

Presentation: DOE Nuclear Nonproliferation | Department of Energy  

Office of Environmental Management (EM)

Presentation: DOE Nuclear Nonproliferation Presentation: DOE Nuclear Nonproliferation A briefing to the Secretary's Energy Advisory Board on DOE nuclear nonproliferation activities...

107

United States and Japan Sign Joint Nuclear Energy Action Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

108

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

109

Community for Energy, Environment and Development (COMMEND) | Open Energy  

Open Energy Info (EERE)

Community for Energy, Environment and Development (COMMEND) Community for Energy, Environment and Development (COMMEND) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Community for Energy, Environment and Development Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Topics: Finance, Market analysis Resource Type: Software/modeling tools User Interface: Other Website: www.energycommunity.org/default.asp?action=71 RelatedTo: String representation "EnergyPLAN, UND ... cation (MARKAL)" is too long. Community for Energy, Environment and Development Screenshot References: COMMAND[1] COMMEND (COMMunity for ENergy environment & Development) is an international initiative designed to foster a community among energy analysts working on energy for sustainable development. COMMEND is managed

110

Computational Systems & Software Environment | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Computational Systems & Software Environment | National Nuclear Security Computational Systems & Software Environment | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog CSSE Computational Systems & Software Environment Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

111

Nuclear Power Trends Energy Economics and Sustainability  

E-Print Network [OSTI]

Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline · The Problem · Nuclear Energy Trends · Energy Economics · Life Cycle Analysis · Nuclear Sustainability · Nuclear Energy in Greece? #12;National Research

112

Department of Energy Releases Global Nuclear Energy Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC -...

113

CSM: Earth, Energy, Environment 2013 Annual Faculty  

E-Print Network [OSTI]

CSM: Earth, Energy, Environment 2013 Annual Faculty Conference Campus Update Terry Parker, Provost August 19, 2013 #12;CSM: Earth, Energy, Environment In Previous Years, we have discussed: · Campus budget on space overall and space location · Accreditation #12;CSM: Earth, Energy, Environment For this year, we

114

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Broader source: Energy.gov (indexed) [DOE]

The Office of Nuclear Energy Announces Central Europe Nuclear The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional Nuclear Safety Workshop on Trends in Nuclear Power Plant Safety for Robust Civil Nuclear Programs on Oct. 10-13, 2011 in Prague. U.S. Ambassador Norman Eisen and Department of Energy Assistant Secretary for Nuclear Energy Dr. Pete Lyons will deliver speeches welcoming participants. Representatives from the Czech Republic, Bulgaria, Lithuania,

115

International Nuclear Energy Policy and Cooperation  

Broader source: Energy.gov [DOE]

The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both...

116

Nuclear Energy Advisory Committee, Facility Subcommittee visit...  

Broader source: Energy.gov (indexed) [DOE]

Committee, Facility Subcommittee visit to Idaho National Laboratory Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory The Nuclear Energy...

117

THE NUCLEAR ENERGY REVOLUTION—1966  

Science Journals Connector (OSTI)

...nuclear energy revolution-1966. | Oak Ridge National Laboratory. | Journal...ALVIN MI. WEINBERG AND GALE YOUNG OAK RIDGE NATIONAL LABORATORYt Delivered before...have passed since Fermi and his co-workers at Chicago achieved the first...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

118

Argonne Historical News Releases about Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Releases Releases About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

119

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network [OSTI]

Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -Northeast Asian nuclear energy cooperation advanced byAsia). 2 Cooperation on nuclear energy would have a direct

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

120

Nuclear Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chapter 24 - Nuclear energy future  

Science Journals Connector (OSTI)

Abstract This chapter attempts to concisely describe the role that nuclear power may take in the meeting the world’s future energy needs. Historically, economic considerations have triumphed all other considerations when selecting an energy source. Nuclear power growth stagnated in the late twentieth century for a variety of reasons. A revival in nuclear reactor construction is beginning in the United States and elsewhere at the start of the twenty-first century. World energy—and especially electricity—use is increasing and sustainable approaches to meeting this need are sought. With rising concern about climate change, nuclear power is found to be the lowest contributor to carbon dioxide emissions, even compared to solar and wind power. Besides electricity generation, power reactors can be utilized for large-scale desalination and hydrogen generation.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

122

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...  

Office of Environmental Management (EM)

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

123

Verifying a nuclear weapon`s response to radiation environments  

SciTech Connect (OSTI)

The process described in the paper is being applied as part of the design verification of a replacement component designed for a nuclear weapon currently in the active stockpile. This process is an adaptation of the process successfully used in nuclear weapon development programs. The verification process concentrates on evaluating system response to radiation environments, verifying system performance during and after exposure to radiation environments, and assessing system survivability.

Dean, F.F.; Barrett, W.H.

1998-05-01T23:59:59.000Z

124

Nuclear Liability | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liability Liability Nuclear Liability 1. Price-Anderson Act (PAA) GC-52 provides legal advice to DOE regarding issues arising under the PAA, which governs nuclear liability in the United States and establishes a system of financial protection for persons who may be liable for and persons who may be injured by a nuclear incident. GC-52 is also responsible for developing regulations implementing any amendments to the PAA. As necessary, GC-52 attorneys coordinate with other US and international agencies. Applicable Laws Atomic Energy Act of 1954, Section 170 Report to Congress on the Price-Anderson Act 2. Extraordinary Contractual Relief for Nuclear Risks GC-52 advises DOE on providing indemnification under Public Law 85-804 for DOE and National Nuclear Security Administration (NNSA) contractors for

125

Chapter 17 - Nuclear heat energy  

Science Journals Connector (OSTI)

Abstract This chapter delves into the important heating processes within a nuclear power plant. Applying Fourier’s law of heat conduction permits determining temperature distributions within the nuclear fuel rods. In contrast, convective cooling occurs on the rod surface. The coolant, cladding and fuel temperature distributions through a reactor are determined. Besides heat transfer in the reactor core, some power plants employ heat exchangers to generate steam that is fed to a turbine-generator to produce electricity. As a consequence of the second law of thermodynamics, thermal power plants reject condenser heat to the environment through mechanisms such as cooling towers.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

126

Nuclear Potential and Symmetry Energy  

Science Journals Connector (OSTI)

A quadratic dependence on momentum is assumed for the two-nucleon interaction energy in the independent-particle model, and is used in a study of the nuclear binding energy and symmetry energy. The corresponding optical potentials for elastic nucleon scattering are discussed. The semiempirical interaction used is compared with the two-body potentials commonly used in shell-model calculations. These are found to be inadequate.

G. R. Satchler

1958-01-15T23:59:59.000Z

127

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 9, 2011 August 9, 2011 CX-009033: Categorical Exclusion Determination Radiation Resistant Electrical Insulation Materials for Nuclear Reactors Using Novel Nanocomposite Dielectrics - Oak Ridge National Laboratory CX(s) Applied: B3.6 Date: 08/09/2011 Location(s): Tennessee Offices(s): Nuclear Energy August 9, 2011 CX-009040: Categorical Exclusion Determination Radiation Tolerance and Mechanical Properties of Nanostructured Ceramic/metal Composites - University of Nebraska CX(s) Applied: B3.6, B3.10 Date: 08/09/2011 Location(s): Nebraska Offices(s): Nuclear Energy August 9, 2011 CX-009038: Categorical Exclusion Determination Radiation-induced Ductility Enhancement in Amorphous Fe and Al2O3+TiO2 Nanostructured Coatings in Fast Neutron and High Temperature Environments of Next Generation Reactors - Brookhaven National Laboratory

128

Nuclear theory for high-energy nuclear reactions of biomedical relevance  

Science Journals Connector (OSTI)

......Presentations Nuclear theory for high-energy nuclear reactions of biomedical relevance...Nuclear Data Needs for Generation IV Nuclear Energy Systems, April 5-7, 2005...2005. Nuclear theory for high-energy nuclear reactions of biomedical relevance......

A. J. Koning; M. C. Duijvestijn

2007-08-01T23:59:59.000Z

129

Energy Gap in Nuclear Matter  

Science Journals Connector (OSTI)

The magnitude of the energy gap in nuclear matter associated with a highly correlated ground state of of the type believed to be important in the theory of superconductivity has been evaluated theoretically. The integral equation of Cooper, Mills, and Sessler is linearized and transformed into a form suitable for numerical solution. The energy gap, calculated by using an appropriate single-particle potential and the Gammel-Thaler two-body potential, is found to be a very strong function of the density of nuclear matter, and of the effective mass at the Fermi surface. It is concluded that the magnitude of the energy gap for nuclear matter should not be compared directly with experimental values for finite nuclei, although the results suggest that if the theory is extended to apply to finite nuclei it probably would be in agreement with experiment.

V. J. Emery and A. M. Sessler

1960-07-01T23:59:59.000Z

130

Nuclear Facilities | Department of Energy  

Energy Savers [EERE]

Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear...

131

Office of Nuclear Energy Launches New Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website February 11, 2013 - 4:01pm Addthis The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy What does this mean for me? Visit the new Office of Nuclear Energy website at energy.gov/ne. The Office of Nuclear Energy (NE) is pleased to introduce our new, updated public website: energy.gov/ne. The new site was designed to help facilitate users' access to NE

132

Nuclear energy density optimization: Shell structure  

Science Journals Connector (OSTI)

Background: Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P.-G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-05-15T23:59:59.000Z

133

Advancing Global Nuclear Security | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION Secretary Moniz's Remarks at the 2014 IAEA General Conference...

134

Nuclear Safety Regulatory Framework | Department of Energy  

Energy Savers [EERE]

Presentation that outlines the rules, policies and orders that comprise the Department of Energy Nuclear Safety Regulatory Framework. Nuclear Safety Regulatory Framework More...

135

wind energy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

wind energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

136

GE Hitachi Nuclear Energy | Open Energy Information  

Open Energy Info (EERE)

GE Hitachi Nuclear Energy GE Hitachi Nuclear Energy Jump to: navigation, search Name GE Hitachi Nuclear Energy Place Wilmington, North Carolina Zip 28402 Sector Efficiency, Services Product GE Hitachi Nuclear Energy develops advanced light water reactors and offers products and services used by operators of boiling water reactor (BWR) nuclear power plants to improve efficiency and boost output. Coordinates 42.866922°, -72.868494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866922,"lon":-72.868494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Nuclear Power - Operation, Safety and Environment  

E-Print Network [OSTI]

as operation, safety, environment and radiation effects. The book is not offering a comprehensive coverage of the material in each area. Instead, selected themes are highlighted by authors of individual chapters representing contemporary interests worldwide...

138

Energy Crossroads: Energy & Environment News | Environmental Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy & Environment News Energy & Environment News Suggest a Listing BioBasedNews.com The BiobasedNews.com community is comprised of industry executives, scientists, policymakers, entrepreneurs, consultants and investors worldwide. From the latest news on ethanol and biodiesel to biomass and biobased products, stay informed with BiobasedNews.com. Industry insiders turn to BiobasedNews.com for the latest updates on university research, new product technologies, start-up businesses and research collaborations that are all part of the emerging Bioeconomy. Energy Central Energy Central is a hub on the Internet for electric power professionals searching for information, products and services related to the energy industry. By teaming with companies that service the energy industry,

139

Atomic Energy and Nuclear Materials Program (Tennessee) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Materials Program (Tennessee) Nuclear Materials Program (Tennessee) Atomic Energy and Nuclear Materials Program (Tennessee) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Atomic Energy and Nuclear Materials section of the Tennessee Code covers all of the regulations, licenses, permits, siting requirements, and practices relevant to a nuclear energy development. In addition to the Tennessee Code the Department of Environment and Conservation has a rule pertaining to the licensing and registration of sources of radiation. The Department's rules state that any contractor or subcontractor of the U.S.

140

Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment Environment Environment LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 LANL has a strategy to clean up the past, control current operations, and move toward a sustainable future in which waste is minimized and other effects on the environment are reduced or eliminated. We work safely, securely, ethically, and in a manner that protects the environment We understand that the health and viability of the Laboratory depend in part on a record of environmental performance, building confidence of the public and our regulators. To gain the right to do what we do, we must work

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear Compressibility and Symmetry Energy  

Science Journals Connector (OSTI)

A modification and generalization of the Puff-Martin model for many-fermion systems is employed to calculate nuclear compressibility and symmetry energy in order to provide a practical test of the model and at the same time obtain useful information about these interesting quantities. An alternative, heuristic, derivation of the Puff-Martin equations is presented in order to exhibit the role of the exclusion principle. The condition stated for normal nuclear matter is that the mean binding energy be minimal (with respect to variation of the Fermi momentum) rather than the Puff-Martin condition that the mean binding energy equal the "single particle" energy at the Fermi surface. These two quantities differ from each other by the rearrangement energy, which is found to be 10 Mev. Employing Puff's potential (hard-shell potential plus a separable Yamaguchi potential, acting only in relative S states), satisfactory agreement is obtained with observed binding energy and density. The value of nuclear compressibility, 214 Mev, falls within the wide range of semiempirical values. The symmetry energy coefficient, 43 Mev, is larger, by 40-80%, than those usually quoted in semiempirical mass formulas. However, our value of the symmetry coefficient is the same as that calculated by Brueckner and Gammel in the absence of odd-state forces; they found the coefficient to be reduced to 26 Mev when a more realistic potential, including odd-state contributions, is employed.

David S. Falk and Lawrence Wilets

1961-12-15T23:59:59.000Z

142

Nuclear Energy University Programs  

Broader source: Energy.gov (indexed) [DOE]

NEUP FY2011 Process Presentation to NEAC December 9, 2010 Marsha Lambregts, NEUP-IO Manager FUNDED R&D PROPOSALS BY STATE 2010 * Awards/Full Submissions - 42/128 * Awards to PIs for first time - 29 * Awards to junior faculty - 20 * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of awards with lab partners - 20 * Number of universities receiving awards for first time - 8 2 2010 INFRASTRUCTURE * Major Reactor: 4 awards for a total of $3.75 M * Minor Reactor: 12 awards for $1.95 M * General Scientific Infrastructure: 33 award for $7.47 M * Since 2009, $ 19.438 M has been awarded in General Scientific Infrastructure (did not issue Major or Minor Reactor calls in 2009).

143

Before the Subcommittee on Environment and the Economy -- House Energy and  

Broader source: Energy.gov (indexed) [DOE]

Environment and the Economy -- House Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Testimony of Peter Lyons, Assistant Secretary for Nuclear Energy Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee More Documents & Publications Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Energy and Power -- House Energy and Commerce Committee Before the House Energy and Commerce Subcommittee on Energy and Power Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee

144

ENERGY, POWER AND ENVIRONMENT (Environmental Analytical Chemistry)  

E-Print Network [OSTI]

ENERGY, POWER AND ENVIRONMENT (Environmental Analytical Chemistry) CHEM 6284/CHEM 4803 Fall 2014 3 a major impact on environment. As the global population grows, so does the demand for energy. Strictly cannot be made without understanding the science and engineering behind them. Since the discovery of laws

Sherrill, David

145

Producing hydrogen using nuclear energy  

Science Journals Connector (OSTI)

The earliest means of separating hydrogen from water was by electrolysis using electrical energy that usually had been produced by low-efficiency thermodynamic processes. Substitution of thermal energy for electrical energy in high-temperature electrolysis gives a somewhat higher overall efficiency, but significantly complicates the process. Today, the vast majority of hydrogen is produced by steam methane reforming (SMR) followed by a water-shift reaction. A well-designed SMR plant will yield hydrogen having 75â??80% of the energy of the methane used. Recent work in Japan has demonstrated the feasibility of substituting high-temperature heat from a gas-cooled nuclear reactor to replace the heat supplied in SMR by the combustion of methane. Using high-temperature heat from nuclear plants to drive thermochemical processes for producing hydrogen has been studied extensively. Bench-scale tests have been carried out in Japan demonstrating the sulphur-iodine (SI) process to produce hydrogen.

Robert E. Uhrig

2008-01-01T23:59:59.000Z

146

NE - Nuclear Energy - Energy Conservation Plan  

Broader source: Energy.gov (indexed) [DOE]

NUCLEAR ENERGY (NE) NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible. Saving an average of 1.5 gallons of gasoline per day per person (e.g., 13 miles per work x 2 = 26 miles, an average of 17 mpg), on a normal workday, NE employees save (56 percent of 145 = 71 times 1.2 days per pay period = 85.2 workdays x 1.5 gals = 127.8 gallons/pay

147

Energy/Environment/Economics (E3 Energy/Environment/Economics (E3  

E-Print Network [OSTI]

, and Aerospace Engineering 268 IIT Graduate Bulletin 2012-2014 #12;Energy/Environment/Economics (E3 ) AdmissionEnergy/Environment/Economics (E3 ) Energy/Environment/Economics (E3 ) Faculty Directors Chemical and Environmental Engineering Javad Abbasian 127 Perlstein Hall 10 W. 33rd St. Chicago, IL 60616 312

Heller, Barbara

148

Environment, Safety, and Health Special Review, Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environment, Safety, and Health Special Review, Department of Environment, Safety, and Health Special Review, Department of Energy Laboratories - August 2008 Environment, Safety, and Health Special Review, Department of Energy Laboratories - August 2008 At the request of the Secretary of Energy, the U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), performed a Special Review of work practices for nanoscale material activities at DOE Laboratories. Representatives from DOE line management organizations - the Office of Science (SC) and the National Nuclear Security Administration (NNSA) - as well as nanoscale science subject matter experts from national laboratories and representatives from the HSS Office of Health and Safety, contributed to the Special Review.

