Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

THE BIRTH OF NUCLEAR-GENERATED ELECTRICITY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIRTH OF NUCLEAR-GENERATED ELECTRICITY BIRTH OF NUCLEAR-GENERATED ELECTRICITY The first time that electricity was generated from nuclear energy occurred in an experimental breeder reactor in Idaho in 1951. The idea for a breeder reactor (a reactor that could produce more fuel than it uses) first occurred to scientists working on the nation's wartime atomic energy program in the early 1940's. Experimental evidence indicated that the breeding of nuclear fuel was possible in a properly designed reactor, but time and resources were not then available to pursue the idea After the war, the newly established Atomic Energy Commission (now the Department of Energy) assigned some of the nation's nuclear skills and resources to developing peaceful uses of the atom. The large bodies of uranium ore found in the 1950's were

2

World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...  

Open Energy Info (EERE)

U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

3

Electric generating prospects for nuclear power  

Science Journals Connector (OSTI)

Most of the nuclear power plants in the U.S. today are of the light-water variety. In many parts of the U.S. these plants are competitive with plants burning coal, but the electricity that they generate will be more costly in the future as uranium supplies ...

Manson Benedict

1970-07-01T23:59:59.000Z

4

U.S. Nuclear Generation of Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Nuclear Generation and Generating Capacity Data Released: September 26, 2014 Data for: July 2014 Next Release: October 2014 Year Capacity and Generation by State and Reactor...

5

The costs of generating electricity and the competitiveness of nuclear power  

Science Journals Connector (OSTI)

Abstract This paper provides an analysis on the costs of generating electricity from nuclear and fossil sources (coal and natural gas) based on the most recent technical data available in literature. The aim is to discuss the competitiveness of nuclear power in a liberalized market context by considering the impact on the generating costs of the main factors affecting the viability of the nuclear option. Particular attention will be devoted to study the variability of the generating costs regarding the level of risk perceived by investors through a sensitivity analysis of the generating costs with respect to the cost of capital and the debt fraction of initial investment. The impact of environment policies is also considered by including a “tax” on carbon emissions. The analysis reveals that nuclear power could have ample potentiality also in a competitive market, particularly if the level of risk perceived by the investors keeps standing low. For low values of the cost of capital, nuclear power seems to be the most viable solution. Uncertainty about environmental policies and unpredictability of carbon emissions costs might offer further margins of competitiveness.

Carlo Mari

2014-01-01T23:59:59.000Z

6

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents [OSTI]

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

7

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

8

Nuclear electricity  

Science Journals Connector (OSTI)

... p.344-6) and referred to in my letter of 23 October. The retail price index (RPI) has been used to correct for inflation and a uniform interest rate ... as given by historic costs, and if a previously unconsidered effect of inflation on nuclear fuel costs is included, the margin becomes 34 per cent above that for coal.

J.W. JEFFERY

1981-08-27T23:59:59.000Z

9

Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation  

Science Journals Connector (OSTI)

A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation.

Ralph E.H. Sims; Hans-Holger Rogner; Ken Gregory

2003-01-01T23:59:59.000Z

10

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

11

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

12

Algae fuel clean electricity generation  

Science Journals Connector (OSTI)

Algae fuel clean electricity generation ... The link between algae and electricity may seem tenuous at best. ...

DERMOT O'SULIVAN

1993-02-08T23:59:59.000Z

13

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents [OSTI]

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

14

Generating electricity from viruses  

ScienceCinema (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2014-06-23T23:59:59.000Z

15

Generating electricity from viruses  

SciTech Connect (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2013-10-31T23:59:59.000Z

16

Investment in nuclear generation in a restricted electricity market : an analysis of risks and financing options  

E-Print Network [OSTI]

Since the late 1970s, the US electric power industry has been undergoing major changes. The electric utility industry had mainly consisted of highly regulated, vertically integrated, local monopolies, providing customers ...

Berger, Raphael

2006-01-01T23:59:59.000Z

17

Keeping Nuclear as a Viable Option for Electric Power Generation in the Brazilian Matrix  

SciTech Connect (OSTI)

This paper discusses all alternatives that are part of the general solution for the electric energy problem in Brazil.

Henning, F.

2004-10-06T23:59:59.000Z

18

Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies  

Science Journals Connector (OSTI)

Abstract Legal barriers currently prohibit nuclear power for electricity generation in Australia. For this reason, published future electricity scenarios aimed at policy makers for this country have not seriously considered a full mix of energy options. Here we addressed this deficiency by comparing the life-cycle sustainability of published scenarios using multi-criteria decision-making analysis, and modeling the optimized future electricity mix using a genetic algorithm. The published ‘CSIRO e-future’ scenario under its default condition (excluding nuclear) has the largest aggregate negative environmental and economic outcomes (score = 4.51 out of 8), followed by the Australian Energy Market Operator’s 100% renewable energy scenario (4.16) and the Greenpeace scenario (3.97). The e-future projection with maximum nuclear-power penetration allowed yields the lowest negative impacts (1.46). After modeling possible future electricity mixes including or excluding nuclear power, the weighted criteria recommended an optimized scenario mix where nuclear power generated >40% of total electricity. The life-cycle greenhouse-gas emissions of the optimization scenarios including nuclear power were nuclear power is an effective and logical option for the environmental and economic sustainability of a future electricity network in Australia.

Sanghyun Hong; Corey J.A. Bradshaw; Barry W. Brook

2014-01-01T23:59:59.000Z

19

Rising Cost of Generating Electricity  

Science Journals Connector (OSTI)

... METHODS are being discussed by electrical engineers to meet the rising costs of generating ... of generating electricity. Even before the War this was becoming a serious problem. In some cases it ...

1940-07-20T23:59:59.000Z

20

Reviewing electricity generation cost assessments.  

E-Print Network [OSTI]

?? Studies assessing the electricity generation cost of various power generating technologies are becoming increasingly common and references to such studies can often be heard… (more)

Larsson, Simon

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle  

Science Journals Connector (OSTI)

The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and ...

Frank A. Settle

2009-03-01T23:59:59.000Z

22

Electrical Generation for More-Electric Aircraft using Solid...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

23

Renewable Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

24

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 ORNLTM-2007147, Vol. 5 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs Office of Nuclear Regulatory Research...

25

OpenEI - Electricity Generation  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Generation (1980 - 2009) http://en.openei.org/datasets/node/878 Total annual electricity generation by country, 1980 to 2009 (available in billion kilowatthours ). Compiled by Energy Information Administration (EIA).

License
Type of License:  Other (please specify below)
Source of

26

Method for protecting an electric generator  

DOE Patents [OSTI]

A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

2008-11-18T23:59:59.000Z

27

Liquid soap film generates electricity  

E-Print Network [OSTI]

We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2014-04-24T23:59:59.000Z

28

Electricity Generation | OpenEI  

Open Energy Info (EERE)

Generation Generation Dataset Summary Description Total annual electricity generation by country, 1980 to 2009 (available in billion kilowatthours ). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Generation world Data text/csv icon total_electricity_net_generation_1980_2009billion_kwh.csv (csv, 46.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

29

Generation IV Nuclear Energy Systems ...  

E-Print Network [OSTI]

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

30

nuclear electricity | OpenEI  

Open Energy Info (EERE)

nuclear electricity nuclear electricity Dataset Summary Description This dataset presents summary information related to world nuclear energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU nuclear nuclear electricity world Data application/vnd.ms-excel icon Summary nuclear energy consumption data (xls, 68.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

31

GENERATING ELECTRICITY USING OCEAN WAVES  

E-Print Network [OSTI]

GENERATING ELECTRICITY USING OCEAN WAVES A RENEWABLE SOURCE OF ENERGY REPORT FOR THE HONG KONG ELECTRIC COMPANY LIMITED Dr L F Yeung Mr Paul Hodgson Dr Robin Bradbeer July 2007 #12;Ocean Waves and construction of equipment that could measure and log wave conditions and tide levels at Hoi Ha Wan. Prototypes

Bradbeer, Robin Sarah

32

Economic Dispatch of Electric Generation Capacity | Department...  

