Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy |  

Broader source: Energy.gov (indexed) [DOE]

Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy April 15, 2011 - 12:00am Addthis Washington, D.C. - Dr. Peter B. Lyons was confirmed by the Senate on Thursday, April 14, as the Department of Energy's Assistant Secretary for Nuclear Energy. "Pete Lyons' depth of expertise and experience make him uniquely qualified for this role, and I am confident he will continue to serve the Department, the President and the Nation with distinction," said Energy Secretary Steven Chu. "I applaud the Senate for quickly taking action to approve his nomination, and I look forward to our work together to ensure that safe nuclear power plays an important role in America's clean energy future."

2

Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy |  

Broader source: Energy.gov (indexed) [DOE]

B. Lyons Confirmed as Assistant Secretary for Nuclear B. Lyons Confirmed as Assistant Secretary for Nuclear Energy Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy April 15, 2011 - 3:53pm Addthis WASHINGTON, D.C. - Dr. Peter B. Lyons was confirmed by the Senate on Thursday, April 14, as the Department of Energy's Assistant Secretary for Nuclear Energy. "Pete Lyons' depth of expertise and experience make him uniquely qualified for this role, and I am confident he will continue to serve the Department, the President and the Nation with distinction," said Energy Secretary Steven Chu. "I applaud the Senate for quickly taking action to approve his nomination, and I look forward to our work together to ensure that safe nuclear power plays an important role in America's clean energy future."

3

Dr. Ernest Moniz | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dr. Ernest Moniz Dr. Ernest Moniz About Us Dr. Ernest Moniz - Secretary of Energy View a high-resolution photo of Secretary Moniz. Download high-resolution portraits As United States Secretary of Energy, Dr. Ernest Moniz is tasked with implementing critical Department of Energy missions in support of President Obama's goals of growing the economy, enhancing security and protecting the environment. This encompasses advancing the President's all-of-the-above energy strategy, maintaining the nuclear deterrent and reducing the nuclear danger, promoting American leadership in science and clean energy technology innovation, cleaning up the legacy of the cold war, and strengthening management and performance. Prior to his appointment, Dr. Moniz was the Cecil and Ida Green Professor

4

Dr. Imre Gyuk | Department of Energy  

Office of Environmental Management (EM)

Dr. Imre Gyuk About Us Dr. Imre Gyuk - Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability Dr. Imre Gyuk Dr. Imre Gyuk is a Energy Storage Program...

5

Dr. Monica C. Regalbuto | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Monica C. Regalbuto Monica C. Regalbuto About Us Dr. Monica C. Regalbuto - Deputy Assistant Secretary, Fuel Cycle Technologies Dr. Monica C. Regalbuto Dr. Regalbuto is currently the Deputy Assistant Secretary for Fuel Cycle Technologies with the Department of Energy's Office of Nuclear Energy, whose mission promotes nuclear power as a resource capable of meeting the Nation's energy, environmental and national security needs. She previously served as a Senior Program Manager with the Office of Waste Processing with the Department of Energy's Office of Environmental Management, supporting technical risk reduction and uncertainty in the Department's clean-up programs. From 2003 to 2008, Dr. Regalbuto served as the head of the Process Chemistry and Engineering Department in Argonne's Chemical

6

Nuclear Energy  

Science Journals Connector (OSTI)

Nuclear Energy ... A brief summary of the history and key concepts of nuclear energy. ... Nuclear / Radiochemistry ...

Charles D. Mickey

1980-01-01T23:59:59.000Z

7

Dr. Christine M. English | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dr. Christine M. English About Us Dr. Christine M. English - Principle Engineer Dr. Christine M. English is contracted as a Principle Engineer for the Energy Department's Biomass...

8

Executive Bios: Dr. Yoon Il Chang - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yoon Il Chang Yoon Il Chang Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Distinguished Fellows Bookmark and Share Dr. Yoon Il Chang Dr. Yoon Il Chang Senior Technical Advisor Distinguished Fellow PhD, Engineer Nuclear Engineering Division Argonne Experts: Y.I. Chang Dr. Chang joined Argonne National Laboratory in 1974 and has been

9

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Programs >> Nuclear Energy Error Error Nuclear Energy Home - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Energy Home - RCC * Increasing...

10

Dr. Ken Friedman | Department of Energy  

Energy Savers [EERE]

Dr. Ken Friedman About Us Dr. Ken Friedman - Senior Policy Advisor in the Office of Electricity Delivery and Energy Reliability Most Recent Solar Flare Activity Closely Monitored...

11

Dr. Steven Aoki | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Steven Aoki | National Nuclear Security Administration Steven Aoki | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Leadership > Dr. Steven Aoki Dr. Steven Aoki Associate Administrator and Deputy Under Secretary for Counterterrorism and Counterproliferation Dr. Steven Aoki Steven Aoki is the Associate Administrator and Deputy Under Secretary for

12

A Career in Nuclear Energy  

ScienceCinema (OSTI)

Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

Lambregts, Marsha

2013-05-28T23:59:59.000Z

13

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

14

10 Questions for a Nuclear Physicist: Dr. Njema Frazier | Department of  

Broader source: Energy.gov (indexed) [DOE]

Physicist: Dr. Njema Frazier Physicist: Dr. Njema Frazier 10 Questions for a Nuclear Physicist: Dr. Njema Frazier March 8, 2013 - 2:41pm Addthis Photo courtesy of the National Nuclear Security Administration. Photo courtesy of the National Nuclear Security Administration. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Where Can I Learn More? Find out more about the Energy Department's efforts to support scientific innovation by visiting our Physics page. From favorite books to mentoring advice, Dr. Njema Frazier shares reflections on her experiences as a theoretical nuclear physicist with the Energy Department's National Nuclear Security Administration. Question: Why did you decide to specialize in theoretical nuclear physics? Dr. Njema Frazier: When I was deciding on graduate schools, one -- Michigan

15

Dr. Steven Chu, Secretary of Energy  

Office of Scientific and Technical Information (OSTI)

Dr. Steven Chu, Secretary of Energy Dr. Steven Chu, Secretary of Energy Dr. Steven Chu, Secretary of Energy Dr. Steven Chu, distinguished scientist and co-winner of the Nobel Prize for Physics (1997), was appointed by President Obama as the 12th Secretary of Energy and sworn into office on January 21, 2009. Dr. Chu has devoted his recent scientific career to the search for new solutions to our energy challenges and stopping global climate change - a mission he continues with even greater urgency as Secretary of Energy. He is charged with helping implement President Obama's ambitious agenda to invest in alternative and renewable energy, end our addiction to foreign oil, address the global climate crisis and create millions of new jobs. Prior to his appointment, Dr. Chu was director of DOE's Lawrence Berkeley

16

Dr. Steven Chu | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Steven Chu Steven Chu About Us Dr. Steven Chu - Former Secretary of Energy Dr. Steven Chu Career Highlights Distinguished scientist and co-winner of the Nobel Prize for Physics (1997) Former Director of the Lawrence Berkeley National Lab & professor of physics & molecular & cellular biology Dr. Steven Chu served as the Secretary of Energy from January 21, 2009, to April 22, 2013. Dr. Chu was charged with helping implement President Obama's ambitious agenda to invest in clean energy, reduce our dependence on foreign oil, address the global climate crisis, and create millions of new jobs. Dr. Chu is the co-recipient of the Nobel Prize for Physics (1997) and received numerous other awards. He has devoted his recent scientific career to the search for new solutions to our energy and climate challenges - a

17

Dr. Richard A. Meserve | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Richard A. Meserve Richard A. Meserve About Us Dr. Richard A. Meserve - President, Carnegie Institution for Science and Former Chairman of the US Nuclear Regulatory Commission Dr. Richard A. Meserve Dr. Richard A. Meserve became the ninth president of the Carnegie Institution for Science in April 2003, after stepping down as Chairman of the U.S. Nuclear Regulatory Commission (NRC). The Carnegie Institution conducts basic research in biology, astronomy and geophysics. As Chairman of the NRC, Meserve served as the principal executive officer of the federal agency with responsibility for ensuring public health and safety in the operation of nuclear power plants and in the usage of nuclear materials. He served as Chairman under both Presidents Clinton and Bush and lead the NRC in responding to the terrorism threat that came to the fore

18

Nuclear Energy!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

driver, see the Nuclear Clean Air Energy race car and receive a special clean energy patch on October 21 from 6:30 - 7:30 p.m. Space is limited RSVP by October 4 Hands-on...

19

Dr. Donald L. Cook | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Donald L. Cook | National Nuclear Security Administration Donald L. Cook | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Leadership > Dr. Donald L. Cook Dr. Donald L. Cook Deputy Administrator for Defense Programs Dr. Donald L. Cook Dr. Donald L. Cook serves as the Deputy Administrator for Defense Programs at the National Nuclear Security Administration. Appointed to the position

20

Dr. Steven Chu, Secretary of Energy  

ScienceCinema (OSTI)

Remarks by Dr. Chu to staff members at Oak Ridge National Laboratory on March 23, 2010. Chu talks about the importance of scientific innovation and the need for new energy technologies.

Dr. Chu

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dr. Julio Friedmann | Department of Energy  

Energy Savers [EERE]

Dr. Julio Friedmann About Us Dr. Julio Friedmann - Deputy Assistant Secretary Clean Coal and Carbon Management Dr. Julio Friedmann Dr. Julio Friedmann serves as Deputy Assistant...

22

Nuclear Energy & Energy Security  

Science Journals Connector (OSTI)

Safety issues related to use of nuclear energy and secure operation of nuclear installations are mail stones of great importance. Although none of technologies producing energy are absolutely safe it is obvious t...

Jumber Mamasakhlisi

2010-01-01T23:59:59.000Z

23

VT Electric Services VTES 601 Energy Dr.  

E-Print Network [OSTI]

VT Electric Services Location VTES 601 Energy Dr. Blacskburg, VA 24061 (540) 231-6437 Office Hours Electric Services is to provide adequate, reliable and economical electric service to the buildings; Street & Sidewalk Illumination Annual Operating Budget $38 million (approx.) Electric Services

Buehrer, R. Michael

24

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Broader source: Energy.gov (indexed) [DOE]

The Office of Nuclear Energy Announces Central Europe Nuclear The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional Nuclear Safety Workshop on Trends in Nuclear Power Plant Safety for Robust Civil Nuclear Programs on Oct. 10-13, 2011 in Prague. U.S. Ambassador Norman Eisen and Department of Energy Assistant Secretary for Nuclear Energy Dr. Pete Lyons will deliver speeches welcoming participants. Representatives from the Czech Republic, Bulgaria, Lithuania,

25

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

26

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

27

January 2011: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering  

E-Print Network [OSTI]

January 2011: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering for the determination of the importance of energy conversion technologies. 2.) Provide a comprehensive understanding and Ideal Gas Mixtures. 3) Energy Conversion systems-Coal-Oil-Nuclear, Oceanic, Solar, Geothermal and Wind

28

2012: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering  

E-Print Network [OSTI]

2012: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering Office for the determination of the importance of energy conversion technologies. 2.) Provide a comprehensive understanding and Ideal Gas Mixtures. 3) Energy Conversion systems-Coal-Oil-Nuclear, Oceanic, Solar, Geothermal and Wind

29

A Look Back: Four Years with Dr. Chu | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Back: Four Years with Dr. Chu Back: Four Years with Dr. Chu A Look Back: Four Years with Dr. Chu April 22, 2013 - 5:32pm Addthis Amanda Scott Amanda Scott Former Managing Editor, Energy.gov April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs A Look Back: Four Years with Dr. Chu In honor of Secretary Chu's last day at the Department, here's a look back at his time overseeing important investments in science, innovation, and clean energy technologies that are making America more competitive and helping us win the race for a clean energy future. Storified by Energy Department · Mon, Apr 22 2013 14:13:48 For more than four years, he has provided remarkable leadership in pursuing both President Obama's nuclear security agenda as well as an all-of-the-above approach to energy that invests in clean energy, reduces

30

Statement of Dr. Peter Lyons, Assistant Secretary for Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Peter Lyons, Assistant Secretary for Nuclear Energy U.S. Department of Energy Before the Subcommittee on Environment and the Economy Energy and Commerce Committee U.S. House of...

31

Statement of Dr. Peter Lyons, Assistant Secretary for Nuclear...  

Office of Environmental Management (EM)

Peter Lyons, Assistant Secretary for Nuclear Energy U.S. Department of Energy Before the Committee on Science, Space and Technology Subcommittee on Energy U.S. House of...

32

Federal Energy Management Program Director: Dr. Timothy Unruh...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

his career, Dr. Unruh has performed numerous assessments, project analyses, and energy engineering services for an array of facility types. He is involved in the development of...

33

High Energy Nuclear Events  

Science Journals Connector (OSTI)

......research-article Articles High Energy Nuclear Events Enrico Fermi Institute...Distribution of Pions produced in High Energy Nuclear Collisions Yoshihiro Yamamoto...Possible Interpretation of High Energy Nuclear Events Nobuo Yajima, Shuji Takagi......

Enrico Fermi

1950-07-01T23:59:59.000Z

34

Nuclear Energy Advisory Committee  

Broader source: Energy.gov [DOE]

The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

35

Dr. Monica C. Regalbuto | Department of Energy  

Office of Environmental Management (EM)

2003 to 2008, Dr. Regalbuto managed a group of 30 researchers as head of the Process Chemistry and Engineering Department in Argonne National Laboratory's Chemical Sciences and...

36

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Broader source: Energy.gov (indexed) [DOE]

Next for Nuclear Energy? MIT Students Discuss Path Forward Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support. Investing in the next generation isn't just about technology -- it's

37

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Broader source: Energy.gov (indexed) [DOE]

What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support.

38

NUCLEAR ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Research Institute FE DOE-Office of Fossil Energy GDP Gross domestic product GHG Greenhouse gas GWe Gigawatt (electric) GWe-yr Gigawatt-year (electric) HTGR...

39

On Nuclear Energy Levels  

Science Journals Connector (OSTI)

...research-article On Nuclear Energy Levels K. M. Guggenheimer The formula for the energy levels of the rigid rotator...nuclei. Two kinds of nuclear rotation are discussed...an A relation for the energy levels of different nuclei...

1942-01-01T23:59:59.000Z

40

Nuclear energy | Open Energy Information  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Nuclear energy is energy in the nucleus of an atom.1 References "EIA: Uranium (nuclear) Basics" External links...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Energy  

SciTech Connect (OSTI)

Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

Godfrey, Anderw

2014-04-10T23:59:59.000Z

42

Dr. Arun Majumdar Talks Innovation in Philadelphia | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dr. Arun Majumdar Talks Innovation in Philadelphia Dr. Arun Majumdar Talks Innovation in Philadelphia Dr. Arun Majumdar Talks Innovation in Philadelphia April 29, 2011 - 3:41pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? Eliminating barriers to solar market development will save customers time and money and accelerate the adoption of solar energy in communities nationwide. Acting Under Secretary for Energy/ARPA-E Director Dr. Arun Majumdar traveled to Philadelphia this week to highlight what the Department of Energy is doing to unleash American innovation and to help our country win the clean energy race. On Tuesday, he participated in the 4th annual Solar America Cities meeting to share findings on emerging trends in urban energy use and to discuss

43

Cabell on Nuclear Energy Power Plants  

Science Journals Connector (OSTI)

Cabell on Nuclear Energy Power Plants ... IN EXPLAINING the function of his research group t o the new works superintendent of a nuclear power plant at a mining and reduction installation in the Alaskan mountains, Dr. Blank, of the United Nations Inspection and Research Laboratories, said, "We can't inspect what we don't know. ... In order to know what you're doing, we have to know more about atomic energy than you do—more than anybody does. ...

1947-02-17T23:59:59.000Z

44

Dr  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for use as an oxidant and dissolvent.) Dr. Nesbitt holds a B.S. degree in Engineering Science from the University of Nevada- Reno (1969), an M.S. degree in Mechanical Engineering...

45

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

46

Joule Equivalent of Electrical Energy by Dr. James E. Parks  

E-Print Network [OSTI]

Joule Equivalent of Electrical Energy by Dr. James E. Parks Department of Physics and Astronomy 401 The objectives of this experiment are: (1) to understand the equivalence of electrical energy and heat energy, (2) to learn techniques of calorimetry, (3) to learn how to measure electrical energy, and (4) to measure

Tennessee, University of

47

A Shining Example of Dr. King's legacy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Shining Example of Dr. King's legacy A Shining Example of Dr. King's legacy A Shining Example of Dr. King's legacy January 9, 2013 - 11:27am Addthis A Shining Example of Dr. King’s legacy Kathy Chambers Senior Science and Technical Information Specialist, OSTI Editor's Note: This blog was originally posted on OSTI's blog. As America celebrates Martin Luther King's birthday and focuses on how far this nation has come for all people, the Energy Department's .EDUconnections is pleased to honor Delaware State University (DSU). DSU is a shining example of Dr. King's extraordinary legacy of progress and education. Founded in 1891, DSU became one of the country's first land-grant educational institutions and is now a Historically Black College and University. DSU has a proud heritage of research, and today focuses on

48

Nuclear Energy Institutes  

Science Journals Connector (OSTI)

Nuclear Energy Institutes ... The Atomic Energy Commission and the American Society for Engineering Education offer their nuclear energy courses for engineering and science teachers again in the summer of 1960. ... At least 160 college and university teachers will study nuclear science in the seven institutes scheduled. ...

1960-01-11T23:59:59.000Z

49

Nuclear rearrangement energy  

Science Journals Connector (OSTI)

The concept of rearrangement energy in nuclear particle removal is carefully defined by specifying several energies associated with the process and its analysis. Connection is made between the present definition and closely related concepts apt to be confused with "rearrangement energy" so defined. Remarks are made concerning the implications of rearrangement to analysis and interpretation of experimental data.NUCLEAR STRUCTURE Nuclear rearrangement energy theoretically defined and differentiated from related energies. Reaction theories examined regarding rearrangement.

William A. Friedman

1975-07-01T23:59:59.000Z

50

Nuclear Energy University Programs (NEUP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE-NE Fosters Novel International Investments in U.S. Nuclear Energy Research October 14, 2014 Nuclear energy is an international industry, but nuclear research and development...

51

Generation IV Nuclear Energy Systems ...  

E-Print Network [OSTI]

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

52

Nuclear Energy Program  

Broader source: Energy.gov (indexed) [DOE]

April 15, 2002 April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition Year 6 Nuclear Power 2010 6 Major Program Developments 6 FY 2003 Budget Request Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (3) Nuclear Power 2010 Nuclear Power 2010 Nuclear Power 2010 is a new R&D initiative announced by Secretary Abraham on February 14, 2002. This initiative is designed to clear the way for the construction of new nuclear power plants by 2010. Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (4) Can We Build New U.S. Reactors By 2010? Yes! Can We Build New U.S. Reactors By 2010? Yes! Can Be Deployed by 2010

53

"Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 21, 2012, 9:30am Science On Saturday MBG Auditorium "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander Glaser, Woodrow Wilson School of Public and...

54

Nuclear | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Five Years of Building the Next Generation of Reactors Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). A two-year update on the Consortium for Advanced Simulation of Light Water Reactors and the progress being made in overcoming barriers to national

55

Nuclear Energy Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

56

Nuclear energy in Argentina  

Science Journals Connector (OSTI)

After early interest in the possible uses of uranium in 1937, Argentina's scientists and politicians showed an inclination to support nuclear development that has kept quite steady compared with other areas. The Argentinean government prohibited the export of uranium in 1945, because of the emerging possibility of producing nuclear energy. The creation of the Atomic Energy Commission soon followed, and the first experimental reactor was set critical in 1958. Since then, nuclear development has allowed the successful operation of two nuclear power reactors, a quite integrated nuclear fuel cycle, and sustained activity in the development, production and use of radioisotopes. Nowadays an Argentinean company competes with success in the experimental nuclear reactor market. After a period in which the nuclear sector has been largely ignored in the official interest, Argentina's authorities have launched a comprehensive plan intended to rehabilitate all aspects of nuclear activity.

Gabriel N. Barcelo

2007-01-01T23:59:59.000Z

57

Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)  

ScienceCinema (OSTI)

The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

Chu, Steven (U.S. Energy Secretary)

2012-06-28T23:59:59.000Z

58

Energy from nuclear power  

SciTech Connect (OSTI)

Nuclear power should play a pivotal and expanded role in supplying world energy, the authors says. Risks must be minimized by designing a new generation of safe reactors. Atomic energy's vast potential can be harnessed only if issues of safety, waste and nuclear-weapon proliferation are addressed by a globally administered institution. The current situation in nuclear power is described before addressing its future.

Haefele, W.

1990-09-01T23:59:59.000Z

59

NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398  

E-Print Network [OSTI]

annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

Pázsit, Imre

60

Dr. Dan Arvizu, President Alliance for Sustainable Energy, LLC  

Broader source: Energy.gov (indexed) [DOE]

0, 2012 0, 2012 Dr. Dan Arvizu, President Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 WEL-2012-05 Dear Dr. Arvizu: The Office of Health, Safety and Security's Office of Enforcement and Oversight evaluated an electrical shock near miss incident that occurred on February 27, 2012, at the National Renewable Energy Laboratory (NREL). The Alliance for Sustainable Energy, LLC (Alliance) manages and operates NREL under a contract with the Department of Energy (DOE) and is subject to the provisions of DOE's Worker Safety and Health Program rule (10 C.F.R. Part 851). The event revealed weaknesses in Alliance's electrical hazard identification and control processes that implement relevant Part 851 requirements and protect

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Nuclear Energy Projects Solicitation | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Nuclear Energy Projects Solicitation Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION Solicitation...