149

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

Science Journals Connector (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20–250 are extracted from more than 2000 measured nuclear masses. With the semiempirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of the symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhu-Xia Li; Feng-Shou Zhang

2010-12-13T23:59:59.000Z

150

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network [OSTI]

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

151

Nuclear Energy Readiness Indicator Index (NERI): A benchmarking tool for assessing nuclear capacity in developing countries  

SciTech Connect (OSTI)

Declining natural resources, rising oil prices, looming climate change and the introduction of nuclear energy partnerships, such as GNEP, have reinvigorated global interest in nuclear energy. The convergence of such issues has prompted countries to move ahead quickly to deal with the challenges that lie ahead. However, developing countries, in particular, often lack the domestic infrastructure and public support needed to implement a nuclear energy program in a safe, secure, and nonproliferation-conscious environment. How might countries become ready for nuclear energy? What is needed is a framework for assessing a country's readiness for nuclear energy. This paper suggests that a Nuclear Energy Readiness Indicator (NERI) Index might serve as a meaningful basis for assessing a country's status in terms of progress toward nuclear energy utilization under appropriate conditions. The NERI Index is a benchmarking tool that measures a country's level of 'readiness' for nonproliferation-conscious nuclear energy development. NERI first identifies 8 key indicators that have been recognized by the International Atomic Energy Agency as key nonproliferation and security milestones to achieve prior to establishing a nuclear energy program. It then measures a country's progress in each of these areas on a 1-5 point scale. In doing so NERI illuminates gaps or underdeveloped areas in a country's nuclear infrastructure with a view to enable stakeholders to prioritize the allocation of resources toward programs and policies supporting international nonproliferation goals through responsible nuclear energy development. On a preliminary basis, the indicators selected include: (1) demonstrated need; (2) expressed political support; (3) participation in nonproliferation and nuclear security treaties, international terrorism conventions, and export and border control arrangements; (4) national nuclear-related legal and regulatory mechanisms; (5) nuclear infrastructure; (6) the utilization of IAEA technical assistance; (7) participation in regional arrangements; and (8) public support for nuclear power. In this paper, the Index aggregates the indicators and evaluates and compares the level of readiness in seven countries that have recently expressed various degrees of interest in establishing a nuclear energy program. The NERI Index could be a valuable tool to be utilized by: (1) country officials who are considering nuclear power; (2) the international community, desiring reassurance of a country's capacity for the peaceful, safe, and secure use of nuclear energy; (3) foreign governments/NGO's, seeking to prioritize and direct resources toward developing countries; and (4) private stakeholders interested in nuclear infrastructure investment opportunities.

Saum-Manning,L.

2008-07-13T23:59:59.000Z

152

The Center for Energy and the Environment | Open Energy Information  

Open Energy Info (EERE)

Environment Environment Jump to: navigation, search Name The Center for Energy and the Environment Place Minneapolis, MN Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Center for Energy and the Environment is a company located in Minneapolis, MN. References Retrieved from "http://en.openei.org/w/index.php?title=The_Center_for_Energy_and_the_Environment&oldid=379216" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties About us

153

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation  

SciTech Connect (OSTI)

Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

154

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Broader source: Energy.gov (indexed) [DOE]

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

155

Office of Nuclear Energy Fiscal Year 2014 Budget Request | Department...  

Office of Environmental Management (EM)

Office of Nuclear Energy Fiscal Year 2014 Budget Request Office of Nuclear Energy Fiscal Year 2014 Budget Request The Office of Nuclear Energy (NE) supports the diverse civilian...

156

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy Savers [EERE]

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear...

157

2006 Nuclear Energy Research Initiative Awards | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006...

158

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

159

Nuclear and Facility Safety Directives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety » Nuclear and Facility Safety Nuclear Safety » Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. HS-30 Contact: James O'Brien

160

Department of Energy Established | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Department of Energy Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ariane Environment | Open Energy Information  

Open Energy Info (EERE)

Ariane Environment Ariane Environment Jump to: navigation, search Name Ariane Environment Place London, United Kingdom Zip W8 6JL Product String representation "Ariane Environm ... onmental value." is too long. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

The Washington Post Energy & Environment  

E-Print Network [OSTI]

is under construction in Augusta, Ga. Some of the world's top climate scientists say wind and solar energy: November 3 PITTSBURGH -- Some of the world's top climate scientists say wind and solar energy won, they cannot on their own solve the world's energy problems." The vast majority of climate scientists say they

Hansen, James E.

163

Global Nuclear Energy Partnership Strategic Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan A report describing the United States Global Nuclear Energy Partnership which: "will build the Global Nuclear Energy Partnership to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe,clean nuclear energy to help meet the growing global energy demand." Global Nuclear Energy Partnership Strategic Plan

164

The Politically Correct Nuclear Energy Plant  

E-Print Network [OSTI]

The Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology - Small is Beautiful · Nuclear Energy - But Getting Better #12;Politically Correct ! · Natural Safety is a bad idea. · There is no new nuclear energy plant that is competitive at this time. · De-regulation did

165

Reshaping China’s Nuclear Energy Policy  

Science Journals Connector (OSTI)

Reshaping China’s Nuclear Energy Policy ... (2) This nationwide salt crisis sent a signal that the public has withdrawn its support for nuclear energy. ... It remains an open question if online activism will make a difference in future Chinese nuclear energy decision making. ...

Qiang Wang; Xi Chen; Degang Yang; Changjian Wang; Fuqiang Xia; Xinlin Zhang

2011-08-29T23:59:59.000Z

166

Nuclear Energy Institute (NEI) Attachment, Integrated Safety...  

Broader source: Energy.gov (indexed) [DOE]

Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an...

167

The Molokai Dispatch COMMUNITY DEVELOPMENT, ENERGY, ENVIRONMENT  

E-Print Network [OSTI]

fifth of Molokai's electricity comes from photovoltaic (PV) energy from business and residential solar of problems, according to Richard Rocheleau, director of the University of Hawaii's Hawaii Natural EnergyThe Molokai Dispatch COMMUNITY DEVELOPMENT, ENERGY, ENVIRONMENT Thursday, November 14th, 2013

168

Nuclear Energy University Program Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program » Nuclear Energy Nuclear Energy University Program » Nuclear Energy University Program Documents Nuclear Energy University Program Documents Documents Available for Download October 31, 2013 FY 2014 Consolidated Innovative Nuclear Research FOA This Funding Opportunity Announcement (FOA) addresses the competitive portion of NE's R&D portfolio as executed through the Nuclear Energy University Programs (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and

169

Berkeley India Joint Leadership on Energy and Environment | Open Energy  

Open Energy Info (EERE)

India Joint Leadership on Energy and Environment India Joint Leadership on Energy and Environment Jump to: navigation, search Logo: Berkeley India Joint Leadership on Energy and Environment Name Berkeley India Joint Leadership on Energy and Environment Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics Policies/deployment programs, Pathways analysis, Background analysis Website http://india.lbl.gov/ Country India Southern Asia References Program Homepage[1] Abstract The Berkeley India Joint Leadership on Energy and Environment (BIJLEE) is a Lawrence Berkeley National Laboratory joint research and development program in which researchers work with the government and private sector of India to assist in the adoption of pathways and approaches for reducing the emissions of greenhouse gases while pursuing sustainable economic development.

170

Nuclear energy for water security  

Science Journals Connector (OSTI)

For peace, and the welfare and well-being of humans, fresh water is essential. Atoms are a source of abundant energy that do not have any greenhouse effect and can be used for different peaceful applications, such as power generation, the diagnosis and treatment of diseases in the field of medicine, to improve the productivity of food crops and soil fertility in agriculture and for food preservation. To find and assess the water resources on the earth, nuclear power serves as the source of energy for fresh water production.

P.K. Tewari

2006-01-01T23:59:59.000Z

171

Nuclear Reactions at High Energy  

Science Journals Connector (OSTI)

In the quark model, nuclei (B?2) have exotic quantum numbers. Given a nuclear reaction in which certain quantum numbers are exchanged, what is the scattering amplitude at high energies, in the GeV region? Does it have Regge behavior? Is it dual? Are there multibaryon resonances? In this context we present a general survey of all high-energy nuclear reactions - mainly those involving light nuclei. For B=0 exchange reactions, like ?d??d and ?-h??0t (h?He3, t=H3), there is the impulse and rescattering (Glauber) model. For B=1 exchange we discuss the one-pion-exchange (OPE) model for pp?d?+, pd?dp, and ?d?pn, and the "knock-on" model for pd??+t, dd?tp, dh?hd, ?h?pd, and ???pt. In the case of B=2 exchange we examine the impulse and rescattering diagrams for ?d?d?, ?d?d?0, and ?d?d?, and use the OPE model to calculate cross sections for pd?t?, pt?tp, and ph?hp. Briefly considered are: (1) backward elastic scattering from heavy nuclei (pA?Ap) and (2) inclusive nuclear reactions such as N14+A?Li6+anything and pA?d¯+anything. We postulate that in general nuclear reactions have Regge behavior, but are not dual, because so far there are no exotic multibaryon resonances. Nuclear reactions appear to be completely dominated by anomalous singularities, whereas ordinary nonexotic hadron reactions appear to be dominated by normal singularities and poles.

George W. Barry

1973-03-01T23:59:59.000Z

172

United States -Japan Joint Nuclear Energy Action Plan  

Broader source: Energy.gov (indexed) [DOE]

-Japan Joint Nuclear Energy Action Plan -Japan Joint Nuclear Energy Action Plan 1. Introduction 1.1 Background and Objective President Bush of the U n i t e d States and Prime Minister Koizumi of Japan have both stated their strong support for the contribution of nuclear power to energy security and the global environment. Japan w a s the first nation to endorse President Bush's Global Nuclear Energy Partnership. During the June 29,2006 meeting between President Bush and Prime Minister Koizumi, "We discussed research and development that will help speed up fnt breeder reactors and new types of reprocessing so that we cmt help deal with the cost of globalization when it comes to energy; make ourselves more secure, economicallyI a s well n make us less dependent on hycirocmbons ..... " (I)

173

Nuclear Materials Disposition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

174

Built Environment Energy Analysis Tool Overview (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C.

2013-04-01T23:59:59.000Z

175

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study  

SciTech Connect (OSTI)

Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

176

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and  

E-Print Network [OSTI]

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

177

Dealing With the Issues of Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy September 17, 2010 - 12:39pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? The U.S. is working to reduce our own reliance on nuclear weapons and to lock down dangerous nuclear material so terrorists can't use it. Editorial Note: This has been cross-posted from Huffington Post. Next week I have the honor of leading the U.S. delegation to an annual conference that is critical to our national and energy security. Every year, the International Atomic Energy Agency (IAEA), the nuclear watchdog arm of the UN, gathers ministers from around the world to discuss ways to promote nuclear energy, strengthen efforts to keep other countries from illegally acquiring nuclear weapons, reduce stockpiles of nuclear

178

ROBERT J. BUDNITZ Occupation: Physicist in Energy/Environmental Research and Nuclear Safety  

E-Print Network [OSTI]

ROBERT J. BUDNITZ Occupation: Physicist in Energy/Environmental Research and Nuclear Safety Birth December 2004 to September 2007 (in Livermore): Leader, Nuclear & Risk Science Group, Energy & Environment Directorate Associate Program Leader for Nuclear Systems Safety and Security, E&E Directorate October 2002

Ajo-Franklin, Jonathan

179

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for...

180

Environment-friendly energy system  

SciTech Connect (OSTI)

The use of methanol as a medium for transporting hydrogen-based energy offers the possibility of establishing a global system for obtaining and transporting unlimited quantities of sustainable, clean energy. Using various sources of renewable energy (hydroelectric, solar, geothermal, wind), hydrogen can be produced through an efficient electrolytic process. This hydrogen can be combined with CO{sub 2} obtained from power plants in various parts of the world to produce methanol, which can then be transported to areas with high energy consumption for use as fuel in power plants. However, the cost of the methanol synthesized from hydrogen and CO{sub 2} will be nearly four times as high as that of the present commercial methanol. The authors examined a method for the production of methanol or dimethyl ether by a solar thermochemical process using concentrated solar energy. The concentrated solar thermal energy is absorbed by methane reforming and coal gasification, both of which are endothermic reactions that produce carbon monoxide and hydrogen. These gases are then consumed to produce methanol or dimethyl ether. The authors evaluated the amount of CO{sub 2} emission when the methanol or dimethyl ether was used and the cost of the methanol produced by this process. The amount of CO{sub 2} emission using hybridized dimethyl ether (methanol) was estimated to be 60 to 80 % of the amount emitted using coal or natural gas. The cost of the hybridized methanol was estimated to be 2.45/kWh, which is about 20 % of the cost of the liquid hydrogen produced using renewable energy. A preliminary analysis of zero-emission power plants indicated the possibility of achieving 60% gross thermal efficiency (HHV).

Ogawa, T.; Murata, K.; Hori, M.; Oohashi, Y.; Fukuda, M.; Tamaura, Y.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Statement on the Global Nuclear Energy Partnership and Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Ministers and other senior officials representing the respective governmental agencies of China, France, Japan, Russia, and the United States met in Washington, D.C., on May 21, 2007 to address the prospects for international cooperation in peaceful uses of nuclear energy, including technical aspects, especially in the framework of the Global Nuclear Energy Partnership (GNEP). The International Atomic Energy Agency (IAEA) also attended as an observer. Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation More Documents & Publications Ministerial Conference

182

China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guangdong Nuclear Solar Energy Co Ltd Guangdong Nuclear Solar Energy Co Ltd Jump to: navigation, search Name China Guangdong Nuclear Solar Energy Co Ltd Place China Sector Solar Product China Guangdong Nuclear's division on solar project development. References China Guangdong Nuclear Solar Energy Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Guangdong Nuclear Solar Energy Co Ltd is a company located in China . References ↑ "China Guangdong Nuclear Solar Energy Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=China_Guangdong_Nuclear_Solar_Energy_Co_Ltd&oldid=343500" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

183

Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-01T23:59:59.000Z

184

Meeting between Department of Energy Contractor and the Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

between Department of Energy Contractor and the Nuclear between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

185

Meeting between Department of Energy Contractor and the Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Meeting between Department of Energy Contractor and the Nuclear Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

186

Chapter 8 - The history of nuclear energy  

Science Journals Connector (OSTI)

Abstract This chapter reviews the history related to nuclear energy beginning with scientific investigations in the late 1800s that led to the discovery of subatomic particles and both atomic and nuclear structure. Those research efforts spawned the discovery of fission. The Manhattan Project to develop an atomic bomb then accelerated the knowledge base of nuclear phenomena. After World War II, the Atomic Energy Commission was established and later the International Atomic Energy Agency. Research and development efforts led to the deployment of the first nuclear power plants. This chapter ends by addressing the controversies surrounding nuclear energy in the late twentieth century.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

187

Editorial Commentary Energy and environment is  

E-Print Network [OSTI]

years, providing useful information not only on the potential of energy technologies based: an editorial essay How to cite this article: WIREs Energy Environ 2014, 3:1­2. doi: 10.1002/wene.104 The first highlight key perspectives: technology, systems, economy, policy, security, and environmental impact, all

Delaware, University of

188

Events & Topics in Renewable Energy & the Environment featuring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events & Topics in Renewable Energy & the Environment featuring Chenyang Lu Events & Topics in Renewable Energy & the Environment featuring Chenyang Lu Smart Buildings with...

189

Nuclear Security Conference 2010 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

190

Nuclear Security Conference 2010 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

191

NEAMS Nuclear Waste Management IPSC : evaluation and selection of tools for the quality environment.  

SciTech Connect (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. These M&S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M&S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V&V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V&V activities. This report documents an evaluation of the needs, options, and tools selected for the NEAMS Nuclear Waste Management IPSC quality environment. The objective of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) program element is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to assess quantitatively the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. This objective will be fulfilled by acquiring and developing M&S capabilities, and establishing a defensible level of confidence in these M&S capabilities. The foundation for assessing the level of confidence is based upon the rigor and results from verification, validation, and uncertainty quantification (V&V and UQ) activities. M&S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M&S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V&V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V&V activities. NEAMS Nuclear Waste Management IPSC V&V and UQ practices and evidence management goals are documented in the V&V Plan. This V&V plan includes a description of the quality environment into which M&S capabilities are imported and V&V and UQ activities are managed. The first phase of implementing the V&V plan is to deploy an initial quality environment through the acquisition and integration of a set of software tools. An evaluation of the needs, options, and tools selected for the quality environment is given in this report.