Broader source: Energy.gov (indexed) [DOE]

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

33

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

On other hand, accidents at nuclear facilities could nott ed expos ur e from a nuclear accident which would warrantresulting from accidents at nuclear facilities. Average

Nero, A.V.

2010-01-01T23:59:59.000Z

34

Electricity Generation and Emissions Reduction Decisions  

E-Print Network [OSTI]

Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis Jennifer Morris* , Mort Webster* and John Reilly* Abstract The electric power sector, which

35

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

36

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

37

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

U. S. Conunercial Nuclear Power Plants", Report WASH-1400 (Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

38

Carbon pricing, nuclear power and electricity markets  

SciTech Connect (OSTI)

In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)

Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

2012-07-01T23:59:59.000Z

39

Apparatuses and methods for generating electric fields  

DOE Patents [OSTI]

Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

2013-08-06T23:59:59.000Z

40

Definition: Electricity generation | Open Energy Information  

Open Energy Info (EERE)

Electricity generation Electricity generation Jump to: navigation, search Dictionary.png Electricity generation The process of producing electric energy or the amount of electric energy produced by transforming other forms of energy into electrical energy; commonly expressed in kilowatt-hours (kWh) or megawatt-hours (MWh).[1][2] View on Wikipedia Wikipedia Definition Electricity generation is the process of generating electrical power from other sources of primary energy. The fundamental principles of electricity generation were discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electricity is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. For electric utilities, it is the

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

42

Electric Power Produced from Nuclear Reactor | National Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

43

Mini-biomass electric generation  

SciTech Connect (OSTI)

Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

44

Compare All CBECS Activities: Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

By Electricity Generation By Electricity Generation Compare Activities by ... Electricity Generation Capability For commercial buildings as a whole, approximately 8 percent of buildings had the capability to generate electricity, and only 4 percent of buildings actually generated any electricity. Most all buildings generated electricity only for the purpose of emergency back-up. Inpatient health care and public order and safety buildings were much more likely to have the capability to generate electricity than other building types. Over half of all inpatient health care buildings and about one-third of public order and safety buildings actually used this capability. Electricity Generation Capability and Use by Building Type Top Specific questions may be directed to: Joelle Michaels

45

Definition: Electric generator | Open Energy Information  

Open Energy Info (EERE)

generator generator Jump to: navigation, search Dictionary.png Electric generator A device for converting mechanical energy to electrical energy. Note: The EIA defines "electric generator" as a facility rather than as a device; per the EIA definition, examples include electric utilities and independent power producers.[1][2] View on Wikipedia Wikipedia Definition In electricity generation, an electric generator is a device that converts mechanical energy to electrical energy. A generator forces electric current to flow through an external circuit. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, compressed air, or any other source of

46

Industry Participation Sought for Design of Next Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

Industry Participation Sought for Design of Next Generation Nuclear Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled nuclear reactor prototype with the capability to produce process heat, electricity and/or hydrogen. The very high temperature reactor is based on research and development activities supported by DOE's Generation IV nuclear energy systems initiative.

47

Electric Power Produced from Nuclear Reactor | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor December 20, 1951 Arco, ID Electric Power Produced from Nuclear Reactor

48

Electricity Generation and Consumption by State (2008 ) | OpenEI  

Open Energy Info (EERE)

Generation and Consumption by State (2008 ) Generation and Consumption by State (2008 ) Dataset Summary Description Provides total annual electricity consumption by sector (residential, commercial and industrial) for all states in 2008, reported in GWh, and total electricity generation by sector (e.g. wind, solar, nuclear, coal) for all states in 2008, reported in GWh. Source NREL Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords EIA Electricity Consumption Electricity Generation States Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 2008 State Electricity Generation and Consumption (format: xls) (xlsx, 56.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Other or unspecified, see optional comment below

49

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

50

Conditions on Electric Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analysis of the Effects of Drought An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States April 2009 DOE/NETL-2009/1365 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

51

AEOP2011:Electricity Generation Capacity by Electricity Market Module  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 97, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into Texas regional entity, Florida reliability coordinating council, Midwest reliability council and Northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB)

52

At What Cost? A comparative evaluation of the social costs of selected electricity generation alternatives in Ontario.  

E-Print Network [OSTI]

??This thesis examines the private and external costs of electricity generated in Ontario by natural gas, wind, refurbished nuclear and new nuclear power. The purpose… (more)

Icyk, Bryan

2007-01-01T23:59:59.000Z

53

Concentrated solar power in the future of electricity generation: a synthesis of reasons  

Science Journals Connector (OSTI)

...electricity generation. Experience...steam-Rankine coal-fired power plants, nuclear...defaults in generation units. Large...need to have a generation system with...the unitary power will have to...and natural gas. Evidently...

2013-01-01T23:59:59.000Z

54

Future Developments of Large Electric Generators  

Science Journals Connector (OSTI)

...Future Developments of Large Electric Generators C. Concordia Several observations can...continual development of large electric generators: 1. The tendency toward always increasing...unbalanced loading. 5. The type of steam generator as it may influence a tendency to use...

1973-01-01T23:59:59.000Z

55

Generating electricity from the oceans  

Science Journals Connector (OSTI)

Ocean energy has many forms, encompassing tides, surface waves, ocean circulation, salinity and thermal gradients. This paper will considers two of these, namely those found in the kinetic energy resource in tidal streams or marine currents, driven by gravitational effects, and the resources in wind-driven waves, derived ultimately from solar energy. There is growing interest around the world in the utilisation of wave energy and marine currents (tidal stream) for the generation of electrical power. Marine currents are predictable and could be utilised without the need for barrages and the impounding of water, whilst wave energy is inherently less predictable, being a consequence of wind energy. The conversion of these resources into sustainable electrical power offers immense opportunities to nations endowed with such resources and this work is partially aimed at addressing such prospects. The research presented conveys the current status of wave and marine current energy conversion technologies addressing issues related to their infancy (only a handful being at the commercial prototype stage) as compared to others such offshore wind. The work establishes a step-by-step approach that could be used in technology and project development, depicting results based on experimental and field observations on device fundamentals, modelling approaches, project development issues. It includes analysis of the various pathways and approaches needed for technology and device or converter deployment issues. As most technology developments are currently UK based, the paper also discusses the UK's financial mechanisms available to support this area of renewable energy, highlighting the needed economic approaches in technology development phases. Examination of future prospects for wave and marine current ocean energy technologies are also discussed.

AbuBakr S. Bahaj

2011-01-01T23:59:59.000Z

56

SENSING THE ENVIRONMENT Detection and Generation of Electric Signals  

E-Print Network [OSTI]

SENSING THE ENVIRONMENT Detection and Generation of Electric Signals Contents Detection and Generation of Electric Signals in Fishes: An Introduction Morphology of Electroreceptive Sensory Organs Electrolocation Electric Organs Generation of Electric Signals Development of Electroreceptors and Electric

57

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Distributed Generation Dispatch Optimization Under Various Electricity Tariffs which generatorsDistributed Generation Dispatch Optimization Under Various Electricity Tariffs • no-DG – The generator

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

58

Electricity Generation from Geothermal Energy in Australia.  

E-Print Network [OSTI]

?? This thesis aims to investigate the economical and technical prerequisites for electricity generation from geothermal energy in Australia. The Australian government has increased the… (more)

Broliden, Caroline

2013-01-01T23:59:59.000Z

59

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

SciTech Connect (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

60

INTRODUCTION Weakly electric fish generate an electric organ discharge (EOD)  

E-Print Network [OSTI]

4196 INTRODUCTION Weakly electric fish generate an electric organ discharge (EOD) that results in an electric field that surrounds the fish's body. In Eigenmannia, the EOD is quasi-sinusoidal and when fish are in close proximity (~1m or less) their EODs interact. In the case of two nearby conspecifics, the combined

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ultra High Efficiency Electric Motor Generator  

Science Journals Connector (OSTI)

The Ultra High Efficiency Electric Motor Generator is an exciting opportunity to leverage ... in green technology. Marand currently produces this motor/generator at our Moorabbin facility for application ... sola...