62

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

63

RENEWABLE ENERGY Dr Gareth P. Harrison  

E-Print Network [OSTI]

legislation to strengthen the nation's cyber security? What steps have already been taken to ensure the grid is Cyber Security? Cyberspace is probably nothing less than one of the most significant developments. #12;Risky Energy: Cyber Security and the Nation's Infrastructure The energy industry is integral

Harrison, Gareth

64

Relativistic Nuclear Energy Density Functionals  

Science Journals Connector (OSTI)

......research-article Articles Relativistic Nuclear Energy Density Functionals Dario Vretenar...196, 2012 137 Relativistic Nuclear Energy Density Functionals Dario Vretenar...and P. Ring 2. Relativistic nuclear energy density functionals Even though......

Dario Vretenar; Tamara Niksic; Peter Ring

2012-10-01T23:59:59.000Z

65

Dr. Kathleen Hogan to Host Live Chat on Industrial Energy Efficiency...  

Energy Savers [EERE]

Dr. Kathleen Hogan to Host Live Chat on Industrial Energy Efficiency Dr. Kathleen Hogan to Host Live Chat on Industrial Energy Efficiency November 16, 2011 - 9:40am Addthis...

66

Nuclear energy and India  

Science Journals Connector (OSTI)

The Indian nuclear energy programme, based on a closed fuel cycle, comprises three main stages: pressurised heavy water reactors in the first stage, fast breeder reactors in the second stage and thorium-based reactors in the third stage. The economic growth and the concomitant growth in energy requirement in the country have led to various studies mandating a larger role for nuclear energy in the overall energy mix. The nuclear renaissance in the world, driven by the need for sustainable growth, is subjecting available uranium resources to stress and India would need to factor this in when deciding its strategy for growth in nuclear energy. This would influence the choice of the type of reactor and fuel cycle to be followed.

R.B. Grover; B. Purniah; S. Chandra

2008-01-01T23:59:59.000Z

67

Nuclear Energy Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

December 9, 2010 L'Enfant Plaza Hotel Washington, D.C. Committee Members Participating John Ahearne Raymond Juzaitis Ashok Bhatnagar William Martin, Chair Dana Christensen Carl Paperiello Thomas Cochran Burton Richter Michael Corradini John Sackett Marvin Fertel Allen Sessoms Donald Hintz Neil Todreas Committee Members Absent Brew Barron Susan Ion Other Participants: Richard Black, Director, Office of Advanced Reactor Concepts, Office of Nuclear Energy, USDOE Nancy Carder, Medical University of South Carolina, NEAC Support Staff David Hill, Director, Institute for Nuclear Energy Science and Technology, Idaho National Laboratory Shane Johnson, Chief Operating Officer, Office of Nuclear Energy, USDOE

68

OSTIblog Posts by Dr. Jeffrey Salmon | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Dr. Jeffrey Salmon Dr. Jeffrey Salmon Dr. Jeffrey Salmon's picture Deputy Director for Resource Management, U.S. DOE Office of Science The National Library of EnergyBeta: A Gateway to Information about the "All-of-the-Above" Energy Strategy Picture of the National Library of Energy Logo Published on Sep 26, 2013 While I have not taken a formal survey, my experience over many years as a Department of Energy (DOE) employee suggest to me that most people have no idea what DOE does. Let me amend that. Many people know exactly what we do. DOE controls the price of gas at the pump; it manages natural gas drilling, builds pipe lines and regulates refineries. As it turns out, people know a great deal about DOE, it's just that most of it is dead wrong. Look it up and you'll find that "[t]he mission of the Energy Department is to ensure America's security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions." Hmm. Nothing about gas prices there.

69

Nuclear Energy Program  

Broader source: Energy.gov (indexed) [DOE]

September 30, 2002 September 30, 2002 NERAC Fall 2002 Meeting Office of Nuclear Energy, Science and Technology Major Program Developments Major Program Developments 6 June 2002: Department selects three U.S. electric utilities (Dominion Energy, Entergy, and Exelon) to participate in joint government/ industry projects to demonstrate NRC's Early Site Permit (ESP) process and seek NRC approval by mid-decade 6 July 2002: Secretary Abraham announces transition of management of the Idaho National Engineering and Environmental Laboratory to Nuclear Energy and revitalization of its nuclear R&D mission 6 September 2002: Generation IV International Forum reaches agreement on six advanced reactor and fuel cycle technologies for joint development Office of Nuclear Energy, Science and Technology

70

Nuclear Symmetry Energy  

Science Journals Connector (OSTI)

The energy of nuclear matter is determined for ?=(N-Z)(N+Z) in the range of 0 to 0.60. The results are applicable to superheavy nuclei and to problems of astrophysical interest.

Keith A. Brueckner; Sidney A. Coon; Janusz Dabrowski

1968-04-20T23:59:59.000Z

71

Dr  

Broader source: Energy.gov (indexed) [DOE]

MEMORANDUM MEMORANDUM To: Sean Lev, Acting General Counsel, United States Department of Energy From: Katherine Kennedy, Andrew DeLaski, Benjamin Longstreth Re: Six-Year Review of Covered Products Date: April 11, 2011 I. Introduction This memorandum explains that the Energy Independence and Security Act of 2007 (EISA) requires the Department of Energy to re-evaluate efficiency standards for all covered appliances and products every six years. Through EISA, Congress specifically mandated that the Department review any final rule setting standards every six years. 42 U.S.C. §§ 6295(m)(1); 6313(a)(6)(C). As discussed below, the terms Congress used in this amendment sweep broadly and include all products for which the Department has issued a final rule, including water efficiency standards for

72

Energy requirements for nuclear transformations  

Science Journals Connector (OSTI)

Energy requirements for nuclear transformations ... There are several conservation requirements that must be met in nuclear reactions, including the conservation of energy (E = mc2), charge, angular and linear momentum. ... Nuclear / Radiochemistry ...

Benjamin Carrol; Peter F. E. Marapodi

1951-01-01T23:59:59.000Z

73

The U.S. Congress and The Secretary of Energy U.S. NUCLEAR WASTE TECHNICAL  

E-Print Network [OSTI]

Report t The U.S. Congress and The Secretary of Energy U.S. NUCLEAR WASTE TECHNICAL REVIEW BOARD Web site. #12;NUCLEAR WASTE TECHNICAL REVIEW BOARD Dr. Jared L. Cohon, Chairman Carnegie Mellon. Debra S. Knopman Progressive Policy Institute Washington, D.C. Dr. Priscilla P. Nelson National Science

74

Chapter 7 - Nuclear Energy  

Science Journals Connector (OSTI)

Abstract Nuclear energy grew rapidly during the 1960–1975 period in countries such as France, the United States, and Norway. But nuclear energy ran into problems in the 1970s because of public concern over the radioactive waste it generates, and this concern suppressed the further expansion of nuclear power. The public perception had begun to change in recent years, as concern about atmospheric carbon dioxide levels led to a renewed interest in energy sources not reliant on hydrocarbons. But, in 2010, a tsunami in Japan led to an accident at the Fukushima nuclear power plant, and the ensuing release of radioactive materials once again raised concerns about safety. At the same time, limited supplies of uranium have caused the price of that fuel material to go up. The solution to the shortage and resulting price increase is fast breeder reactors that use both uranium and thorium fuels. Unfortunately, this technology has not yet been perfected and commercialized.

Brian F. Towler

2014-01-01T23:59:59.000Z

75

Office of Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

NE Human Capital Plan Revised August 2006 U. S. Department of Energy NE Human Capital Plan i August 2006 Office of Nuclear Energy Table of Contents Executive Summary...................................................................................................................................1 Background .................................................................................................................................................2 NE Human Capital Strategy.....................................................................................................................2 NE Human Capital Plan: At-A-Glance ..................................................................................................3

76

Remarks About Department of Energy Policy on High-Level Nuclear Waste Management  

Science Journals Connector (OSTI)

At the request of Dr. C. Northrup, it is a pleasure to make a few impromptu remarks about the Department of Energy’s (DOE’s) policy on nuclear waste management and about this meeting.

G. K. Oertel

1980-01-01T23:59:59.000Z

77

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842  

E-Print Network [OSTI]

annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www of Nuclear Energy 32 (2005) 812­842 background noise is present, this technique is useful to indicate.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G

Demazière, Christophe

78

Dr. Franklin Orr Confirmed as Under Secretary for Science and Energy  

Broader source: Energy.gov [DOE]

Dr. Franklin (Lynn) Orr was confirmed by the Senate on December 4, 2014 as the Under Secretary for Science and Energy at the Department of Energy.

79

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation March 22, 2006 - 12:10pm Addthis MUMBAI, INDIA - U.S. Secretary of Energy Samuel W. Bodman today met with Dr. Anil Kakodkar, Secretary of the Department of Atomic Energy, in Mumbai to address the United States and India's nuclear cooperation and highlight the countries' ongoing partnership to advance global energy security. Earlier today, Secretary Bodman met with U.S. and Indian venture capitalists to discuss opportunities for investment in clean energy technologies. Secretary Bodman also participated in a roundtable discussion with nuclear industry leaders on the private sector's role in expanding access to clean, safe, and reliable nuclear energy across the

80

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation |  

Broader source: Energy.gov (indexed) [DOE]

in Mumbai to Highlight Civil Nuclear Energy in Mumbai to Highlight Civil Nuclear Energy Cooperation Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation March 22, 2006 - 12:10pm Addthis MUMBAI, INDIA - U.S. Secretary of Energy Samuel W. Bodman today met with Dr. Anil Kakodkar, Secretary of the Department of Atomic Energy, in Mumbai to address the United States and India's nuclear cooperation and highlight the countries' ongoing partnership to advance global energy security. Earlier today, Secretary Bodman met with U.S. and Indian venture capitalists to discuss opportunities for investment in clean energy technologies. Secretary Bodman also participated in a roundtable discussion with nuclear industry leaders on the private sector's role in expanding access to clean, safe, and reliable nuclear energy across the

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Enrico Fermi Awards Ceremony for Dr. Allen J. Bard and Dr. Andrew Sessler, February 2014 (Presentations, including remarks by Energy Secretary, Dr. Ernest Moniz)  

ScienceCinema (OSTI)

The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On February 3, 2014 it was conferred upon two exceptional scientists. The first to be recognized is Dr. Allen J. Bard, 'for international leadership in electrochemical science and technology, for advances in photoelectrochemistry and photocatalytic materials, processes, and devices, and for discovery and development of electrochemical methods including electrogenerated chemiluminescence and scanning electrochemical microscopy.' The other honoree is Dr. Andrew Sessler, 'for advancing accelerators as powerful tools of scientific discovery, for visionary direction of the research enterprise focused on challenges in energy and the environment, and for championing outreach and freedom of scientific inquiry worldwide.' Dr. Patricia Dehmer opened the ceremony, and Dr. Ernest Moniz presented the awards.

Moniz, Ernest [U.S. Energy Secretary

2014-08-22T23:59:59.000Z

82

Nuclear symmetry energy  

Science Journals Connector (OSTI)

To study the nuclear symmetry energy, we extend the Dirac-Brueckner approach with a Bonn one-boson-exchange nucleon-nucleon interaction to the general case of asymmetric nuclear matter. We extract the symmetry energy coefficient at the saturation to be about 31 MeV, which is in good agreement with the empirical value of 30±4 MeV. The symmetry energy is found to increase almost linearly with the density, which differs considerably from the results of nonrelativistic approaches. This finding also supports the linear parametrization of Prakash, Ainsworth, and Lattimer. We find, furthermore, that the higher-order dependence of the nuclear equation of state on the asymmetry parameter is unimportant.

C.-H. Lee; T. T. S. Kuo; G. Q. Li; G. E. Brown

1998-06-01T23:59:59.000Z

83

Nuclear Energy Research Brookhaven National  

E-Print Network [OSTI]

Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National&T Department #12;Nuclear Energy Today 435 Operable Power Reactors, 12% electrical generation (100 in US, 19

Ohta, Shigemi

84

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia-UC Davis Collaboration Funded by DOE Office of Fusion Energy On March 4, 2014, in Energy, News, News & Events, Nuclear Energy, Partnership, Research & Capabilities, Systems...

85

DOE Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy DOE Office of Nuclear Energy DOE Office of Nuclear Energy More Documents & Publications Section 180(c) Ad Hoc Working Group Nuclear Fuel Storage and...

86

Nuclear Symmetry Energy  

Science Journals Connector (OSTI)

On the basis of a phenomenological theory proposed in an earlier paper the nuclear symmetry energy is recalculated. The value obtained is smaller than the one given before, which was incorrect. A relativistic calculation of the energy with the radius parameter r0=1.07×10-13 cm of the electron scattering experiments yields about the correct symmetry energy. Compensating uncertainties due to inaccuracy in r0, corrections due to the exclusion principle, and a possible difference in the radius of proton and neutron distributions make an accurate comparison with the empirical symmetry energy meaningless.

Hans-Peter Duerr

1958-01-01T23:59:59.000Z

87

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as...

88

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

89

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more proliferation-resistant fuel cycle technologies. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale

90

Led by Dr. Bernhard Tittmann, Schell Professor of Engineering Science and Mechanics, researchers in ESM are developing greener sources of energy to improve the environment  

E-Print Network [OSTI]

. A drawback of solar energy is the need for large spaces and high production costs. Nanotechnology researchers. This technology combines the advantages of crystalline silicon as a solar cell material (abundance, non. But unlike nuclear and solar energy, biomass energy is not as clean. Dr. Tittmann and Matthew Kropf are using

Demirel, Melik C.

91

International Nuclear Energy Policy and Cooperation | Department...  

Office of Environmental Management (EM)

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation Recent Events 6th US-India Civil Nuclear Energy Working Group Meeting 6th...

92

2012 Nuclear Energy Enabling Technology Factsheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Enabling Technology Factsheet 2012 Nuclear Energy Enabling Technology Factsheet Learn more about the Nuclear Energy Enabling Technologies (NEET) program, which will...

93

Nuclear Energy (WFP) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy (WFP) Nuclear Energy (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This will enable the agency to have...

94

DR Resources for Energy and Ancillary Services in the West (Presentation)  

SciTech Connect (OSTI)

Demand response (DR) resources present a potentially important source of grid flexibility however, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado "test system". We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating reserves: frequency regulation, contingency reserve, and flexibility (or ramping) reserve. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves.

Hummon, M.; Kiliccote, S.

2014-04-01T23:59:59.000Z

95

Testimony of Dr. Hermann A. Grunder  

E-Print Network [OSTI]

Testimony of Dr. Hermann A. Grunder Director Argonne National Laboratory before the Subcommittee knowledge for the sake of knowledge set the stage for nuclear medicine, nuclear energy, and many other

96

Nuclear | Open Energy Information  

Open Energy Info (EERE)

Nuclear Nuclear Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 82. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 9. Electricy Generating Capacity Table 96. Electricity Generation by Electricity Market Module Region and Source Table 97. Electricity Generation Capacity by Electricity Market Module Region and Source Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has

97

Energy Gap in Nuclear Matter  

Science Journals Connector (OSTI)

......research-article Articles Energy Gap in Nuclear Matter Takeshi Ishihara a...Research, Kokubunji, Tokyo An energy gap in nuclear matter is studied. The nucleon-nucleon...1966) pp. 1026-1042 Nuclear Force and Energy Gap in Finite Nuclei Hiroharu......

Takeshi Ishihara; Ryozo Tamagaki; Hajime Tanaka; Masaru Yasuno

1963-11-01T23:59:59.000Z

98

Nuclear Energy Papers and Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PapersPresentations View Nuclear Energy papers & presentations. Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and...

99

President-Elect Obama Nominates Dr. Steven Chu as Energy Secretary  

Broader source: Energy.gov [DOE]

President-elect Barack Obama has nominated Dr. Steven Chu, the current director of DOE's Lawrence Berkeley National Laboratory (LBNL), to be the next Secretary of Energy.

100

Nuclear Energy Enabling Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Interview with ARPA-E Acting Director Dr. Cheryl Martin on Platts Energy Week  

SciTech Connect (OSTI)

Bill Loveless from Platts Energy Week interviews ARPA-E Acting Director, Dr. Cheryl Martin, about the many transformational energy technologies on display at ARPA-E's 5th annual Energy Innovation Summit.

Martin, Cheryl; Loveless, Bill

2014-03-18T23:59:59.000Z

102

Moving Toward a Peaceful Nuclear Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What roles do the labs play? PNNL projects are reinforcing the effectiveness of the International Monitoring System, which utilizes 337 facilities worldwide to monitor for

103

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced...

104

Nuclear Energy Advisory Committee | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these reviews provides advice and recommendations on the program's long-range plans, priorities, and strategies to effectively address the scientific and engineering aspects of the research and development efforts. In addition, the committee provides advice on national policy and scientific aspects of

105

The Global Nuclear Energy Partnership | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

106

Symmetry Energy in Nuclear Surface  

E-Print Network [OSTI]

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. The interplay leads to a dependence of the symmetry coefficient, in energy formula, on nuclear mass. Charge symmetry of nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of neutron-proton asymmetry.

Danielewicz, Pawel

2008-01-01T23:59:59.000Z

107

Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010  

Broader source: Energy.gov (indexed) [DOE]

Committee, Facility Subcommittee visit to Idaho National Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010 The Nuclear Energy Advisory Committee, Facility Subcommittee visited the Idaho National Laboratory on 19-20 May 2010 to tour the nuclear infrastructure and to discuss the INL plans for facility modernization as a dimension of the DOE Office of Nuclear Energy's (NE) mission. Team Members: Dr. John Ahearne, Sigma Xi, Research Triangle Park, NC Dr. Dana Christensen, Oak Ridge National Laboratory Dr. Thomas Cochran, Natural Resource Defense Council, Washington DC Dr. Andrew Klein, Oregon State University (second day only) Mr. Paul Murray, AREVA Federal Services Dr. John I. Sackett, Idaho National Laboratory, Retired, Support: Andrew Griffith, DOE/NE

108

Nuclear Safety News | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety News Nuclear Safety News October 4, 2012 Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations The U.S....

109

THE GLOBAL NUCLEAR ENERGY PARTNERSHIP:  

Broader source: Energy.gov (indexed) [DOE]

GLOBAL NUCLEAR ENERGY PARTNERSHIP: GLOBAL NUCLEAR ENERGY PARTNERSHIP: Greater Energy Security in a Cleaner, Safer World The Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S. and global energy security, encourage clean development around the world, reduce the risk of nuclear proliferation, and improve the environment. A plentiful, reliable supply of energy is the cornerstone of sustained economic growth and prosperity. Nuclear power is the only proven technology that can provide abundant supplies of base load electricity reliably and without air pollution or emissions of greenhouse gasses. In order to help meet growing demand for energy at home and encourage the growth of prosperity around the globe, GNEP provides for the safe, extensive expansion of clean nuclear power.

110

Our Energy Independence - A Live Chat With Dr. Arun Majumdar | Department  

Broader source: Energy.gov (indexed) [DOE]

Our Energy Independence - A Live Chat With Dr. Arun Majumdar Our Energy Independence - A Live Chat With Dr. Arun Majumdar Our Energy Independence - A Live Chat With Dr. Arun Majumdar June 29, 2011 - 11:16am Addthis Dr. Arun Majumdar takes your questions about investments we're making to build the clean energy infrastructure of the future. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs How can I participate? Submit a question via E-mail, Facebook or Twitter Watch live at 2 PM [UPDATED with video from the event.] Before Americans hop into cars and planes to travel for this Independence Day weekend, we want to talk with you today about what we're doing to reduce our country's dependence on foreign oil. Please join Dr. Arun Majumdar at 2 PM ET for a live, two-way conversation about the

111

Our Energy Independence - A Live Chat With Dr. Arun Majumdar | Department  

Broader source: Energy.gov (indexed) [DOE]

Our Energy Independence - A Live Chat With Dr. Arun Majumdar Our Energy Independence - A Live Chat With Dr. Arun Majumdar Our Energy Independence - A Live Chat With Dr. Arun Majumdar June 29, 2011 - 11:16am Addthis Dr. Arun Majumdar takes your questions about investments we're making to build the clean energy infrastructure of the future. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs How can I participate? Submit a question via E-mail, Facebook or Twitter Watch live at 2 PM [UPDATED with video from the event.] Before Americans hop into cars and planes to travel for this Independence Day weekend, we want to talk with you today about what we're doing to reduce our country's dependence on foreign oil. Please join Dr. Arun Majumdar at 2 PM ET for a live, two-way conversation about the

112

Office of Nuclear Energy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Nuclear Energy Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is

113

Dr. Mike McKittrick | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Us Dr. Mike McKittrick - Advanced Manufacturing Office lead for the Critical Materials Institute Most Recent Additive Manufacturing Meets the Critical Materials Shortage April 9...

114

Density content of nuclear symmetry energy from nuclear observables  

Science Journals Connector (OSTI)

The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. The density content of nuclear symmetry energy remains poorly co...

B K AGRAWAL

2014-11-01T23:59:59.000Z

115

10 Questions for a Scientist: Dr. Ryan Wiser | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Scientist: Dr. Ryan Wiser Scientist: Dr. Ryan Wiser 10 Questions for a Scientist: Dr. Ryan Wiser August 16, 2013 - 5:11pm Addthis Watch Dr. Ryan H. Wiser discuss findings from the 2012 Wind Technologies Market Report in this Google+ Hangout discussion on wind energy in America. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs LEARN MORE Get additional details on Ryan Wiser's research and analysis on renewable energy and links to his publications. Take a look at our Energy.gov page on the 2012 Wind Technologies Market Report. Meet Dr. Ryan H. Wiser, scientist at the Lawrence Berkeley National Laboratory and co-author of the 2012 Wind Technologies Market Report. In the latest 10 Questions, Ryan discusses everything from his research and analysis on renewable energy to what he enjoys most about his work at

116

Energy Functional for Nuclear Masses.  

E-Print Network [OSTI]

??An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional… (more)

Bertolli, Michael Giovanni

2011-01-01T23:59:59.000Z

117

Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation...