Bouchard, Julie F.; Stubblefield, William Anthony; Vigil, Dena M.; Edwards, Harold Carter (Org. 1444 : Multiphysics Simulation Technology)

2011-05-01T23:59:59.000Z

192

Electrical Energy and the Environment  

E-Print Network [OSTI]

sources as mentioned above, in addition to those based on coal or uranium. The carbon production per unit of energy for different electric systems are given in the attached Figure (I). POWER GENERA TlON: COAL AS A FUEL SOURCE Coal and Uranium..., depending on overburden geology and regional tectonics. The subsidence damaging effect can be controlled, when monitored by combinations of mining techniques. Another terrestrial impact from mining is the disposal of the mine refuse and the necessary...

Parate, N. S.

193

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Nuclear Energy Categorical Exclusion Determinations: Nuclear Energy Categorical Exclusion Determinations issued by Nuclear Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 2013 CX-010766: Categorical Exclusion Determination Interim Storage Area for Interim Storage Containers (ISCs) at the Radioactive Scrap and Waste Facility (RSWF) CX(s) Applied: B6.6 Date: 08/16/2013 Location(s): Idaho Offices(s): Nuclear Energy August 14, 2013 CX-010767: Categorical Exclusion Determination University Boulevard Water Meter Installation CX(s) Applied: B2.2 Date: 08/14/2013 Location(s): Idaho Offices(s): Nuclear Energy August 12, 2013 CX-010768: Categorical Exclusion Determination ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

194

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network [OSTI]

361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special in the National Nuclear Security Administration, including official reception and representation expenses (not reflect the Administration's 2003 policy proposals. Program and Financing (in millions of dollars

195

Atom-split it for nuclear energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atom-split it for nuclear energy Fermi-leader of the team that produced the first self-sustaining controlled nuclear chain reaction; contributed to ending WWII Calutron-invented by...

196

Nuclear Interactions in Super High Energy Region  

Science Journals Connector (OSTI)

......research-article Articles Nuclear Interactions in Super High Energy Region Jose F. Bellandi a...Tokyo 188 We formulate the energy spectrum of produced particles...Atmospheric diffusion of high energy cosmic rays is calculated analytically......

Jose F. Bellandi; Sergio Q. Brunetto; Jose A. Chinellato; Carola Dobrigkeit; Akinori Ohsawa; Kotaro Sawayanagi; Edison H. Shibuya

1990-01-01T23:59:59.000Z

197

Nuclear Energy-Depend On It Helping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy-Depend On It Helping to Power America for More Than Five Decades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity production in 1957 and now produces approximately 20 percent of our total electricity and 70 percent of our low-carbon electricity from nuclear energy, according to the Energy Information Administration. More than 100 U.S. commercial nuclear power reactors provide reliable, affordable electricity in 31 states. Nuclear energy can help meet our Nation's need for dependable electricity into the future. The use of nuclear power is increasing around the world: z 29 countries worldwide operate a total of 437 nuclear reactors for electricity generation, with 55 new nuclear reactors under construction in 14 countries.

198

Department of Energy Releases Global Nuclear Energy Partnership Strategic  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Assistant Secretary for Nuclear Energy Dennis Spurgeon today released the Global Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation strategy. The Plan outlines a path forward to enable worldwide increase in the use of safe, emissions-free nuclear energy without contributing to the spread of nuclear weapons capabilities in a manner that responsibly addresses the waste produced. "For the United States, GNEP is good policy; for industry, it could be very good business," Assistant Secretary Spurgeon said. "Releasing GNEP's

199

Energy Department Announces New Nuclear Energy Innovation Investments |  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Innovation Nuclear Energy Innovation Investments Energy Department Announces New Nuclear Energy Innovation Investments July 17, 2012 - 12:29pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitments to restarting the nation's nuclear industry and promoting education in science, technology, engineering and math, the Energy Department announced today nearly $13 million in new nuclear energy innovation investments. "Today's awards will help train and educate our future nuclear energy scientists and engineers, while advancing the technological innovations we need to make sure America's nuclear industry stays competitive in the 21st century," said Energy Secretary Steven Chu. "These investments in U.S. universities, national labs and industry advance the Obama

200

International Nuclear Energy Policy and Cooperation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both bilaterally and multilaterally to accomplish this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United States and 70% of our low-carbon production, avoiding over 600 million metric tons of carbon emissions. With approximately 440 commercial reactors operating in 30 countries-and 300 more valued at $1.6 trillion

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Environment Environment < Geothermal(Redirected from Environment) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

202

Nuclear incompressibility determined by nuclear mass and monopole resonance energy  

Science Journals Connector (OSTI)

The standard nuclear matter incompressibility K0 is determined by a data fit based on a model of nuclear energy functional and the scaling assumption of the nuclear breathing mode. The selected nuclear data used in this fit are taken from a limited set of nuclei which have both the measured mass M and the isoscalar giant monopole resonance energy EM. The obtained value of K0, based on 26 experimental points corresponding to 18 spherical nuclei with 89<~A<~209, is 220±20 MeV.

K. C. Chung; C. S. Wang; A. J. Santiago

1999-02-01T23:59:59.000Z

203

Tanzania Traditional Energy Development and Environment Organization  

Open Energy Info (EERE)

Traditional Energy Development and Environment Organization Traditional Energy Development and Environment Organization (TaTEDO) Jump to: navigation, search Name Tanzania Traditional Energy Development and Environment Organization (TaTEDO) Place Tanzania Phone number 255.22. 27.00.438 Coordinates -6.369028°, 34.888822° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-6.369028,"lon":34.888822,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Energy/Environment/Economics (E3 Energy/Environment/Economics (E3  

E-Print Network [OSTI]

Energy/Environment/Economics (E3 ) Energy/Environment/Economics (E3 ) Faculty Directors Chemical and Environmental Engineering Javad Abbasian 127 Perlstein Hall 10 W. 33rd St. Chicago, IL 60616 312.567.3047 abbasian@iit.edu Mechanical, Materials and Aerospace Engineer- ing Herek Clack 252-D Engineering 1 10 W. 32

Heller, Barbara

205

Low-Energy Nuclear Reactions in Metals  

Science Journals Connector (OSTI)

......research-article Articles Low-Energy Nuclear Reactions in Metals Jirohta Kasagi...reactions in Pd and Au for bombarding energies between 30 and 75 keV. These...measurements clearly showed that the low energy nuclear reactions are strongly affected......

Jirohta Kasagi

2004-02-01T23:59:59.000Z

206

Nuclear Security & Nonproliferation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safety » Nuclear Security & Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy and National Nuclear Security Administration’s effort to assist Japanese personnel with nuclear issues related to the Fukushima nuclear power plant. Above, scientists, technicians and engineers from the National Nuclear Security Administration’s Nevada Site Office board an Air Force C-17. | Photo courtesy of NNSA. Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy

207

Is Nuclear Energy the Solution?  

Science Journals Connector (OSTI)

In the event of a major radioactive release from a nuclear power plant, public opinion would likely react strongly against nuclear power...

Milton H. Saier; Jack T. Trevors

2010-05-01T23:59:59.000Z

208

Future Directions, Challenges and Opportunities in Nuclear Energy  

SciTech Connect (OSTI)

The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

Andy Klein; Jack Lance

2006-07-01T23:59:59.000Z

209

Making glue in high energy nuclear collisions  

E-Print Network [OSTI]

We discuss a real time, non-perturbative computation of the transverse dynamics of gluon fields at central rapidities in very high energy nuclear collisions.

Alex Krasnitz; Raju Venugopalan

1999-05-12T23:59:59.000Z

210

Office of Nuclear Safety | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Security Officer regarding concurrence in the final decision to startup or restart a nuclear facility. Serves as the Standards Executive for the Department of Energy and...

211

Nuclear Facility Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied...

212

Nuclear Energy Technical Assistance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas emitting electricity. In addition, nuclear power plants do not release air pollutants, providing an important option for improving air quality. Globally, nuclear...

213

Theories of Low Energy Nuclear Transmutations  

E-Print Network [OSTI]

Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

Y. N. Srivastava; A. Widom; J. Swain

2012-10-27T23:59:59.000Z

214

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network [OSTI]

planning and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, for Weapons Ac- tivities and Defense Nuclear Nonproliferation, and Federal employees at the NNSA service379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

215

Meeting between Department of Energy Contractor and the Nuclear...  

Energy Savers [EERE]

between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear...

216

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Environment Geothermal/Environment < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

217

Nuclear energy: current situation and prospects to 2020  

Science Journals Connector (OSTI)

...Blundell and Fraser Armstrong Nuclear energy: current situation and prospects...stand to improve the economics of nuclear energy still further. Waste volumes...UK's long-term energy needs. nuclear energy|fission|reactor systems...

2007-01-01T23:59:59.000Z

218

Energy, Environment and Development Network for Africa | Open Energy  

Open Energy Info (EERE)

Energy, Environment and Development Network for Africa Energy, Environment and Development Network for Africa Jump to: navigation, search Logo: Energy, Environment and Development Network for Africa Name Energy, Environment and Development Network for Africa Address P.O. Box 30979 GPO 00100 Place Nairobi, Kenya Phone number +254-722509804 Coordinates -1.2860434°, 36.8191713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1.2860434,"lon":36.8191713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Nuclear Processes at Solar Energy  

E-Print Network [OSTI]

LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

Carlo Broggini

2003-08-29T23:59:59.000Z

220

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

A Brief History of Nuclear Energy . . . . . . . . NuclearBrief History of Nuclear Energy The history of nuclear powerRisk The history of nuclear energy to date reflects

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nuclear power for energy and for scientific progress  

E-Print Network [OSTI]

The Introduction in this paper underlines the present general situation for energy and the environment using the words of the US Secretary of Energy. A short presentation is made of some major nuclear power plants used to study one fundamental parameter for neutrino oscillations. The nuclear power status in some Far East Nations is summarized. The 4th generation of nuclear power stations, with emphasis on Fast Neutron Reactors, is recollected. The world consumptions of all forms of energies is recalled, fuel reserves are considered and the opportunities for a sustainable energy future is discussed. These considerations are applied to the italian situation, which is rather peculiar, also due to the many consequencies of the strong Nimby effects in Italy.

Giacomelli, G

2012-01-01T23:59:59.000Z

222

Nuclear Energy Research Advisory Subcommittee Meeting  

Broader source: Energy.gov (indexed) [DOE]

to the Minutes for the to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting September 30 to October 1, 2002 MEMORANDUM To: Chairman, Nuclear Energy Research Advisory Committee (NERAC) From: Thomas B. Cochran, Member of NERAC Date: October 16, 2002 Subject: "A Technology Roadmap on Generation IV Nuclear Energy Systems," a report of the NERAC Subcommittee on Generation IV Technology Planning Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon- usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by

223

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011  

Broader source: Energy.gov (indexed) [DOE]

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. POLICY: It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

224

Investment Fund for Environment and Renewable Energy (FIDEME) | Open Energy  

Open Energy Info (EERE)

for Environment and Renewable Energy (FIDEME) for Environment and Renewable Energy (FIDEME) Jump to: navigation, search Name Investment Fund for Environment and Renewable Energy (FIDEME) Agency/Company /Organization Natixis Sector Energy Focus Area Renewable Energy Topics Finance, Background analysis Website http://cib.natixis.com/flushdo Country France UN Region "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

225

Spacings of Nuclear Energy Levels  

Science Journals Connector (OSTI)

The distribution of spacings of nuclear energy levels in many heavy nuclei at an excitation energy of 5 to 9 Mev is obtained by careful correction of the observed distributions for the effect of failure to observe all levels. Results of transmission measurements on U234 and U236, as measured with the Brookhaven fast chopper, are presented. The experimental spacings of the zero-spin nuclides are considered first since all the levels from slow neutron capture have the same spin. The results show a deficiency of small spacings relative to the exponential distribution, which corresponds to a random occurrence of levels. In the analysis it is shown that there is no local correlation of neutron widths and level spacings. The "level repulsion" effect is also found for the nuclides of nonzero spin, for which the data are more abundant but the analysis is complicated by the presence of two spin systems. The distribution obtained is in agreement with one suggested by Wigner based on a probability of level occurrence proportional to the spacing S. The corrections here developed are also applied to the reduced neutron width distribution and this corrected distribution is in good agreement with the Porter-Thomas distribution.

John A. Harvey and D. J. Hughes

1958-01-15T23:59:59.000Z

226

Nuclear energy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear energy Nuclear energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time

227

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing worldÂ’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

228

Energy Praises the Nuclear Regulatory Commission Approval of...  

Office of Environmental Management (EM)

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

229

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Broader source: Energy.gov (indexed) [DOE]

Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

230

The role of chemistry in the utilization of nuclear energy  

Science Journals Connector (OSTI)

The role of chemistry in the utilization of nuclear energy ... Considers the topics of tracer chemistry, nuclear chemistry, radiation chemistry, and the development of nuclear power. ...

Herbert M. Clark

1958-01-01T23:59:59.000Z

231

Before the Subcommittee on Energy and Environment - House Committee...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environment - House Committee on Science, Space, and Technology Before the Subcommittee on Energy and Environment - House Committee on Science, Space, and Technology Testimony of...

232

Surface Symmetry Energy of Nuclear Energy Density Functionals.  

E-Print Network [OSTI]

??The thesis studies the bulk deformation properties of the Skyrme nuclear energy densityfunctionals. Following simple arguments based on the leptodermous expansion andliquid drop model, the… (more)

Nikolov, Nikola Iliev

2011-01-01T23:59:59.000Z

233

Nuclear Energy Research Advisory Committee Meeting  

Broader source: Energy.gov (indexed) [DOE]

10/03/02 10/03/02 Appendix A to the Minutes for the Nuclear Energy Research Advisory Committee Meeting September 30 to October 1, 2002 Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report October 3, 2002 The Roadmap Context The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV

234

United States-Japan Joint Nuclear Energy Action Plan | Department...  

Broader source: Energy.gov (indexed) [DOE]

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan An outline on the United States and Japan's joint nuclear energy action...

235

Poland becoming a member of the Global Nuclear Energy Partnership, Vol. 2.  

SciTech Connect (OSTI)

Within a constrained carbon environment, the risks of future natural gas supply, and the need to move to market-based electricity prices, the study team found: (1) the deployment of new nuclear energy in Poland itself is very competitive in the next decade or two; (2) if such generation could be made available to Poland prior to deployment of its own nuclear generation facilities, Poland would benefit from partnering with its Baltic neighbors to import electricity derived from new nuclear generation facilities sited in Lithuania; and (3) Poland appears to be a good candidate for a partnership in the Global Nuclear Energy Partnership (GNEP) as an emerging nuclear energy country.

Koritarov, V. K.; Conzelmann, G.; Cirillo, R. R.; Goldberg, S. M.

2007-03-26T23:59:59.000Z

236

Vietnam Research Center for Energy and Environment | Open Energy  

Open Energy Info (EERE)

for Energy and Environment for Energy and Environment Jump to: navigation, search Name Vietnam Research Center for Energy and Environment Address 466 Nguyen Chi Thanh Street Hanoi Vietnam Place Vietnam Coordinates 21.0199431°, 105.8081245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.0199431,"lon":105.8081245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Centre for Energy, Environment and Engineering Zambia | Open Energy  

Open Energy Info (EERE)

Energy, Environment and Engineering Zambia Energy, Environment and Engineering Zambia Jump to: navigation, search Name Centre for Energy, Environment and Engineering Zambia Address Lusaka, Zambia Place Zambia Notes The official CEEEZ website was removed due to suspected presence of malware. Coordinates -15.408193°, 28.287167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-15.408193,"lon":28.287167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Environ Energy Tech Service Ltd | Open Energy Information  

Open Energy Info (EERE)

Environ Energy Tech Service Ltd Environ Energy Tech Service Ltd Jump to: navigation, search Name Environ Energy-Tech Service Ltd Place Kolkatta, West Bengal, India Zip 700 063 Sector Solar Product Solar photovoltaic solutions provider. Coordinates 22.54994°, 88.371582° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.54994,"lon":88.371582,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Summary Pamphlet, Nuclear Safety at the Department of Energy...  

Office of Environmental Management (EM)

Summary Pamphlet, Nuclear Safety at the Department of Energy Summary Pamphlet, Nuclear Safety at the Department of Energy September 2010 This pamphlet is developed as part of the...

240

Energy/National Nuclear Security Administration (NNSA) Career...  