Jeff Brown

2012-01-01T23:59:59.000Z

62

Insufficient Incentives for Investment in Electricity Generation  

E-Print Network [OSTI]

In theory, competitive electricity markets can provide incentives for efficient investment in generating capacity. We show that if consumers and investors are risk averse, investment is efficient only if investors in generating capacity can sign...

Neuhoff, Karsten; de Vries, Laurens

2004-06-16T23:59:59.000Z

63

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...monthly averages of wind power production...negative. Very large wind power penetration...forms. Plug-in hybrid electric vehicles...excesses in electricity system, while energy-rich...storage. Potential wind-generated electricity...only wind but also solar. The additional...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

64

NAFTA opportunities: Electrical equipment and power generation  

SciTech Connect (OSTI)

The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

Not Available

1993-01-01T23:59:59.000Z

65

Nuclear power eyed to generate industrial heat  

Science Journals Connector (OSTI)

Nuclear power eyed to generate industrial heat ... The American Nuclear Society has called for "an aggresssive national policy aimed at demonstrating specific capabilities and providing incentives for the application of nuclear power to meeting industrial energy needs." ...

1983-10-24T23:59:59.000Z

66

AEO2011: Electricity Generation by Electricity Market Module Region and  

Open Energy Info (EERE)

Generation by Electricity Market Module Region and Generation by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 96, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into texas regional entity, Florida reliability coordinating council, midwest reliability council and northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electricity generation Data application/vnd.ms-excel icon AEO2011: Electricity Generation by Electricity Market Module Region and Source- Reference Case (xls, 400.2 KiB) Quality Metrics

67

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

68

Fact #844: October 27, 2014 Electricity Generated from Coal has...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

69

EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS  

SciTech Connect (OSTI)

Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

2014-09-01T23:59:59.000Z

70

Renewable Electricity Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Electricity Generation Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost competitive with traditional sources of energy. Working with our national laboratories and through these partnerships, we are catalyzing the transformation of the nation's energy system and building on a tradition of U.S. leadership in science and

71

Flying Electric Generators | OpenEI Community  

Open Energy Info (EERE)

Flying Electric Generators Home > Groups > Clean and Renewable Energy Dc's picture Submitted by Dc(107) Contributor 15 September, 2014 - 12:17 How High Can They Go? Are you ready...

72

Renewable Electricity Generation in the United States  

E-Print Network [OSTI]

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

73

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

74

Entanglement Generation by Electric Field Background  

E-Print Network [OSTI]

The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

Ebadi, Zahra

2014-01-01T23:59:59.000Z

75

The Next Generation Nuclear The Next Generation Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use VHTR technology to: Use VHTR technology to: Produce electricity, and Produce electricity, and Process heat for hydrogen production and other Process heat for...

76

The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric currents that stimulate  

E-Print Network [OSTI]

2443 The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric object whose conductivity is different from that of water produces an electric image consisting for the formation of electric images. Rule 1: objects more conductive than water cause a local increase

Grant, Kirsty

77

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network [OSTI]

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

78

The generation of oscillations in networks of electrically coupled cells  

E-Print Network [OSTI]

The generation of oscillations in networks of electrically coupled cells Y. Loewenstein* , Y. Yarom systems, the electrical coupling of nonoscil- lating cells generates synchronized membrane potential dynam- ics. We show that strong electrical coupling in this network generates multiple oscillatory

Loewenstein, Yonatan

79

MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

REPORT REPORT INSTRUCTIONS|Year: 2013 No. 1905-0129 Approval Expires: 12/31/2015 Burden: 0.3 Hours| |PURPOSE|Form EIA-860M collects data on the status of: Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; Existing generators scheduled to retire from service within the subsequent 12 months; and Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry.| |REQUIRED RESPONDENTS|Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860, ANNUAL ELECTRIC GENERATOR REPORT,

80

Renewable Generation and Interconnection to the Electrical Grid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California...

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

82

Renewable Electricity Generation (Fact Sheet), Office of Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

83

Renewable Power Options for Electricity Generation on Kaua'i...  

Office of Environmental Management (EM)

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

84

Electric Power Generation from Coproduced Fluids from Oil and...  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

85

Nuclear Power Generation and Fuel Cycle Report 1996  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1996 October 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1996 ii Contacts This report was prepared in the Office of Coal, Nuclear, report should be addressed to the following staff Electric and Alternate Fuels by the Analysis and Systems

86

Nuclear Spin Relaxation and Nuclear Electric Dipole Moments  

Science Journals Connector (OSTI)

Proposals that nuclear spin relaxation in an appropriate system could serve as a test for the existence of a nuclear electric dipole moment are examined with attention to the consequences of the fact that the electric field at the nucleus is proportional to the nuclear acceleration. It is found that low-frequency fluctuations of the local electric field are suppressed. In particular, the necessarily negative correlation of the momentum transferred in consecutive collisions of an atom in a gas alters the spectral density of the perturbation, from that of uncorrelated pulses, by the factor ?2?c2(1+?2?c2), where ?c is the mean time between collisions. It follows that fairly low gas density is preferable to high. At optimum density a light gas at room temperature carrying electric dipole moments of magnitude e×10-14 cm should have a spin relaxation time, in the absence of competing processes, of around 10 minutes. A formula is given for the electrically induced spin relaxation rate in a crystal. The process is hopelessly slow. In the electric coupling of the lattice vibrations to the spin the ordinarily dominant "two-phonon" or "Raman" process is absent, because of the linearity of the connection between local electric field and nuclear motion.

E. M. Purcell

1960-02-01T23:59:59.000Z

87

"1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 "2. Byron Generating Station","Nuclear","Exelon Nuclear",2300 "3. LaSalle Generating Station","Nuclear","Exelon Nuclear",2238 "4. Baldwin Energy Complex","Coal","Dynegy Midwest Generation Inc",1785 "5. Quad Cities Generating Station","Nuclear","Exelon Nuclear",1774 "6. Dresden Generating Station","Nuclear","Exelon Nuclear",1734 "7. Powerton","Coal","Midwest Generations EME LLC",1538 "8. Elwood Energy LLC","Gas","Dominion Elwood Services Co",1350

88

The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach  

Science Journals Connector (OSTI)

Given the global energy trend to substitute fossil fuel, the nuclear power has known an important ... degrees of uncertainties related to nuclear and fossil fuel. The higher uncertainty of fossil fuel prices make...

Mohamed Ben Abdelhamid; Chaker Aloui; Corinne Chaton…

2010-04-01T23:59:59.000Z

89

The Economics of Steam Electric Generation  

E-Print Network [OSTI]

by manufacturers, data available from past installations and recent installations. 7) Labor costs were based on labor rates in ~he Lansing, Michigan area. 8) Power plant labor and supervision costs were based on manning data supplied by the Board of Water...-service. No other figures, including labor, fuel cost, outside services and other costs have been escalated. 12) Operating costs were established, based on steam generation. Credit has been allotted to any program for the electric power generated during...

Ophaug, R. A.; Birget, C. D.

1980-01-01T23:59:59.000Z

90

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

91

Nuclear Power Generation and Fuel Cycle Report 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1997 September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1997 ii The Nuclear Power Generation and Fuel Cycle Report is prepared by the U.S. Department of Energy's Energy Information Administration. Questions and comments concerning the contents of the report may be directed to:

92

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING  

E-Print Network [OSTI]

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING of the PLL. As a result, simultaneous demultiplexing, electrical clock recovery and optical clock generation), and Masashi Usami (2) 1 : Department of Electrical and Computer Engineering, University of California Santa

Bowers, John

93

The Rising Cost of Electricity Generation  

SciTech Connect (OSTI)

Through most of its history, the electric industry has experienced a stable or declining cost structure. Recently, the economic fundamentals have shifted and generating costs are now rising and driving up prices at a time when the industry faces new challenges to reduce CO{sub 2} emissions. New plant investment faces the most difficult economic environment in decades.