118

Dr. Ernest Moniz Sworn in as 13th Secretary of Energy | Department of  

Broader source: Energy.gov (indexed) [DOE]

Dr. Ernest Moniz Sworn in as 13th Secretary of Energy Dr. Ernest Moniz Sworn in as 13th Secretary of Energy Dr. Ernest Moniz Sworn in as 13th Secretary of Energy May 21, 2013 - 10:50am Addthis News Media Contact (202) 586-4940 WASHINGTON - Dr. Ernest Moniz was sworn in as the nation's 13th Secretary of Energy by Deputy Energy Secretary Daniel Poneman in a ceremony this morning for the Department's employees, kicking off a busy first day that includes briefings on energy and national security as well as remarks to the 2013 Energy Efficiency Global Forum. Moniz was confirmed by the full Senate in a vote of 97-0 on May 16. Following his swearing in, Secretary Moniz told employees that he was honored to be back at the Department and was looking forward to a productive tenure. "I look forward to the progress we will make together in the coming years

119

Meeting Between the Department of Energy and the Nuclear Energy...  

Energy Savers [EERE]

Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy...

120

Nuclear Energy Research and Development Roadmap | Department...  

Broader source: Energy.gov (indexed) [DOE]

Energy Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Energy University Programs  

Broader source: Energy.gov (indexed) [DOE]

1 Status 1 Status Presentation to Nuclear Energy Advisory Committee (NEAC) June 15, 2011 Michael Worley, NEUP Program Manager NEUP Funding is Program Driven Program Directed Funding Program Supported Funding Mission Supported Funding Natl. Labs Universities DOE-NE HQ Peer Review DOE NE Program Drivers 2 3 Summary of Improvements and New Programs for FY 2011 * Expand "Blue Sky" Research and Development (R&D) * Initiate Integrated Research Projects (IRP) * Expand and improve peer review data base * Evaluate adoption of NRC and NNSA Metrics as appropriate to NEUP * Conduct peer review at pre-application stage for R&D 2011 Proposed NEUP Budget - $61.8M * Program Directed Integrated Research Projects (IRP) - $12.0M (NEW)

122

Nuclear energy density optimization  

Science Journals Connector (OSTI)

We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set unedf0 results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

2010-08-13T23:59:59.000Z

123

10 Questions for a Scientist: Dr. Ryan Wiser | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10 Questions for a Scientist: Dr. Ryan Wiser 10 Questions for a Scientist: Dr. Ryan Wiser 10 Questions for a Scientist: Dr. Ryan Wiser August 16, 2013 - 5:11pm Addthis Watch Dr. Ryan H. Wiser discuss findings from the 2012 Wind Technologies Market Report in this Google+ Hangout discussion on wind energy in America. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs LEARN MORE Get additional details on Ryan Wiser's research and analysis on renewable energy and links to his publications. Take a look at our Energy.gov page on the 2012 Wind Technologies Market Report. Meet Dr. Ryan H. Wiser, scientist at the Lawrence Berkeley National Laboratory and co-author of the 2012 Wind Technologies Market Report. In the latest 10 Questions, Ryan discusses everything from his research and

124

Nuclear Energy University Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy University Program Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy University Programs (NEUP), which was created in 2009 to consolidate university support under one initiative and better integrate university research within NE' technical programs. NEUP engages U.S. colleges and universities to conduct research and development (R&D), enhance infrastructure and support student education

125

Nuclear Energy | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

126

Office of Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first DOE Hub for the modeling and simulation (M&S) of commercial

127

Notes On Nuclear Energy Regulation  

Science Journals Connector (OSTI)

Notes On Nuclear Energy Regulation ... “Geology matters” is a key lesson from the 2011 earthquake and tsunami that hit the coast of Japan, resulting in the meltdown of three nuclear reactors at the Fukushima Daiichi power plant complex, said Allison M. Macfarlane, new head of the U.S. Nuclear Regulatory Commission, at her first press briefing last week. ... In her address to energy reporters, she focused on her top priorities for the commission. ...

JEFF JOHNSON

2012-08-20T23:59:59.000Z

128

Symmetry Energy in Nuclear Surface  

E-Print Network [OSTI]

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

Pawel Danielewicz; Jenny Lee

2008-12-25T23:59:59.000Z

129

BIOGRAPHIC SKETCH AND PROFESSIONAL ACTIVITIES_____________________________________________________X. GEORGE XU Dr. X. George Xu received a Ph. D. in Nuclear Engineering from Texas A&M University in 1994.  

E-Print Network [OSTI]

SUMMARY Dr. X. George Xu received a Ph. D. in Nuclear Engineering from Texas A&M University in 1994. He and then in January of 2012 the Head of Nuclear Engineering Program at RPI. In that capacity, he has been responsible of the Nuclear Engineering Program, Dr. Xu has been responsible for various aspects of the program involving 160

Linhardt, Robert J.

130

Nuclear Energy Page 570Page 570  

E-Print Network [OSTI]

Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

131

Nuclear Energy Production  

Science Journals Connector (OSTI)

We shall limit ourselves here to a very rough summary of the most important features of nuclear reactions in stars. This will suffice completely ... , while the study of particular aspects of nuclear astrophysics...

Professor Dr. Rudolf Kippenhahn…

1990-01-01T23:59:59.000Z

132

Presentation: DOE Nuclear Nonproliferation | Department of Energy  

Office of Environmental Management (EM)

Presentation: DOE Nuclear Nonproliferation Presentation: DOE Nuclear Nonproliferation A briefing to the Secretary's Energy Advisory Board on DOE nuclear nonproliferation activities...

133

ARPA-E 2011 Keynote: Dr. Arun Majumdar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dr. Arun Majumdar Dr. Arun Majumdar ARPA-E 2011 Keynote: Dr. Arun Majumdar Addthis Description Dr. Arun Majumdar, Director of the Advanced Research Projects Agency for Energy (ARPA-E) offers a glimpse into the future of energy innovation at the ARPA-E Energy Innovation Summit during his Keynote Address. Speakers Arun Majumdar Duration 23:50 Topic Energy Economy Innovation ARPA-E Summit Emerging Technologies Credit Energy Department Video ARUN MAJUMDAR: My life story has been described in gory detail. (Laughter.) But it's great pleasure to be here. Let me start by telling you my story of ARPA-E. When I came here about a year-and-a-half ago and asked to lead this agency, I thought it was an absolutely daunting task. I'd never been in Washington and here I'm trying to start a couple of agencies.

134

United States and Japan Sign Joint Nuclear Energy Action Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

135

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

136

Nuclear Power Trends Energy Economics and Sustainability  

E-Print Network [OSTI]

Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline · The Problem · Nuclear Energy Trends · Energy Economics · Life Cycle Analysis · Nuclear Sustainability · Nuclear Energy in Greece? #12;National Research

137

President-Elect Obama Nominates Dr. Steven Chu as Energy Secretary...  

Energy Savers [EERE]

at AT&T Bell Labs. Dr. Chu is credited as an early advocate for finding solutions to climate change and for guiding LBNL toward more research on low-carbon energy sources,...

138

Department of Energy Releases Global Nuclear Energy Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC -...

139

International Nuclear Energy Policy and Cooperation  

Broader source: Energy.gov [DOE]

The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both...

140

Nuclear Energy Advisory Committee, Facility Subcommittee visit...  

Broader source: Energy.gov (indexed) [DOE]

Committee, Facility Subcommittee visit to Idaho National Laboratory Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory The Nuclear Energy...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dr Writer s Food Products Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Dr Writer s Food Products Pvt Ltd Dr Writer s Food Products Pvt Ltd Jump to: navigation, search Name Dr. Writerâ€(tm)s Food Products Pvt. Ltd. Place Mumbai, Maharashtra, India Sector Biomass Product Mumbai-based biomass project developer. Coordinates 19.076191°, 72.875877° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.076191,"lon":72.875877,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

THE NUCLEAR ENERGY REVOLUTION—1966  

Science Journals Connector (OSTI)

...nuclear energy revolution-1966. | Oak Ridge National Laboratory. | Journal...ALVIN MI. WEINBERG AND GALE YOUNG OAK RIDGE NATIONAL LABORATORYt Delivered before...have passed since Fermi and his co-workers at Chicago achieved the first...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

143

Argonne Historical News Releases about Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Releases Releases About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

144

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network [OSTI]

Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -Northeast Asian nuclear energy cooperation advanced byAsia). 2 Cooperation on nuclear energy would have a direct

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

145

Nuclear Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

146

Dr. Richard A. Swalin, Dean  

Office of Legacy Management (LM)

Dr. Richard A. Swalin, Dean Dr. Richard A. Swalin, Dean College of Engineering and Mines University of Arizona Tucson, Arizona 85721 Dear Dr. Swalin: As you may know, the Department of Energy (DOE) is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District (MEO) and the Atomic Energy Commission (AEC) during the early years of nuclear development to determine whether they need remedial action and whether the Department has authority to perform such action. The University of Arizona was contacted through correspondence dated March 12, 1979, Dr. T. Triffet, then Dean of the College of Engineering at the University, from Dr. W. Mott of DOE, that the University was being investigated as one such site. A review of historical records and of the results from a survey during a

147

Chapter 24 - Nuclear energy future  

Science Journals Connector (OSTI)

Abstract This chapter attempts to concisely describe the role that nuclear power may take in the meeting the world’s future energy needs. Historically, economic considerations have triumphed all other considerations when selecting an energy source. Nuclear power growth stagnated in the late twentieth century for a variety of reasons. A revival in nuclear reactor construction is beginning in the United States and elsewhere at the start of the twenty-first century. World energy—and especially electricity—use is increasing and sustainable approaches to meeting this need are sought. With rising concern about climate change, nuclear power is found to be the lowest contributor to carbon dioxide emissions, even compared to solar and wind power. Besides electricity generation, power reactors can be utilized for large-scale desalination and hydrogen generation.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

148

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...  

Office of Environmental Management (EM)

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

149

2012 Nuclear Safety Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety » 2012 Nuclear Safety Workshop Nuclear Safety » 2012 Nuclear Safety Workshop 2012 Nuclear Safety Workshop Glenn Podonsky 1 of 13 Glenn Podonsky Glenn Podonsky (DOE Chief Health, Safety and Security Officer) provides his welcoming remarks. Daniel Poneman 2 of 13 Daniel Poneman DOE Deputy Secretary Daniel Poneman discusses maintaining our focus on nuclear safety. Akira Kawano 3 of 13 Akira Kawano Akira Kawano, Tokyo Electric Power Company, provides lessons learned from the Fukushima nuclear accident. Bill Ostendorff 4 of 13 Bill Ostendorff NRC Commissioner Bill Ostendorff gives his perspective on the NRC's response to the Fukushima nuclear accident. Miroslav Lipar 5 of 13 Miroslav Lipar Miroslav Lipar, IAEA, provides an international perspective on the Fukushima nuclear accident. Dr. Sonja Haber 6 of 13

150

Nuclear Liability | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liability Liability Nuclear Liability 1. Price-Anderson Act (PAA) GC-52 provides legal advice to DOE regarding issues arising under the PAA, which governs nuclear liability in the United States and establishes a system of financial protection for persons who may be liable for and persons who may be injured by a nuclear incident. GC-52 is also responsible for developing regulations implementing any amendments to the PAA. As necessary, GC-52 attorneys coordinate with other US and international agencies. Applicable Laws Atomic Energy Act of 1954, Section 170 Report to Congress on the Price-Anderson Act 2. Extraordinary Contractual Relief for Nuclear Risks GC-52 advises DOE on providing indemnification under Public Law 85-804 for DOE and National Nuclear Security Administration (NNSA) contractors for

151

Nuclear Potential and Symmetry Energy  

Science Journals Connector (OSTI)

A quadratic dependence on momentum is assumed for the two-nucleon interaction energy in the independent-particle model, and is used in a study of the nuclear binding energy and symmetry energy. The corresponding optical potentials for elastic nucleon scattering are discussed. The semiempirical interaction used is compared with the two-body potentials commonly used in shell-model calculations. These are found to be inadequate.

G. R. Satchler

1958-01-15T23:59:59.000Z

152

Nuclear theory for high-energy nuclear reactions of biomedical relevance  

Science Journals Connector (OSTI)

......Presentations Nuclear theory for high-energy nuclear reactions of biomedical relevance...Nuclear Data Needs for Generation IV Nuclear Energy Systems, April 5-7, 2005...2005. Nuclear theory for high-energy nuclear reactions of biomedical relevance......

A. J. Koning; M. C. Duijvestijn

2007-08-01T23:59:59.000Z

153

Energy Gap in Nuclear Matter  

Science Journals Connector (OSTI)

The magnitude of the energy gap in nuclear matter associated with a highly correlated ground state of of the type believed to be important in the theory of superconductivity has been evaluated theoretically. The integral equation of Cooper, Mills, and Sessler is linearized and transformed into a form suitable for numerical solution. The energy gap, calculated by using an appropriate single-particle potential and the Gammel-Thaler two-body potential, is found to be a very strong function of the density of nuclear matter, and of the effective mass at the Fermi surface. It is concluded that the magnitude of the energy gap for nuclear matter should not be compared directly with experimental values for finite nuclei, although the results suggest that if the theory is extended to apply to finite nuclei it probably would be in agreement with experiment.

V. J. Emery and A. M. Sessler

1960-07-01T23:59:59.000Z

154

Conference Chair: Dr. Matthew Mench Condra Chair of Excellence in Energy Conversion & Storage  

E-Print Network [OSTI]

Conference Chair: Dr. Matthew Mench Condra Chair of Excellence in Energy Conversion & Storage Dept Electrochemical Energy Storage and Conversion Forum April 19-20 Knoxville, Tennessee Proudly sponsored by: The National Science Foundation Great Lakes Fuel Cell Education Partnership and Tennessee Solar Conversion

Tennessee, University of

155

Nuclear Facilities | Department of Energy  

Energy Savers [EERE]

Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear...

156

Office of Nuclear Energy Launches New Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website February 11, 2013 - 4:01pm Addthis The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy What does this mean for me? Visit the new Office of Nuclear Energy website at energy.gov/ne. The Office of Nuclear Energy (NE) is pleased to introduce our new, updated public website: energy.gov/ne. The new site was designed to help facilitate users' access to NE

157

Nuclear energy density optimization: Shell structure  

Science Journals Connector (OSTI)

Background: Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P.-G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-05-15T23:59:59.000Z

158

Advancing Global Nuclear Security | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION Secretary Moniz's Remarks at the 2014 IAEA General Conference...

159

Nuclear Safety Regulatory Framework | Department of Energy  

Energy Savers [EERE]

Presentation that outlines the rules, policies and orders that comprise the Department of Energy Nuclear Safety Regulatory Framework. Nuclear Safety Regulatory Framework More...

160

wind energy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

wind energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GE Hitachi Nuclear Energy | Open Energy Information  

Open Energy Info (EERE)

GE Hitachi Nuclear Energy GE Hitachi Nuclear Energy Jump to: navigation, search Name GE Hitachi Nuclear Energy Place Wilmington, North Carolina Zip 28402 Sector Efficiency, Services Product GE Hitachi Nuclear Energy develops advanced light water reactors and offers products and services used by operators of boiling water reactor (BWR) nuclear power plants to improve efficiency and boost output. Coordinates 42.866922°, -72.868494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866922,"lon":-72.868494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Nuclear Compressibility and Symmetry Energy  

Science Journals Connector (OSTI)

A modification and generalization of the Puff-Martin model for many-fermion systems is employed to calculate nuclear compressibility and symmetry energy in order to provide a practical test of the model and at the same time obtain useful information about these interesting quantities. An alternative, heuristic, derivation of the Puff-Martin equations is presented in order to exhibit the role of the exclusion principle. The condition stated for normal nuclear matter is that the mean binding energy be minimal (with respect to variation of the Fermi momentum) rather than the Puff-Martin condition that the mean binding energy equal the "single particle" energy at the Fermi surface. These two quantities differ from each other by the rearrangement energy, which is found to be 10 Mev. Employing Puff's potential (hard-shell potential plus a separable Yamaguchi potential, acting only in relative S states), satisfactory agreement is obtained with observed binding energy and density. The value of nuclear compressibility, 214 Mev, falls within the wide range of semiempirical values. The symmetry energy coefficient, 43 Mev, is larger, by 40-80%, than those usually quoted in semiempirical mass formulas. However, our value of the symmetry coefficient is the same as that calculated by Brueckner and Gammel in the absence of odd-state forces; they found the coefficient to be reduced to 26 Mev when a more realistic potential, including odd-state contributions, is employed.

David S. Falk and Lawrence Wilets

1961-12-15T23:59:59.000Z

163

Nuclear Energy University Programs  

Broader source: Energy.gov (indexed) [DOE]

NEUP FY2011 Process Presentation to NEAC December 9, 2010 Marsha Lambregts, NEUP-IO Manager FUNDED R&D PROPOSALS BY STATE 2010 * Awards/Full Submissions - 42/128 * Awards to PIs for first time - 29 * Awards to junior faculty - 20 * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of awards with lab partners - 20 * Number of universities receiving awards for first time - 8 2 2010 INFRASTRUCTURE * Major Reactor: 4 awards for a total of $3.75 M * Minor Reactor: 12 awards for $1.95 M * General Scientific Infrastructure: 33 award for $7.47 M * Since 2009, $ 19.438 M has been awarded in General Scientific Infrastructure (did not issue Major or Minor Reactor calls in 2009).

164

Producing hydrogen using nuclear energy  

Science Journals Connector (OSTI)

The earliest means of separating hydrogen from water was by electrolysis using electrical energy that usually had been produced by low-efficiency thermodynamic processes. Substitution of thermal energy for electrical energy in high-temperature electrolysis gives a somewhat higher overall efficiency, but significantly complicates the process. Today, the vast majority of hydrogen is produced by steam methane reforming (SMR) followed by a water-shift reaction. A well-designed SMR plant will yield hydrogen having 75â??80% of the energy of the methane used. Recent work in Japan has demonstrated the feasibility of substituting high-temperature heat from a gas-cooled nuclear reactor to replace the heat supplied in SMR by the combustion of methane. Using high-temperature heat from nuclear plants to drive thermochemical processes for producing hydrogen has been studied extensively. Bench-scale tests have been carried out in Japan demonstrating the sulphur-iodine (SI) process to produce hydrogen.

Robert E. Uhrig

2008-01-01T23:59:59.000Z

165

NE - Nuclear Energy - Energy Conservation Plan  

Broader source: Energy.gov (indexed) [DOE]

NUCLEAR ENERGY (NE) NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible. Saving an average of 1.5 gallons of gasoline per day per person (e.g., 13 miles per work x 2 = 26 miles, an average of 17 mpg), on a normal workday, NE employees save (56 percent of 145 = 71 times 1.2 days per pay period = 85.2 workdays x 1.5 gals = 127.8 gallons/pay

166

Concluding Remarks by Dr. Walt Warnick | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Concluding Remarks by Dr. Walt Warnick Concluding Remarks by Dr. Walt Warnick Walter L. Warnick Director, Office of Scientific and Technical Information U. S. Department of Energy OSTI 60th Anniversary Oak Ridge, TN September 18, 2007 Thank you, Dr. Garfield. We look forward to hearing more during your lecture tonight at 7 at the American Museum of Science and Energy. As Jeff Salmon explained, Franklin Roosevelt and Vannevar Bush defined a new relationship between government and science. The world of science was forever changed by WWII, and OSTI is a direct result of that legacy. The creation of what is now OSTI certainly signified a sea change here in Oak Ridge. What was once shrouded in secrecy - basic atomic science information - was made available for use and future discovery. The reason it was made available is because everyone in science accepts the

167

Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

1 1 Chairman Whitfield, Ranking Member Rush, and Members of the Subcommittee: thank you for inviting me to testify today on behalf of the Department of Energy (DOE) regarding energy efficiency. As Secretary Chu has said, energy efficiency is not just the low hanging fruit. It is the fruit that's lying on the ground. That is because investment in energy efficiency offers increased energy productivity, improved U.S. competitiveness, consumer savings, domestic jobs, greater reliability of our energy systems, and positive impacts on the environment. As Deputy Assistant Secretary for Energy Efficiency in the Office of Energy Efficiency and Renewable Energy (EERE), I am responsible for overseeing DOE's portfolio of energy efficiency research, development, demonstration, and deployment activities. I am pleased to be here

168

Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Chairman Whitfield, Ranking Member Rush, and Members of the Subcommittee: thank you for Chairman Whitfield, Ranking Member Rush, and Members of the Subcommittee: thank you for inviting me to testify today on behalf of the Department of Energy (DOE) regarding energy efficiency. As Secretary Chu has said, energy efficiency is not just the low hanging fruit. It is the fruit that's lying on the ground. That is because investment in energy efficiency offers increased energy productivity, improved U.S. competitiveness, consumer savings, domestic jobs, greater reliability of our energy systems, and positive impacts on the environment. As Deputy Assistant Secretary for Energy Efficiency in the Office of Energy Efficiency and Renewable Energy (EERE), I am responsible for overseeing DOE's portfolio of energy efficiency research, development, demonstration, and deployment activities. I am pleased to be here

169

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

Science Journals Connector (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20–250 are extracted from more than 2000 measured nuclear masses. With the semiempirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of the symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhu-Xia Li; Feng-Shou Zhang

2010-12-13T23:59:59.000Z

170

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network [OSTI]

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

171

Dr. Hans Rosling, Keynote - 2013 ARPA-E Energy Innovation Summit  

ScienceCinema (OSTI)

The fourth annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2013. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Dr. Hans Rosling (Professor, International Health, Karolinska Institute; Edutainer, Gapminder.org), gave this keynote address.

Rosling, Hans (Professor, International Health, Karolinska Institute; Edutainer, Gapminder.org)

2014-04-11T23:59:59.000Z

172

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Broader source: Energy.gov (indexed) [DOE]

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

173

Office of Nuclear Energy Fiscal Year 2014 Budget Request | Department...  