Energy Savers [EERE]

Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fostering the Next Generation of Nuclear Energy Technology |...  

Office of Environmental Management (EM)

Fostering the Next Generation of Nuclear Energy Technology Fostering the Next Generation of Nuclear Energy Technology September 29, 2014 - 11:06am Addthis Fostering the Next...

242

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Office of Environmental Management (EM)

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

243

International Framework for Nuclear Energy Cooperation to Hold...  

Energy Savers [EERE]

Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

244

Nuclear Energy Research Advisory Committee (NERAC) agenda 11...  

Broader source: Energy.gov (indexed) [DOE]

agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

245

Draft Advanced Nuclear Energy Solicitation Fact Sheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet Draft Advanced Nuclear Energy Solicitation Fact Sheet Draft Advanced Nuclear Energy Projects Solicitation Fact Sheet (September 2014) More Documents & Publications Draft...

246

United States -Japan Joint Nuclear Energy Action Plan | Department...  

Energy Savers [EERE]

United States -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan...

247

Energy Department Invests $67 Million to Advanced Nuclear Technology...  

Office of Environmental Management (EM)

Energy Department Invests 67 Million to Advanced Nuclear Technology Energy Department Invests 67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News...

248

Role of inorganic chemistry on nuclear energy examined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical...

249

Nuclear energy field fascinates David Parkinson, chemical engineer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear energy field fascinates David Parkinson, chemical engineer Nuclear energy field fascinates David Parkinson, chemical engineer Chemical engineer undergraduate designs and...

250

Viscosity of High Energy Nuclear Fluids  

E-Print Network [OSTI]

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

251

Nuclear Facility Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Operations Facility Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program laboratory In addition to enabling the Office of Nuclear Energy to develop space power systems and advanced fuel cycle and reactor technologies, INL facilities are used by the National Nuclear Security Administration and other DOE offices, together with other Federal agencies such as the Department of

252

Small Modular Nuclear Reactors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

253

THE NUCLEAR ENERGY REVOLUTION—1966  

Science Journals Connector (OSTI)

...of the coming generation. It is this...cheap nuclear power, about which...water nuclear power plant. At its...for a coal-fired power plant of the...Utilities Rochester Gas & Electric Consolidated...available for generation 76 per cent of...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

254

The Future of Energy from Nuclear Fission  

SciTech Connect (OSTI)

Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

Kim, Son H.; Taiwo, Temitope

2013-04-13T23:59:59.000Z

255

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

256

Gregory H. Friedman: Before the Subcommttee on Energy and Environment...  

Energy Savers [EERE]

the Subcommttee on Energy and Environment of the Committee on Science U.S. House of Representatives Gregory H. Friedman: Before the Subcommttee on Energy and Environment of the...

257

Ministry of Environment and Energy National Environmental Research Institute  

E-Print Network [OSTI]

Ministry of Environment and Energy National Environmental Research Institute The DMU-ATMI THOR Air Publisher: Ministry of Environment and Energy National Environmental Research Institute URL: http Description. National Environmental Research Institute, Roskilde, Denmark. 60 pp. - NERI Technical Report No

258

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network [OSTI]

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

259

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

260

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs. Speakers President Obama, Steven Chu Duration 10:42 Topic Energy Economy Loans Energy Policy Credit Video courtesy of WhiteHouse.gov PRESIDENT BARACK OBAMA: Good morning, everybody. AUDIENCE MEMBERS: Good morning. PRESIDENT OBAMA: Before I begin, let me just acknowledge some of the people who are standing behind me here. First of all, two people who've been working really hard to make this day happen, Secretary Steven Chu, my energy secretary - Steven Chu - (applause) - and my White House

262

Investing in Clean, Safe Nuclear Energy  

SciTech Connect (OSTI)

President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

President Obama

2010-02-16T23:59:59.000Z

263

Manpower development for new nuclear energy programs  

E-Print Network [OSTI]

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

264

Nuclear diffractive structure functions at high energies  

E-Print Network [OSTI]

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

265

Cabell on Nuclear Energy Power Plants  

Science Journals Connector (OSTI)

Cabell on Nuclear Energy Power Plants ... IN EXPLAINING the function of his research group t o the new works superintendent of a nuclear power plant at a mining and reduction installation in the Alaskan mountains, Dr. Blank, of the United Nations Inspection and Research Laboratories, said, "We can't inspect what we don't know. ... In order to know what you're doing, we have to know more about atomic energy than you do—more than anybody does. ...

1947-02-17T23:59:59.000Z

266

Gregory H. Friedman: Before the Subcommittee on Energy and Environment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gregory H. Friedman: Before the Subcommittee on Energy and Environment Committee on Science U.S. House of Representatives Gregory H. Friedman: Before the Subcommittee on Energy and...

267

Before the Subcommittees on Energy and Environment - House Committee...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Technology Testimony of Guido DeHoratiis, Acting Deputy Assistant Secretary for Oil and Gas, Office of Fossil Energy Before the Subcommittees on Energy and Environment -...

268

The energy-cum-environment audit: Concept, approach and advantages  

Science Journals Connector (OSTI)

An energy audit is a fundamental step of the energy conservation programme in any industrial plant or energy consuming facility. An energy-cum-environment audit is an analogous step of a programme aimed at conser...

S. C. Bhattacharya

1992-01-01T23:59:59.000Z

269

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Research Advisory Committee, Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

270

Nuclear Energy Density Optimization: UNEDF2  

E-Print Network [OSTI]

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

Kortelainen, M; Nazarewicz, W; Olsen, E; Reinhard, P -G; Sarich, J; Schunck, N; Wild, S M; Davesne, D; Erler, J; Pastore, A

2014-01-01T23:59:59.000Z

271

Nuclear Energy Density Optimization: UNEDF2  

E-Print Network [OSTI]

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-10-30T23:59:59.000Z

272

Symmetry energy in nuclear density functional theory  

E-Print Network [OSTI]

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

273

Why Nuclear Energy? - Reactors designed/built by Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

274

Nuclear and gravitational energies in stars  

E-Print Network [OSTI]

The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M 8 Msol), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

Meynet, Georges; Ekström, Sylvia

2013-01-01T23:59:59.000Z

275

Intermediate-energy nuclear chemistry workshop  

SciTech Connect (OSTI)

This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

1981-05-01T23:59:59.000Z

276

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

277

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR...  

Broader source: Energy.gov (indexed) [DOE]

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND...

278

High-energy nuclear physics and nuclear astrophysics at the Radium Institute  

Science Journals Connector (OSTI)

Research into high-energy nuclear physics and nuclear astrophysics at the Radium Institute is briefly ... well as the history of research on high-energy physics. The basic work on nuclear astrophysics, cosmochron...

O. V. Lozhkin

1999-06-01T23:59:59.000Z

279

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the worldÂ’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the worldÂ’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the worldÂ’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

280

A perfect match: Nuclear energy and the National Energy Strategy  

SciTech Connect (OSTI)

In the course of developing the National Energy Strategy, the Department of Energy held 15 public hearings, heard from more than 375 witnesses and received more than 1000 written comments. In April 1990, the Department published an Interim Report on the National Energy Strategy, which compiles those public comments. The National Energy Strategy must be based on actual experience and factual analysis of our energy, economic and environmental situation. This report by the Nuclear Power Oversight committee, which represents electric utilities and other organizations involved in supplying electricity from nuclear energy to the American people, provides such an analysis. The conclusions here are based on hard facts and actual worldwide experience. This analysis of all the available data supports -- indeed, dictates -- expanded reliance on nuclear energy in this nation's energy supply to achieve the President's goals. 33 figs.

Not Available

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Synergistic energy conversion processes using nuclear energy and fossil fuels  

Science Journals Connector (OSTI)

This paper reviews the methods of producing energy carriers, such as electricity, hydrocarbons and hydrogen, by utilising both nuclear energy and fossil fuels synergistically. There are many possibilities for new, innovative, synergistic processes, which combine chemical and nuclear systems for efficient, clean and economical production of energy carriers. Besides the individual processes by each form of energy to produce the energy carriers, the synergistic processes which use two primary energies to produce the energy carriers will become important with the features of resource saving, CO2 emission reduction and economic production, due to the higher conversion efficiency and low cost of nuclear heat. The synergistic processes will be indispensable to the 21st century, when efficient best-mixed supplies of available primary energies are crucial.

Masao Hori

2009-01-01T23:59:59.000Z

282

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network [OSTI]

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low-energy 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density nuclear physics: the relationship between low-energy, non- perturbative QCD and the rich structure

Weise, Wolfram

283

Climate Control Using Nuclear Energy  

E-Print Network [OSTI]

We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

Moninder Singh Modgil

2008-01-01T23:59:59.000Z

284

Nuclear Hybrid Energy Systems: Challenges and Opportunities  

SciTech Connect (OSTI)

With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

2014-07-01T23:59:59.000Z

285

First Office of Nuclear Energy -Tribal Leader Dialogue | Department of  

Broader source: Energy.gov (indexed) [DOE]

First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue November 14, 2013 - 4:48pm Addthis First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy On October 30th, I hosted Tribal Leaders from all over the United States at the first Office of Nuclear Energy (NE) and Tribal Leader Dialogue (Dialogue) in New Orleans, Louisiana. The Dialogue was a great success! The Tribal Leaders and I were able sit down together to discuss the issues surrounding nuclear energy in the

286

First Office of Nuclear Energy -Tribal Leader Dialogue | Department of  

Broader source: Energy.gov (indexed) [DOE]

First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue November 14, 2013 - 4:48pm Addthis First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy On October 30th, I hosted Tribal Leaders from all over the United States at the first Office of Nuclear Energy (NE) and Tribal Leader Dialogue (Dialogue) in New Orleans, Louisiana. The Dialogue was a great success! The Tribal Leaders and I were able sit down together to discuss the issues surrounding nuclear energy in the

287

Social Institutions and Nuclear Energy  

Science Journals Connector (OSTI)

...that no harm will befall the public. The question has only one...entire safety sys-tem of the Hanford-N reactor (a one-of-a-kind...reactor, as in the case of the Hanford-N reactor, has two entirely...Radioactive Materials If, by the year 2000, we have 106 megawatts of nuclear...

Alvin M. Weinberg

1972-07-07T23:59:59.000Z

288

The History of Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

History of Nuclear Energy History of Nuclear Energy The History of Nuclear Energy Although they are tiny, atoms have a large amount of energy holding their nuclei together. Certain isotopes of some elements can be split and will release part of their energy as heat. This splitting is called fission. The heat released in fission can be used to help generate electricity in powerplants. Uranium-235 (U-235) is one of the isotopes that fissions easily. During fission, U-235 atoms absorb loose neutrons. This causes U-235 to become unstable and split into two light atoms called fission products. The combined mass of the fission products is less than that of the original U-235. The reduction occurs because some of the matter changes into energy. The energy is released as heat. Two or three neutrons

289

Variational description of the nuclear free energy  

Science Journals Connector (OSTI)

By means of a variational calculation, we place an upper bound on the finite-temperature free energy for nuclear systems which can be described by pseudospin Hamiltonians. The trial states are irreducible permutation invariant Gibbs states. The best trial state is the one which minimizes the free energy operator. We compare the upper bound with the numerically computed free energy for the Meshkov-Glick-Lipkin Hamiltonian for various values of nucleon number N and nuclear interaction strength V. For large N and/or ?(=1kT) the best trial Gibbs state becomes a good approximation to the actual density operator. Somewhat surprisingly, the variational approach reveals the presence of a second order thermodynamic phase transition much more clearly than the numerical computation does, even though the former is only an approximation to the latter.NUCLEAR STRUCTURE Finite-temperature free energy, pseudospin Hamiltonian, variational description and phase transitions, atomic coherent states.

Da Hsuan Feng; Robert Gilmore; L. M. Narducci

1979-03-01T23:59:59.000Z

290

Nuclear energy and the greenhouse effect  

Science Journals Connector (OSTI)

The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood, strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, an acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical.

Alvin M. Weinberg

1990-01-01T23:59:59.000Z

291

Platts 4th Annual Nuclear Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference February 5, 2008 - 11:13am Addthis Remarks as Prepared for Delivery for Assistant Secretary Spurgeon Thank you, and thank you to Platts for inviting me to address this conference. This morning you have heard much about the state of new nuclear power in the U.S. and with some of the notable speakers here, probably everything about U.S. expansion that needs to be said has been said, it just hasn't been said by everyone. But I am here to give you the Federal perspective on this exciting time in nuclear power, not only here in the United States but around the world. I also stand before you in the last year of an Administration, one that since its first day in office has

292

Platts 4th Annual Nuclear Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference February 5, 2008 - 11:13am Addthis Remarks as Prepared for Delivery for Assistant Secretary Spurgeon Thank you, and thank you to Platts for inviting me to address this conference. This morning you have heard much about the state of new nuclear power in the U.S. and with some of the notable speakers here, probably everything about U.S. expansion that needs to be said has been said, it just hasn't been said by everyone. But I am here to give you the Federal perspective on this exciting time in nuclear power, not only here in the United States but around the world. I also stand before you in the last year of an Administration, one that since its first day in office has

293

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

SOLAR ENERGY PROGRAM CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979 October 1980 TWO-WEEK LOAN

Authors, Various

2010-01-01T23:59:59.000Z

294

NUCLEAR MATERIALTRANSACTION REPORT | Department of Energy  

Energy Savers [EERE]

NUCLEAR MATERIALTRANSACTION REPORT NUCLEAR MATERIALTRANSACTION REPORT Form used to support nuclear materials accountability and control. NUCLEAR MATERIALTRANSACTION REPORT More...

295

The Engineering, Energy and Environment Trinity College Dublin  

E-Print Network [OSTI]

technology designs that mediate mankind's experience in enhanced environments: cognitive environments and environment. The technology designs and human interventions proposed by the E3 will be optimal, becauseE3 The Engineering, Energy and Environment Institute of Trinity College Dublin Full Strategy 1st

O'Mahony, Donal E.

296

TEPP - Spent Nuclear Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Spent Nuclear Fuel - Spent Nuclear Fuel TEPP - Spent Nuclear Fuel This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel. This exercise manual is one in a series of five scenarios developed by the Department of Energy Transportation Emergency Preparedness Program. Responding agencies may include several or more of the following: local municipal and county fire, police, sheriff, and Emergency Medical Services (EMS) personnel; state, local, and federal emergency response teams; emergency response contractors;and other emergency response resources that could potentially be provided by the carrier and the originating facility (shipper). Spent Nuclear Fuel.docx More Documents & Publications

297

Nuclear Safety Workshop Summary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Workshop Summary Workshop Summary Nuclear Safety Workshop Summary September 19-20, 2012 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme was Post Fukushima Initiatives and Results, and included technical breakout sessions focused on beyond design basis events (BDBEs) analysis and response, safety culture, and risk assessment and management.

298

Nuclear energy policy in Belgium after Fukushima  

Science Journals Connector (OSTI)

Abstract The Belgian nuclear phase-out law imposes closing down in the 2015–2025 period seven nuclear power plants (NPPs) producing more than 50% of the domestic electricity. This creates an urgent problem in the country because of the absence of well-defined capacity-replacement plans. Though a safety-of-supply provision in the law allows for a delayed phase-out, hopes for a technically acceptable schedule have reduced after the Fukushima nuclear disaster in March 2011. In this article policy investigations are made with system dynamics. A significant finding from such modelling is that, in contrast to common expectations, a too early nuclear phase-out will not serve the deployment of renewable energy sources and rational use of energy. It is indeed found to primarily benefit to fossil fuel, creating unwanted drawbacks regarding safety of supply, dependency on foreign suppliers, price volatility, and increased use of non-renewable and CO2-emitting fossil fuels.

Pierre L. Kunsch; Jean Friesewinkel

2014-01-01T23:59:59.000Z

299

Energy and Environment Partnership Programme for Mekong Region | Open  

Open Energy Info (EERE)

Programme for Mekong Region Programme for Mekong Region Jump to: navigation, search Logo: Energy and Environment Partnership Programme for Mekong Region Name Energy and Environment Partnership Programme for Mekong Region Agency/Company /Organization Government of Finland, Nordic Development Fund Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Finance, Policies/deployment programs, Background analysis Website http://www.eepmekong.org/ Country Cambodia, Laos, Vietnam, Thailand UN Region South-Eastern Asia References EEP Mekong[1] Overview "Energy and Environment Partnership (EEP) with Mekong region countries is a grant offering program to promote the use of renewable energy, energy efficiency and clean technologies, financed by the Ministry for Foreign

300

Nuclear energy: The civilians take charge - Argonne's Historical News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear energy: The civilians take charge Nuclear energy: The civilians take charge About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Why are Some People Afraid of Nuclear Energy?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why are some people afraid of Nuclear Energy? Why are some people afraid of Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

302

Instabilities in the Nuclear Energy Density Functional  

E-Print Network [OSTI]

In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

M. Kortelainen; T. Lesinski

2010-02-05T23:59:59.000Z

303

Turkey's nuclear energy policy: towards a sustainable energy mix?  