Tobey Winters

2008-06-15T23:59:59.000Z

94

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network [OSTI]

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 £ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

95

Implementation of optimum solar electricity generating system  

Science Journals Connector (OSTI)

Under the 10th Malaysian Plan the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015 which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia harnessing technologies related to solar energy resources have great potential for implementation. However the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time and there is a need for electrical energy storage system so that there is electricity available during the night time as well. The meteorological condition such as clouds haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper the technical aspects of the implementation of optimum SEGS is discussed especially pertaining to the positioning of the PV panels.

2014-01-01T23:59:59.000Z

96

Two-stage electric generator system  

SciTech Connect (OSTI)

The system described herein is particularly adapted to convert mechanical energy from a wind or hydraulic driven turbine into electric energy and comprises: an exciter generator and a main generator in a housing traversed by a rotatable shaft; the exciter generator consists of permanent magnet mounted to the housing envelope and of a rotor mounted to the shaft and having a one-phase winding, the rotor being made of non-magnetic material to eliminate cogging and static torque associated with permanent magnet excitation; the main generator consists of a three-phase stator winding on a magnetic core mounted to the housing envelope and of a pole-type rotor mounted to the shaft, the rotor having a winding wound on a magnetic core; a rectifying bridge is rotatably mounted to the shaft and is connected to the one-phase winding of the rotor of the exciter generator and to the winding of the main generator rotor so that the rotation of the shaft as a result of mechanical energy generates a three-phase electric energy output from the stator winding.

Leroux, A.

1981-09-29T23:59:59.000Z

97

Electric current generation in distorted graphene  

E-Print Network [OSTI]

Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

2013-12-11T23:59:59.000Z

98

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

99

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

100

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California",and Related Standards for Nuclear Power Plants", Lawrencejected lifetime for a nuclear power plant is 40 years, a

Nero, jA.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coal based electric generation comparative technologies report  

SciTech Connect (OSTI)

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

102

The National Nuclear Security Administration's Neutron Generator...  

Energy Savers [EERE]

National Nuclear Security Administration's Neutron Generator Activities OAS-L-14-11 August 2014 U.S. Department of Energy Office of Inspector General Office of Audits and...

103

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Nuclear Regulatory Commission Standard Review Plan for LightRegulatory Commission. Office of Nuclear Reactor Licens- ing. Standard Review Plan.

Nero, jA.V.

2010-01-01T23:59:59.000Z

104

THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING  

E-Print Network [OSTI]

THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING Catherine Wolfram· UC and retail services. The gains are likely to be largest in electric generation because generation costs more heavily regulated. This chapter will evaluate changes in the efficiency of electric generation

Sadoulet, Elisabeth

105

Electricity investments and development of power generation capacities : An approach of the drivers for investment choices in Europe regarding nuclear energy.  

E-Print Network [OSTI]

??In a context of growing energy prices and climate change mitigation, the thesis addresses the issues of investments in power generation capacities and in particular… (more)

Shoai Tehrani, Bianka

2014-01-01T23:59:59.000Z

106

Monthly/Annual Energy Review - nuclear section  

Reports and Publications (EIA)

Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

2015-01-01T23:59:59.000Z

107

Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions  

Gasoline and Diesel Fuel Update (EIA)

Impact of U.S. Nuclear Generation Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions Ronald E. Hagen, John R. Moens, and Zdenek D. Nikodem Energy Information Administration U.S. Department of Energy International Atomic Energy Agency Vienna, Austria November 6-9, 2001 iii Energy Information Administration/ Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions Contents Page I. The Electric Power Industry and the Greenhouse Gas Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. The Current Role of the U.S. Nuclear Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 III. The Future Role of the U.S. Nuclear Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 IV. Factors That Affect Nuclear Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V. Conclusion

108

Fostering the Next Generation of Nuclear Energy Technology |...  

Office of Environmental Management (EM)

Fostering the Next Generation of Nuclear Energy Technology Fostering the Next Generation of Nuclear Energy Technology September 29, 2014 - 11:06am Addthis Fostering the Next...

109

Registration of Electric Generators (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State Connecticut Program Type Generation Disclosure Provider Department of Energy and Environmental Protection All electric generating facilities operating in the state, with the

110

KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

KRS Chapter 278: Electric Generation and Transmission Siting KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Public Service Commission No person shall commence to construct a merchant electric generating facility until that person has applied for and obtained a construction certificate for the facility from the Kentucky State Board on Electric Generation and Transmission. The construction certificate shall be valid

111

Fact #799: September 30, 2013 Electricity Generation by Source...  

Broader source: Energy.gov (indexed) [DOE]

9: September 30, 2013 Electricity Generation by Source, 2003-2012 Fact 799: September 30, 2013 Electricity Generation by Source, 2003-2012 With the increase in market penetration...

112

Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems  

E-Print Network [OSTI]

This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different types of electrical...

Alexander, H. R.; Rogge, D. S.

113

Table 11.4 Electricity: Components of Onsite Generation, 2010...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit:...

114

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

115

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

116

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

117

Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires  

E-Print Network [OSTI]

Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires K. Momeni, G. M October 2010; published online 1 December 2010 A nanocomposite electrical generator composed of an array system and loading configuration can generate up to 160% more electric potential than the values reported

Endres. William J.

118

Next Generation Nuclear Plant Materials Selection and Qualification Program Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

R. Doug Hamelin; G. O. Hayner

2004-11-01T23:59:59.000Z

119

Hydrogen Production from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

120

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electrical dark compacton generator: Theory and simulations  

Science Journals Connector (OSTI)

A modified Colpitts oscillator (MCO) associated with a nonlinear transmission line (NLTL) with intersite nonlinearity is introduced as a self-sustained generator of a train of modulated dark signals with compact shape. Equations of state describing the dynamics of the MCO part are derived and the stationary state is obtained. Using the Routh-Hurwitz criterion, the result of a stability analysis indicates the existence of a limit cycle in certain parameter regimes and there the oscillation of the circuit delivers pulselike electrical signals. The train of generated signals is then transformed into a train of compact modulated dark voltage solitons by the NLTL. The exactness of this analytical analysis is confirmed by numerical simulations performed on the circuit equations. Finally, simulations show the capacity of this circuit to work as a generator of compactlike dark voltage solitons. The performance of the generator, namely, the pulse width and the repetition rate, is controlled by the magnitude of the characteristic parameters of the electronic components of the device.

Fabien Kenmogne; David Yemélé; Paul Woafo

2012-05-22T23:59:59.000Z

122

EIA - Annual Energy Outlook 2008 (Early Release)-Electricity Generation  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation Electricity Generation Annual Energy Outlook 2008 (Early Release) Electricity Generation U.S. electricity consumption—including both purchases from electric power producers and on-site generation—increases steadily in the AEO2008 reference case, at an average rate of 1.3 percent per year. In comparison, electricity consumption grew by annual rates of 4.2 percent, 2.6 percent, and 2.3 percent in the 1970s, 1980s, and 1990s, respectively. The growth rate in the AEO2008 projection is lower than in the AEO2007 reference case (1.5 percent per year), and it leads to lower projections of electricity generation. Figure 4. Electricity generation by fuel, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800.

123

MHK Technologies/Current Electric Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Electric Generator.jpg Technology Profile Primary Organization Current Electric Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Current Electric Generator will create electricity in three different processes simultaniously by harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The generators will be wired up together in large fields on open waterways sumerged from harm The electricity will be sent back to mainland via an underwater wire for consumption The Current Electric Generator is designed with the environment in mind and will primarilly be constructed from recycled materials cutting emmisions cost

124

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 | Department of  

Broader source: Energy.gov (indexed) [DOE]

76: Vogtle Electric Generating Plant, Units 3 and 4 76: Vogtle Electric Generating Plant, Units 3 and 4 EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 Summary This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download February 17, 2012 EIS-0476: Notice of Adoption of Final Environmental Impact Statement Vogtle Electric Generating Plant, Units 3 and 4, Issuance of a Loan Guarantee to Support Funding for Construction, Burke County, GA

125

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

126

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

127

Optimized Hydrogen and Electricity Generation from Wind  

Broader source: Energy.gov [DOE]

Several optimizations can be employed to create hydrogen and electricity from a wind energy source. The key element in hydrogen production from an electrical source is an electrolyzer to convert water and electricity into hydrogen and oxygen.