Office of Environmental Management (EM)

Office of Nuclear Energy Fiscal Year 2014 Budget Request Office of Nuclear Energy Fiscal Year 2014 Budget Request The Office of Nuclear Energy (NE) supports the diverse civilian...

174

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy Savers [EERE]

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear...

175

2006 Nuclear Energy Research Initiative Awards | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006...

176

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

177

Department of Energy Established | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Department of Energy Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

178

Global Nuclear Energy Partnership Strategic Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan A report describing the United States Global Nuclear Energy Partnership which: "will build the Global Nuclear Energy Partnership to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe,clean nuclear energy to help meet the growing global energy demand." Global Nuclear Energy Partnership Strategic Plan

179

The Politically Correct Nuclear Energy Plant  

E-Print Network [OSTI]

The Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology - Small is Beautiful · Nuclear Energy - But Getting Better #12;Politically Correct ! · Natural Safety is a bad idea. · There is no new nuclear energy plant that is competitive at this time. · De-regulation did

180

Reshaping China’s Nuclear Energy Policy  

Science Journals Connector (OSTI)

Reshaping China’s Nuclear Energy Policy ... (2) This nationwide salt crisis sent a signal that the public has withdrawn its support for nuclear energy. ... It remains an open question if online activism will make a difference in future Chinese nuclear energy decision making. ...

Qiang Wang; Xi Chen; Degang Yang; Changjian Wang; Fuqiang Xia; Xinlin Zhang

2011-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Energy: Promise or Peril?  

Science Journals Connector (OSTI)

This book represents the outcome of a Peer Review Workshop of the Pugwash Conferences on Science and World Affairs on `The Prospects of Nuclear Energy' held in Paris in December 1998. It is intended to address, in a manner accessible to the non-expert, the contribution that electricity production from nuclear power might make to resolving the dilemma in which an increasing demand for energy to fuel global economic development confronts an energy production policy that has not, as yet, fully taken into account the impacts on the environment and the depletion of the reserves of non-renewable (both fossil and nuclear) fuels. It is accepted that nuclear energy has both negative (e.g. the production of long-lived radioactive wastes and a potential for weapons proliferation) and positive (e.g. a relatively minor contribution to the problem of global warming) aspects. The influences of these factors on the potential of nuclear energy to continue to contribute to the global energy production mix are explored in detail. During the two days of the conference, each of the chapters was exposed to critical discussion by all of the authors contributing to the book, as well as a smaller independent group of scientists and others from a range of relevant disciplines. It is in this sense that the material presented is said to be `peer reviewed', a process that is probably at least as valid as that for a journal article. The text comprises an introductory preface, 18 substantive chapters, a brief summary by the editors, a short, but useful, appendix of technical notes and units, an (obligatory) summary of abbreviations and acronyms, a listing of the affiliations of the conference participants and a comprehensive index. The first chapter provides a simple introduction to the basics of nuclear energy, reactor systems and their radionuclide inventories, the health hazards of radiation and a brief indication of possible future developments (expanded by others in later chapters). It also summarises the current status of the global nuclear programme for electricity production in the context of the costs of the present and future uranium supply requirements, and the economic considerations that will influence the acceptability of this power source. The next two chapters discuss, respectively, the role of nuclear energy in preventing climate change, and the inter-relationship between global energy use and climate change in this century. The conclusion is that the predicted increase in world energy demand (a six-fold rise, fuelled by population growth and the fulfilment of development objectives) cannot be met by carbon-free sources, and that these - including the nuclear option - require substantial investment in R and D to yield their full potential in an environmentally and socially acceptable way. It is noted that the developed world will probably be able to increase gross national product with little, if any, increase in energy consumption through improvements in energy efficiency - the subject of the next chapter. This is, however, concerned with more than just improving the output per unit energy input. It is firmly concluded that the risks inherent in applying the successful, but energy-rich, approach of the present developed nations to the remainder of the developing world are unacceptable. The author, therefore, envisages a decoupling of economic growth from energy consumption, and a parallel application of intelligence and effort towards achieving desired development goals within a scenario of decreasing energy utilisation, i.e. the engineering of substantial policy and cultural change. Chapters 5 and 6 examine the possible role of nuclear power in the economic advancement of the developing countries; both authors are in agreement that this energy source will be required to supply a proportion of the variable electricity demand that will differ between countries. The following, very short chapter of just 4 pages makes some observations on the safety of nuclear power. In the context of the objectives of this book, a more substantial offe

D S Woodhead

2000-01-01T23:59:59.000Z

182

Nuclear Energy Institute (NEI) Attachment, Integrated Safety...  

Broader source: Energy.gov (indexed) [DOE]

Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an...

183

TODAY: Advanced Biofuels Q&A with Dr. Valerie Reed | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TODAY: Advanced Biofuels Q&A with Dr. Valerie Reed TODAY: Advanced Biofuels Q&A with Dr. Valerie Reed TODAY: Advanced Biofuels Q&A with Dr. Valerie Reed December 16, 2011 - 11:52am Addthis Join us live today at 1 PM EST for a discussion on advanced biofuels | Photo courtesy of FDC Logistics. Join us live today at 1 PM EST for a discussion on advanced biofuels | Photo courtesy of FDC Logistics. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How can I participate? Join us live at twitter.com/energy at 1 PM EST. Contribute your questions via e-mail, Facebook or Twitter. Over the past two weeks, we've featured a number of stories about how advanced biofuels are strengthening our national security and creating economic opportunities across the country. Today, we want to hear from you

184

Nuclear Energy University Program Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program » Nuclear Energy Nuclear Energy University Program » Nuclear Energy University Program Documents Nuclear Energy University Program Documents Documents Available for Download October 31, 2013 FY 2014 Consolidated Innovative Nuclear Research FOA This Funding Opportunity Announcement (FOA) addresses the competitive portion of NE's R&D portfolio as executed through the Nuclear Energy University Programs (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and

185

Nuclear energy for water security  

Science Journals Connector (OSTI)

For peace, and the welfare and well-being of humans, fresh water is essential. Atoms are a source of abundant energy that do not have any greenhouse effect and can be used for different peaceful applications, such as power generation, the diagnosis and treatment of diseases in the field of medicine, to improve the productivity of food crops and soil fertility in agriculture and for food preservation. To find and assess the water resources on the earth, nuclear power serves as the source of energy for fresh water production.

P.K. Tewari

2006-01-01T23:59:59.000Z

186

Nuclear Reactions at High Energy  

Science Journals Connector (OSTI)

In the quark model, nuclei (B?2) have exotic quantum numbers. Given a nuclear reaction in which certain quantum numbers are exchanged, what is the scattering amplitude at high energies, in the GeV region? Does it have Regge behavior? Is it dual? Are there multibaryon resonances? In this context we present a general survey of all high-energy nuclear reactions - mainly those involving light nuclei. For B=0 exchange reactions, like ?d??d and ?-h??0t (h?He3, t=H3), there is the impulse and rescattering (Glauber) model. For B=1 exchange we discuss the one-pion-exchange (OPE) model for pp?d?+, pd?dp, and ?d?pn, and the "knock-on" model for pd??+t, dd?tp, dh?hd, ?h?pd, and ???pt. In the case of B=2 exchange we examine the impulse and rescattering diagrams for ?d?d?, ?d?d?0, and ?d?d?, and use the OPE model to calculate cross sections for pd?t?, pt?tp, and ph?hp. Briefly considered are: (1) backward elastic scattering from heavy nuclei (pA?Ap) and (2) inclusive nuclear reactions such as N14+A?Li6+anything and pA?dŻ+anything. We postulate that in general nuclear reactions have Regge behavior, but are not dual, because so far there are no exotic multibaryon resonances. Nuclear reactions appear to be completely dominated by anomalous singularities, whereas ordinary nonexotic hadron reactions appear to be dominated by normal singularities and poles.

George W. Barry

1973-03-01T23:59:59.000Z

187

Nuclear Materials Disposition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

188

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and  

E-Print Network [OSTI]

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

189

Materials Challenges in Nuclear Energy  

SciTech Connect (OSTI)

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

2013-01-01T23:59:59.000Z

190

Dealing With the Issues of Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy September 17, 2010 - 12:39pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? The U.S. is working to reduce our own reliance on nuclear weapons and to lock down dangerous nuclear material so terrorists can't use it. Editorial Note: This has been cross-posted from Huffington Post. Next week I have the honor of leading the U.S. delegation to an annual conference that is critical to our national and energy security. Every year, the International Atomic Energy Agency (IAEA), the nuclear watchdog arm of the UN, gathers ministers from around the world to discuss ways to promote nuclear energy, strengthen efforts to keep other countries from illegally acquiring nuclear weapons, reduce stockpiles of nuclear

191

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 13051322  

E-Print Network [OSTI]

`re *, Imre Pa´zsit Department of Reactor Physics, Chalmers University of Technology, SE-412 96 Go of ``clean'' stationary oscilla- tions with negligible background noise, the DR can be defined as the ratio

Demazière, Christophe

192

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for...

193

Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Statement on the Global Nuclear Energy Partnership and Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Ministers and other senior officials representing the respective governmental agencies of China, France, Japan, Russia, and the United States met in Washington, D.C., on May 21, 2007 to address the prospects for international cooperation in peaceful uses of nuclear energy, including technical aspects, especially in the framework of the Global Nuclear Energy Partnership (GNEP). The International Atomic Energy Agency (IAEA) also attended as an observer. Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation More Documents & Publications Ministerial Conference

194

China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guangdong Nuclear Solar Energy Co Ltd Guangdong Nuclear Solar Energy Co Ltd Jump to: navigation, search Name China Guangdong Nuclear Solar Energy Co Ltd Place China Sector Solar Product China Guangdong Nuclear's division on solar project development. References China Guangdong Nuclear Solar Energy Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Guangdong Nuclear Solar Energy Co Ltd is a company located in China . References ↑ "China Guangdong Nuclear Solar Energy Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=China_Guangdong_Nuclear_Solar_Energy_Co_Ltd&oldid=343500" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

195

Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-01T23:59:59.000Z

196

Meeting between Department of Energy Contractor and the Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

between Department of Energy Contractor and the Nuclear between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

197

Meeting between Department of Energy Contractor and the Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Meeting between Department of Energy Contractor and the Nuclear Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

198

Chapter 8 - The history of nuclear energy  

Science Journals Connector (OSTI)

Abstract This chapter reviews the history related to nuclear energy beginning with scientific investigations in the late 1800s that led to the discovery of subatomic particles and both atomic and nuclear structure. Those research efforts spawned the discovery of fission. The Manhattan Project to develop an atomic bomb then accelerated the knowledge base of nuclear phenomena. After World War II, the Atomic Energy Commission was established and later the International Atomic Energy Agency. Research and development efforts led to the deployment of the first nuclear power plants. This chapter ends by addressing the controversies surrounding nuclear energy in the late twentieth century.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

199

Celebration of DOE's 35th Anniversary and the Secretary of Energy's Honor Awards, Keynote Address: Energy Secretary, Dr. Steven Chu  

ScienceCinema (OSTI)

Dr. Steven Chu gives a keynote address marking the thirty-fifth anniversary of the Department of Energy (DOE). He highlights outstanding achievements of the Department and its scientists. Several of the Department's many Nobel Prize winners over the years are mentioned.

Chu, Steven (U.S. Energy Secretary)

2012-10-18T23:59:59.000Z

200

Nuclear Security Conference 2010 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Security Conference 2010 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

202

High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)  

SciTech Connect (OSTI)

Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

Goyal, Amit (Oak Ridge National Laboratory) [Oak Ridge National Laboratory

2012-05-22T23:59:59.000Z

203

High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)  

ScienceCinema (OSTI)

Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

Goyal, Amit (Oak Ridge National Laboratory)

2012-06-28T23:59:59.000Z

204

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Nuclear Energy Categorical Exclusion Determinations: Nuclear Energy Categorical Exclusion Determinations issued by Nuclear Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 2013 CX-010766: Categorical Exclusion Determination Interim Storage Area for Interim Storage Containers (ISCs) at the Radioactive Scrap and Waste Facility (RSWF) CX(s) Applied: B6.6 Date: 08/16/2013 Location(s): Idaho Offices(s): Nuclear Energy August 14, 2013 CX-010767: Categorical Exclusion Determination University Boulevard Water Meter Installation CX(s) Applied: B2.2 Date: 08/14/2013 Location(s): Idaho Offices(s): Nuclear Energy August 12, 2013 CX-010768: Categorical Exclusion Determination ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

205

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network [OSTI]

361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special in the National Nuclear Security Administration, including official reception and representation expenses (not reflect the Administration's 2003 policy proposals. Program and Financing (in millions of dollars

206

Atom-split it for nuclear energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atom-split it for nuclear energy Fermi-leader of the team that produced the first self-sustaining controlled nuclear chain reaction; contributed to ending WWII Calutron-invented by...

207

Nuclear Interactions in Super High Energy Region  

Science Journals Connector (OSTI)

......research-article Articles Nuclear Interactions in Super High Energy Region Jose F. Bellandi a...Tokyo 188 We formulate the energy spectrum of produced particles...Atmospheric diffusion of high energy cosmic rays is calculated analytically......

Jose F. Bellandi; Sergio Q. Brunetto; Jose A. Chinellato; Carola Dobrigkeit; Akinori Ohsawa; Kotaro Sawayanagi; Edison H. Shibuya

1990-01-01T23:59:59.000Z

208

Remarks by Dr. Jeffrey Salmon | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Remarks by Dr. Jeffrey Salmon Remarks by Dr. Jeffrey Salmon Associate Under Secretary for Science U.S. Department of Energy OSTI 60th Anniversary Oak Ridge, TN September 18, 2007 Thank you, Walt [Warnick] for that generous introduction. Walt's leadership of the Office of Scientific and Technical Information over the last 10 years has been essential to its success. He is innovative and forward looking, and we can't thank him enough for the way he has guided and grown OSTI. Let me begin by saying that it's certainly an honor to represent Under Secretary for Science Raymond Orbach and the Department of Energy at this ceremony and to be joined by such a distinguished group of celebrants. We are here today to recognize six decades of open science, six decades of free trade in ideas, six decades of the free market of knowledge. That is

209

Nuclear Energy-Depend On It Helping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy-Depend On It Helping to Power America for More Than Five Decades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity production in 1957 and now produces approximately 20 percent of our total electricity and 70 percent of our low-carbon electricity from nuclear energy, according to the Energy Information Administration. More than 100 U.S. commercial nuclear power reactors provide reliable, affordable electricity in 31 states. Nuclear energy can help meet our Nation's need for dependable electricity into the future. The use of nuclear power is increasing around the world: z 29 countries worldwide operate a total of 437 nuclear reactors for electricity generation, with 55 new nuclear reactors under construction in 14 countries.

210

NEAC Recommended Goals for Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy Nuclear energy currently provides approxi- mately 20 percent of the electricity for the U.S. The primary alternative for power generation is fossil fuels. Though still controversial, evidence continues to mount about the negative health and environmental effects of carbon emissions. Nuclear power is the most significant technology available for meeting anticipated energy needs while reducing emissions to the environment. Nuclear energy is an essential component to a secure and prosperous future for the U.S. and the world. The reliance on fossil fuels for the growing energy usage of an expanding world population will bring about enormous global environmental problems. Nuclear energy is the single largest tool

211

Department of Energy Releases Global Nuclear Energy Partnership Strategic  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Assistant Secretary for Nuclear Energy Dennis Spurgeon today released the Global Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation strategy. The Plan outlines a path forward to enable worldwide increase in the use of safe, emissions-free nuclear energy without contributing to the spread of nuclear weapons capabilities in a manner that responsibly addresses the waste produced. "For the United States, GNEP is good policy; for industry, it could be very good business," Assistant Secretary Spurgeon said. "Releasing GNEP's

212

Energy Department Announces New Nuclear Energy Innovation Investments |  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Innovation Nuclear Energy Innovation Investments Energy Department Announces New Nuclear Energy Innovation Investments July 17, 2012 - 12:29pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitments to restarting the nation's nuclear industry and promoting education in science, technology, engineering and math, the Energy Department announced today nearly $13 million in new nuclear energy innovation investments. "Today's awards will help train and educate our future nuclear energy scientists and engineers, while advancing the technological innovations we need to make sure America's nuclear industry stays competitive in the 21st century," said Energy Secretary Steven Chu. "These investments in U.S. universities, national labs and industry advance the Obama

213

International Nuclear Energy Policy and Cooperation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both bilaterally and multilaterally to accomplish this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United States and 70% of our low-carbon production, avoiding over 600 million metric tons of carbon emissions. With approximately 440 commercial reactors operating in 30 countries-and 300 more valued at $1.6 trillion

214

Nuclear incompressibility determined by nuclear mass and monopole resonance energy  

Science Journals Connector (OSTI)

The standard nuclear matter incompressibility K0 is determined by a data fit based on a model of nuclear energy functional and the scaling assumption of the nuclear breathing mode. The selected nuclear data used in this fit are taken from a limited set of nuclei which have both the measured mass M and the isoscalar giant monopole resonance energy EM. The obtained value of K0, based on 26 experimental points corresponding to 18 spherical nuclei with 89<~A<~209, is 220±20 MeV.

K. C. Chung; C. S. Wang; A. J. Santiago

1999-02-01T23:59:59.000Z

215

Low-Energy Nuclear Reactions in Metals  

Science Journals Connector (OSTI)

......research-article Articles Low-Energy Nuclear Reactions in Metals Jirohta Kasagi...reactions in Pd and Au for bombarding energies between 30 and 75 keV. These...measurements clearly showed that the low energy nuclear reactions are strongly affected......

Jirohta Kasagi

2004-02-01T23:59:59.000Z

216

Nuclear Security & Nonproliferation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safety » Nuclear Security & Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy and National Nuclear Security Administration’s effort to assist Japanese personnel with nuclear issues related to the Fukushima nuclear power plant. Above, scientists, technicians and engineers from the National Nuclear Security Administration’s Nevada Site Office board an Air Force C-17. | Photo courtesy of NNSA. Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy

217

Is Nuclear Energy the Solution?  

Science Journals Connector (OSTI)

In the event of a major radioactive release from a nuclear power plant, public opinion would likely react strongly against nuclear power...

Milton H. Saier; Jack T. Trevors

2010-05-01T23:59:59.000Z

218

Making glue in high energy nuclear collisions  

E-Print Network [OSTI]

We discuss a real time, non-perturbative computation of the transverse dynamics of gluon fields at central rapidities in very high energy nuclear collisions.

Alex Krasnitz; Raju Venugopalan

1999-05-12T23:59:59.000Z

219

Office of Nuclear Safety | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Security Officer regarding concurrence in the final decision to startup or restart a nuclear facility. Serves as the Standards Executive for the Department of Energy and...

220

Nuclear Facility Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nuclear Energy Technical Assistance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas emitting electricity. In addition, nuclear power plants do not release air pollutants, providing an important option for improving air quality. Globally, nuclear...

222

Dr. Elizabeth Sherwood-Randall, a Top White House National Security Council Official, Confirmed as Deputy Secretary of Department of Energy  

Broader source: Energy.gov [DOE]

Dr. Elizabeth Sherwood-Randall was confirmed by the Senate on Thursday, September 18, 2014, as the Department of Energy’s Deputy Secretary.

223

Theories of Low Energy Nuclear Transmutations  

E-Print Network [OSTI]

Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

Y. N. Srivastava; A. Widom; J. Swain

2012-10-27T23:59:59.000Z

224

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network [OSTI]

planning and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, for Weapons Ac- tivities and Defense Nuclear Nonproliferation, and Federal employees at the NNSA service379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

225

Meeting between Department of Energy Contractor and the Nuclear...  

Energy Savers [EERE]

between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear...

226

Nuclear energy: current situation and prospects to 2020  

Science Journals Connector (OSTI)

...Blundell and Fraser Armstrong Nuclear energy: current situation and prospects...stand to improve the economics of nuclear energy still further. Waste volumes...UK's long-term energy needs. nuclear energy|fission|reactor systems...

2007-01-01T23:59:59.000Z

227

Nuclear Processes at Solar Energy  

E-Print Network [OSTI]

LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

Carlo Broggini

2003-08-29T23:59:59.000Z

228

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

A Brief History of Nuclear Energy . . . . . . . . NuclearBrief History of Nuclear Energy The history of nuclear powerRisk The history of nuclear energy to date reflects

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

229

Nuclear Energy Research Advisory Subcommittee Meeting  

Broader source: Energy.gov (indexed) [DOE]

to the Minutes for the to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting September 30 to October 1, 2002 MEMORANDUM To: Chairman, Nuclear Energy Research Advisory Committee (NERAC) From: Thomas B. Cochran, Member of NERAC Date: October 16, 2002 Subject: "A Technology Roadmap on Generation IV Nuclear Energy Systems," a report of the NERAC Subcommittee on Generation IV Technology Planning Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon- usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by

230

Spacings of Nuclear Energy Levels  

Science Journals Connector (OSTI)

The distribution of spacings of nuclear energy levels in many heavy nuclei at an excitation energy of 5 to 9 Mev is obtained by careful correction of the observed distributions for the effect of failure to observe all levels. Results of transmission measurements on U234 and U236, as measured with the Brookhaven fast chopper, are presented. The experimental spacings of the zero-spin nuclides are considered first since all the levels from slow neutron capture have the same spin. The results show a deficiency of small spacings relative to the exponential distribution, which corresponds to a random occurrence of levels. In the analysis it is shown that there is no local correlation of neutron widths and level spacings. The "level repulsion" effect is also found for the nuclides of nonzero spin, for which the data are more abundant but the analysis is complicated by the presence of two spin systems. The distribution obtained is in agreement with one suggested by Wigner based on a probability of level occurrence proportional to the spacing S. The corrections here developed are also applied to the reduced neutron width distribution and this corrected distribution is in good agreement with the Porter-Thomas distribution.