Science Journals Connector (OSTI)

To originate new sustainable development policies is a prerequisite for achieving a higher level of worldwide economic and social development. The efficiency of a sustainable development policy could, and should, be measured by a multi-dimensional analysis that comprises all social, economic and environmental factors. Acknowledging the requirement to have a sustainable energy mix, net energy importer Turkey has initiated its nuclear energy programme. However, this move by Turkey also brings forth certain environmental, social and economic issues that have been a matter of ongoing debate. This study aims not only to contribute to the debate by providing a balanced enquiry of nuclear energy's pros and cons, but also to determine the pre-conditions for it to prompt Turkey to reach a sustainable energy future. The nuclear option has a significant potential to drive Turkey's transition to sustainable energy as long as several environmental, social and economic risk factors are minimised.

Emre ??eri; Cem Ã?zen

2013-01-01T23:59:59.000Z

304

Nuclear and gravitational energies in stars  

SciTech Connect (OSTI)

The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ?}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ?}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

Meynet, Georges; Ekström, Sylvia [Astronomical Observatory of Geneva University (Switzerland); Courvoisier, Thierry [ISDC, Astronomical Observatory of Geneva University (Switzerland)

2014-05-09T23:59:59.000Z

305

Coal and nuclear power: Illinois' energy future  

SciTech Connect (OSTI)

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

306

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

307

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Reference Model 5...

308

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

fired power plant per unit of electrical energy. Wind powerpower plants will not be cost competitive with other electricity-generating alternatives. For example, wind

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

309

Before the Subcommittee on Energy and the Environment | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subcommittee on Energy and the Environment Subcommittee on Energy and the Environment Before the Subcommittee on Energy and the Environment Before the Subcommittee on Energy and the Environment Committee on Science, Space, and Technology United States House of Representatives By: David Sandalow, Assistant Secretary of Energy for Policy and International Affairs Subject: Critical Elements: Identifying Research Needs and Strategic Priorities 12-7-11FinalTestimonySandalow.pdf More Documents & Publications Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Subcommittee on Energy and the Environment, Committee on Science, Space, and Technology, United States House of Representatives Before the Senate Energy and Natural Resources Subcommittee on Energy

310

2009 Annual Reports Issued for Nuclear Energy Research Initiative and  

Broader source: Energy.gov (indexed) [DOE]

2009 Annual Reports Issued for Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative July 2, 2010 - 11:49am Addthis On July 2, 2010, the Department of Energy's (DOE) Office of Nuclear Energy (NE) issued annual reports for its Nuclear Energy Research Initiative (NERI) andInternational Nuclear Energy Research Initiative (I-NERI), describing accomplishments achieved in 2009. The NERI and I-NERI programs have furthered DOE goals for the past decade, conducting research into many of the key technical issues that impact the expanded use of advanced nuclear energy systems. Researchers have fostered innovative ideas

311

Spanish Research Centre for Energy Environment and Technology CIEMAT | Open  

Open Energy Info (EERE)

Energy Environment and Technology CIEMAT Energy Environment and Technology CIEMAT Jump to: navigation, search Name Spanish Research Centre for Energy, Environment and Technology (CIEMAT) Place Madrid, Spain Zip 28040 Sector Solar, Wind energy Product CIEMAT, a Research Public Institution attached to the Ministry of Education and Science, is actively working on the research projects for PEM fuel cell, biofuel, solar and wind power. References Spanish Research Centre for Energy, Environment and Technology (CIEMAT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Spanish Research Centre for Energy, Environment and Technology (CIEMAT) is a company located in Madrid, Spain . References ↑ "Spanish Research Centre for Energy, Environment and

312

United States Nuclear Energy and Non-Proliferation Policy  

Science Journals Connector (OSTI)

I believe that U.S. nuclear energy and non-proliferation policy is not well understood, and I hope ... I shall speak first about the role of nuclear energy within the context of overall energy policy, then about ...

Daniel P. Serwer

1980-01-01T23:59:59.000Z

313

High Energy Nuclear Interactions and Structure of Elementary Particles  

Science Journals Connector (OSTI)

......research-article Articles High Energy Nuclear Interactions and Structure...role in extremely high energy interactions in cosmic...looked for in accelerator energy region. It is suggested...Theoretical Physics on nuclear forces. 6) S. Hayakawa......

Mituo Taketani; Yoichi Fujimoto

1965-01-01T23:59:59.000Z

314

Nuclear Fuel Cycle | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

315

Accelerator Driven Nuclear Energy - The Thorium Option  

ScienceCinema (OSTI)

Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

Rajendran Raja

2010-01-08T23:59:59.000Z

316

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

dosimetry Radionuclldes Tritium Krypton-8S Strontium- lodlne-129.131 Radon-222 & daughters Radium Plutonium Sources Nuclear

Cairns, E.J.

2010-01-01T23:59:59.000Z

317

www.inl.gov A Future of Nuclear Energy  

E-Print Network [OSTI]

www.inl.gov A Future of Nuclear Energy: The Nuclear Renaissance, the Role of INL, and Potential in Nuclear Energy · Electrical Generation Supply/Demand · Global Warming, Greenhouse Gas Emissions/kilowatt-hour) Facts regarding nuclear energy in the US #12;· Standardized designs based on modularization producing

318

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Broader source: Energy.gov (indexed) [DOE]

Next for Nuclear Energy? MIT Students Discuss Path Forward Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support. Investing in the next generation isn't just about technology -- it's

319

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Broader source: Energy.gov (indexed) [DOE]

What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support.

320

High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.  

SciTech Connect (OSTI)

The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub-models for overall analysis of the system. It also provides control over key user input parameters and the ability to effectively consolidate vital output results for uncertainty/sensitivity analysis and optimization procedures. The preliminary analysis has shown promising advanced fuel cycle scenarios that include Pressure Water Reactors Pressurized Water Reactors (PWRs), Very High Temperature Reactors (VHTRs) and dedicated HEST waste incineration facilities. If deployed, these scenarios may substantially reduce nuclear waste inventories approaching environmentally benign nuclear energy system characteristics. Additionally, a spent fuel database of the isotopic compositions for multiple design and control parameters has been created for the VHTR-HEST input fuel streams. Computational approaches, analysis metrics, and benchmark strategies have been established for future detailed studies.

Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear fission  

E-Print Network [OSTI]

India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear posed by reactors, the accident liability laws and regulatory structure governing nuclear energy, Wednesday, Oct 29th 4:00 PM (Tea/Coffee at Seminar Hall, TCIS Colloquium India's Nuclear Energy Program

Shyamasundar, R.K.

322

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network [OSTI]

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Dario Vretenar

2008-02-06T23:59:59.000Z

323

Argonne OutLoud Public Lecture Series: Nuclear Energy | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Share Description On November 15, 2012, Argonne National Laboratory opened its doors to the public for a presentationdiscussion titled "Getting to Know Nuclear:...

324

Department of Energy Issues Requests for Applications for Nuclear...  

Office of Environmental Management (EM)

for Nuclear Science and Engineering Scholarships and Fellowships Department of Energy Issues Requests for Applications for Nuclear Science and Engineering Scholarships and...

325

Department of Energy Issues Requests for Applications for Nuclear...  

Energy Savers [EERE]

Issues Requests for Applications for Nuclear-Related Science and Engineering Scholarships and Fellowships Department of Energy Issues Requests for Applications for Nuclear-Related...

326

Department of Energy Cites Savannah River Nuclear Solutions for...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Nuclear Solutions for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions for Worker Safety and Health Violations October...

327

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

328

Nuclear Energy Policy University of Nevada ? Reno 27 March...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Safe, effective disposition of spent nuclear fuel not yet demonstrated What's driving nuclear expansion * Rapid increase in global energy demand * Rising importance of carbon...

329

Nuclear Energy University Program: A Presentation to Vice Presidents...  

Office of Environmental Management (EM)

Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

330

Energy Department Announces New Investments in Advanced Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors October 31, 2014 - 12:20pm Addthis NEWS...

331

Role of inorganic chemistry on nuclear energy examined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues surrounding nuclear power production and waste...

332

Not in our backyard : the dangers of nuclear energy.  

E-Print Network [OSTI]

??Despite seeing the destruction caused by nuclear accidents at Three Mile Island, Chernobyl, and Fukushima, many people still believe that nuclear energy is necessary to… (more)

McGeown, Emily Elizabeth, 1990-

2012-01-01T23:59:59.000Z

333

Nuclear energy is an important source of power, supplying 20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from...

334

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect (OSTI)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

335

US-Japan_NuclearEnergyActionPlan.pdf | Department of Energy  

Energy Savers [EERE]

US-JapanNuclearEnergyActionPlan.pdf US-JapanNuclearEnergyActionPlan.pdf US-JapanNuclearEnergyActionPlan.pdf More Documents & Publications Fact Sheet: United States-Japan Joint...

336

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Broader source: Energy.gov (indexed) [DOE]

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

337

Manuscript to appear in Environment, Systems and Decisions CALCULATING NUCLEAR ACCIDENT PROBABILITIES  

E-Print Network [OSTI]

Manuscript to appear in Environment, Systems and Decisions CALCULATING NUCLEAR ACCIDENT there is no authoritative, comprehensive and public historical record of nuclear power plant accidents, we reconstructed a nuclear accident dataset from peer-reviewed and other literature. We found that, in a sample of five

Boyer, Edmond

338

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

339

Department of Energy Announces New Nuclear Initiative | Department of  

Broader source: Energy.gov (indexed) [DOE]

of Energy Announces New Nuclear Initiative of Energy Announces New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists.

340

International Nuclear Energy Research Initiative (I-NERI) Annual Reports |  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports August 13, 2013 International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

342

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program Awards Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

343

Department of Energy and Nuclear Regulatory Commission Increase Cooperation  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Regulatory Commission Increase Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP) through a Memorandum of Understanding (MOU) that was signed on Friday by DOE's GNEP Deputy Program Manager Paul Lisowski and NRC Executive Director for Operations Luis Reyes. The MOU establishes the foundation for increased cooperation between DOE and NRC on technological research and engineering studies and marks another important milestone

344

Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies  

E-Print Network [OSTI]

We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

T. Niksic; D. Vretenar; P. Ring

2008-09-08T23:59:59.000Z

345

THE NUCLEAR ENERGY REVOLUTION—1966  

Science Journals Connector (OSTI)

...power. The estimated water cost at the plant site...assessed against municipal water projects. A more recent...using an organic- cooled heavy-water reactor as the energy source and a slightly more advanced evaporator with a performance...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

346

Energy partition in nuclear fission  

Science Journals Connector (OSTI)

A scission point model (two spheroid model TSM) including semi-empirical, temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-...

A. Ruben; H. Märten; D. Seeliger

1991-01-01T23:59:59.000Z

347

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 6, 2010 May 6, 2010 CX-002327: Categorical Exclusion Determination Central Facility Area and Advanced Test Reactor-Complex Analytical and Research and Development Laboratory Operation (Overarching) CX(s) Applied: B3.6 Date: 05/06/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002192: Categorical Exclusion Determination Site Wide Well Abandonment Activities CX(s) Applied: B2.5, B3.1 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002584: Categorical Exclusion Determination Nuclear Fabrication Consortium CX(s) Applied: B3.6, A9, A11 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 12, 2010 CX-001627: Categorical Exclusion Determination

348

September 2009 Spotlight on Energy & the Environment Discovery Tour  

E-Print Network [OSTI]

of the farm's energy use is provided by more than 400 solar panels on the southern roof of his turkey barnSeptember 2009 Spotlight on Energy & the Environment Discovery Tour On September 21, dozens Discovery Tour: Energy and the Environment. Part of the Discovery Initiative launched earlier this year

Goodman, Robert M.

349

Nuclear energy density optimization: Shell structure  

E-Print Network [OSTI]

Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2013-12-06T23:59:59.000Z

350

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and ...

Vogt, D A B R

2005-01-01T23:59:59.000Z

351

Symmetry energy coefficients for asymmetric nuclear matter  

E-Print Network [OSTI]

Symmetry energy coefficients of asymmetric nuclear matter are investigated as the inverse of nuclear matter polarizabilities with two different approaches. Firstly a general calculation shows they may depend on the neutron-proton asymmetry itself. The choice of particular prescriptions for the density fluctuations lead to certain isospin (n-p asymmetry) dependences of the polarizabilities. Secondly, with Skyrme type interactions, the static limit of the dynamical polarizability is investigated corresponding to the inverse symmetry energy coefficient which assumes different values at different asymmetries (and densities and temperatures). The symmetry energy coefficient (in the isovector channel) is found to increase as n-p asymmetries increase. The spin symmetry energy coefficient is also briefly investigated.

Fábio L. Braghin

2003-12-16T23:59:59.000Z

352

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

353

Nuclear Energy In the United States Executive Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Status and Outlook for Nuclear Energy In the United States Executive Summary The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear...

354

Improving energy efficiency in a pharmaceutical manufacturing environment  – office building .  

E-Print Network [OSTI]

??Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in… (more)

Li, Wu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

355

Energy Frontier Research in Extreme Environments (EFree) | U...  

Office of Science (SC) Website

Frontier Research in Extreme Environments (EFree) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events...

356

Focus issue introduction: renewable energy and the environment  

Science Journals Connector (OSTI)

This focus issue highlights selected contributions from authors who presented promising concepts at OSA’s Renewable Energy and the Environment Optics and Photonics Congress held...

Seassal, Christian; Koshel, John

2013-01-01T23:59:59.000Z

357

Department of Energy Announces New Nuclear Initiative | Department of  

Broader source: Energy.gov (indexed) [DOE]

New Nuclear Initiative New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists. "GNEP brings the promise of virtually limitless energy to emerging

358

American Bar Association Section on Environment | Open Energy Information  

Open Energy Info (EERE)

Bar Association Section on Environment Bar Association Section on Environment Jump to: navigation, search Name American Bar Association Section on Environment Place Chicago, Illinois Zip 60610 Product The Section of Environment, Energy, and Resources is the premier forum for lawyers working in areas related to environment law, natural resources law, and energy law. References American Bar Association Section on Environment[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Bar Association Section on Environment is a company located in Chicago, Illinois . References ↑ "American Bar Association Section on Environment" Retrieved from "http://en.openei.org/w/index.php?title=American_Bar_Association_Section_on_Environment&oldid=342108

359

Data requirements for intermediate energy nuclear applications  

SciTech Connect (OSTI)

Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.

Pearlstein, S.

1990-01-01T23:59:59.000Z

360

Nuclear curvature energy in relativistic models  

Science Journals Connector (OSTI)

The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement. © 1996 The American Physical Society.

M. Centelles; X. Viñas; P. Schuck

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Flexibility assessment in nuclear energy dominated systems with  

E-Print Network [OSTI]

generation (2008). The study evaluates the ability of nuclear reactors to follow the load under severalEA 4272 Flexibility assessment in nuclear energy dominated systems with increased wind energy;1 Flexibility assessment in nuclear energy dominated systems with increased wind energy shares Rodica Loisel

Paris-Sud XI, Université de

362

Nuclear Science and Engineering Education Sourcebook | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science and Engineering Education Sourcebook Science and Engineering Education Sourcebook Nuclear Science and Engineering Education Sourcebook The Nuclear Science and Engineering Education Sourcebook is a repository of critial information on nuclear engineering programs at U.S. colleges and universities. It includes detailed information such as nuclear engineering enrollments, degrees, and faculty expertise. In this latest edition, science faculty and programs relevant to nuclear energy are also included. NuclearScienceEngineeringSourcebook2013.pdf More Documents & Publications University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee The Future of University Nuclear Engineering Programs and University Research and Training Reactors Clark Atlanta Universities (CAU) Energy Related Research Capabilities

363

Studies in Low-Energy Nuclear Science  

SciTech Connect (OSTI)

This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

Carl R. Brune; Steven M. Grimes

2010-01-13T23:59:59.000Z

364

Global Environment Fund GEF | Open Energy Information  

Open Energy Info (EERE)

Environment Fund GEF Environment Fund GEF Jump to: navigation, search Name Global Environment Fund (GEF) Place Chevy Chase, Maryland Zip 20815 Product International investment management firm with around USD 800m under management. Invests in companies that make positive contributions to environmental quality, human health and sustainable management of resources. References Global Environment Fund (GEF)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Environment Fund (GEF) is a company located in Chevy Chase, Maryland . References ↑ "Global Environment Fund (GEF)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Environment_Fund_GEF&oldid=345910"

365

Microsoft PowerPoint - Why Nuclear Energy New Template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Nuclear Energy? Why Nuclear Energy? Why Nuclear Energy? Nuclear energy already meets a significant share of the world's energy needs * There are 441 nuclear reactors in operation in 31 countries * These plants generate electricity for nearly a billion people, and account for 17% of the world's electricity production * The U.S. has 103 operating reactors producing 20% of the nation's electricity * Illinois leads all states with the highest share of nuclear (51%) * Technology significantly developed at Argonne forms the basis of all nuclear energy systems used worldwide Nuclear power is reliable and economical * In 2001, U.S. nuclear plants produced electricity for 1.68 cents per kilowatt-hour on average, second only to hydroelectric power among baseload generation options * U.S. nuclear power plant performance has steadily

366

Energy and Environment Division, annual report FY 1980  

SciTech Connect (OSTI)

This report covers research in: energy analysis; energy efficiency studies; solar energy; chemical process; energy-efficient buildings; environmental pollutant studies; combustion research; laser spectroscopy and trace elements; and oil shale and coal research. An energy and environment personnel listing is appended. Separate projects are indexed individually for the database. (PSB)

Osowitt, M. (ed.)