128

International Coal Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Australia NA NA NA NA NA NA NA NA NA Austria 45.70 52.67 64.47 81.28 87.52 92.75 96.24 122.10 120.10 Belgium 37.72 34.48 35.94 72.46 80.35 63.24 75.54 130.54 NA Canada 18.52 19.17 21.03 20.32 24.50 26.29 NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 31.29 31.43 31.18 47.75 57.70 54.68 70.17 118.49 NA Czech Republic3 8.05 8.52 C C C C C C C Denmark NA NA NA NA NA NA NA NA NA Finland 46.66 44.02 48.28 67.00 72.06 74.27 83.72 142.90 NA France 45.28 42.89 42.45 63.55 74.90 72.90 83.90 136.10 NA Germany 51.86 45.70 50.02 70.00 79.74 77.95 90.26 152.60 NA

129

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

period for coal, petroleum, and natural gas are by factors of 1.72, 7.27, and 1 "Conversion" here does1 Costs of Generating Electrical Energy 1.0 Overview The costs of electrical energy generation can of electric energy out of the power plant. 2.0 Fuels Fuel costs dominate the operating costs necessary

McCalley, James D.

130

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

131

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network [OSTI]

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

132

Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen  

SciTech Connect (OSTI)

Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

Charles Forsberg; Steven Aumeier

2014-04-01T23:59:59.000Z

133

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

134

CSEM WP 111R The Efficiency of Electricity Generation  

E-Print Network [OSTI]

CSEM WP 111R The Efficiency of Electricity Generation in the U.S. After Restructuring Catherine Berkeley, California 94720-5180 www.ucei.org #12;THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER-utility generating plants. Then, beginning with California in 1996, nearly half the states passed and a smaller

California at Berkeley. University of

135

Integration of decentralized generators with the electric power grid  

E-Print Network [OSTI]

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

136

Impact of Electric Generating Facilities (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality After a proposed power plant has received approval from the State Corporation Commission (SCC) and location approval from the local government, it must apply for all applicable permits from the Virginia

137

Renewable Energy for Electricity Generation in Latin America: Market,  

Open Energy Info (EERE)

for Electricity Generation in Latin America: Market, for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.org/webinar-renewable-energy-electricity-generatio Equivalent URI: cleanenergysolutions.org/content/renewable-energy-electricity-generati Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This video teaches the viewer about the current status and future

138

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission...  

Buildings Energy Data Book [EERE]

Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and...

139

Microstructural Characterization of Next Generation Nuclear Graphites  

SciTech Connect (OSTI)

This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

2012-04-01T23:59:59.000Z

140

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

Policymakers' Guidebook for Geothermal Electricity Generation Policymakers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policymakers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Resource Type: Publications, Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49476.pdf Cost: Free References: Policymakers' Guidebook for Geothermal Electricity Generation[1] Overview This guidebook is a short discussion on how to create policy that overcomes challenges to geothermal implementation. The document follows a five step

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Edison Electric Institute State Generation and Transmission Siting...  

Open Energy Info (EERE)

LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Edison Electric Institute State Generation and Transmission Siting DirectoryPermittingRegulatory...

142

NREL: Energy Analysis - Coal-Fired Electricity Generation Results...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessments have shown wide-ranging results. To better understand the greenhouse gas (GHG) emissions from utility-scale, coal-fired electricity generation systems (based on...

143

Table 11a. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " constant dollars per million Btu in ""dollar year"" specific to each...

144

Adapting On-site Electrical Generation Platforms for Producer Gas  

Broader source: Energy.gov [DOE]

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

145

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...  

Broader source: Energy.gov (indexed) [DOE]

Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California July 1,...

146

Category:Electricity Generating Technologies | Open Energy Information  

Open Energy Info (EERE)

Energy (4 categories) W + Wind (2 categories) 3 pages Pages in category "Electricity Generating Technologies" The following 3 pages are in this category, out of 3...

147

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

148

Application Filing Requirements for Wind-Powered Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

149

Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency  

SciTech Connect (OSTI)

Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email – roald.wigeland@inl.gov fax (U.S.) – 208-526-2930

R. Wigeland; K. Hamman

2009-09-01T23:59:59.000Z

150

Sales and Use Tax Exemption for Electrical Generating Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible personal property that is used for constructing or expanding the facility. In order to qualify, the facility must have at least one electrical generation unity

151

Minimizing electricity costs with an auxiliary generator using stochastic programming  

E-Print Network [OSTI]

This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

Rafiuly, Paul, 1976-

2000-01-01T23:59:59.000Z

152

Future Trends in Nuclear Power Generation [and Discussion  

Science Journals Connector (OSTI)

...Future Trends in Nuclear Power Generation [and Discussion...the Calder Hall reactors were ordered...building and operating nuclear power stations...situations, a high nuclear share of new capacity...1980s. The fast reactor, prototypes of...

1974-01-01T23:59:59.000Z

153

The Next Generation Nuclear Plant (NGNP) Project  

SciTech Connect (OSTI)

The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOE’s project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10 CFR 52, for the purpose of demonstrating the suitability of high-temperature gas-cooled reactors for commercial electric power and hydrogen production. Products that will support the licensing of the NGNP include the environmental impact statement, the preliminary safety analysis report, the NRC construction permit, the final safety analysis report, and the NRC operating license. The fuel development and qualification program consists of five elements: development of improved fuel manufacturing technologies, fuel and materials irradiations, safety testing and post-irradiation examinations, fuel performance modeling, and fission product transport and source term modeling. Two basic approaches will be explored for using the heat from the high-temperature helium coolant to produce hydrogen. The first technology of interest is the thermochemical splitting of water into hydrogen and oxygen. The most promising processes for thermochemical splitting of water are sulfur-based and include the sulfur-iodine, hybrid sulfur-electrolysis, and sulfur-bromine processes. The second technology of interest is thermally assisted electrolysis of water. The efficiency of this process can be substantially improved by heating the water to high-temperature steam before applying electrolysis.

F. H. Southworth; P. E. MacDonald

2003-11-01T23:59:59.000Z

154

Suez SNC-Lavalin Nuclear to replace US steam generator  

Science Journals Connector (OSTI)

SNC-Lavalin Nuclear (USA) has signed a contract with Xcel Energy to replace the Unit #2 steam generators at the Prairie Island Nuclear Generating Plant (PINGP) in Welch, Minnesota.

2010-01-01T23:59:59.000Z

155

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002;" 3 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,0.8,1.1,1.3

156

Table 11.4 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2002;" 4 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " ",,,"Renewable Energy" ,,,"(excluding Wood",,"RSE" "Economic","Total Onsite",,"and",,"Row" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.1,1.4 "Value of Shipments and Receipts"

157

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

158

Electric generating or transmission facility: determination of rate-making  

Broader source: Energy.gov (indexed) [DOE]

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

159

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

Managing Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable

Sadeh, Norman M.

160

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

162

Why the IBEW supports expanding nuclear power generation in the USA  

Science Journals Connector (OSTI)

The International Brotherhood of Electrical Workers (IBEW) represents workers, many who work in the utility and power generation industries. The IBEW has been and continues to be a vocal supporter of the expansion of nuclear power generation in the USA. Five years ago, there was a general expectation that nuclear capacity would expand greatly. It did not, and in part the absence of more new nuclear construction is the natural outcome of a misguided energy market regulation system. We close with a set of priorities for rebuilding the energy regulatory scheme that would benefit our members and ratepayers and would, at the same time, lead to and require an expansion of nuclear power. The article describes the state of nuclear power in the USA today, the IBEW's role in the utility industry and nuclear power generation; the IBEW's priorities for the US energy market and why those priorities lead the IBEW to call for the expansion of nuclear power in the USA.