John A. Harvey and D. J. Hughes

1958-01-15T23:59:59.000Z

231

Nuclear energy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear energy Nuclear energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time

232

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing worldÂ’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

233

Energy Praises the Nuclear Regulatory Commission Approval of...  

Office of Environmental Management (EM)

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

234

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Broader source: Energy.gov (indexed) [DOE]

Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

235

The role of chemistry in the utilization of nuclear energy  

Science Journals Connector (OSTI)

The role of chemistry in the utilization of nuclear energy ... Considers the topics of tracer chemistry, nuclear chemistry, radiation chemistry, and the development of nuclear power. ...

Herbert M. Clark

1958-01-01T23:59:59.000Z

236

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network [OSTI]

The bilateral nuclear and security agreement between theThe bilateral nuclear and security agreement between thein East Asia's security, nuclear energy, and environment. It

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

237

U.S. NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

U.S. NUCLEAR WASTE TECHNICAL REVIEW BOARD The U.S. Congress And The Secretary of Energy Report.nwtrb.gov, the NWTRB Web site. #12;#12;#12;NUCLEAR WASTE TECHNICAL REVIEW BOARD Dr. Jared L. Cohon, Chairman Carnegie, California Dr. Debra S. Knopman Progressive Policy Institute Washington, D.C. Dr. Priscilla P. Nelson

238

Surface Symmetry Energy of Nuclear Energy Density Functionals.  

E-Print Network [OSTI]

??The thesis studies the bulk deformation properties of the Skyrme nuclear energy densityfunctionals. Following simple arguments based on the leptodermous expansion andliquid drop model, the… (more)

Nikolov, Nikola Iliev

2011-01-01T23:59:59.000Z

239

Nuclear Energy Research Advisory Committee Meeting  

Broader source: Energy.gov (indexed) [DOE]

10/03/02 10/03/02 Appendix A to the Minutes for the Nuclear Energy Research Advisory Committee Meeting September 30 to October 1, 2002 Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report October 3, 2002 The Roadmap Context The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV

240

United States-Japan Joint Nuclear Energy Action Plan | Department...  

Broader source: Energy.gov (indexed) [DOE]

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan An outline on the United States and Japan's joint nuclear energy action...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Summary Pamphlet, Nuclear Safety at the Department of Energy...  

Office of Environmental Management (EM)

Summary Pamphlet, Nuclear Safety at the Department of Energy Summary Pamphlet, Nuclear Safety at the Department of Energy September 2010 This pamphlet is developed as part of the...

242

Energy/National Nuclear Security Administration (NNSA) Career...  

Energy Savers [EERE]

Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

243

Fostering the Next Generation of Nuclear Energy Technology |...  

Office of Environmental Management (EM)

Fostering the Next Generation of Nuclear Energy Technology Fostering the Next Generation of Nuclear Energy Technology September 29, 2014 - 11:06am Addthis Fostering the Next...

244

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Office of Environmental Management (EM)

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

245

International Framework for Nuclear Energy Cooperation to Hold...  

Energy Savers [EERE]

Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

246

Nuclear Energy Research Advisory Committee (NERAC) agenda 11...  

Broader source: Energy.gov (indexed) [DOE]

agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

247

Draft Advanced Nuclear Energy Solicitation Fact Sheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet Draft Advanced Nuclear Energy Solicitation Fact Sheet Draft Advanced Nuclear Energy Projects Solicitation Fact Sheet (September 2014) More Documents & Publications Draft...

248

United States -Japan Joint Nuclear Energy Action Plan | Department...  

Energy Savers [EERE]

United States -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan...

249

Energy Department Invests $67 Million to Advanced Nuclear Technology...  

Office of Environmental Management (EM)

Energy Department Invests 67 Million to Advanced Nuclear Technology Energy Department Invests 67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News...

250

Role of inorganic chemistry on nuclear energy examined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical...

251

Nuclear energy field fascinates David Parkinson, chemical engineer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear energy field fascinates David Parkinson, chemical engineer Nuclear energy field fascinates David Parkinson, chemical engineer Chemical engineer undergraduate designs and...

252

DOE's Approach to Nuclear Facility Safety Analysis and Management  

Broader source: Energy.gov [DOE]

Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

253

Viscosity of High Energy Nuclear Fluids  

E-Print Network [OSTI]

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

254

Nuclear Facility Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Operations Facility Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program laboratory In addition to enabling the Office of Nuclear Energy to develop space power systems and advanced fuel cycle and reactor technologies, INL facilities are used by the National Nuclear Security Administration and other DOE offices, together with other Federal agencies such as the Department of

255

Small Modular Nuclear Reactors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

256

THE NUCLEAR ENERGY REVOLUTION—1966  

Science Journals Connector (OSTI)

...of the coming generation. It is this...cheap nuclear power, about which...water nuclear power plant. At its...for a coal-fired power plant of the...Utilities Rochester Gas & Electric Consolidated...available for generation 76 per cent of...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

257

The Future of Energy from Nuclear Fission  

SciTech Connect (OSTI)

Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

Kim, Son H.; Taiwo, Temitope

2013-04-13T23:59:59.000Z

258

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

259

5 Questions for Scientist Dr. Lidija Sekaric of the Energy Department’s SunShot Initiative  

Office of Energy Efficiency and Renewable Energy (EERE)

Dr. Lidija Sekaric manages the Technology to Market Program for the Office of Energy Efficiency and Renewable Energy's SunShot Initiative. Find out what inspired her to become a scientist and what advice she has for others who are interested in pursuing a career in STEM.

260

DANIEL M. KAMMEN Dr. Kammen is the Class of 1935 Distinguished Professor of Energy at the University of  

E-Print Network [OSTI]

, including Newsweek, Time, The New York Times, The Guardian, and The Financial Times. Kammen has appearedDANIEL M. KAMMEN Dr. Kammen is the Class of 1935 Distinguished Professor of Energy at the University of California, Berkeley, with parallel appointments in the Energy and Resources Group, the Goldman

Kammen, Daniel M.

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network [OSTI]

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

262

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs. Speakers President Obama, Steven Chu Duration 10:42 Topic Energy Economy Loans Energy Policy Credit Video courtesy of WhiteHouse.gov PRESIDENT BARACK OBAMA: Good morning, everybody. AUDIENCE MEMBERS: Good morning. PRESIDENT OBAMA: Before I begin, let me just acknowledge some of the people who are standing behind me here. First of all, two people who've been working really hard to make this day happen, Secretary Steven Chu, my energy secretary - Steven Chu - (applause) - and my White House

263

Investing in Clean, Safe Nuclear Energy  

SciTech Connect (OSTI)

President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

President Obama

2010-02-16T23:59:59.000Z

264

Manpower development for new nuclear energy programs  

E-Print Network [OSTI]

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

265

Department of Energy Nuclear Safety Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

2011-02-08T23:59:59.000Z

266

Nuclear diffractive structure functions at high energies  

E-Print Network [OSTI]

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

267

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Research Advisory Committee, Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

268

Nuclear Energy Density Optimization: UNEDF2  

E-Print Network [OSTI]

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

Kortelainen, M; Nazarewicz, W; Olsen, E; Reinhard, P -G; Sarich, J; Schunck, N; Wild, S M; Davesne, D; Erler, J; Pastore, A

2014-01-01T23:59:59.000Z

269

Nuclear Energy Density Optimization: UNEDF2  

E-Print Network [OSTI]

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-10-30T23:59:59.000Z

270

Symmetry energy in nuclear density functional theory  

E-Print Network [OSTI]

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

271

Why Nuclear Energy? - Reactors designed/built by Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

272

Nuclear and gravitational energies in stars  

E-Print Network [OSTI]

The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M 8 Msol), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

Meynet, Georges; Ekström, Sylvia

2013-01-01T23:59:59.000Z

273

Intermediate-energy nuclear chemistry workshop  

SciTech Connect (OSTI)

This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

1981-05-01T23:59:59.000Z

274

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

275

Dimitri Kusnezov | Department of Energy  

Energy Savers [EERE]

Dimitri Kusnezov About Us Dimitri Kusnezov - Chief Scientist & Senior Advisor to the Secretary, National Nuclear Security Administration, Department of Energy Dr. Dmitri Kusnezov...

276

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR...  

Broader source: Energy.gov (indexed) [DOE]

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND...

277

High-energy nuclear physics and nuclear astrophysics at the Radium Institute  

Science Journals Connector (OSTI)

Research into high-energy nuclear physics and nuclear astrophysics at the Radium Institute is briefly ... well as the history of research on high-energy physics. The basic work on nuclear astrophysics, cosmochron...

O. V. Lozhkin

1999-06-01T23:59:59.000Z

278

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the worldÂ’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the worldÂ’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the worldÂ’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

279

Dr. Daniel Bullen- Biography  

Broader source: Energy.gov [DOE]

Dr. Daniel Bullen is the Defense Nuclear Facilities Board Lead of their Nuclear Programs & Analysis Group. He has been on the nuclear engineering faculty of several universities, consulting engineer for a number of technology firms, and an engineer with DOE's Lawrence Livermore National Laboratory.

280

A perfect match: Nuclear energy and the National Energy Strategy  

SciTech Connect (OSTI)

In the course of developing the National Energy Strategy, the Department of Energy held 15 public hearings, heard from more than 375 witnesses and received more than 1000 written comments. In April 1990, the Department published an Interim Report on the National Energy Strategy, which compiles those public comments. The National Energy Strategy must be based on actual experience and factual analysis of our energy, economic and environmental situation. This report by the Nuclear Power Oversight committee, which represents electric utilities and other organizations involved in supplying electricity from nuclear energy to the American people, provides such an analysis. The conclusions here are based on hard facts and actual worldwide experience. This analysis of all the available data supports -- indeed, dictates -- expanded reliance on nuclear energy in this nation's energy supply to achieve the President's goals. 33 figs.

Not Available

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Synergistic energy conversion processes using nuclear energy and fossil fuels  

Science Journals Connector (OSTI)

This paper reviews the methods of producing energy carriers, such as electricity, hydrocarbons and hydrogen, by utilising both nuclear energy and fossil fuels synergistically. There are many possibilities for new, innovative, synergistic processes, which combine chemical and nuclear systems for efficient, clean and economical production of energy carriers. Besides the individual processes by each form of energy to produce the energy carriers, the synergistic processes which use two primary energies to produce the energy carriers will become important with the features of resource saving, CO2 emission reduction and economic production, due to the higher conversion efficiency and low cost of nuclear heat. The synergistic processes will be indispensable to the 21st century, when efficient best-mixed supplies of available primary energies are crucial.

Masao Hori

2009-01-01T23:59:59.000Z

282

Dr. Peter S. Winokur- Biography  

Broader source: Energy.gov [DOE]

Dr. Peter S. Winokur of Maryland has been appointed a Member of the Defense Nuclear Facilities Safety Board for a term expiring October 18, 2014.

283

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network [OSTI]

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low-energy 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density nuclear physics: the relationship between low-energy, non- perturbative QCD and the rich structure

Weise, Wolfram

284

Chapter 17 - Nuclear heat energy  

Science Journals Connector (OSTI)

Abstract This chapter delves into the important heating processes within a nuclear power plant. Applying Fourier’s law of heat conduction permits determining temperature distributions within the nuclear fuel rods. In contrast, convective cooling occurs on the rod surface. The coolant, cladding and fuel temperature distributions through a reactor are determined. Besides heat transfer in the reactor core, some power plants employ heat exchangers to generate steam that is fed to a turbine-generator to produce electricity. As a consequence of the second law of thermodynamics, thermal power plants reject condenser heat to the environment through mechanisms such as cooling towers.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

285

Climate Control Using Nuclear Energy  

E-Print Network [OSTI]

We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

Moninder Singh Modgil

2008-01-01T23:59:59.000Z

286

Nuclear Hybrid Energy Systems: Challenges and Opportunities  

SciTech Connect (OSTI)

With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

2014-07-01T23:59:59.000Z

287

First Office of Nuclear Energy -Tribal Leader Dialogue | Department of  

Broader source: Energy.gov (indexed) [DOE]

First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue November 14, 2013 - 4:48pm Addthis First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy On October 30th, I hosted Tribal Leaders from all over the United States at the first Office of Nuclear Energy (NE) and Tribal Leader Dialogue (Dialogue) in New Orleans, Louisiana. The Dialogue was a great success! The Tribal Leaders and I were able sit down together to discuss the issues surrounding nuclear energy in the

288

First Office of Nuclear Energy -Tribal Leader Dialogue | Department of  

Broader source: Energy.gov (indexed) [DOE]

First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue November 14, 2013 - 4:48pm Addthis First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue First Office of Nuclear Energy -Tribal Leader Dialogue Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy On October 30th, I hosted Tribal Leaders from all over the United States at the first Office of Nuclear Energy (NE) and Tribal Leader Dialogue (Dialogue) in New Orleans, Louisiana. The Dialogue was a great success! The Tribal Leaders and I were able sit down together to discuss the issues surrounding nuclear energy in the

289

Social Institutions and Nuclear Energy  

Science Journals Connector (OSTI)

...that no harm will befall the public. The question has only one...entire safety sys-tem of the Hanford-N reactor (a one-of-a-kind...reactor, as in the case of the Hanford-N reactor, has two entirely...Radioactive Materials If, by the year 2000, we have 106 megawatts of nuclear...

Alvin M. Weinberg

1972-07-07T23:59:59.000Z

290

The History of Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

History of Nuclear Energy History of Nuclear Energy The History of Nuclear Energy Although they are tiny, atoms have a large amount of energy holding their nuclei together. Certain isotopes of some elements can be split and will release part of their energy as heat. This splitting is called fission. The heat released in fission can be used to help generate electricity in powerplants. Uranium-235 (U-235) is one of the isotopes that fissions easily. During fission, U-235 atoms absorb loose neutrons. This causes U-235 to become unstable and split into two light atoms called fission products. The combined mass of the fission products is less than that of the original U-235. The reduction occurs because some of the matter changes into energy. The energy is released as heat. Two or three neutrons

291

Variational description of the nuclear free energy  

Science Journals Connector (OSTI)

By means of a variational calculation, we place an upper bound on the finite-temperature free energy for nuclear systems which can be described by pseudospin Hamiltonians. The trial states are irreducible permutation invariant Gibbs states. The best trial state is the one which minimizes the free energy operator. We compare the upper bound with the numerically computed free energy for the Meshkov-Glick-Lipkin Hamiltonian for various values of nucleon number N and nuclear interaction strength V. For large N and/or ?(=1kT) the best trial Gibbs state becomes a good approximation to the actual density operator. Somewhat surprisingly, the variational approach reveals the presence of a second order thermodynamic phase transition much more clearly than the numerical computation does, even though the former is only an approximation to the latter.NUCLEAR STRUCTURE Finite-temperature free energy, pseudospin Hamiltonian, variational description and phase transitions, atomic coherent states.

Da Hsuan Feng; Robert Gilmore; L. M. Narducci

1979-03-01T23:59:59.000Z

292

Nuclear energy and the greenhouse effect  

Science Journals Connector (OSTI)

The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood, strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, an acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical.

Alvin M. Weinberg

1990-01-01T23:59:59.000Z

293

Platts 4th Annual Nuclear Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference February 5, 2008 - 11:13am Addthis Remarks as Prepared for Delivery for Assistant Secretary Spurgeon Thank you, and thank you to Platts for inviting me to address this conference. This morning you have heard much about the state of new nuclear power in the U.S. and with some of the notable speakers here, probably everything about U.S. expansion that needs to be said has been said, it just hasn't been said by everyone. But I am here to give you the Federal perspective on this exciting time in nuclear power, not only here in the United States but around the world. I also stand before you in the last year of an Administration, one that since its first day in office has

294

Platts 4th Annual Nuclear Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference Platts 4th Annual Nuclear Energy Conference February 5, 2008 - 11:13am Addthis Remarks as Prepared for Delivery for Assistant Secretary Spurgeon Thank you, and thank you to Platts for inviting me to address this conference. This morning you have heard much about the state of new nuclear power in the U.S. and with some of the notable speakers here, probably everything about U.S. expansion that needs to be said has been said, it just hasn't been said by everyone. But I am here to give you the Federal perspective on this exciting time in nuclear power, not only here in the United States but around the world. I also stand before you in the last year of an Administration, one that since its first day in office has

295

NUCLEAR MATERIALTRANSACTION REPORT | Department of Energy  

Energy Savers [EERE]

NUCLEAR MATERIALTRANSACTION REPORT NUCLEAR MATERIALTRANSACTION REPORT Form used to support nuclear materials accountability and control. NUCLEAR MATERIALTRANSACTION REPORT More...

296

TEPP - Spent Nuclear Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Spent Nuclear Fuel - Spent Nuclear Fuel TEPP - Spent Nuclear Fuel This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel. This exercise manual is one in a series of five scenarios developed by the Department of Energy Transportation Emergency Preparedness Program. Responding agencies may include several or more of the following: local municipal and county fire, police, sheriff, and Emergency Medical Services (EMS) personnel; state, local, and federal emergency response teams; emergency response contractors;and other emergency response resources that could potentially be provided by the carrier and the originating facility (shipper). Spent Nuclear Fuel.docx More Documents & Publications

297

Nuclear Safety Workshop Summary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Workshop Summary Workshop Summary Nuclear Safety Workshop Summary September 19-20, 2012 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme was Post Fukushima Initiatives and Results, and included technical breakout sessions focused on beyond design basis events (BDBEs) analysis and response, safety culture, and risk assessment and management.

298

Nuclear energy policy in Belgium after Fukushima  

Science Journals Connector (OSTI)

Abstract The Belgian nuclear phase-out law imposes closing down in the 2015–2025 period seven nuclear power plants (NPPs) producing more than 50% of the domestic electricity. This creates an urgent problem in the country because of the absence of well-defined capacity-replacement plans. Though a safety-of-supply provision in the law allows for a delayed phase-out, hopes for a technically acceptable schedule have reduced after the Fukushima nuclear disaster in March 2011. In this article policy investigations are made with system dynamics. A significant finding from such modelling is that, in contrast to common expectations, a too early nuclear phase-out will not serve the deployment of renewable energy sources and rational use of energy. It is indeed found to primarily benefit to fossil fuel, creating unwanted drawbacks regarding safety of supply, dependency on foreign suppliers, price volatility, and increased use of non-renewable and CO2-emitting fossil fuels.

Pierre L. Kunsch; Jean Friesewinkel

2014-01-01T23:59:59.000Z

299

Nuclear energy: The civilians take charge - Argonne's Historical News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear energy: The civilians take charge Nuclear energy: The civilians take charge About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

300

Why are Some People Afraid of Nuclear Energy?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why are some people afraid of Nuclear Energy? Why are some people afraid of Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Blue Ribbon Commission on America's Nuclear Future: Report to the Secretary of Energy  

SciTech Connect (OSTI)

Preamble The Blue Ribbon Commission on America’s Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new strategy. It was co-chaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners are Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, Ms. Susan Eisenhower, Sen. Chuck Hagel, Mr. Jonathan Lash, Dr. Allison M. Macfarlane, Dr. Richard A. Meserve, Dr. Ernest J. Moniz, Dr. Per Peterson, Mr. John Rowe, and Rep. Phil Sharp. The Commission and its subcommittees met more than two dozen times between March 2010 and January 2012 to hear testimony from experts and stakeholders, to visit nuclear waste management facilities in the United States and abroad, and to discuss the issues identified in its Charter. Additionally, in September and October 2011, the Commission held five public meetings, in different regions of the country, to hear feedback on its draft report. A wide variety of organizations, interest groups, and individuals provided input to the Commission at these meetings and through the submission of written materials. Copies of all of these submissions, along with records and transcripts of past meetings, are available at the BRC website (www.brc.gov). This report highlights the Commission’s findings and conclusions and presents recommendations for consideration by the Administration and Congress, as well as interested state, tribal and local governments, other stakeholders, and the public.

none,

2012-01-01T23:59:59.000Z

302

Instabilities in the Nuclear Energy Density Functional  

E-Print Network [OSTI]

In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

M. Kortelainen; T. Lesinski

2010-02-05T23:59:59.000Z

303

Turkey's nuclear energy policy: towards a sustainable energy mix?  

Science Journals Connector (OSTI)

To originate new sustainable development policies is a prerequisite for achieving a higher level of worldwide economic and social development. The efficiency of a sustainable development policy could, and should, be measured by a multi-dimensional analysis that comprises all social, economic and environmental factors. Acknowledging the requirement to have a sustainable energy mix, net energy importer Turkey has initiated its nuclear energy programme. However, this move by Turkey also brings forth certain environmental, social and economic issues that have been a matter of ongoing debate. This study aims not only to contribute to the debate by providing a balanced enquiry of nuclear energy's pros and cons, but also to determine the pre-conditions for it to prompt Turkey to reach a sustainable energy future. The nuclear option has a significant potential to drive Turkey's transition to sustainable energy as long as several environmental, social and economic risk factors are minimised.

Emre ??eri; Cem Ă?zen

2013-01-01T23:59:59.000Z

304

Nuclear and gravitational energies in stars  

SciTech Connect (OSTI)

The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ?}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ?}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

Meynet, Georges; Ekström, Sylvia [Astronomical Observatory of Geneva University (Switzerland); Courvoisier, Thierry [ISDC, Astronomical Observatory of Geneva University (Switzerland)

2014-05-09T23:59:59.000Z

305

Coal and nuclear power: Illinois' energy future  

SciTech Connect (OSTI)

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

306

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

307

Sandia National Laboratories: Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Reference Model 5...

308

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

fired power plant per unit of electrical energy. Wind powerpower plants will not be cost competitive with other electricity-generating alternatives. For example, wind

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

309

Optimal Participation of DR Aggregators in Day-Ahead Energy and Demand Response Exchange Markets  

Science Journals Connector (OSTI)

Aggregating the Demand Response (DR) is approved as an effective ... transmission system operator, distributors, and retailers in Demand Response eXchange (DRX) market, in addition to...