1981-07-01T23:59:59.000Z

367

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services GNEP would build and strengthen a reliable international fuel services consortium under which "fuel supplier nations" would choose to operate both nuclear power plants and fuel production and handling facilities, providing reliable fuel services to "user nations" that choose to only operate nuclear power plants. This international consortium is a critical component of the GNEP initiative to build an improved, more proliferation-resistant nuclear fuel cycle that recycles used fuel, while Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services More Documents & Publications

368

ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

Environmental Aspects of Geothermal Energy Development R.Environmental Aspects of Geothermal Energy Development S. R.data per- taining to geothermal energy development. Two

Cairns, E.L.

2011-01-01T23:59:59.000Z

369

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

the Solar Energy Research Institute, conduct- ing projectthese projects are transferred to the Solar Energy Researchthe TASE project assumed different levels of solar energy

Authors, Various

2010-01-01T23:59:59.000Z

370

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

TECHNOLOGY ASSESSMENTS Biomass Energy Conversion in Hawaiiof Third Annual Biomass Energy Systems Conference, June 5-7,J. Leone, Marine Biomass Energy Project, (New Orleans, La. :

Authors, Various

2010-01-01T23:59:59.000Z

371

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

Symposium on Solar Thermal Power and Energy Systems, Junein that the radiant solar-to-thermal energy conversion isto transfer thermal energy from the solar collector to a

Authors, Various

2010-01-01T23:59:59.000Z

372

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

for geothermal energy, OTEC, solar thermal electricity andsolar thermal Jlectric systems and geothermal energy. Solarsolar thermal electric plants, ocean thermal energy plants (

Cairns, E.J.

2010-01-01T23:59:59.000Z

373

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

systems for auditors and appraisers, and energy and peakan "energy signature" for the house. Two auditors then makeauditor, at the time of the visit, will implement simple energy-

Authors, Various

2010-01-01T23:59:59.000Z

374

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Population Impacts of Geothermal Energy Development in thethe DOE Division of Geothermal Energy. S. L. Phillips and E.to DOE Division of Geothermal Energy, January 30, 1980.

Cairns, E.J.

2010-01-01T23:59:59.000Z

375

Nuclear Power Facilities (2008) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) More Documents & Publications Financial Institution Partnership Program - Commercial...

376

National Nuclear Security Administration | Department of Energy  

Office of Environmental Management (EM)

National Nuclear Security Administration National Nuclear Security Administration National Nuclear Security Administration More Documents & Publications Global Threat Reduction...

377

Nuclear Transportation Management Services | Department of Energy  

Office of Environmental Management (EM)

Nuclear Transportation Management Services Nuclear Transportation Management Services Nuclear Transportation Management Services More Documents & Publications Transportation and...

378

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS  

E-Print Network [OSTI]

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS Hiroyasu EJIRI Nuclear Physics Laboratory@rcnp.osaka-u.ac.jp (H. Ejiri). Physics Reports 338 (2000) 265}351 Nuclear spin isospin responses for low-energy Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567 Japan. E-mail address: ejiri

Washington at Seattle, University of

379

Meeting Customers' Energy Efficiency Goals- In Concert with the Environment  

E-Print Network [OSTI]

This paper describes an exciting new environmental program called "In Concert With The Environment." This program was originally targeted at high school students who analyzed their household's energy usage and the potential energy and related...

Merchant, D. G.

380

Nuclear safety information sharing agreement between NRC and DOE’s Office of Environment, Health, Safety and Security  

Broader source: Energy.gov [DOE]

Nuclear safety information sharing agreement between NRC and DOE’s Office of Environment, Health, Safety and Security.

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stockholm Environment Institute (SEI) | Open Energy Information  

Open Energy Info (EERE)

vulnerability and governance, as well as specific problems such as water resources and air pollution.2 References Stockholm Environment Institute 2.0 2.1 About SEI...

382

Nuclear Power and the World's Energy Requirements  

E-Print Network [OSTI]

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

383

Nuclear Energy University Program: A Presentation to Vice Presidents of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program: A Presentation to Vice Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy An overview of the Office of Nuclear Energy's university programs Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy More Documents & Publications Meeting Materials: December 18, 2009 Meeting Materials: June 9, 2009 June 2011, Report of the Fuel Cycle Subcommittee of NEAC

384

Sixty-Eight Students to Receive Nuclear Energy Scholarships and...  

Energy Savers [EERE]

Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships July 17, 2013 - 10:30am...

385

Seventy-Five Students to Receive Nuclear Energy Scholarships...  

Energy Savers [EERE]

Seventy-Five Students to Receive Nuclear Energy Scholarships and Fellowships Seventy-Five Students to Receive Nuclear Energy Scholarships and Fellowships May 9, 2014 - 11:17am...

386

Statement by DOE Assistant Secretary for Nuclear Energy Dennis...  

Energy Savers [EERE]

by DOE Assistant Secretary for Nuclear Energy Dennis Spurgeon Statement by DOE Assistant Secretary for Nuclear Energy Dennis Spurgeon October 29, 2007 - 4:21pm Addthis Response to...

387

Nuclear Energy Advisory Committee Meeting Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Advisory Committee Meeting Materials Nuclear Energy Advisory Committee Meeting Materials Nuclear Energy Advisory Committee Meeting Materials November 26, 2013 MEETING MATERIALS: DECEMBER 19, 2013 Washington Marriott at Metro Center Ballroom A 775 12th Street, NW Washington, DC 20005 June 13, 2013 MEETING MATERIALS: JUNE 13, 2013 L'Enfant Plaza Hotel Ballroom D, (Main Floor) Washington, D.C. 20024 December 6, 2012 Meeting Materials: December 6, 2012 L'Enfant Plaza Hotel Quorum Room, (Main Floor) Washington, D.C. 20024 June 12, 2012 Meeting Materials: June 12, 2012 L'Enfant Plaza Hotel Monet Ballroom, (2nd Floor), Washington, D.C. 20024 December 13, 2011 Meetings Materials: December 13, 2011 L'Enfant Plaza Hotel Ballroom A - 1st Floor Washington, D.C. 20024 June 15, 2011 Meeting Materials: June 15, 2011 L'Enfant Plaza Hotel

388

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 21, 2012 March 21, 2012 CX-008252: Categorical Exclusion Determination Central Facilities Area (CFA) Shoot House Panel Installation CX(s) Applied: B2.1 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy March 21, 2012 CX-008251: Categorical Exclusion Determination International Way Office Building Lease Termination CX(s) Applied: B1.24 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy March 15, 2012 CX-008253: Categorical Exclusion Determination Materials and Fuels Complex (MFC) Contaminated Equipment Storage Building (CESB) Conversion Scope Change CX(s) Applied: B1.31 Date: 03/15/2012 Location(s): Idaho Offices(s): Nuclear Energy November 28, 2011 CX-007774: Categorical Exclusion Determination Rensselaer Infrastructure Upgrade to Enhance Research and Education in

389

Medium energy nuclear physics research  

SciTech Connect (OSTI)

This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q{sup 2}; Measurement of the 5th Structure Function in Deuterium and {sup 12}C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of {sup 117}Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from {sup 13}C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of {sup 3}He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e{prime}p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N {yields} {Delta} Excitation; Experiment E-140: Measurement of the x-, Q{sup 2} and A-Dependence of R = {sigma}{sub L}/{sigma}{sub T}; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2{gamma} Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions.

Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

1992-06-01T23:59:59.000Z

390

Monthly/Annual Energy Review - nuclear section  

Reports and Publications (EIA)

Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

2015-01-01T23:59:59.000Z

391

Nuclear Energy: Where do we go from here? Keith Bradley  

E-Print Network [OSTI]

11.30am Nuclear Energy: Where do we go from here? Keith Bradley Argonne National Laboratories Abstract For the past several decades, nuclear energy has proven to be one of the most reliable and cost technical opportunities for cutting-edge R&D. A snapshot of the current state of nuclear energy research

Levi, Anthony F. J.

392

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy  

E-Print Network [OSTI]

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983

Laughlin, Robert B.

393

Master's programme in Nuclear Energy Engineering Programme outline  

E-Print Network [OSTI]

Master's programme in Nuclear Energy Engineering Programme outline The two-year Master's programme to work abroad. career ProsPects Nuclear power is a significant part of the current energy balance.With advances in science and technology, nuclear energy is increasingly re- garded as an eminent part

Haviland, David

394

Getting to Know Nuclear Energy: The Past, Present & Future  

E-Print Network [OSTI]

Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

Kemner, Ken

395

Role of inorganic chemistry on nuclear energy examined  

E-Print Network [OSTI]

- 1 - Role of inorganic chemistry on nuclear energy examined July 31, 2013 The journal Inorganic Chemistry published a special Forum issue on the role of inorganic chemistry in nuclear energy. John Gordon and Argonne National Laboratory collaborated on the work. The DOE Office of Nuclear Energy and the Office

396

Office of Nuclear Energy, Science and Technology Executive Summary  

E-Print Network [OSTI]

Office of Nuclear Energy, Science and Technology Executive Summary Mission As we become more in this new century, the benefits of nuclear fission as a key energy source for both the near- and long method of generating energy from nuclear fission in both the United States and the world. A key mission

397

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network [OSTI]

THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

Birmingham, University of

398

Nuclear Energy in an Atomic Lattice: Causal Order  

Science Journals Connector (OSTI)

......research-article Progress Letters Nuclear Energy in an Atomic LatticeCausal Order...April 1991, Progress Letters Nuclear Energy in an Atomic Lattice -- Causal...collectively in absorbing the excess nuclear energy that is released in an act of......

Julian Schwinger

1991-04-01T23:59:59.000Z

399

Nuclear Reactions by a Low-Energy Pion  

Science Journals Connector (OSTI)

......research-article Articles Nuclear Reactions by a Low-Energy Pion Toshitake Kohmura...6, December 1965 Nuclear Reactions by a Low-Energy Pion Toshitake KOHMURA...transition operator as Nuclear Reactions by a Low-Energy Pion 965 A t = ~Ti......

Toshitake Kohmura

1965-12-01T23:59:59.000Z

400

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Low-Cost, Low-Energy Flash Ethanol Fermentation B.k~ per liter anyhdrous ethanol).a Energy Consumption Farmingby the Table 3. Ethanol separation energy requirements J/L

Cairns, E.J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Simulating Urban Environments for Energy Analysis  

E-Print Network [OSTI]

compute the fraction of light energy transmitted along theregion. To evaluate the light energy shining on buildings,Given the light intensity from 2.3, the energy transfer to

Weber, Gunther H.

2014-01-01T23:59:59.000Z

402

Environment - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Environment Environment Glossary › FAQS › Overview Data Summary Electric Power Plant Environmental International Emissions All Environment Data Reports Analysis & Projections Carbon/Greenhouse Gas Emissions International Other Environmental Issues Projections All Reports EIA's latest Short-Term Energy Outlook for carbon dioxide emissions › chart showing U.S. energy-related carbon dioxide emissions Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Extending current energy policies would reduce U.S. energy use, carbon dioxide emissions › Graph of total energy-related co2 emissions, as explained in the article text Source: U.S. Energy Information Administration, Today in Energy, April 30, 2013. Power plant emissions of sulfur dioxide are projected to decline ›

403

United States and Italy Sign Nuclear Energy Agreements | Department of  

Broader source: Energy.gov (indexed) [DOE]

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

404

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Research Initiative: 2012 Annual International Nuclear Energy Research Initiative: 2012 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs,

405

United States and Italy Sign Nuclear Energy Agreements | Department of  

Broader source: Energy.gov (indexed) [DOE]

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

406

Cyber-Physical Systems Energy and the Environment  

E-Print Network [OSTI]

to Restructure · Generate energy locally ­ Wind, Solar ­ Energy Storage Plug in Hybrids ­ Share Power ­ Economics12/16/2008 1 Cyber-Physical Systems Energy and the Environment Bruce McMillin Department FREEDM ­ Future Renewable Electric Energy Delivery and Management Systems McMillin, 12/15/2008 Major

Rajkumar, Ragunathan "Raj"

407

Some radiochemical separations employed at the Institute of Nuclear and Energy Research-Brazilian Nuclear Energy Commission  

Science Journals Connector (OSTI)

Several radiochemical separations have been employed at the Radiochemistry Division of the Institute of Nuclear and Energy Research-Brazilian Nuclear Energy Commision, for the analysis of a number...

M. B. A. Vasconcellos

1993-02-01T23:59:59.000Z

408

Energy Department Announces New Investments in University-Led Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces New Investments in University-Led Energy Department Announces New Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to deploy every available source of American energy and ensure the U.S. remains competitive globally, the Energy Department announced today more than $13 million in new investments for university-led nuclear innovation projects. The three awards announced today under the Department's Nuclear Energy University Programs (NEUP) will support nuclear energy R&D and student investment at U.S. colleges and universities across the country, ensuring that secure, safe and efficient nuclear energy

409

Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...  

Broader source: Energy.gov (indexed) [DOE]

growing energy demands. Addressing this market is essential to safely expanding nuclear energy in developing nations and small-grid markets without increasing proliferation...

410

Nuclear Energy Research Advisory Committee (NERAC) Meeting of...  

Broader source: Energy.gov (indexed) [DOE]

Meeting of November 3 and 4, 2003 Nuclear Energy Research Advisory Committee (NERAC) Meeting of November 3 and 4, 2003 The agenda for the National Energy Research Advisory...

411

Thomas Miller Office of Nuclear Energy, Science and Technology  

Broader source: Energy.gov (indexed) [DOE]

Miller Miller Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 30, 2002 Presentation at the Nuclear Energy Research Advisory Committee Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Office of Nuclear Energy, Science and Technology TMiller/Sept11_02 ESE Project.ppt ( 2) Nuclear Power 2010: Overview Nuclear Power 2010: Overview Goal 6 Achieve industry decision by 2005 to deploy at least one new advanced nuclear power plant by 2010 Cooperative Activities 6 Regulatory Demonstration Projects * Early Site Permit (ESP) * Combined Construction and Operating License (COL) 6 Reactor Technology Development Projects * NRC Design Certification (DC) * First-of-a-kind engineering for a standardized plant

412

Wireless Environment LLC | Open Energy Information  

Open Energy Info (EERE)

Wireless Environment LLC Wireless Environment LLC Jump to: navigation, search Name Wireless Environment LLC Place Elyria, Ohio Product Wireless Environment designs light-emitting diode lighting products that it sells through a vehicle called "Mr. Beams." Coordinates 41.36768°, -82.105839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.36768,"lon":-82.105839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

European Environment Agency | Open Energy Information  

Open Energy Info (EERE)

Environment Agency Environment Agency Jump to: navigation, search Logo: European Environment Agency Name European Environment Agency Address Kongens Nytorv 6 1050 Place Copenhagen, Denmark Phone number (+45) 33 36 71 00 Website http://www.eea.europa.eu/ Coordinates 55.6811436°, 12.5866457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6811436,"lon":12.5866457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Pilot Application to Nuclear Fuel Cycle Options | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options The Department of Energy's Office of Nuclear Energy (DOE-NE) invests in research and development (R&D) to ensure that the United States will maintain its domestic nuclear energy capability and scientific and technical leadership in the international community of nuclear power nations in the years ahead. The 2010 Nuclear Energy Research and Development Roadmap presents a high-level vision and framework for R&D activities that are needed to keep the nuclear energy option viable in the near term and to expand its use in the decades ahead. The roadmap identifies the development

415

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Broader source: Energy.gov (indexed) [DOE]

of the Nuclear Energy Research Advisory Committee, of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

416

Gregory H. Friedman: Before the Subcommittee on Energy and Environment  

Broader source: Energy.gov (indexed) [DOE]

Subcommittee on Energy and Subcommittee on Energy and Environment Committee on Science U.S. House of Representatives Gregory H. Friedman: Before the Subcommittee on Energy and Environment Committee on Science U.S. House of Representatives August 1, 1996 Before the Subcommittee on Energy and Environment Committee on Science U.S. House of Representatives Statement of Gregory H. Friedman, Deputy Inspector General for Audit Services Department of Energy Invitation to testify on funding for Department of Energy research and development in a constrained budget environment. The Office of Inspector General has completed a number of audits in the general area of cooperative agreements, cost sharing arrangements and the Department's recoupment decisions. One of our objectives has been to determine if the interests of

417

Gregory H. Friedman: Before the Subcommittee on Energy and Environment  

Broader source: Energy.gov (indexed) [DOE]

Gregory H. Friedman: Before the Subcommittee on Energy and Gregory H. Friedman: Before the Subcommittee on Energy and Environment Committee on Science U.S. House of Representatives Gregory H. Friedman: Before the Subcommittee on Energy and Environment Committee on Science U.S. House of Representatives August 1, 1996 Before the Subcommittee on Energy and Environment Committee on Science U.S. House of Representatives Statement of Gregory H. Friedman, Deputy Inspector General for Audit Services Department of Energy Invitation to testify on funding for Department of Energy research and development in a constrained budget environment. The Office of Inspector General has completed a number of audits in the general area of cooperative agreements, cost sharing arrangements and the Department's recoupment decisions. One of our objectives has been to determine if the interests of

418

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Geothermal Energy Development in California Imperial Valley.species. Geothermal development in both the Imperial Valley

Cairns, E.J.