William Bill Riley

2013-01-01T23:59:59.000Z

163

Axial Current Generation from Electric Field: Chiral Electric Separation Effect  

E-Print Network [OSTI]

We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

Xu-Guang Huang; Jinfeng Liao

2013-06-07T23:59:59.000Z

164

Elimination of Competition and Duplication of Electricity Generation and  

Broader source: Energy.gov (indexed) [DOE]

Elimination of Competition and Duplication of Electricity Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska) Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info

165

Towards modelling and design of magnetostrictive electric generators  

Science Journals Connector (OSTI)

The paper deals with application of giant magnetostrictive materials for power harvesting from vibration. Mathematical modelling and design of magnetostrictive electric generators (MEG) are considered. The mathematical model, original MEG and test rig ... Keywords: Electric generator, Magnetostriction, Modelling, Power harvesting, Terfenol-D, Vibration, Villari effect

Viktor Berbyuk; Jayesh Sodhani

2008-02-01T23:59:59.000Z

166

North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

This SEP-funded project in Williston, North Dakota, places generators at oil production well sites to transform wellhead flare gas into high-quality, three-phase electricity,which is then sold to the local rural electric cooperatives. The modern, natural gas-fueled generators burn cleanly with “ultra-low” emissions ratings that exceed state and federal emissions standards.

167

The Economic Value of Temperature Forecasts in Electricity Generation  

Science Journals Connector (OSTI)

Every day, the U.S. electricity-generating industry decides how to meet the electricity demand anticipated over the next 24 h. Various generating units are available to meet the demand, and each unit may have its own production lead time, start-...

Thomas J. Teisberg; Rodney F. Weiher; Alireza Khotanzad

2005-12-01T23:59:59.000Z

168

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

169

Exemption from Electric Generation Tax (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) < Back Eligibility Commercial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Energy Sources Solar Home Weatherization Program Info Start Date 07/01/2011 Expiration Date 10/01/2013 State Connecticut Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Connecticut Department of Revenue Services In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable energy facilities and customer-sited facilities are exempt from the tax. The tax and related

170

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...Annual wind energy potential...Monthly wind energy potential for...on a U.S. national basis depending...electricity to other energy forms. Plug-in...transmission grid. Expansion...in potential renewable resources, not...relating to the integration of electricity...relates to the challenge of matching...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

171

Letter to NEAC to Review the Next Generation Nuclear Plant Activities |  

Broader source: Energy.gov (indexed) [DOE]

to NEAC to Review the Next Generation Nuclear Plant to NEAC to Review the Next Generation Nuclear Plant Activities Letter to NEAC to Review the Next Generation Nuclear Plant Activities The Next Generation Nuclear Plant (NGNP) project was established under the Energy Policy Act in August 2005 (EPACT-2005). EPACT-2005 defined an overall plan and timetable for NGNP research, design, licensing, construction and operation by the end of FY 2021. At the time that EPACT-2005 was passed, it was envisioned that key aspects of the project included: NGNP is based on R&D activities supported by the Gen-IV Nuclear Energy initiative;  NGNP is to be used to generate electricity, to produce hydrogen or (to do) both;  The Idaho National Laboratory (INL) will be the lead national lab for the project;  NGNP will be sited at the INL in

172

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

173

Nuclear Electric Dipole Moment of 3He  

SciTech Connect (OSTI)

A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of {sup 3}He and the expected sensitivity of such a measurement to the underlying CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {pi}-, {rho}-, and {omega}-exchanges, we find that the pion-exchange contribution dominates. Finally, our results suggest that a measurement of the {sup 3}He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

Stetcu, I; P.Liu, C; Friar, J L; Hayes, A C; Navratil, P

2008-04-08T23:59:59.000Z

174

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...6 MW, deployed offshore, reflecting the greater...incentive to deploy larger turbines to capture the higher wind speeds available in...Electricity-Producing Wind Turbines ( International Electrotechnical...2008 ) Assessing offshore wind resources: An accessible...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

175

La Plata Electric Association - Renewable Generation Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Maximum Rebate PV 10 kW or smaller: $4,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount PV 10 kW-DC or smaller: Upfront incentive of $0.40 per watt DC PV greater than 10 kW-DC: Performance-based incentive of $44.91/MWh ($0.04491/kWh) paid every 6 months for 10 years Provider La Plata Electric Association La Plata Electric Association (LPEA) offers a one-time rebate, not to exceed the cost of the system, to residential and small commercial customers who install a photovoltaic (PV), wind or hydropower facility. To

176

Recent advances in nuclear powered electric propulsion for space exploration  

Science Journals Connector (OSTI)

Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

R. Joseph Cassady; Robert H. Frisbee; James H. Gilland; Michael G. Houts; Michael R. LaPointe; Colleen M. Maresse-Reading; Steven R. Oleson; James E. Polk; Derrek Russell; Anita Sengupta

2008-01-01T23:59:59.000Z

177

The role of hydroelectric generation in electric power systems with large scale wind generation .  

E-Print Network [OSTI]

??An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to… (more)

Hagerty, John Michael

2012-01-01T23:59:59.000Z

178

Combined-Cycle Power Generation — A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

179

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...15.7 Nuclear 3.1 Geothermal Negligible 1973, use...home and commercial heating, transporta-tion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

180

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NNSA Launches Next Generation Safeguards Initiative | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Safeguards Initiative | National Nuclear Next Generation Safeguards Initiative | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Launches Next Generation Safeguards Initiative NNSA Launches Next Generation Safeguards Initiative September 09, 2008 Washington, DC NNSA Launches Next Generation Safeguards Initiative

182

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XXXXX XXXXX Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Summary This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate

183

DOE Awards Cooperative Agreement for Innovative Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Awards Cooperative Agreement for Innovative Electric Generation Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has awarded a cooperative agreement to Summit Texas Clean Energy LLC (STCE) for the Texas Clean Energy Project to design, build, and demonstrate an integrated gasification combined cycle electric generating facility, complete with co-production of high-value products and carbon capture and storage. The project was a third round selection under DOE's Clean Coal Power Initiative, a cost-shared collaboration between the Federal Government and

184

DOE Awards Cooperative Agreement for Innovative Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Awards Cooperative Agreement for Innovative Electric Generation Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has awarded a cooperative agreement to Summit Texas Clean Energy LLC (STCE) for the Texas Clean Energy Project to design, build, and demonstrate an integrated gasification combined cycle electric generating facility, complete with co-production of high-value products and carbon capture and storage. The project was a third round selection under DOE's Clean Coal Power Initiative, a cost-shared collaboration between the Federal Government and

185

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Broader source: Energy.gov (indexed) [DOE]

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

186

Applications for Certificates for Electric Generation Facilities (Ohio)  

Broader source: Energy.gov [DOE]

An applicant for a certificate to site an electric power generating facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a...

187

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling  

E-Print Network [OSTI]

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment. Keywords Microbial fuel cell . Paper recycling wastewater. Cellulose . Solution conductivity. Power

188

Alternative electric generation impact simulator : final summary report  

E-Print Network [OSTI]

This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

Gruhl, Jim

1981-01-01T23:59:59.000Z

189

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

Analysis  of  Wind  Power  and  Load  Data  at  Multiple Load?Analysis  J Model  for  Electric  Power  Distribution  Facilities  Using  Consumer  Meter?Reading  Data”, data  generated  by  the  power  provider,  such  as  pricing  or  load 

Birman, Kenneth

2012-01-01T23:59:59.000Z

190

Maine: Energy Efficiency Program Helps Generate Town's Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

191

Competitive electricity markets and investment in new generating capacity  

E-Print Network [OSTI]

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

Joskow, Paul L.