Ehsan Heydarian-Forushani…

2014-01-01T23:59:59.000Z

310

2009 Annual Reports Issued for Nuclear Energy Research Initiative and  

Broader source: Energy.gov (indexed) [DOE]

2009 Annual Reports Issued for Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative July 2, 2010 - 11:49am Addthis On July 2, 2010, the Department of Energy's (DOE) Office of Nuclear Energy (NE) issued annual reports for its Nuclear Energy Research Initiative (NERI) andInternational Nuclear Energy Research Initiative (I-NERI), describing accomplishments achieved in 2009. The NERI and I-NERI programs have furthered DOE goals for the past decade, conducting research into many of the key technical issues that impact the expanded use of advanced nuclear energy systems. Researchers have fostered innovative ideas

311

United States Nuclear Energy and Non-Proliferation Policy  

Science Journals Connector (OSTI)

I believe that U.S. nuclear energy and non-proliferation policy is not well understood, and I hope ... I shall speak first about the role of nuclear energy within the context of overall energy policy, then about ...

Daniel P. Serwer

1980-01-01T23:59:59.000Z

312

High Energy Nuclear Interactions and Structure of Elementary Particles  

Science Journals Connector (OSTI)

......research-article Articles High Energy Nuclear Interactions and Structure...role in extremely high energy interactions in cosmic...looked for in accelerator energy region. It is suggested...Theoretical Physics on nuclear forces. 6) S. Hayakawa......

Mituo Taketani; Yoichi Fujimoto

1965-01-01T23:59:59.000Z

313

Nuclear Fuel Cycle | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

314

Accelerator Driven Nuclear Energy - The Thorium Option  

ScienceCinema (OSTI)

Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

Rajendran Raja

2010-01-08T23:59:59.000Z

315

What Will it Take to Revive Nuclear Energy ?  

E-Print Network [OSTI]

What Will it Take to Revive Nuclear Energy ? [Assuming you want to] Andrew C. Kadak Professor;Present Situation · It doesn't get any better than this for nuclear energy! ­ Very Good Nuclear Regulatory rhetoric from the President and Congress about need for nuclear energy for environment, security

316

www.inl.gov A Future of Nuclear Energy  

E-Print Network [OSTI]

www.inl.gov A Future of Nuclear Energy: The Nuclear Renaissance, the Role of INL, and Potential in Nuclear Energy · Electrical Generation Supply/Demand · Global Warming, Greenhouse Gas Emissions/kilowatt-hour) Facts regarding nuclear energy in the US #12;· Standardized designs based on modularization producing

317

India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear fission  

E-Print Network [OSTI]

India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear posed by reactors, the accident liability laws and regulatory structure governing nuclear energy, Wednesday, Oct 29th 4:00 PM (Tea/Coffee at Seminar Hall, TCIS Colloquium India's Nuclear Energy Program

Shyamasundar, R.K.

318

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network [OSTI]

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Dario Vretenar

2008-02-06T23:59:59.000Z

319

Argonne OutLoud Public Lecture Series: Nuclear Energy | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Share Description On November 15, 2012, Argonne National Laboratory opened its doors to the public for a presentationdiscussion titled "Getting to Know Nuclear:...

320

Department of Energy Issues Requests for Applications for Nuclear...  

Office of Environmental Management (EM)

for Nuclear Science and Engineering Scholarships and Fellowships Department of Energy Issues Requests for Applications for Nuclear Science and Engineering Scholarships and...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Department of Energy Issues Requests for Applications for Nuclear...  

Energy Savers [EERE]

Issues Requests for Applications for Nuclear-Related Science and Engineering Scholarships and Fellowships Department of Energy Issues Requests for Applications for Nuclear-Related...

322

Department of Energy Cites Savannah River Nuclear Solutions for...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Nuclear Solutions for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions for Worker Safety and Health Violations October...

323

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

324

Nuclear Energy Policy University of Nevada ? Reno 27 March...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Safe, effective disposition of spent nuclear fuel not yet demonstrated What's driving nuclear expansion * Rapid increase in global energy demand * Rising importance of carbon...

325

Nuclear Energy University Program: A Presentation to Vice Presidents...  

Office of Environmental Management (EM)

Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

326

Energy Department Announces New Investments in Advanced Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors October 31, 2014 - 12:20pm Addthis NEWS...

327

Role of inorganic chemistry on nuclear energy examined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues surrounding nuclear power production and waste...

328

Not in our backyard : the dangers of nuclear energy.  

E-Print Network [OSTI]

??Despite seeing the destruction caused by nuclear accidents at Three Mile Island, Chernobyl, and Fukushima, many people still believe that nuclear energy is necessary to… (more)

McGeown, Emily Elizabeth, 1990-

2012-01-01T23:59:59.000Z

329

Nuclear energy is an important source of power, supplying 20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from...

330

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect (OSTI)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

331

US-Japan_NuclearEnergyActionPlan.pdf | Department of Energy  

Energy Savers [EERE]

US-JapanNuclearEnergyActionPlan.pdf US-JapanNuclearEnergyActionPlan.pdf US-JapanNuclearEnergyActionPlan.pdf More Documents & Publications Fact Sheet: United States-Japan Joint...

332

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Broader source: Energy.gov (indexed) [DOE]

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

333

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

334

Department of Energy Announces New Nuclear Initiative | Department of  

Broader source: Energy.gov (indexed) [DOE]

of Energy Announces New Nuclear Initiative of Energy Announces New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists.

335

International Nuclear Energy Research Initiative (I-NERI) Annual Reports |  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports August 13, 2013 International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the

336

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

337

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program Awards Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

338

Department of Energy and Nuclear Regulatory Commission Increase Cooperation  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Regulatory Commission Increase Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP) through a Memorandum of Understanding (MOU) that was signed on Friday by DOE's GNEP Deputy Program Manager Paul Lisowski and NRC Executive Director for Operations Luis Reyes. The MOU establishes the foundation for increased cooperation between DOE and NRC on technological research and engineering studies and marks another important milestone

339

Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies  

E-Print Network [OSTI]

We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

T. Niksic; D. Vretenar; P. Ring

2008-09-08T23:59:59.000Z

340

THE NUCLEAR ENERGY REVOLUTION—1966  

Science Journals Connector (OSTI)

...power. The estimated water cost at the plant site...assessed against municipal water projects. A more recent...using an organic- cooled heavy-water reactor as the energy source and a slightly more advanced evaporator with a performance...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy partition in nuclear fission  

Science Journals Connector (OSTI)

A scission point model (two spheroid model TSM) including semi-empirical, temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-...

A. Ruben; H. Märten; D. Seeliger

1991-01-01T23:59:59.000Z

342

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 6, 2010 May 6, 2010 CX-002327: Categorical Exclusion Determination Central Facility Area and Advanced Test Reactor-Complex Analytical and Research and Development Laboratory Operation (Overarching) CX(s) Applied: B3.6 Date: 05/06/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002192: Categorical Exclusion Determination Site Wide Well Abandonment Activities CX(s) Applied: B2.5, B3.1 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002584: Categorical Exclusion Determination Nuclear Fabrication Consortium CX(s) Applied: B3.6, A9, A11 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 12, 2010 CX-001627: Categorical Exclusion Determination

343

Nuclear energy density optimization: Shell structure  

E-Print Network [OSTI]

Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2013-12-06T23:59:59.000Z

344

Dr. Robert Blankenship | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robert Blankenship September 10, 2011 Dr. Robert Blankenship "Solar Energy and Photosynthetic Antenna Research" Published: September 10, 2011 Dr. Robert Blankenship, Lucille P....

345

DOE Physicists at Work - Dr. Peter Beiersdorfer | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

Physicists at Work - Dr. Peter Beiersdorfer Physicists at Work - Dr. Peter Beiersdorfer DOE Physicists at Work Archive DOE Office of Science celebrates 2005 World Year of Physics DOE Physicists at Work Profiles of representative DOE-sponsored physicists doing research at universities and national laboratories Compiled by the Office of Scientific and Technical Information Dr. Peter Beiersdorfer It was just a simple iron wire, strung across the ceiling, that when heated by a current expanded and dropped lower. But that wire, along with a professor willing to take a different approach, confirmed in Peter Beiersdorfer's mind that experimental physics was the way to go. Dr. Peter Beiersdorfer "When trying to decide what field to study after high school, I simply faced too many possibilities," says Dr. Beiersdorfer, group leader of the

346

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and ...

Vogt, D A B R

2005-01-01T23:59:59.000Z

347

Symmetry energy coefficients for asymmetric nuclear matter  

E-Print Network [OSTI]

Symmetry energy coefficients of asymmetric nuclear matter are investigated as the inverse of nuclear matter polarizabilities with two different approaches. Firstly a general calculation shows they may depend on the neutron-proton asymmetry itself. The choice of particular prescriptions for the density fluctuations lead to certain isospin (n-p asymmetry) dependences of the polarizabilities. Secondly, with Skyrme type interactions, the static limit of the dynamical polarizability is investigated corresponding to the inverse symmetry energy coefficient which assumes different values at different asymmetries (and densities and temperatures). The symmetry energy coefficient (in the isovector channel) is found to increase as n-p asymmetries increase. The spin symmetry energy coefficient is also briefly investigated.

Fábio L. Braghin

2003-12-16T23:59:59.000Z

348

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

349

Nuclear Energy In the United States Executive Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Status and Outlook for Nuclear Energy In the United States Executive Summary The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear...

350

Department of Energy Announces New Nuclear Initiative | Department of  

Broader source: Energy.gov (indexed) [DOE]

New Nuclear Initiative New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists. "GNEP brings the promise of virtually limitless energy to emerging

351

Data requirements for intermediate energy nuclear applications  

SciTech Connect (OSTI)

Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.

Pearlstein, S.

1990-01-01T23:59:59.000Z

352

Nuclear curvature energy in relativistic models  

Science Journals Connector (OSTI)

The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement. © 1996 The American Physical Society.

M. Centelles; X. Vińas; P. Schuck

1996-02-01T23:59:59.000Z

353

Flexibility assessment in nuclear energy dominated systems with  

E-Print Network [OSTI]

generation (2008). The study evaluates the ability of nuclear reactors to follow the load under severalEA 4272 Flexibility assessment in nuclear energy dominated systems with increased wind energy;1 Flexibility assessment in nuclear energy dominated systems with increased wind energy shares Rodica Loisel

Paris-Sud XI, Université de

354

Nuclear Science and Engineering Education Sourcebook | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science and Engineering Education Sourcebook Science and Engineering Education Sourcebook Nuclear Science and Engineering Education Sourcebook The Nuclear Science and Engineering Education Sourcebook is a repository of critial information on nuclear engineering programs at U.S. colleges and universities. It includes detailed information such as nuclear engineering enrollments, degrees, and faculty expertise. In this latest edition, science faculty and programs relevant to nuclear energy are also included. NuclearScienceEngineeringSourcebook2013.pdf More Documents & Publications University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee The Future of University Nuclear Engineering Programs and University Research and Training Reactors Clark Atlanta Universities (CAU) Energy Related Research Capabilities

355

Studies in Low-Energy Nuclear Science  

SciTech Connect (OSTI)

This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

Carl R. Brune; Steven M. Grimes

2010-01-13T23:59:59.000Z

356

Curriculum Vitae Dr. Christopher Koroneosring Curriculum Vitae  

E-Print Network [OSTI]

Curriculum Vitae Dr. Christopher Koroneosring 1 Curriculum Vitae CHRISTOPHER J. KORONEOS Work of Athens Course Taught: "Renewable Energy Sources" Professor 2004 - Present #12;Curriculum Vitae Dr Management #12;Curriculum Vitae Dr. Christopher Koroneosring 3 Senior Research Engineer 1987- 1988 DOW

357

Microsoft PowerPoint - Why Nuclear Energy New Template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Nuclear Energy? Why Nuclear Energy? Why Nuclear Energy? Nuclear energy already meets a significant share of the world's energy needs * There are 441 nuclear reactors in operation in 31 countries * These plants generate electricity for nearly a billion people, and account for 17% of the world's electricity production * The U.S. has 103 operating reactors producing 20% of the nation's electricity * Illinois leads all states with the highest share of nuclear (51%) * Technology significantly developed at Argonne forms the basis of all nuclear energy systems used worldwide Nuclear power is reliable and economical * In 2001, U.S. nuclear plants produced electricity for 1.68 cents per kilowatt-hour on average, second only to hydroelectric power among baseload generation options * U.S. nuclear power plant performance has steadily

358

Dr. Gary Katz, Dr. Richard Navarro, Dr. Jimmie Flanagin, Dr. Penelope Collins, Dr. Ann Devaney, Dr. Shahnaz Lotfipour Congratulations to Dr. Jimmie Flanagin  

E-Print Network [OSTI]

Dr. Gary Katz, Dr. Richard Navarro, Dr. Jimmie Flanagin, Dr. Penelope Collins, Dr. Ann Devaney, Dr Navarro, Cal Poly Pomona; Dr. Ann Devaney, UCI Primary Reader; Dr. Amy Gimino

Loudon, Catherine

359

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services GNEP would build and strengthen a reliable international fuel services consortium under which "fuel supplier nations" would choose to operate both nuclear power plants and fuel production and handling facilities, providing reliable fuel services to "user nations" that choose to only operate nuclear power plants. This international consortium is a critical component of the GNEP initiative to build an improved, more proliferation-resistant nuclear fuel cycle that recycles used fuel, while Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services More Documents & Publications

360

Dr. Hussein Khalil at Reactor and Fuel Cycle Technologies Subcommittee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blue Blue ribbon presentation by Dr. Hussein Khalil Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Blue ribbon presentation by Hussein Khalil Hussein Khalil Dr. Hussein Khalil during the panel discussion Oct. 21, 2010 On October 12 Hussein Khalil, director of Argonne's Nuclear Engineering Division, participated in a Reactor and Fuel Cycle Technologies

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nuclear Power Facilities (2008) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) More Documents & Publications Financial Institution Partnership Program - Commercial...

362

National Nuclear Security Administration | Department of Energy  

Office of Environmental Management (EM)

National Nuclear Security Administration National Nuclear Security Administration National Nuclear Security Administration More Documents & Publications Global Threat Reduction...

363

Nuclear Transportation Management Services | Department of Energy  

Office of Environmental Management (EM)

Nuclear Transportation Management Services Nuclear Transportation Management Services Nuclear Transportation Management Services More Documents & Publications Transportation and...

364

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS  

E-Print Network [OSTI]

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS Hiroyasu EJIRI Nuclear Physics Laboratory@rcnp.osaka-u.ac.jp (H. Ejiri). Physics Reports 338 (2000) 265}351 Nuclear spin isospin responses for low-energy Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567 Japan. E-mail address: ejiri

Washington at Seattle, University of

365

Nuclear Power and the World's Energy Requirements  

E-Print Network [OSTI]

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

366

Nuclear Energy University Program: A Presentation to Vice Presidents of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program: A Presentation to Vice Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy An overview of the Office of Nuclear Energy's university programs Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy More Documents & Publications Meeting Materials: December 18, 2009 Meeting Materials: June 9, 2009 June 2011, Report of the Fuel Cycle Subcommittee of NEAC

367

Sixty-Eight Students to Receive Nuclear Energy Scholarships and...  

Energy Savers [EERE]

Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships July 17, 2013 - 10:30am...

368

Seventy-Five Students to Receive Nuclear Energy Scholarships...  

Energy Savers [EERE]

Seventy-Five Students to Receive Nuclear Energy Scholarships and Fellowships Seventy-Five Students to Receive Nuclear Energy Scholarships and Fellowships May 9, 2014 - 11:17am...

369

Statement by DOE Assistant Secretary for Nuclear Energy Dennis...  

Energy Savers [EERE]

by DOE Assistant Secretary for Nuclear Energy Dennis Spurgeon Statement by DOE Assistant Secretary for Nuclear Energy Dennis Spurgeon October 29, 2007 - 4:21pm Addthis Response to...

370

Nuclear Energy Advisory Committee Meeting Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Advisory Committee Meeting Materials Nuclear Energy Advisory Committee Meeting Materials Nuclear Energy Advisory Committee Meeting Materials November 26, 2013 MEETING MATERIALS: DECEMBER 19, 2013 Washington Marriott at Metro Center Ballroom A 775 12th Street, NW Washington, DC 20005 June 13, 2013 MEETING MATERIALS: JUNE 13, 2013 L'Enfant Plaza Hotel Ballroom D, (Main Floor) Washington, D.C. 20024 December 6, 2012 Meeting Materials: December 6, 2012 L'Enfant Plaza Hotel Quorum Room, (Main Floor) Washington, D.C. 20024 June 12, 2012 Meeting Materials: June 12, 2012 L'Enfant Plaza Hotel Monet Ballroom, (2nd Floor), Washington, D.C. 20024 December 13, 2011 Meetings Materials: December 13, 2011 L'Enfant Plaza Hotel Ballroom A - 1st Floor Washington, D.C. 20024 June 15, 2011 Meeting Materials: June 15, 2011 L'Enfant Plaza Hotel

371

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 21, 2012 March 21, 2012 CX-008252: Categorical Exclusion Determination Central Facilities Area (CFA) Shoot House Panel Installation CX(s) Applied: B2.1 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy March 21, 2012 CX-008251: Categorical Exclusion Determination International Way Office Building Lease Termination CX(s) Applied: B1.24 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy March 15, 2012 CX-008253: Categorical Exclusion Determination Materials and Fuels Complex (MFC) Contaminated Equipment Storage Building (CESB) Conversion Scope Change CX(s) Applied: B1.31 Date: 03/15/2012 Location(s): Idaho Offices(s): Nuclear Energy November 28, 2011 CX-007774: Categorical Exclusion Determination Rensselaer Infrastructure Upgrade to Enhance Research and Education in

372

Medium energy nuclear physics research  

SciTech Connect (OSTI)

This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q{sup 2}; Measurement of the 5th Structure Function in Deuterium and {sup 12}C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of {sup 117}Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from {sup 13}C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of {sup 3}He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e{prime}p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N {yields} {Delta} Excitation; Experiment E-140: Measurement of the x-, Q{sup 2} and A-Dependence of R = {sigma}{sub L}/{sigma}{sub T}; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2{gamma} Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions.

Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

1992-06-01T23:59:59.000Z

373

Monthly/Annual Energy Review - nuclear section  

Reports and Publications (EIA)

Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

2015-01-01T23:59:59.000Z

374

Nuclear Energy: Where do we go from here? Keith Bradley  

E-Print Network [OSTI]

11.30am Nuclear Energy: Where do we go from here? Keith Bradley Argonne National Laboratories Abstract For the past several decades, nuclear energy has proven to be one of the most reliable and cost technical opportunities for cutting-edge R&D. A snapshot of the current state of nuclear energy research

Levi, Anthony F. J.

375

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy  

E-Print Network [OSTI]

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983

Laughlin, Robert B.

376

Master's programme in Nuclear Energy Engineering Programme outline  

E-Print Network [OSTI]

Master's programme in Nuclear Energy Engineering Programme outline The two-year Master's programme to work abroad. career ProsPects Nuclear power is a significant part of the current energy balance.With advances in science and technology, nuclear energy is increasingly re- garded as an eminent part

Haviland, David

377

Getting to Know Nuclear Energy: The Past, Present & Future  

E-Print Network [OSTI]

Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

Kemner, Ken

378

Role of inorganic chemistry on nuclear energy examined  

E-Print Network [OSTI]

- 1 - Role of inorganic chemistry on nuclear energy examined July 31, 2013 The journal Inorganic Chemistry published a special Forum issue on the role of inorganic chemistry in nuclear energy. John Gordon and Argonne National Laboratory collaborated on the work. The DOE Office of Nuclear Energy and the Office

379

Office of Nuclear Energy, Science and Technology Executive Summary  

E-Print Network [OSTI]

Office of Nuclear Energy, Science and Technology Executive Summary Mission As we become more in this new century, the benefits of nuclear fission as a key energy source for both the near- and long method of generating energy from nuclear fission in both the United States and the world. A key mission

380

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network [OSTI]

THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

Birmingham, University of

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nuclear Energy in an Atomic Lattice: Causal Order  

Science Journals Connector (OSTI)

......research-article Progress Letters Nuclear Energy in an Atomic LatticeCausal Order...April 1991, Progress Letters Nuclear Energy in an Atomic Lattice -- Causal...collectively in absorbing the excess nuclear energy that is released in an act of......

Julian Schwinger

1991-04-01T23:59:59.000Z

382

Nuclear Reactions by a Low-Energy Pion  

Science Journals Connector (OSTI)

......research-article Articles Nuclear Reactions by a Low-Energy Pion Toshitake Kohmura...6, December 1965 Nuclear Reactions by a Low-Energy Pion Toshitake KOHMURA...transition operator as Nuclear Reactions by a Low-Energy Pion 965 A t = ~Ti......

Toshitake Kohmura

1965-12-01T23:59:59.000Z

383

United States and Italy Sign Nuclear Energy Agreements | Department of  

Broader source: Energy.gov (indexed) [DOE]

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

384

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Research Initiative: 2012 Annual International Nuclear Energy Research Initiative: 2012 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs,

385

United States and Italy Sign Nuclear Energy Agreements | Department of  

Broader source: Energy.gov (indexed) [DOE]

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

386

Some radiochemical separations employed at the Institute of Nuclear and Energy Research-Brazilian Nuclear Energy Commission  

Science Journals Connector (OSTI)

Several radiochemical separations have been employed at the Radiochemistry Division of the Institute of Nuclear and Energy Research-Brazilian Nuclear Energy Commision, for the analysis of a number...

M. B. A. Vasconcellos

1993-02-01T23:59:59.000Z

387

Energy Department Announces New Investments in University-Led Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces New Investments in University-Led Energy Department Announces New Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to deploy every available source of American energy and ensure the U.S. remains competitive globally, the Energy Department announced today more than $13 million in new investments for university-led nuclear innovation projects. The three awards announced today under the Department's Nuclear Energy University Programs (NEUP) will support nuclear energy R&D and student investment at U.S. colleges and universities across the country, ensuring that secure, safe and efficient nuclear energy

388

Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...  