2010-01-01T23:59:59.000Z

419

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

420

Global Nuclear Energy Partnership Triples in Size to 16 Members |  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Partnership Triples in Size to 16 Members Nuclear Energy Partnership Triples in Size to 16 Members Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On to International Cooperation for Safe Expansion of Nuclear Energy Worldwide VIENNA, AUSTRIA - U.S. Secretary of Energy Samuel W. Bodman and senior international officials from 16 nations today agreed to increase international nuclear energy cooperation through the Global Nuclear Energy Partnership (GNEP). China, France, Japan, Russia and the United States, who are original GNEP partners, as well as Australia, Bulgaria, Ghana, Hungary, Jordan, Kazakhstan, Lithuania, Poland, Romania, Slovenia, and Ukraine signed a "Statement of Principles", which addresses the prospects of expanding the peaceful uses of nuclear energy, including enhanced

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Community Renewable Energy Success Stories: Wind Energy in Urban Environments Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Wind Energy in Urban Environments," originally presented on September 18, 2012.

422

CP-1: the Past, Present & Future of Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CP-1: the Past, Present & Future of Nuclear Energy CP-1: the Past, Present & Future of Nuclear Energy Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share CP-1: the Past, Present & Future of Nuclear Energy Jan. 29, 2013 On January 25, 2013, a lunch program to commemorate the 70th anniversary of the world's first self-sustaining, controlled nuclear chain reaction was

423

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

424

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

MIT - Center for Advanced Nuclear Energy Systems MIT - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name MIT - Center for Advanced Nuclear Energy Systems Address 77 Massachusetts Avenue, 24-215 Place Cambridge, Massachusetts Zip 02139-4307 Phone number (617) 452-2660 Coordinates 42.3613041°, -71.0967653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3613041,"lon":-71.0967653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Ex Parte Meeting Between the Department of Energy and the Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Between the Department of Energy and the Nuclear Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 summary of ex parte meeting with the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 More Documents & Publications Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy Institute

426

The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry  

E-Print Network [OSTI]

1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities a unique challenge to the testing, qualification and use of smart materials. The present study assesses

Giurgiutiu, Victor

427

Energy and isospin dependence of nuclear chaos  

Science Journals Connector (OSTI)

Energy levels and wave functions, obtained in realistic shell-model calculations for Ca and Sc isotopes up to A=52 and 46Ti, are analyzed using standard statistics such as the nearest level spacing distribution, the Dyson-Mehta ?3, and the mean localization length. These statistics are calculated for different energy regions of the spectrum. For all the Ca isotopes, in the ground state region the energy levels show strong deviations from Gaussian orthogonal ensemble predictions. It is shown that a transition to a more chaotic regime takes place as excitation energy increases. However, even when the full spectrum is taken into account, the ?3 and the degree of localization of the eigenfunctions in the mean-field basis prove that Ca isotopes are less chaotic than Sc isotopes. A comparison with 46Ti shows that this nucleus is still more chaotic. Thus we find a clear isospin dependence in the degree of nuclear chaoticity.

R. A. Molina; J. M. G. Gómez; J. Retamosa

2000-12-18T23:59:59.000Z

428

MEMORANDUM FOR SEAN LEV DEPUTY GENERAL COUNSEL FOR ENVIRONMENT AND NUCLEAR PROGRAMS  

Broader source: Energy.gov (indexed) [DOE]

4,20 1 1 4,20 1 1 MEMORANDUM FOR SEAN LEV DEPUTY GENERAL COUNSEL FOR ENVIRONMENT AND NUCLEAR PROGRAMS FROM: FRANK MARCINOWSKI 4d.Lhf-d DEPUTY ASSISTANT SECRETARY FOR TECHNICAL AND REGULATORY SUPPORT SUBJECT: Annual National Environmental Policy Act Planning Summaries for 201 1 In response to Office of General Counsel's memorandum of December 8,2010, regarding the Annual National Environmental Policy Act (NEPA) Planning Summaries (APS) and in accordance with Department of Energy Order 45 1.1 B, National Environmental Policy Act Compliance Program, I am transmitting our 201 1 APSs. The attached Summaries cover the NEPA projects within the Office of Environmental Management's purview, recognizing that some sites have submitted their Summaries directly to you, as provided

429

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Broader source: Energy.gov (indexed) [DOE]

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

430

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT, 1977  

E-Print Network [OSTI]

for utilizing solar energy. One project, started this isprojects are funded by the DOE Division of Solar Energysolar energy retrofits of low-to-moderate cost homes, sixteen commercial solar demonstration projects,

Budnitz, R.J.

2011-01-01T23:59:59.000Z

431

Equips Nucleares SA | Open Energy Information  

Open Energy Info (EERE)

SA Place: Madrid, Spain Zip: 28006 Sector: Services Product: ENSA is a Spanish nuclear components and nuclear services supply company. References: Equips Nucleares, SA1...

432

Nuclear Regulatory Commission | Department of Energy  

Office of Environmental Management (EM)

Regulatory Commission Nuclear Regulatory Commission Nuclear Regulatory Commission More Documents & Publications What to Expect When Readying to Move Spent Nuclear Fuel from...

433

VT Nuclear Services ltd | Open Energy Information  

Open Energy Info (EERE)

VT Nuclear Services ltd Jump to: navigation, search Name: VT Nuclear Services ltd Place: Warrington, United Kingdom Zip: WA4 4BP Sector: Services Product: VT Nuclear Services...

434

Ecology Environment Inc | Open Energy Information  

Open Energy Info (EERE)

Environment Inc Environment Inc Jump to: navigation, search Name Ecology & Environment, Inc. Place Seattle, Washington Zip 98104 Product Environmental consulting firm serving corporate and government clients Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Energy Appropriate Technology pilot Program - Part II," Lawrence Berkeley Laboratory report LBL-10098 (1979). * This During the course

Cairns, E.J.

2010-01-01T23:59:59.000Z

436

How to Save the Environment and Money | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How to Save the Environment and Money How to Save the Environment and Money How to Save the Environment and Money April 21, 2012 - 12:02pm Addthis Amanda Scott Amanda Scott Former Managing Editor, Energy.gov On Friday, Secretary Chu hosted a live chat discussion to celebrate the 42nd annual Earth Day. The conversation with an in-person audience, streamed live here on energy.gov, highlighted the fact that we don't have to choose between our economy and our environment. For example, Secretary Chu highlighted how easy it is to save money and the planet at the same time. By making sure that you seal air leaks and add insulation, you're making your home more environmentally friendly and lowering your energy bill. In addition, Secretary Chu spoke about the Energy Department's work to help oil companies make energy efficient cars

437

Energy, Buildings and the Environment: A Sociology of Knowledge and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Buildings and the Environment: A Sociology of Knowledge and Energy, Buildings and the Environment: A Sociology of Knowledge and Technology Transfer Speaker(s): Elizabeth Shove Date: March 20, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Social scientists' contribution to the analysis of energy, buildings and the environment is frequently confined to the study of human behavior. This talk, based on the recent book, "A Sociology of Energy, Buildings and the Environment: Constructing Knowledge, Designing Practice", by Simon Guy and Elizabeth Shove (2000), outlines a range of other more challenging roles. Questions about the production and use of technical knowledge raise and engage with important issues for the sociology of science and technology, and for energy research and policy. How are technical

438

How to Save the Environment and Money | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

to Save the Environment and Money to Save the Environment and Money How to Save the Environment and Money April 21, 2012 - 12:02pm Addthis Amanda Scott Amanda Scott Former Managing Editor, Energy.gov On Friday, Secretary Chu hosted a live chat discussion to celebrate the 42nd annual Earth Day. The conversation with an in-person audience, streamed live here on energy.gov, highlighted the fact that we don't have to choose between our economy and our environment. For example, Secretary Chu highlighted how easy it is to save money and the planet at the same time. By making sure that you seal air leaks and add insulation, you're making your home more environmentally friendly and lowering your energy bill. In addition, Secretary Chu spoke about the Energy Department's work to help oil companies make energy efficient cars

439

Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors  

SciTech Connect (OSTI)

In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the operating envelope of both fission and fusion reactors. In advanced fission reactors composite materials are being designed in an effort to extend the life and improve the reliability of fuel rod cladding as well as structural materials. Composites are being considered for use as core internals in the next generation of gas-cooled reactors. Further, next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) will rely on the capabilities of advanced composites to safely withstand extremely high neutron fluxes while providing superior thermal shock resistance.

Simos, N.

2011-05-01T23:59:59.000Z

440

Energy Department Announces New Investments in University-Led Nuclear  

Broader source: Energy.gov (indexed) [DOE]

New Investments in University-Led New Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to deploy every available source of American energy and ensure the U.S. remains competitive globally, the Energy Department announced today more than $13 million in new investments for university-led nuclear innovation projects. The three awards announced today under the Department's Nuclear Energy University Programs (NEUP) will support nuclear energy R&D and student investment at U.S. colleges and universities across the country, ensuring that secure, safe and efficient nuclear energy

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

International Nuclear Energy Research Initiative: 2007 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Research Initiative: 2007 Annual International Nuclear Energy Research Initiative: 2007 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. Information on the program

442

Global Nuclear Energy Partnership Steering Group Members Approve  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Steering Group Members Approve Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation June 21, 2010 - 11:59am Addthis The Global Nuclear Energy Partnership Steering Group met in Accra, Ghana on June 16-17, 2010, and approved unanimously several transformative changes to reflect global developments that have occurred since the Partnership was established in 2007. The transformation includes a new name - the International Framework for Nuclear Energy Cooperation -- and the establishment of a new Statement of Mission. Participants in this new International Framework agreed that this

443

Energy, the Environment, and Society Spring 2013  

E-Print Network [OSTI]

-richer developing countries, require energy production to keep pace with growth in demand. Access to cheap energy has fueled the economic development of the richest countries, and there is widespread concern that any and opportunities that will determine the course of energy infrastructure development, and therefore carbon dioxide

Black, Robert X.

444

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Solar Heated Gas Turbine Process Using Sulfur Oxides for Power Production and Energy StorageSOLAR-HEATED GAS-TURBINE PROCESS USING SULFUR OXIDES FOR POWER PRODUCTION AND ENERGY STORAGE*solar heated gas-turbine process using sulfur oxides for power production and energy storage,"

Cairns, E.J.

2010-01-01T23:59:59.000Z

445

Global Nuclear Energy Partnership (GNEP) Ministerial Meeting  

Broader source: Energy.gov (indexed) [DOE]

for September 16,2007 for September 16,2007 Global Nuclear Energy Partnership (GNEP) Ministerial Meeting Austria Centre 8:30 - 10:OO a.m. Registration and Badging 10:OO - 11 :30 a.m. Opening Remarks by Participants [Open to the Media] Hall E 1 1 :30 - 1 1 :45 a.m. Break 11 145 - 12:30 p.m. Acceptance of the GNEP Statement of Principles (Signing) Welcome New GNEP Partners Press Conference [Open to the Media] Hall F 12:30 - 1:30 p.m. Lunch [Closed to the Media] 1 :30 - 1 :45 p.m. Break 1 :45 - 2:30 p.m. Session I: Steps That Could be taken by GNEP Partners in Support of a Global Nuclear Fuel Services [Closed to the Media] Hall E 2:30 - 3: 15 p.m. Session 11: Ways That GNEP Can Support Infrastructure Development Needs of Countries Considering Nuclear Power (e.g., nuclear reactor operation and related training,

446

Building a Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-30T23:59:59.000Z

447

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE  

Broader source: Energy.gov (indexed) [DOE]

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1 This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOE's operation of nuclear facilities. In developing the revised Policy and performing this analysis, DOE reviewed the current Nuclear Safety Policy (Secretary of Energy Notice [SEN] 35-91, Nuclear Safety Policy) and safety policies established by other safety

448

Management of the Department of Energy Nuclear Weapons Complex  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

2005-06-08T23:59:59.000Z

449

SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS  

SciTech Connect (OSTI)

We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

2010-12-20T23:59:59.000Z

450

Proposal for a High Energy Nuclear Database  

SciTech Connect (OSTI)

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

Brown, David A.; Vogt, Ramona

2005-03-31T23:59:59.000Z

451

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee  

Broader source: Energy.gov (indexed) [DOE]

Secretary to Visit Georgia Nuclear Reactor Site and Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy February 13, 2012 - 6:16pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday, February 15 to highlight steps the Obama Administration is taking to restart America's nuclear energy industry. In Waynesboro, Secretary Chu will join Southern Company CEO Thomas A. Fanning, Georgia Power CEO W. Paul Bowers, and local leaders for a tour of Vogtle units 3 and 4 -- the site of the first two new nuclear power units

452

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions  

E-Print Network [OSTI]

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

Peletier, Reynier

453

DCE DANISH CENTRE FOR ENVIRONMENT AND ENERGY  

E-Print Network [OSTI]

Environmental economics · Air · Climate · The Arctic Hanne Bach · hba@dmu.dk · +45 8715 1348 Biodiversity Vibeke Vestergaard Nielsen · vive@dmu.dk · + 45 8715 1304 DEPARTMENT OF BIOSCIENCE Arctic marine environment Anders Mosbech · amo@dmu.dk · +45 8715 8686 Biodiversity and conservation Rasmus Ejrnæs · rej

454

Dynamic Energy-Aware Capacity Provisioning for Cloud Computing Environments  

E-Print Network [OSTI]

reduction in energy cost, while maintaining an acceptable average scheduling delay for individual tasks data center. It has been reported that energy consumption accounts for more than 12% of monthlyDynamic Energy-Aware Capacity Provisioning for Cloud Computing Environments Qi Zhang University

Boutaba, Raouf

455

Nuclear excitation energy in muon capture: A reply  

Science Journals Connector (OSTI)

The parametrization of total muon capture rates in terms of a mean nuclear excitation energy E¯?, recently proposed by Christillin, Dellafiore, and Rosa-Clot, is reexamined in view of recent criticisms. The previously obtained results are reconfirmed.NUCLEAR REACTIONS ?-+A(N, Z)??+A(N+1, Z-1); muon capture; closure approximation; mean nuclear excitation energies.

P. Christillin, A. Dellafiore, and M. Rosa-Clot

1975-08-01T23:59:59.000Z

456

Molten salts and nuclear energy production Christian Le Bruna*  

E-Print Network [OSTI]

Molten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches with solid fuels, liquid fuel in molten salt reactor, solvents for spent nuclear solid fuel in the case

Boyer, Edmond

457

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation March 22, 2006 - 12:10pm Addthis MUMBAI, INDIA - U.S. Secretary of Energy Samuel W. Bodman today met with Dr. Anil Kakodkar, Secretary of the Department of Atomic Energy, in Mumbai to address the United States and India's nuclear cooperation and highlight the countries' ongoing partnership to advance global energy security. Earlier today, Secretary Bodman met with U.S. and Indian venture capitalists to discuss opportunities for investment in clean energy technologies. Secretary Bodman also participated in a roundtable discussion with nuclear industry leaders on the private sector's role in expanding access to clean, safe, and reliable nuclear energy across the

458

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation |  

Broader source: Energy.gov (indexed) [DOE]

in Mumbai to Highlight Civil Nuclear Energy in Mumbai to Highlight Civil Nuclear Energy Cooperation Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation March 22, 2006 - 12:10pm Addthis MUMBAI, INDIA - U.S. Secretary of Energy Samuel W. Bodman today met with Dr. Anil Kakodkar, Secretary of the Department of Atomic Energy, in Mumbai to address the United States and India's nuclear cooperation and highlight the countries' ongoing partnership to advance global energy security. Earlier today, Secretary Bodman met with U.S. and Indian venture capitalists to discuss opportunities for investment in clean energy technologies. Secretary Bodman also participated in a roundtable discussion with nuclear industry leaders on the private sector's role in expanding access to clean, safe, and reliable nuclear energy across the

459

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Broader source: Energy.gov (indexed) [DOE]

Develop Advanced Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating international partners on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents & Publications GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste

460

Overview of nuclear energy: Present and projected use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Overview of Nuclear Energy: Present and Projected Use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Alexander Stanculescu

2011-09-01T23:59:59.000Z

462

Policy and Regulatory Environment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

levels, a complex set of interdependent policies define the extent to which renewable energy markets are able to develop and thrive. DOE has identified the following key...