2006-01-01T23:59:59.000Z

192

Electrical Generation Tax Reform Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Generation Tax Reform Act (Montana) Generation Tax Reform Act (Montana) Electrical Generation Tax Reform Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Systems Integrator Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Fees Provider Montana Department of Revenue This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the

193

Generating the Option of a Two-Stage Nuclear Renaissance  

Science Journals Connector (OSTI)

...resources. However, the technology has not been demonstrated...nonrenewable natural gas), although various measures...energy. Outlook Nuclear technology is at a crossroads. The...International Forum, “A Technology Roadmap for Generation IV Nuclear...

Robin W. Grimes; William J. Nuttall

2010-08-13T23:59:59.000Z

194

A rotating suspended liquid film as an electric generator  

E-Print Network [OSTI]

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC ele...

Amjadi, Ahmad; Namin, Reza Montazeri

2013-01-01T23:59:59.000Z

195

Bioaugmentation for Electricity Generation from Corn Stover  

E-Print Network [OSTI]

used by Zuo et al., 501 ( 20 mW/m2 was generated from a paper recycling wastewater containing cellulose and animal wastewaters and corn stover hydrolysates. For example, high power densities (810 to 970 mW/m2

196

Power generation from nuclear reactors in aerospace applications  

SciTech Connect (OSTI)

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

197

Bush Administration Moves Forward to Develop Next Generation Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Moves Forward to Develop Next Generation Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to sign the first multilateral agreement in history aimed at the development of next generation nuclear energy systems. The work of the Generation IV International Forum (GIF) is essential to advancing an important component of the Bush Administration's comprehensive energy strategy in the development of next generation nuclear energy technologies.

198

Water generator replaces bottled water in nuclear power plant  

Science Journals Connector (OSTI)

WaterPure International Incorporated of Doylestown, Pennsylvania, USA, has announced that it has placed its atmospheric water generator (AWG) inside a selected nuclear power plant.

2007-01-01T23:59:59.000Z

199

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,Summary of Nuclear Power Plant Operating Experience for

Nero, A.V.

2010-01-01T23:59:59.000Z

200

Climate Change, Nuclear Power and Nuclear  

E-Print Network [OSTI]

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

202

Role of Energy Storage with Renewable Electricity Generation  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

203

Proof-of-Principle Detonation Driven, Linear Electric Generator Facility  

E-Print Network [OSTI]

Proof-of-Principle Detonation Driven, Linear Electric Generator Facility Eric M. Braun, Frank K. Lu is described in which a detonation-driven piston system has been integrated with a linear generator in order in a single mass, two-spring system where the detonation wave pressure may be modeled as a variable force

Texas at Arlington, University of

204

Electrical faults modeling of the photovoltaic generator Wail Rezgui1  

E-Print Network [OSTI]

The productivity of photovoltaic generators is based on two main factors [1-3]: solar radiation energy which is captured by the generator and direct electrical energy resulting from the conversion of the solar radiation energy by the photovoltaic phenomena. So, the degradation of these two factors means the presence

Boyer, Edmond

205

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

206

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

207

General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis  

E-Print Network [OSTI]

General equilibrium, electricity generation technologies and the cost of carbon abatement-down General equilibrium Electricity generation is a major contributor to carbon dioxide emissions Elsevier B.V. All rights reserved. 1. Introduction Electricity generation is a significant contributor

208

NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

Mark Holbrook

2010-09-01T23:59:59.000Z

209

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

210

AEO2011: Electricity Generating Capacity | OpenEI  

Open Energy Info (EERE)

Generating Capacity Generating Capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed

211

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

212

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

213

Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

2009-03-01T23:59:59.000Z

214

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

Hand, Maureen

2008-01-01T23:59:59.000Z

215

Electricity-generation mix considering energy security and carbon emission mitigation: Case of Korea and Mongolia  

Science Journals Connector (OSTI)

Abstract To compare electricity-generation fuel mixes in two countries with multiple energy policy goals and unique circumstances, we look at three scenarios reflecting the carbon emissions mitigation targets, differences in energy security levels, and electricity-generating costs of each nation. Korea and Mongolia show clear differences in electricity-generation structure related to import dependency, the potential of renewable energy, and threats to energy security. These variations lead to different decisions on the power-generation fuel mix plan. Use of fossil fuel resources in Korea results in carbon dioxide emissions and energy insecurity, while in Mongolia carbon emissions, also from fossil fuels, and energy insecurity are separate concerns as Mongolia domestically operates coal-fired power plants and imports electricity. Policies targeting two objectives, carbon emissions mitigation and energy security improvement, show complementarity in Korea as fossil fuels are replaced by renewables or nuclear power, but represent trade-offs in Mongolia as emissions mitigation and improved energy security cannot be achieved with one strategy. In conclusion, national plans to achieve two goals differ by country: In Korea, the appropriate portion of nuclear energy is the determining policy factor. In Mongolia, carbon capture and storage is the clear alternative for mitigating carbon emissions despite large renewables potential.

Hanee Ryu; Shonkhor Dorjragchaa; Yeonbae Kim; Kyunam Kim

2014-01-01T23:59:59.000Z

216

Observations on A Technology Roadmap for Generation IV Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Observations on A Technology Roadmap for Generation IV Nuclear Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV Technology Planning (GRNS) and they are: * A Near Term Development (NTD) Roadmap which is in the process of being

217

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

218

Hourly Energy Emission Factors for Electricity Generation in the United  

Open Energy Info (EERE)

Hourly Energy Emission Factors for Electricity Generation in the United Hourly Energy Emission Factors for Electricity Generation in the United States Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. This project utilized GridViewTM, an electric grid dispatch software package, to estimate hourly emission factors for all of the eGRID subregions in the continental United States. These factors took into account electricity imports and exports

219

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facility’s electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

220

Market Power and Technological Bias: The Case of Electricity Generation  

E-Print Network [OSTI]

, the intermittent nature of output from wind turbines and solar panels is frequently discussed as a potential obstacle to larger scale application of these tech- nologies. Contributions of 10-20% of electrical energy from individual intermittent technologies create... , Cambridge CB3 9DE, UK, Tel: ++ 44 1223 335200, paul.twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However...

Twomey, Paul; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Yancheng Chuangneng Straw Electricity Generation Co Ltd | Open Energy  

Open Energy Info (EERE)

Yancheng Chuangneng Straw Electricity Generation Co Ltd Yancheng Chuangneng Straw Electricity Generation Co Ltd Jump to: navigation, search Name Yancheng Chuangneng Straw Electricity Generation Co Ltd Place Yancheng, Jiangsu Province, China Sector Biomass Product A biomass project developer in China. Coordinates 33.583°, 113.983009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.583,"lon":113.983009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Form EIA-860 Annual Electric Generator Report | OpenEI  

Open Energy Info (EERE)

761 761 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142263761 Varnish cache server Form EIA-860 Annual Electric Generator Report Dataset Summary Description The Form EIA-860 is a generator-level survey that collects specific information about existing and planned generators and associated environmental equipment at electric power plants with 1 megawatt or greater of combined nameplate capacity. The survey data is summarized in reports such as the Electric Power Annual. The survey data is also available for download here. The data are compressed into a self-extracting (.exe) zip folder containing .XLS data files and record layouts. The current file structure (starting with 2009 data) consists

223

Simplified Approach for Estimating Impacts of Electricity Generation  

Open Energy Info (EERE)

Simplified Approach for Estimating Impacts of Electricity Generation Simplified Approach for Estimating Impacts of Electricity Generation (SIMPACTS) Jump to: navigation, search Tool Summary Name: Simplified Approach for Estimating Impacts of Electricity Generation (SIMPACTS) Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Agriculture, Energy Efficiency, Forestry Topics: Co-benefits assessment, - Environmental and Biodiversity, - Health Resource Type: Software/modeling tools Complexity/Ease of Use: Advanced Website: www.iaea.org/OurWork/ST/NE/Pess/PESSenergymodels.shtml References: Overview of IAEA PESS Models [1] Related Tools DNE21+ Integrated Global System Modeling Framework Prospective Outlook on Long-Term Energy Systems (POLES) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS

224

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel3 of HEALTH AND SAFETY IMPACTS OF FOSSIL-FUEL NUCLEAR,HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

225

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

226

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Rosen, L.C.