Broader source: Energy.gov (indexed) [DOE]

growing energy demands. Addressing this market is essential to safely expanding nuclear energy in developing nations and small-grid markets without increasing proliferation...

389

Nuclear Energy Research Advisory Committee (NERAC) Meeting of...  

Broader source: Energy.gov (indexed) [DOE]

Meeting of November 3 and 4, 2003 Nuclear Energy Research Advisory Committee (NERAC) Meeting of November 3 and 4, 2003 The agenda for the National Energy Research Advisory...

390

Thomas Miller Office of Nuclear Energy, Science and Technology  

Broader source: Energy.gov (indexed) [DOE]

Miller Miller Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 30, 2002 Presentation at the Nuclear Energy Research Advisory Committee Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Office of Nuclear Energy, Science and Technology TMiller/Sept11_02 ESE Project.ppt ( 2) Nuclear Power 2010: Overview Nuclear Power 2010: Overview Goal 6 Achieve industry decision by 2005 to deploy at least one new advanced nuclear power plant by 2010 Cooperative Activities 6 Regulatory Demonstration Projects * Early Site Permit (ESP) * Combined Construction and Operating License (COL) 6 Reactor Technology Development Projects * NRC Design Certification (DC) * First-of-a-kind engineering for a standardized plant

391

Pilot Application to Nuclear Fuel Cycle Options | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options The Department of Energy's Office of Nuclear Energy (DOE-NE) invests in research and development (R&D) to ensure that the United States will maintain its domestic nuclear energy capability and scientific and technical leadership in the international community of nuclear power nations in the years ahead. The 2010 Nuclear Energy Research and Development Roadmap presents a high-level vision and framework for R&D activities that are needed to keep the nuclear energy option viable in the near term and to expand its use in the decades ahead. The roadmap identifies the development

392

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Broader source: Energy.gov (indexed) [DOE]

of the Nuclear Energy Research Advisory Committee, of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

393

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

394

Global Nuclear Energy Partnership Triples in Size to 16 Members |  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Partnership Triples in Size to 16 Members Nuclear Energy Partnership Triples in Size to 16 Members Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On to International Cooperation for Safe Expansion of Nuclear Energy Worldwide VIENNA, AUSTRIA - U.S. Secretary of Energy Samuel W. Bodman and senior international officials from 16 nations today agreed to increase international nuclear energy cooperation through the Global Nuclear Energy Partnership (GNEP). China, France, Japan, Russia and the United States, who are original GNEP partners, as well as Australia, Bulgaria, Ghana, Hungary, Jordan, Kazakhstan, Lithuania, Poland, Romania, Slovenia, and Ukraine signed a "Statement of Principles", which addresses the prospects of expanding the peaceful uses of nuclear energy, including enhanced

395

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 9, 2011 August 9, 2011 CX-009033: Categorical Exclusion Determination Radiation Resistant Electrical Insulation Materials for Nuclear Reactors Using Novel Nanocomposite Dielectrics - Oak Ridge National Laboratory CX(s) Applied: B3.6 Date: 08/09/2011 Location(s): Tennessee Offices(s): Nuclear Energy August 9, 2011 CX-009040: Categorical Exclusion Determination Radiation Tolerance and Mechanical Properties of Nanostructured Ceramic/metal Composites - University of Nebraska CX(s) Applied: B3.6, B3.10 Date: 08/09/2011 Location(s): Nebraska Offices(s): Nuclear Energy August 9, 2011 CX-009038: Categorical Exclusion Determination Radiation-induced Ductility Enhancement in Amorphous Fe and Al2O3+TiO2 Nanostructured Coatings in Fast Neutron and High Temperature Environments of Next Generation Reactors - Brookhaven National Laboratory

396

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

691 - 11700 of 26,764 results. 691 - 11700 of 26,764 results. Article Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy http://energy.gov/articles/dr-peter-b-lyons-confirmed-assistant-secretary-nuclear-energy Contributor Dr. Monica C. Regalbuto Dr. Regalbuto is currently the Deputy Assistant Secretary for Fuel Cycle Technologies with the Department of Energy's Office of Nuclear Energy, whose mission promotes nuclear power as a... http://energy.gov/contributors/dr-monica-c-regalbuto Download Clean Energy Education and Empowerment Women's Initiative http://energy.gov/downloads/clean-energy-education-and-empowerment-womens-initiative Download "C-3E" WOMEN'S INITIATIVE: http://energy.gov/downloads/8220c-3e8221-women8217s-initiative Download Office of the General Counsel Organization Chart

397

CP-1: the Past, Present & Future of Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CP-1: the Past, Present & Future of Nuclear Energy CP-1: the Past, Present & Future of Nuclear Energy Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share CP-1: the Past, Present & Future of Nuclear Energy Jan. 29, 2013 On January 25, 2013, a lunch program to commemorate the 70th anniversary of the world's first self-sustaining, controlled nuclear chain reaction was

398

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

399

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

MIT - Center for Advanced Nuclear Energy Systems MIT - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name MIT - Center for Advanced Nuclear Energy Systems Address 77 Massachusetts Avenue, 24-215 Place Cambridge, Massachusetts Zip 02139-4307 Phone number (617) 452-2660 Coordinates 42.3613041°, -71.0967653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3613041,"lon":-71.0967653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Ex Parte Meeting Between the Department of Energy and the Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Between the Department of Energy and the Nuclear Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 summary of ex parte meeting with the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act of 2007 More Documents & Publications Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy Institute

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy and isospin dependence of nuclear chaos  

Science Journals Connector (OSTI)

Energy levels and wave functions, obtained in realistic shell-model calculations for Ca and Sc isotopes up to A=52 and 46Ti, are analyzed using standard statistics such as the nearest level spacing distribution, the Dyson-Mehta ?3, and the mean localization length. These statistics are calculated for different energy regions of the spectrum. For all the Ca isotopes, in the ground state region the energy levels show strong deviations from Gaussian orthogonal ensemble predictions. It is shown that a transition to a more chaotic regime takes place as excitation energy increases. However, even when the full spectrum is taken into account, the ?3 and the degree of localization of the eigenfunctions in the mean-field basis prove that Ca isotopes are less chaotic than Sc isotopes. A comparison with 46Ti shows that this nucleus is still more chaotic. Thus we find a clear isospin dependence in the degree of nuclear chaoticity.

R. A. Molina; J. M. G. Gómez; J. Retamosa

2000-12-18T23:59:59.000Z

402

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Broader source: Energy.gov (indexed) [DOE]

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

403

Remarks by Dr. Eugene Garfield | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Remarks by Dr. Eugene Garfield Remarks by Dr. Eugene Garfield Chairman Emeritus of Thomson Scientific On the Occasion of the OSTI 60th Anniversary Afternoon Program September 18, 2007 Thank you, Dr. Warnick. I'd like to thank Sharon [Jordan] and Bonnie Carroll for inviting me and twisting my arm until it hurt to come here because, to be quite honest with you, I still don't know why I was selected. I know that I have a certain notoriety in the information business. You've had so many pioneers come to see you, and talk to you, and come from here, that you may listen to me but I hope that I can say a few things that will justify my residence. Forgive me if I have to skip over some thoughts. If you come tonight I'll elaborate in much greater detail on things I would like to talk about here

404

Equips Nucleares SA | Open Energy Information  

Open Energy Info (EERE)

SA Place: Madrid, Spain Zip: 28006 Sector: Services Product: ENSA is a Spanish nuclear components and nuclear services supply company. References: Equips Nucleares, SA1...

405

Nuclear Regulatory Commission | Department of Energy  

Office of Environmental Management (EM)

Regulatory Commission Nuclear Regulatory Commission Nuclear Regulatory Commission More Documents & Publications What to Expect When Readying to Move Spent Nuclear Fuel from...

406

VT Nuclear Services ltd | Open Energy Information  

Open Energy Info (EERE)

VT Nuclear Services ltd Jump to: navigation, search Name: VT Nuclear Services ltd Place: Warrington, United Kingdom Zip: WA4 4BP Sector: Services Product: VT Nuclear Services...

407

Dr. Brian Hirsch  

Broader source: Energy.gov [DOE]

Dr. Brian Hirsch is a Senior Project Leader for NREL’s Alaska initiative, working with Alaska Native villages and other stakeholders on development of local energy resources. As part of the...

408

Energy Department Announces New Investments in University-Led Nuclear  

Broader source: Energy.gov (indexed) [DOE]

New Investments in University-Led New Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to deploy every available source of American energy and ensure the U.S. remains competitive globally, the Energy Department announced today more than $13 million in new investments for university-led nuclear innovation projects. The three awards announced today under the Department's Nuclear Energy University Programs (NEUP) will support nuclear energy R&D and student investment at U.S. colleges and universities across the country, ensuring that secure, safe and efficient nuclear energy

409

International Nuclear Energy Research Initiative: 2007 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Research Initiative: 2007 Annual International Nuclear Energy Research Initiative: 2007 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. Information on the program

410

Global Nuclear Energy Partnership Steering Group Members Approve  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Steering Group Members Approve Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation June 21, 2010 - 11:59am Addthis The Global Nuclear Energy Partnership Steering Group met in Accra, Ghana on June 16-17, 2010, and approved unanimously several transformative changes to reflect global developments that have occurred since the Partnership was established in 2007. The transformation includes a new name - the International Framework for Nuclear Energy Cooperation -- and the establishment of a new Statement of Mission. Participants in this new International Framework agreed that this

411

Global Nuclear Energy Partnership (GNEP) Ministerial Meeting  

Broader source: Energy.gov (indexed) [DOE]

for September 16,2007 for September 16,2007 Global Nuclear Energy Partnership (GNEP) Ministerial Meeting Austria Centre 8:30 - 10:OO a.m. Registration and Badging 10:OO - 11 :30 a.m. Opening Remarks by Participants [Open to the Media] Hall E 1 1 :30 - 1 1 :45 a.m. Break 11 145 - 12:30 p.m. Acceptance of the GNEP Statement of Principles (Signing) Welcome New GNEP Partners Press Conference [Open to the Media] Hall F 12:30 - 1:30 p.m. Lunch [Closed to the Media] 1 :30 - 1 :45 p.m. Break 1 :45 - 2:30 p.m. Session I: Steps That Could be taken by GNEP Partners in Support of a Global Nuclear Fuel Services [Closed to the Media] Hall E 2:30 - 3: 15 p.m. Session 11: Ways That GNEP Can Support Infrastructure Development Needs of Countries Considering Nuclear Power (e.g., nuclear reactor operation and related training,

412

Building a Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-30T23:59:59.000Z

413

Management of the Department of Energy Nuclear Weapons Complex  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

2005-06-08T23:59:59.000Z

414

SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS  

SciTech Connect (OSTI)

We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

2010-12-20T23:59:59.000Z

415

Proposal for a High Energy Nuclear Database  

SciTech Connect (OSTI)

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

Brown, David A.; Vogt, Ramona

2005-03-31T23:59:59.000Z

416

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee  

Broader source: Energy.gov (indexed) [DOE]

Secretary to Visit Georgia Nuclear Reactor Site and Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy February 13, 2012 - 6:16pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday, February 15 to highlight steps the Obama Administration is taking to restart America's nuclear energy industry. In Waynesboro, Secretary Chu will join Southern Company CEO Thomas A. Fanning, Georgia Power CEO W. Paul Bowers, and local leaders for a tour of Vogtle units 3 and 4 -- the site of the first two new nuclear power units

417

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions  

E-Print Network [OSTI]

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

Peletier, Reynier

418

Nuclear excitation energy in muon capture: A reply  

Science Journals Connector (OSTI)

The parametrization of total muon capture rates in terms of a mean nuclear excitation energy EŻ?, recently proposed by Christillin, Dellafiore, and Rosa-Clot, is reexamined in view of recent criticisms. The previously obtained results are reconfirmed.NUCLEAR REACTIONS ?-+A(N, Z)??+A(N+1, Z-1); muon capture; closure approximation; mean nuclear excitation energies.

P. Christillin, A. Dellafiore, and M. Rosa-Clot

1975-08-01T23:59:59.000Z

419

Molten salts and nuclear energy production Christian Le Bruna*  

E-Print Network [OSTI]

Molten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches with solid fuels, liquid fuel in molten salt reactor, solvents for spent nuclear solid fuel in the case

Boyer, Edmond

420

Does nuclear energy have a future in Europe  

SciTech Connect (OSTI)

Half of the world's nuclear-generated electricity is consumed in Europe. If only Western Europe is considered, the figure is 36%. Obviously, nuclear energy is an important source of energy in Europe. However, this situation varies from one country to another. Using the percentage of nuclear energy in total electricity generation as an indicator, nuclear energy represents 75% of the total electricity generation in France and 61% in Belgium, but 0% in several countries such as Austria, Italy, and Poland. The reasons for this variance result from several different circumstances, including the economy, energy resources, politics, the decision-making process, the environment, and public opinion. These few considerations show that electrical utilities and all the parties concerned with nuclear energy have to support public relations campaigns on nuclear topics to help and favor the development of this source of energy, guaranteeing each country a greater energy independence and a reasonable impact on the environment.

Pollier, P.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Broader source: Energy.gov (indexed) [DOE]

Develop Advanced Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating international partners on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents & Publications GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste

422

Overview of nuclear energy: Present and projected use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

2012-06-19T23:59:59.000Z

423

Overview of Nuclear Energy: Present and Projected Use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Alexander Stanculescu

2011-09-01T23:59:59.000Z

424

Women @ Energy: Kirsten Laurin-Kovitz | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kirsten Laurin-Kovitz Kirsten Laurin-Kovitz Women @ Energy: Kirsten Laurin-Kovitz April 1, 2013 - 1:49pm Addthis Dr. Kirsten Laurin-Kovitz (left) has nearly twenty years of experience in nuclear reactor analysis, nuclear material safeguards and nuclear nonproliferation. Dr. Kirsten Laurin-Kovitz (left) has nearly twenty years of experience in nuclear reactor analysis, nuclear material safeguards and nuclear nonproliferation. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Dr. Kirsten Laurin-Kovitz has nearly twenty years of experience in nuclear reactor analysis, nuclear material safeguards and nuclear nonproliferation. Currently, Dr. Laurin-Kovitz leads the Technical Nonproliferation Policy Support Program, managing a team which combines expertise in science and

425

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

426

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 2:00pm Addthis The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

427

Nuclear Energy Panel Discussion at University of Chicago  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Panel Discussion at University of Chicago Nuclear Energy Panel Discussion at University of Chicago Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Nuclear Energy Panel Discussion at University of Chicago Did you miss this event? Watch recording of "Lessons from Fukushima" The event's webcast is over, but you can still watch and/or download the

428

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

report, National Nuclear Security Administration, Departmentproliferation and security risks of nuclear energy systemsthe proliferation and security risk posed by nuclear energy

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

429

Nuclear Energy Level Argument for a Spheroidal Nuclear Model  

Science Journals Connector (OSTI)

Recently there has been notable success, particularly by Maria Mayer, in explaining many nuclear phenomena including spins, magnetic moments, isomeric states, etc. on the basis of a single particle model for the separate nucleons in a spherical nucleus. The spherical model, however, seems incapable of explaining the observed large quadrupole moments of nuclei. In this paper it is shown that an extension of the logic of this model leads to the prediction that greater stability is obtained for a spheroidal than for a spherical nucleus of the same volume, when reasonable assumptions are made concerning the variation of the energy terms on distortion. The predicted quadrupole moment variation with odd A is in general agreement with the experimental values as concerns variation with A, but are even larger than the experimental values. Since the true situation probably involves considerable "dilution" of the extreme single particle model, it is encouraging that the present predictions are larger rather than smaller than the experimental results. A solution is given for the energy levels of a particle in a spheroidal box.

James Rainwater

1950-08-01T23:59:59.000Z

430

Nuclear Energy Response in the EMF27 Study  

SciTech Connect (OSTI)

The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

Kim, Son H. [Joint Global Change Research Institute, College Park, MD (United States); Wada, Kenichi [Research Inst. of Innovative Technology for the Earth, Kizagawa-Shi, Kyoto (Japan); Kurosawa, Atsushi [Inst. of Applied Energy, Minato-ku, Tokyo (Japan ); Roberts, Matthew [Stanford University, Stanford, CA (United States)

2014-02-28T23:59:59.000Z

431

Gamma-ray Energy Spectra Observed around a Nuclear Reactor  

Science Journals Connector (OSTI)

......Energy Spectra Observed around a Nuclear Reactor Yoshiyuki Nakashima * Susumu Minato...Katsurayama ** * Department of Nuclear Engineering, Faculty of Engineering...Nagoya, Japan ** Reseach Reactor Institute, Kyoto Univ., Kumatori-cho......

Yoshiyuki Nakashima; Susumu Minato; Minoru Kawano; Tadashi Tsujimoto; Kousuke Katsurayama

1971-09-01T23:59:59.000Z

432

Energy Deputy Secretary Poneman Co-Chairs Nuclear Meeting in...  

Office of Environmental Management (EM)

Deputy Secretary Poneman Co-Chairs Nuclear Meeting in Japan Energy Deputy Secretary Poneman Co-Chairs Nuclear Meeting in Japan June 13, 2014 - 8:01am Addthis News Media Contact...

433

Energy-Density Relation for Nuclear Matter  

Science Journals Connector (OSTI)

In most previous calculations of nuclear matter the energy has been calculated only at the equilibrium density, which density has been determined by a minimum condition. In the present paper the author's theory of nuclear matter is applied to a study of the complete energy-density relation of nuclear matter, in the neighborhood of the equilibrium density. The emphasis here is not upon duplicating the accepted value for the equilibrium binding energy, but rather upon a study of the leading (diagonal) contribution of the quasi-particle interaction term g1(k1k2|k3k4), which is the matrix element of a reaction matrix G1. It is shown that g1(k1k2|k1k2) must be evaluated partly by using observed nucleon-nucleon scattering phase shifts and partly by calculating the close-in behavior of the two-nucleon wave function, and that this second part receives a large contribution from the deuteron state. Curves are given for the dependence of g1(k1k2|k1k2) on the density and the center-of-mass momentum. It is also shown that g1(k1k2|k1k2) is sensitive to the size of the nucleon repulsive core, but not upon the character of the attraction, when agreement with scattering data has first been achieved. Finally, a comparison of g1(k1k2|k1k2) with the prediction of first-order perturbation theory is made.

Franz Mohling

1962-11-01T23:59:59.000Z

434

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY  

Broader source: Energy.gov (indexed) [DOE]

JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION June 27, 2013 - 10:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 On June 26, 2013, a meeting of the Nuclear Energy and Nuclear Security Working Group of the U.S. - Russia Bilateral Presidential Commission took place. The co-chairs share the view that a considerable amount of work has been done within the four-year period of the group's existence. On January 11, 2011, the Agreement between the Government of the United States of America and the Government of the Russian Federation for

435

Solar and nuclear energy expertise to be enhanced by research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy frontier research centers Solar and nuclear energy expertise to be enhanced by research centers Los Alamos will be home to two new Energy Frontier Research Centers through a...

436

Energy Department Announces New Investments in Advanced Nuclear Power Reactors  

Broader source: Energy.gov [DOE]

WASHINGTON – Today, as part of the President’s all-of-the-above energy approach and Climate Action Plan, the Energy Department announced awards for five companies to lead key nuclear energy...

437

Middle School Energy and Nuclear Science Curriculum Now Available |  

Broader source: Energy.gov (indexed) [DOE]

Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available October 30, 2013 - 1:18pm Addthis Andrea Duskas Public Affairs Specialist for the Office of Nuclear Energy A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The essential principles and fundamental concepts in The Harnessed Atom address the latest science standards for crosscutting concepts about energy and matter. The Harnessed Atom teacher's kit is an updated and expanded edition of the

438

Renewability and sustainability aspects of nuclear energy  

Science Journals Connector (OSTI)

Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium 233 U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of ( ThO 2 / RG ? PuO 2 ) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG ? PuO 2 + 96 % ThO 2 ; 6 % RG ? PuO 2 + 94 % ThO 2 ; 10 % RG ? PuO 2 + 90 % ThO 2 ; 20 % RG ? PuO 2 + 80 % ThO 2 ; 30 % RG ? PuO 2 + 70 % ThO 2 uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ? 0.65 1.1 1.9 3.5 and 4.8 years and with burn ups of ? 30 000 60 000 100 000 200 000 and 290 000 MW.d/ton respectively. Increase of RG ? PuO 2 fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MWth has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0 2 3 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134 1.286 1.387 1.52 and 1.67 respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3 4.6 6.15 and 8.1 with 2 3 4 and 5 % TRISO volume fraction at start up respectively. Alternatively with thorium the same fusion driver would produce ?160 kg 233 U per year in addition to fission energy production in situ multiplying the fusion energy by a factor of ?1.3.

2014-01-01T23:59:59.000Z

439

Nuclear self-energy and realistic interactions  

Science Journals Connector (OSTI)

The structure of nucleon self-energy in nuclear matter is evaluated for various realistic models of the nucleon-nucleon (NN) interaction. Starting from the Brueckner-Hartree-Fock approximation without the usual angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Special attention is paid to the predictions for the spectral function originating from various models of the NN interaction, which all yield an accurate fit for the NN phase shifts.

T. Frick; Kh. Gad; H. Müther; P. Czerski

2002-03-04T23:59:59.000Z

440

Minijets in nuclear collisions at high energies  

Science Journals Connector (OSTI)

We calculate the transverse energy distribution d? /dET of quarks and gluons produced in a U + U collision at s = 20, 200, 2000 and 7000 GeV/nucleon by including both soft and hard QCD contributions. At s = 2000 and 7000 \\{AGeV\\} the ET distribution is clearly dominated by the hard processes while at s = 20 \\{AGeV\\} the soft component produces practically all of the ET. We also study the effects of choosing the smallest pT-scale of the hard partons as well as give an estimate of the effects of nuclear shadowing.