463

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

R. MARTIN COAL AND BIOMASS CONVERSION ENVIRONMENTAL RESEARCHsuch as marine biomass conversion, interacts with thesystems, wind machines, biomass conversion systems, energy

Authors, Various

2010-01-01T23:59:59.000Z

464

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

Williams Cecile Wolf Building Energy Data Compilation, Analysis and Demonstration Haldun Arin Peter Cleary Joseph Costello Bruce Dickenson David Goldstein Jeff

Authors, Various

2010-01-01T23:59:59.000Z

465

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

minimum in life-cycle cost for only widely available energy conservation measures for the envelope of * This work is supported by the Standards

Authors, Various

2010-01-01T23:59:59.000Z

466

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

problems of imp1emenation for larger scale technologies such as wind energy conversion, biomass conversion, photovo1taics and solar

Cairns, E.J.

2010-01-01T23:59:59.000Z

467

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

problems were identified and corrected during 1980: * This work was supported by the the Assistant Secretary for Conservation and Solar Energy,

Authors, Various

2010-01-01T23:59:59.000Z

468

Integrated Energy Analysis and Validation Environment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy simulation engine to demonstrate closed loop communications with building automation systems to provide a fully integrated life cycle approach enabling dynamic model...

469

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT, 1977  

E-Print Network [OSTI]

Analysis of the California Solar Resource P. Berdahl, D.Analysis of the California Solar Resource, L'awrence 'BerTCalifornia Solar Data Manual, LBL Energy

Budnitz, R.J.

2011-01-01T23:59:59.000Z

470

Simulating Urban Environments for Energy Analysis  

E-Print Network [OSTI]

for informing local policy decisions related to solar energysolar energy impacts in urban regions, to enable better real-time control and policy

Weber, Gunther H.

2014-01-01T23:59:59.000Z

471

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

472

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 2:00pm Addthis The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

473

Nuclear Energy Panel Discussion at University of Chicago  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Panel Discussion at University of Chicago Nuclear Energy Panel Discussion at University of Chicago Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Nuclear Energy Panel Discussion at University of Chicago Did you miss this event? Watch recording of "Lessons from Fukushima" The event's webcast is over, but you can still watch and/or download the

474

September 18, 2012, Webinar: Wind Energy in Urban Environments | Department  

Broader source: Energy.gov (indexed) [DOE]

September 18, 2012, Webinar: Wind Energy in Urban Environments September 18, 2012, Webinar: Wind Energy in Urban Environments September 18, 2012, Webinar: Wind Energy in Urban Environments This webinar was held September 18, 2012, and provided information on wind energy installations in Boston Harbor in Hull, Massachusetts, and near downtown Milwaukee, Wisconsin. Download the presentations below, watch the webinar (WMV 128 MB), or read the text version. Find more CommRE webinars. Lessons Learned: Milwaukee's Wind Turbine Project This presentation provided information on the A-to-Z basics for constructing a wind turbine in an urban environment as well as the lessons learned. The City of Milwaukee, Wisconsin, found that information and transparency were two key items that helped win over local officials and the public when planning their 100-kilowatt urban wind project. Learn more

475

An interactive graphics environment for architectural energy simulation  

Science Journals Connector (OSTI)

An interactive computer graphics system has been developed for the architecture profession which provides a “design environment” for the evaluation of building energy consumption. The system includes an integrated set of graphic input tools ...

Jon H. Pittman; Donald P. Greenberg

1982-07-01T23:59:59.000Z

476

Environment, Safety, and Health Program for Department of Energy Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the Environment, Safety, and Health (ES&H) Program for Department of Energy (DOE) operations. Cancels DOE O 5480.1A. Canceled by DOE N 251.4.

1986-09-23T23:59:59.000Z

477

Focus issue introduction: Renewable energy and the environment 2013  

Science Journals Connector (OSTI)

This focus issue highlights contributions from authors who presented their research at OSA’s Renewable Energy and the Environment Optics and Photonics Congress held 3-6 November...

Koshel, R John; Seassal, Christian; Deparis, Olivier; Kumar, Raavi Sai Santosh

2014-01-01T23:59:59.000Z

478

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

report, National Nuclear Security Administration, Departmentproliferation and security risks of nuclear energy systemsthe proliferation and security risk posed by nuclear energy

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

479

Investigating the impact of nuclear energy consumption on GDP growth and CO2 emission: A panel data analysis  

Science Journals Connector (OSTI)

Abstract This study investigates the influence of nuclear energy consumption on GDP growth and CO2 emission in 30 major nuclear energy consuming countries. The panel mode was used taking the period 1990–2010. The results of the study indicated that nuclear energy consumption has a positive long run effect on GDP growth while it has no long run effect on CO2 emission. The Granger causality test results also revealed that nuclear energy consumption has a positive short run causal relationship with GDP growth while it has a negative short run causal relationship with CO2 emission. Based on the results of this study, nuclear energy consumption has an important role in increasing GDP growth in the investigated countries with no effect on CO2 emission. Consequently, unlike fossil fuels which also increase GDP growth, nuclear energy consumption causes less damage to the environment. From the results of the study, a number of recommendations were provided for the investigated countries.

Usama Al-mulali

2014-01-01T23:59:59.000Z

480

Nuclear Energy Level Argument for a Spheroidal Nuclear Model  

Science Journals Connector (OSTI)

Recently there has been notable success, particularly by Maria Mayer, in explaining many nuclear phenomena including spins, magnetic moments, isomeric states, etc. on the basis of a single particle model for the separate nucleons in a spherical nucleus. The spherical model, however, seems incapable of explaining the observed large quadrupole moments of nuclei. In this paper it is shown that an extension of the logic of this model leads to the prediction that greater stability is obtained for a spheroidal than for a spherical nucleus of the same volume, when reasonable assumptions are made concerning the variation of the energy terms on distortion. The predicted quadrupole moment variation with odd A is in general agreement with the experimental values as concerns variation with A, but are even larger than the experimental values. Since the true situation probably involves considerable "dilution" of the extreme single particle model, it is encouraging that the present predictions are larger rather than smaller than the experimental results. A solution is given for the energy levels of a particle in a spheroidal box.

James Rainwater

1950-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy environment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1  

Broader source: Energy.gov [DOE]

This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOE’s operation of nuclear facilities.

482

Nuclear Energy Response in the EMF27 Study  

SciTech Connect (OSTI)

The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

Kim, Son H. [Joint Global Change Research Institute, College Park, MD (United States); Wada, Kenichi [Research Inst. of Innovative Technology for the Earth, Kizagawa-Shi, Kyoto (Japan); Kurosawa, Atsushi [Inst. of Applied Energy, Minato-ku, Tokyo (Japan ); Roberts, Matthew [Stanford University, Stanford, CA (United States)

2014-02-28T23:59:59.000Z

483

Gamma-ray Energy Spectra Observed around a Nuclear Reactor  

Science Journals Connector (OSTI)

......Energy Spectra Observed around a Nuclear Reactor Yoshiyuki Nakashima * Susumu Minato...Katsurayama ** * Department of Nuclear Engineering, Faculty of Engineering...Nagoya, Japan ** Reseach Reactor Institute, Kyoto Univ., Kumatori-cho......

Yoshiyuki Nakashima; Susumu Minato; Minoru Kawano; Tadashi Tsujimoto; Kousuke Katsurayama

1971-09-01T23:59:59.000Z

484

Energy Deputy Secretary Poneman Co-Chairs Nuclear Meeting in...  

Office of Environmental Management (EM)

Deputy Secretary Poneman Co-Chairs Nuclear Meeting in Japan Energy Deputy Secretary Poneman Co-Chairs Nuclear Meeting in Japan June 13, 2014 - 8:01am Addthis News Media Contact...

485

Energy-Density Relation for Nuclear Matter  

Science Journals Connector (OSTI)

In most previous calculations of nuclear matter the energy has been calculated only at the equilibrium density, which density has been determined by a minimum condition. In the present paper the author's theory of nuclear matter is applied to a study of the complete energy-density relation of nuclear matter, in the neighborhood of the equilibrium density. The emphasis here is not upon duplicating the accepted value for the equilibrium binding energy, but rather upon a study of the leading (diagonal) contribution of the quasi-particle interaction term g1(k1k2|k3k4), which is the matrix element of a reaction matrix G1. It is shown that g1(k1k2|k1k2) must be evaluated partly by using observed nucleon-nucleon scattering phase shifts and partly by calculating the close-in behavior of the two-nucleon wave function, and that this second part receives a large contribution from the deuteron state. Curves are given for the dependence of g1(k1k2|k1k2) on the density and the center-of-mass momentum. It is also shown that g1(k1k2|k1k2) is sensitive to the size of the nucleon repulsive core, but not upon the character of the attraction, when agreement with scattering data has first been achieved. Finally, a comparison of g1(k1k2|k1k2) with the prediction of first-order perturbation theory is made.

Franz Mohling

1962-11-01T23:59:59.000Z

486

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY  

Broader source: Energy.gov (indexed) [DOE]

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION June 27, 2013 - 10:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 On June 26, 2013, a meeting of the Nuclear Energy and Nuclear Security Working Group of the U.S. - Russia Bilateral Presidential Commission took place. The co-chairs share the view that a considerable amount of work has been done within the four-year period of the group's existence. On January 11, 2011, the Agreement between the Government of the United States of America and the Government of the Russian Federation for

487

Solar and nuclear energy expertise to be enhanced by research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy frontier research centers Solar and nuclear energy expertise to be enhanced by research centers Los Alamos will be home to two new Energy Frontier Research Centers through a...

488

Energy Department Announces New Investments in Advanced Nuclear Power Reactors  

Broader source: Energy.gov [DOE]

WASHINGTON – Today, as part of the President’s all-of-the-above energy approach and Climate Action Plan, the Energy Department announced awards for five companies to lead key nuclear energy...

489

Energy Efficiency Upgrades: Benefiting Homeowners and the Environment |  

Broader source: Energy.gov (indexed) [DOE]

Upgrades: Benefiting Homeowners and the Upgrades: Benefiting Homeowners and the Environment Energy Efficiency Upgrades: Benefiting Homeowners and the Environment May 10, 2013 - 4:37pm Addthis Energy efficient upgrades helped Margie Garmey save money while reducing her impact on the planet. | Photo courtesy of Margie Garmey. Energy efficient upgrades helped Margie Garmey save money while reducing her impact on the planet. | Photo courtesy of Margie Garmey. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Looking for ways to save energy? Learn how to do a DIY home energy audit to help you identify and prioritize some energy efficiency upgrades. Check out Energy Saver for tips and advice on ways to save energy and money. When Margie Garmey and her partner bought their newly constructed two-story

490

Middle School Energy and Nuclear Science Curriculum Now Available |  

Broader source: Energy.gov (indexed) [DOE]

Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available October 30, 2013 - 1:18pm Addthis Andrea Duskas Public Affairs Specialist for the Office of Nuclear Energy A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The essential principles and fundamental concepts in The Harnessed Atom address the latest science standards for crosscutting concepts about energy and matter. The Harnessed Atom teacher's kit is an updated and expanded edition of the

491

Renewability and sustainability aspects of nuclear energy  

Science Journals Connector (OSTI)

Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium 233 U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of ( ThO 2 / RG ? PuO 2 ) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG ? PuO 2 + 96 % ThO 2 ; 6 % RG ? PuO 2 + 94 % ThO 2 ; 10 % RG ? PuO 2 + 90 % ThO 2 ; 20 % RG ? PuO 2 + 80 % ThO 2 ; 30 % RG ? PuO 2 + 70 % ThO 2 uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ? 0.65 1.1 1.9 3.5 and 4.8 years and with burn ups of ? 30 000 60 000 100 000 200 000 and 290 000 MW.d/ton respectively. Increase of RG ? PuO 2 fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MWth has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0 2 3 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134 1.286 1.387 1.52 and 1.67 respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3 4.6 6.15 and 8.1 with 2 3 4 and 5 % TRISO volume fraction at start up respectively. Alternatively with thorium the same fusion driver would produce ?160 kg 233 U per year in addition to fission energy production in situ multiplying the fusion energy by a factor of ?1.3.

2014-01-01T23:59:59.000Z

492

Nuclear self-energy and realistic interactions  

Science Journals Connector (OSTI)

The structure of nucleon self-energy in nuclear matter is evaluated for various realistic models of the nucleon-nucleon (NN) interaction. Starting from the Brueckner-Hartree-Fock approximation without the usual angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Special attention is paid to the predictions for the spectral function originating from various models of the NN interaction, which all yield an accurate fit for the NN phase shifts.

T. Frick; Kh. Gad; H. Müther; P. Czerski

2002-03-04T23:59:59.000Z

493

Minijets in nuclear collisions at high energies  

Science Journals Connector (OSTI)

We calculate the transverse energy distribution d? /dET of quarks and gluons produced in a U + U collision at s = 20, 200, 2000 and 7000 GeV/nucleon by including both soft and hard QCD contributions. At s = 2000 and 7000 \\{AGeV\\} the ET distribution is clearly dominated by the hard processes while at s = 20 \\{AGeV\\} the soft component produces practically all of the ET. We also study the effects of choosing the smallest pT-scale of the hard partons as well as give an estimate of the effects of nuclear shadowing.

K.J Eskola

1991-01-01T23:59:59.000Z

494

Department of Energy Conference Emphasizes Universities' Role in Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Conference Emphasizes Universities' Role in Conference Emphasizes Universities' Role in Nuclear Energy Research Department of Energy Conference Emphasizes Universities' Role in Nuclear Energy Research August 14, 2009 - 1:35pm Addthis This Thursday and Friday, the U.S. Department of Energy hosted a workshop with professors from more than 40 U.S. universities to highlight the role universities can play in advancing the nation's nuclear energy research. U.S. Senator Bob Bennett, R-Utah, delivered closing remarks to the conference, emphasizing the importance of nuclear energy as a clean, carbon-free source of electricity. "The path to a clean energy future is through a balanced energy approach that includes nuclear energy, which provides electricity to one in five homes and businesses," said Bennett, ranking Republican on the Senate

495

Market Perfection in a Changing Energy Environment  

Science Journals Connector (OSTI)

During the last decade of the twentieth century energy markets changed rapidly. National orientated electricity networks were ... large step was the coupling of the spot markets of Belgium, France and The Netherl...

André Dorsman; Kees van Montfort; Paul Pottuijt

2011-01-01T23:59:59.000Z

496

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

are depen- dent on world oil prices. Demographic and econo-Data/Assumptions World Oil Prices HAWAII ENERGY DEMANDunder the RIIA High World Oil Price Scenario, 1976-2000. (

Authors, Various

2010-01-01T23:59:59.000Z

497

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

of Analysis to Other Key Policy Solar space heat/cooling. Aa strong federal policy on energy and solar technology toing solar costs (local wage rates, utility tax policies,

Cairns, E.J.

2010-01-01T23:59:59.000Z

498

Department of Energy Issues Requests for Nuclear Science and Engineering  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Science and Nuclear Science and Engineering Scholarships and Fellowships Applications Department of Energy Issues Requests for Nuclear Science and Engineering Scholarships and Fellowships Applications May 7, 2009 - 1:46pm Addthis The U.S. Department of Energy (DOE) today announced two new Requests for Application (RFA) as part of the Department's efforts to recruit and train the next generation of nuclear scientists and engineers - a critical need as the nation moves toward greater use of nuclear energy to meet our energy needs and address the global climate crisis. Under the Nuclear Energy University Program, DOE will provide approximately $2.9 million to fund scholarships and fellowships for students enrolled in two or four year nuclear science and engineering programs at accredited

499

Expanding Options for Nuclear Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Expanding Options for Nuclear Power Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department. The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to

500

Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions |  

National Nuclear Security Administration (NNSA)

Explores Peaceful Uses of Nuclear Explosions | Explores Peaceful Uses of Nuclear Explosions | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions July 06, 1962