K.J Eskola

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Department of Energy Conference Emphasizes Universities' Role in Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Conference Emphasizes Universities' Role in Conference Emphasizes Universities' Role in Nuclear Energy Research Department of Energy Conference Emphasizes Universities' Role in Nuclear Energy Research August 14, 2009 - 1:35pm Addthis This Thursday and Friday, the U.S. Department of Energy hosted a workshop with professors from more than 40 U.S. universities to highlight the role universities can play in advancing the nation's nuclear energy research. U.S. Senator Bob Bennett, R-Utah, delivered closing remarks to the conference, emphasizing the importance of nuclear energy as a clean, carbon-free source of electricity. "The path to a clean energy future is through a balanced energy approach that includes nuclear energy, which provides electricity to one in five homes and businesses," said Bennett, ranking Republican on the Senate

442

Department of Energy Issues Requests for Nuclear Science and Engineering  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Science and Nuclear Science and Engineering Scholarships and Fellowships Applications Department of Energy Issues Requests for Nuclear Science and Engineering Scholarships and Fellowships Applications May 7, 2009 - 1:46pm Addthis The U.S. Department of Energy (DOE) today announced two new Requests for Application (RFA) as part of the Department's efforts to recruit and train the next generation of nuclear scientists and engineers - a critical need as the nation moves toward greater use of nuclear energy to meet our energy needs and address the global climate crisis. Under the Nuclear Energy University Program, DOE will provide approximately $2.9 million to fund scholarships and fellowships for students enrolled in two or four year nuclear science and engineering programs at accredited

443

Expanding Options for Nuclear Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Expanding Options for Nuclear Power Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department. The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to

444

Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions |  

National Nuclear Security Administration (NNSA)

Explores Peaceful Uses of Nuclear Explosions | Explores Peaceful Uses of Nuclear Explosions | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions July 06, 1962

445

Energy-degraded RI beam for low-energy nuclear reactions  

Science Journals Connector (OSTI)

......Energy-degraded RI beam for low-energy nuclear reactions Eiji Ideguchi * * E-mail...beams are produced by intermediate energy nuclear reactions such as projectile fragmentation...various experiments using low-energy nuclear reactions can be performed and......

Eiji Ideguchi

2012-01-01T23:59:59.000Z

446

Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)  

ScienceCinema (OSTI)

The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

Chu, Steven (U.S. Energy Secretary)

2012-06-28T23:59:59.000Z

447

2006 Department of Energy Strategic Plan - Ensuring America's nuclear  

Broader source: Energy.gov (indexed) [DOE]

Ensuring America's Ensuring America's nuclear security 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials and technology through the NNSA.

448

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

449

Sensitivity of nuclear stopping towards density dependent symmetry energy  

E-Print Network [OSTI]

The effect of density dependent symmetry energy on nuclear-stopping is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin-dependent cross-section with soft(S) equation of state for the systems having different isostopic content, to explore the various aspects of nuclear stopping. The aim is to pin down the nature of the nuclear stopping with density dependent symmetry energy. Nuclear stopping is found to be sensitive towards the various forms of the density dependent symmetry energy. The nuclear stopping tends to decrease for the stiffer equation of state (EOS), i.e. larger values of gamma.

Karan Singh Vinayak; Suneel Kumar

2011-10-11T23:59:59.000Z

450

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

451

Global Nuclear Energy Partnership Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

R.A. Wigeland

2008-10-01T23:59:59.000Z

452

International Nuclear Energy Research Initiative: 2009 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

9 Annual 9 Annual Report International Nuclear Energy Research Initiative: 2009 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented collaboration that supports advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy Office of Nuclear Energy website.

453

International Nuclear Energy Research Initiative: 2008 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

8 Annual 8 Annual Report International Nuclear Energy Research Initiative: 2008 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) website:

454

Nuclear Energy Readiness Indicator Index (NERI): A benchmarking tool for assessing nuclear capacity in developing countries  

SciTech Connect (OSTI)

Declining natural resources, rising oil prices, looming climate change and the introduction of nuclear energy partnerships, such as GNEP, have reinvigorated global interest in nuclear energy. The convergence of such issues has prompted countries to move ahead quickly to deal with the challenges that lie ahead. However, developing countries, in particular, often lack the domestic infrastructure and public support needed to implement a nuclear energy program in a safe, secure, and nonproliferation-conscious environment. How might countries become ready for nuclear energy? What is needed is a framework for assessing a country's readiness for nuclear energy. This paper suggests that a Nuclear Energy Readiness Indicator (NERI) Index might serve as a meaningful basis for assessing a country's status in terms of progress toward nuclear energy utilization under appropriate conditions. The NERI Index is a benchmarking tool that measures a country's level of 'readiness' for nonproliferation-conscious nuclear energy development. NERI first identifies 8 key indicators that have been recognized by the International Atomic Energy Agency as key nonproliferation and security milestones to achieve prior to establishing a nuclear energy program. It then measures a country's progress in each of these areas on a 1-5 point scale. In doing so NERI illuminates gaps or underdeveloped areas in a country's nuclear infrastructure with a view to enable stakeholders to prioritize the allocation of resources toward programs and policies supporting international nonproliferation goals through responsible nuclear energy development. On a preliminary basis, the indicators selected include: (1) demonstrated need; (2) expressed political support; (3) participation in nonproliferation and nuclear security treaties, international terrorism conventions, and export and border control arrangements; (4) national nuclear-related legal and regulatory mechanisms; (5) nuclear infrastructure; (6) the utilization of IAEA technical assistance; (7) participation in regional arrangements; and (8) public support for nuclear power. In this paper, the Index aggregates the indicators and evaluates and compares the level of readiness in seven countries that have recently expressed various degrees of interest in establishing a nuclear energy program. The NERI Index could be a valuable tool to be utilized by: (1) country officials who are considering nuclear power; (2) the international community, desiring reassurance of a country's capacity for the peaceful, safe, and secure use of nuclear energy; (3) foreign governments/NGO's, seeking to prioritize and direct resources toward developing countries; and (4) private stakeholders interested in nuclear infrastructure investment opportunities.

Saum-Manning,L.

2008-07-13T23:59:59.000Z

455

OSTIblog Posts by Dr. Walt Warnick | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Dr. Walt Warnick Dr. Walt Warnick Dr. Walt Warnick's picture Director, U.S. DOE Office of Scientific and Technical Information Before and after CrossRef Aquatint of a Doctor in divinity at the University of Oxford, shown wearing conv Published on Dec 19, 2013 It is truly wonderful when something comes along that speeds access to science. Such is the case with CrossRef's linking network for scholarly literature. Anyone that has ever done a literature search prior to 2000 is completely blown away today when they encounter the time saved and the quality of CrossRef's linking service. I vividly recall my own literature review for my PhD dissertation almost 40 years ago and I want to share my story. For many long and miserable days and nights for a solid month I practically lived at the University of Maryland's Engineering and Physical Sciences Library plowing through a massive set of numerous volumes of citation indices looking up keywords related to my dissertation. My topic Secondary deflections and lateral stability of beams was based on my research at the U.S. Naval Research Laboratory.

456

Foiling the Flu Bug Global Partnerships for Nuclear Energy  

E-Print Network [OSTI]

1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

457

Studies in jj-Coupling. III. Nuclear Energy Levels  

Science Journals Connector (OSTI)

...research-article Studies in jj-Coupling. III. Nuclear Energy Levels A. R. Edmonds B. H. Flowers...here used to obtain the central force energy matrices for nuclear configurations. The ordering of energy levels is studied as a function of the...

1952-01-01T23:59:59.000Z

458

Energy Praises the Nuclear Regulatory Commission Approval of the First  

Broader source: Energy.gov (indexed) [DOE]

Praises the Nuclear Regulatory Commission Approval of the Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years March 8, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today commended the Nuclear Regulatory Commission's decision to approve the first-ever Early Site Permit (ESP) for the Exelon Generation Company's Clinton site, in central Illinois. This decision marks a major milestone in the President's plan to expand the use of safe and clean nuclear power. As part of President Bush's Advanced Energy Initiative - which seeks to change the way we power this nation - nuclear power will play an increasingly

459

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the President and Congress to stimulate new nuclear plant construction in the U.S. This will be accomplished by demonstrating the success of the streamlined regulations for siting, constructing and operating new nuclear plants through the Nuclear Power 2010 program, and by implementing incentives enacted through the Energy Policy Act of 2005 (EPACT 2005). At 20 percent of the total electricity supply in the nation, nuclear power is the second largest source of domestic electricity, while seventy percent comes from fossil burning fuels (coal, natural gas, and oil). Increasing the amount of

460

Nuclear Waste Policy Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE P 420.1 Department of Energy Nuclear Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE P 420.1 Department of Energy Nuclear Policy DOE P 420.1 Department of Energy Nuclear Policy DOE P 420.1 Department of Energy Nuclear Policy PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. DOE_P420-1_Final_2-8-11.pdf More Documents & Publications DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1, 7/11

462

Nuclear energy in a nuclear weapon free world  

SciTech Connect (OSTI)

The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

Pilat, Joseph [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

463

Meeting Between the Department of Energy and the Nuclear Energy Institute  

Broader source: Energy.gov (indexed) [DOE]

Between the Department of Energy and the Nuclear Energy Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this letter is to memorialize the meeting between the Department of Energy (DOE) and the Nuclear Energy Institute (NEI), held on March 13, 2012. NEI_Ltr_03_20_2012.pdf More Documents & Publications Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

464

Nuclear Power and the Environment - Energy Explained, Your Guide To  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From

465

Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings  

SciTech Connect (OSTI)

Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

Ruth, M.; Antkowiak, M.; Gossett, S.

2011-12-01T23:59:59.000Z

466

Statement of Peter Lyons Assistant Secretary for Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Lyons Lyons Assistant Secretary for Nuclear Energy U.S. Department of Energy Before the Committee on Energy and Natural Resources U.S. Senate The Nuclear Waste Administration Act of 2012 September 12, 2012 Chairman Bingaman, Ranking Member Murkowski, and Members of the Committee, thank you for the opportunity to appear before you today to discuss nuclear waste management issues and S. 3469, The Nuclear Waste Administration Act of 2012. Thank you for your leadership on this important issue. Nuclear power is an integral part of our "all-of-the-above" energy strategy. It provides twenty percent of our nation's electricity supply, and the Administration is working to expand the safe use of nuclear power through support for new nuclear power plants incorporating state-of-the-art passive safety

467

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear & Uranium Nuclear & Uranium Glossary › FAQS › Overview Data Summary Uranium & Nuclear Fuel Nuclear Power Plants Radioactive Waste International All Nuclear Data Reports Analysis & Projections Most Requested Nuclear Plants and Reactors Projections Uranium All Reports EIA's latest Short-Term Energy Outlook for electricity › chart showing U.S. electricity generation by fuel, all sectors Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Quarterly uranium production data › image chart of Quarterly uranium production as described in linked report Source: U.S. Energy Information Administration, Domestic Uranium Production Report - Quarterly, 3rd Quarter 2013, October 31, 2013. Uprates can increase U.S. nuclear capacity substantially without building

468

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Broader source: Energy.gov (indexed) [DOE]

Department Nuclear Systems Are Powering Mars Rover Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 12:14pm Addthis Washington, D.C. - The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

469

Nuclear Deployment Scorecards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 31, 2013 Quarterly Nuclear Deployment Scorecard - October 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. August 8, 2013 Quarterly Nuclear Deployment Scorecard - July 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. May 1, 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, and new plant construction progress.

470

Nuclear Safety Reporting Criteria | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reporting Criteria Nuclear Safety Reporting Criteria January 1, 2012 Nuclear Safety Noncompliances Associated With Occurrences (DOE Order 232.2) These tables provide the criteria...

471

Transportation of Nuclear Materials | Department of Energy  

Energy Savers [EERE]

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

472

Chapter 30 - Nuclear Energy and Safety  

Science Journals Connector (OSTI)

Safety in nuclear industries is a very serious topic due to its greater accident consequence as seen in Chernobyl, and also due to the pictorial perceptions of nuclear accidents being similar to the Hiroshima and Nagasaki nuclear explosions. This chapter points out some important safety aspects of the nuclear industry. Beginning with the current laws and regulations of nuclear safety, this chapter reviews different types of nuclear reactors, nuclear waste treatment systems, reliability of nuclear system, operations of reactors, incident reporting, and a short review of previous accident history. Finally, historical Rasmussen reports are reviewed.

Sam Mannan

2014-01-01T23:59:59.000Z

473

Education in nuclear science at IPEN - CNEN, Săo Paulo, Brazil: Advanced School of Nuclear Energy—EAEN  

Science Journals Connector (OSTI)

EAEN (Advanced School of Nuclear Energy, 2010) is an annual school that ... a week of activities in the area of Nuclear Physics, Radiochemistry and uses of Nuclear Energy for a public made of high school students...

R. Semmler; M. G. M. Catharino…

2012-01-01T23:59:59.000Z

474

Frederico Pena Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Frederico Pena Sworn in as Secretary of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

475

Department of Energy Commends the Nuclear Regulatory Commission...  

Energy Savers [EERE]

Commission's Approval of a Second Early Site Permit in Just One Month Department of Energy Commends the Nuclear Regulatory Commission's Approval of a Second Early Site Permit...

476

Charles Duncan Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Duncan Sworn in as Secretary of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

477

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network [OSTI]

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Kazuhiro Oyamatsu; Kei Iida

2010-04-19T23:59:59.000Z

478

United States-Republic of Korea (ROK) International Nuclear Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International...

479

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Broader source: Energy.gov (indexed) [DOE]

Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

480

U.S. Department of Energy National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

2011 EEO Report of Accomplishments U.S. Department of Energy National Nuclear Security Administration Office of Civil Rights 3rd Edition Issued: March 2012 EEO and Diversity -...

Note: This page contains sample records for the topic "nuclear energy dr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that...

482

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program...  

Broader source: Energy.gov (indexed) [DOE]

Program Plan Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan The NEAMS program plan includes information on the program vision, objective, scope, schedule and...

483

James Edwards Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Edwards Sworn in as Secretary of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

484

Theoretical interpretation of high-energy nuclear collisions.  

SciTech Connect (OSTI)

Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions.

Fai, G.

1992-06-01T23:59:59.000Z

485

Louisiana Nuclear Energy and Radiation Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

486

President Carter Calls for Department of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Carter Calls for Department of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

487

In 2008, the Department of Energy, National Nuclear Security...  

National Nuclear Security Administration (NNSA)

In 2008, the Department of Energy, National Nuclear Security Administration (DOE NNSA) established the Next Generation Safeguards Initiative (NGSI) to develop the policies,...

488

Department of Energy Cites Savannah River Nuclear Solutions,...  

Energy Savers [EERE]

Solutions, LLC for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions, LLC for Worker Safety and Health Violations November 9, 2012 -...

489

Role of Nuclear Energy in Japan Post–Fukushima.  

E-Print Network [OSTI]

?? The purpose of this paper, “Role of Nuclear Energy in Japan Post – Fukushima: Alternatives and their Impact onJapan’s GHG Emission Targets”, is to… (more)

Niazi, Zarrar

2013-01-01T23:59:59.000Z

490

Nuclear Energy CFD Application Management System  

SciTech Connect (OSTI)

In modeling and simulation (M&S), it is virtually impossible to separately evaluate the effectiveness of the model from the data used because the results produced rely heavily on the interaction between the two. Both the data and the simulation are responsible for achieving the ultimate goal of providing defensible research and development (R&D) products and decisions. It is therefore vital that data verification and validation (V&V) activities, along with stringent configuration management, be considered part of the overall M&S accreditation process. In support of these goals is the Nuclear Energy CFD Application Management System (NE-CAMS) for nuclear system design and safety analysis. Working with Bettis Laboratory and Utah State University, a plan of action is being developed by the Idaho National Laboratory (INL) that will address the highest and most immediate needs to track and manage computational fluid dynamics (CFD) models and experimental data in an electronic database. The database will intrinsically incorporate the Nuclear Regulatory Commission (NRC) approved policies and procedures for quality. The quality requirements will be such that the model and data must conform to the quality specifications outlined by the NRC before they can be entered into the database. The primary focus of this database is CFD V&V for nuclear industry needs and will, in practice, serve as the best practice guideline that will accommodate NRC regulations. Such a database, along with a prescriptive methodology for how to utilize it, will provide the NRC with accepted CFD results that could potentially be used for licensing. NE-CAMS will incorporate data V&V as key precursors to the distribution of nuclear systems design and safety data, ensuring that these data are appropriate for use in a particular M&S application. Verification will be conducted to provide a level of confidence that the data selected are the most appropriate for the simulation and are properly prepared, i.e., they are complete, correct and conform to predefined procedures and requirements. Validation will ensure that the data accurately represent the real world activity that is being simulated, ensuring the analytical quality of the data. The level of detail and stringency applied against the data V&V activities will be based on a graded approach principle; the higher the risk, the more rigorous the V&V activities. For the V&V activities to be complete, it will be necessary to scrutinize the physical and statistical properties of the extracted data during the overall process. Regardless of the specific technique or methodology, data V&V will be an important component of NE-CAMS.

Hyung Lee; Kimberlyn C. Mousseau

2001-09-01T23:59:59.000Z

491

Nuclear muon-capture sum rules and mean nuclear excitation energies  

Science Journals Connector (OSTI)

A discussion is given of non-energy-weighted and of energy-weighted sum rules in nuclear muon capture. It is argued that the mean nuclear excitation energy in muon capture does not vary appreciably as A and Z vary. A combined non-energy-weighted and energy-weighted sum rule which constitutes a three-parameter fit to the experimental data on total muon-capture rates is presented.

B. Goulard and H. Primakoff

1974-11-01T23:59:59.000Z

492

Bush Administration Moves Forward to Develop Next Generation Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Moves Forward to Develop Next Generation Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to sign the first multilateral agreement in history aimed at the development of next generation nuclear energy systems. The work of the Generation IV International Forum (GIF) is essential to advancing an important component of the Bush Administration's comprehensive energy strategy in the development of next generation nuclear energy technologies.

493

International Framework for Nuclear Energy Cooperation to Hold  

Broader source: Energy.gov (indexed) [DOE]

International Framework for Nuclear Energy Cooperation to Hold International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:23pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

494

International Framework for Nuclear Energy Cooperation to Hold  

Broader source: Energy.gov (indexed) [DOE]

Framework for Nuclear Energy Cooperation to Hold Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:10pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

495

Paving the path for next-generation nuclear energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Nuclear power reactors currently under construction worldwide boast modern safety and operational enhancements that were designed by the global nuclear energy industry and enhanced through research and development (R&D)

496

2nd Global Nuclear Energy Partnership Ministerial Opening Session |  

Broader source: Energy.gov (indexed) [DOE]

2nd Global Nuclear Energy Partnership Ministerial Opening Session 2nd Global Nuclear Energy Partnership Ministerial Opening Session 2nd Global Nuclear Energy Partnership Ministerial Opening Session September 16, 2007 - 2:41pm Addthis Remarks As Prepared for Delivery by Secretary Bodman Good morning. I'm Sam Bodman, the United States Secretary of Energy. First, I want to thank you all for coming here today for this momentous occasion. At the first Global Nuclear Energy Partnership Ministerial in May, I said I hoped we would be "laying the groundwork for a new global nuclear power partnership; an international approach that allows developed and developing nations alike to share in (nuclear power's) benefits securely and peacefully." What started with the five leading fuel states - the People's Republic of China, France, Japan, Russia, and the U.S. - coming together in a

497

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

2 Annual 2 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs, maximize safety, minimize proliferation risk, and handle used fuel and

498

Mean excitation energies in the nuclear muon capture  

Science Journals Connector (OSTI)

The parametrization of the total muon capture rates in terms of a mean nuclear excitation energy EŻ?, proposed in a recent letter of Christillin, Dellafiore, and Rosa-Clot (CDR), is examined. We show that this parametrization ignores the importance of the allowed transitions in light nuclei and fails to reproduce the experimentally observed trend of the T> giant resonance energy as a function of nuclear mass number. The removal of contributions due to higher multipoles in heavier nuclei aggravates this discrepancy. The failure of EŻ?, extracted by CDR, to correspond to physically meaningful nuclear excitation energies in heavier nuclei is attributable to the intrinsic arbitrariness in its definition, and to the oversimplifying assumption of the nuclear Hamiltonian to be a sum of kinetic energy and Wigner potential alone. A first-order improvement of the Primakoff approximation is discussed.NUCLEAR REACTIONS ?-+A(N,Z)?v+A(N+1,Z-1); muon capture; closure approximation; mean nuclear excitation energies.

Francesco Cannata and Nimai C. Mukhopadhyay

1974-07-01T23:59:59.000Z

499

Energy Hub Based on Nuclear Energy and Hydrogen Energy Storage  

Science Journals Connector (OSTI)

An ‘energy hub’ comprises of the interactions of different energy loads and sources for power generation, storage, and conversion. ... In addition, where there are technical limitations in electricity distribution such as transmission congestion, the use of hydrogen as an energy carrier to increase the efficiency and reliability of the electric grid becomes an attractive option. ... It will be able to facilitate the intermittency of renewable resources such as solar, and wind, and be able to store energy in the form of hydrogen and convert hydrogen back to electricity when demand returns. ...

Yaser Maniyali; Ali Almansoori; Michael Fowler; Ali Elkamel

2013-05-13T23:59:59.000Z

500

U.S. Department of Energy Office of Nuclear Energy, Science and Technology  

Broader source: Energy.gov (indexed) [DOE]

One the cover: One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for Peaceful Applications ..................................... 7 Chronology of Nuclear Research and Development, 1942-1994 .................................... 13 Selected References ............................................. 23 Glossary ..............................................................