2010-01-01T23:59:59.000Z

227

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

228

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

229

The role of hydroelectric generation in electric power systems with large scale wind generation  

E-Print Network [OSTI]

An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

Hagerty, John Michael

2012-01-01T23:59:59.000Z

230

Scoping calculations of power sources for nuclear electric propulsion  

SciTech Connect (OSTI)

This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1994-05-01T23:59:59.000Z

231

Table 11.3 Electricity: Components of Onsite Generation, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2010; 3 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 5,666 5,414 81 171 3112 Grain and Oilseed Milling 3,494 3,491 Q 2 311221 Wet Corn Milling 3,213 3,211 0 2 31131 Sugar Manufacturing 1,382 1,319 64 0 3114 Fruit and Vegetable Preserving and Specialty Foods 336 325 Q * 3115 Dairy Products 38 36 1 1 3116 Animal Slaughtering and Processing 19 Q Q 14 312 Beverage and Tobacco Products 342 238 Q 7 3121 Beverages 308 204 Q 7 3122 Tobacco 34

232

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 119, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region of WECC. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Rockies WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 119 KiB)

233

HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity  

E-Print Network [OSTI]

goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

234

Advanced ceramic materials for next-generation nuclear applications  

Science Journals Connector (OSTI)

The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.

John Marra

2011-01-01T23:59:59.000Z

235

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

236

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

237

Modeling of a detonation driven, linear electric generator facility  

E-Print Network [OSTI]

Modeling of a detonation driven, linear electric generator facility E.M. Braun, E. Baydar, and F.K. Lu 1 Introduction The pulsed detonation engine (PDE) has been developed over several decades due must consider if the unique properties of the detonation wave can be utilized to in- crease efficiency

Texas at Arlington, University of

238

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

239

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

240

Treatment of Solar Generation in Electric Utility Resource Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Treatment of Solar Generation Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

242

Computational Needs for the Next Generation Electric Grid Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 19-20, 2011 April 19-20, 2011 Editors: Joseph H. Eto Lawrence Berkeley National Laboratory Robert J. Thomas Cornell University Proceedings Computational Needs for the Next Generation Electric Grid LBNL-5105E Computational Needs for the Next Generation Electric Grid Proceedings April 19-20, 2011 Editors: Joseph H. Eto, Lawrence Berkeley National Laboratory Robert J. Thomas, Cornell University The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the

243

Effective critical electric field for runaway electron generation  

E-Print Network [OSTI]

In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

Stahl, Adam; Decker, Joan; Embréus, Ola; Fülöp, Tünde

2014-01-01T23:59:59.000Z

244

The effect of the Fukushima nuclear accident on stock prices of electric power utilities in Japan  

Science Journals Connector (OSTI)

The purpose of this study is to investigate the effect of the accident at the Fukushima Daiichi nuclear power station, which is owned by Tokyo Electric Power Co. (TEPCO), on the stock prices of the other electric power utilities in Japan. Because the other utilities were not directly damaged by the Fukushima nuclear accident, their stock price responses should reflect the change in investor perceptions on risk and return associated with nuclear power generation. Our first finding is that the stock prices of utilities that own nuclear power plants declined more sharply after the accident than did the stock prices of other electric power utilities. In contrast, investors did not seem to care about the risk that may arise from the use of the same type of nuclear power reactors as those at the Fukushima Daiichi station. We also observe an increase of both systematic and total risks in the post-Fukushima period, indicating that negative market reactions are not merely caused by one-time losses but by structural changes in society and regulation that could increase the costs of operating a nuclear power plant.

Shingo Kawashima; Fumiko Takeda

2012-01-01T23:59:59.000Z

245

Generation IV (Gen IV) - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation IV (Gen Generation IV (Gen IV) Generation IV Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Major Programs Generation IV (Gen IV) Development of next generation nuclear systems featuring significant advances in sustainability, economics, safety, reliability, proliferation resistance and physical protection. Bookmark and Share Generation IV Fact Sheet (73 KB) Overview Generation IV nuclear energy systems target significant advances over current-generation and evolutionary systems in the areas of sustainability, safety and reliability, and economics. These systems are to be deployable by 2030 in both industrialized and developing countries. Development of Generation IV systems is an international initiative. A

246

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown  

Broader source: Energy.gov [DOE]

From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

247

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network [OSTI]

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

248

Market Potential for Non-electric Applications of Nuclear Energy  

SciTech Connect (OSTI)

The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, Vienna (Austria); Nisan, S. [Commissariat a l'energie atomique (CEA), CEA/CEN Cadarache, F-13108 Saint Paul-lez-Durance (France)

2002-07-01T23:59:59.000Z

249

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

250

Training the Next Generation of Nuclear Energy Leaders | Department of  

Broader source: Energy.gov (indexed) [DOE]

Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo courtesy of the University of Idaho. University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo

251

Training the Next Generation of Nuclear Energy Leaders | Department of  

Broader source: Energy.gov (indexed) [DOE]

the Next Generation of Nuclear Energy Leaders the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo courtesy of the University of Idaho. University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo

252

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

253

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

254

Next-generation nuclear fuel withstands high-temperature accident...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

teri.ehresman@inl.gov Bill Cabage (ORNL), 865-574-4399, cabagewh@ornl.gov Next-generation nuclear fuel withstands high-temperature accident conditions IDAHO FALLS - A safer...

255

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.  

SciTech Connect (OSTI)

This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

256

Halbach array motor/generators: A novel generalized electric machine  

SciTech Connect (OSTI)

In August 1979, Halbach submitted a paper entitled ``Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material.`` In this paper, he presented a novel method of generating multipole magnetic fields using non-intuitive geometrical arrangements of permanent magnets. In subsequent publications, he further defined these concepts. Of particular interest to one of the authors (RFP) was the special magnet array that generated a uniform dipole field. In 1990 Post proposed the construction of an electric machine (a motor/generator) using a dipole field based on Klaus Halbach`s array of permanent magnets. He further proposed that such a system should be employed as an integral part of ``an electromechanical battery`` (EMB), i.e., a modular flywheel system to be used as a device for storing electrical energy, as an alternative to the electrochemical storage battery. This paper reviews Halbach`s theory for the generation of a dipole field using an array of permanent magnet bars, presents a simple analysis of a family of novel ``ironless`` electric machines designed using the dipole Halbach array, and describes the results obtained when they were tested in the laboratory.

Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A.

1994-10-28T23:59:59.000Z

257

Identification and definition of unbundled electric generation and transmission services  

SciTech Connect (OSTI)

State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

Kirby, B.; Hirst, E.; Vancoevering, J.

1995-03-01T23:59:59.000Z

258

Electricity generation and environmental externalities: Case studies, September 1995  

SciTech Connect (OSTI)

Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

NONE

1995-09-28T23:59:59.000Z

259

Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects  

E-Print Network [OSTI]

The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped charged jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

Gsponer, A

2005-01-01T23:59:59.000Z

260

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost and Performance Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia NREL Technical Monitor: Jordan Macknick

262

The Role of Energy Storage with Renewable Electricity Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

87 87 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-47187 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan Prepared under Task No. WER8.5005 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

263

Annual Electric Generator data - EIA-860 data file  

Gasoline and Diesel Fuel Update (EIA)

60 detailed data with previous form data (EIA-860A/860B) 60 detailed data with previous form data (EIA-860A/860B) Release Date: October 10, 2013 for Final 2012 data Next Release Date: September 2014 Re-Release 2012 data: December 4, 2013 (CORRECTION) The survey Form EIA-860 collects generator-level specific information about existing and planned generators and associated environmental equipment at electric power plants with 1 megawatt or greater of combined nameplate capacity. Summary level data can be found in the Electric Power Annual. Detailed data are compressed (zip) and contain the following files: LayoutYyy – Provides a directory of all (published) data elements collected on the Form EIA-860 together with the related description, specific file location(s), and, where appropriate, an explanation of codes.

264

CDCA Final EIS for Ivanpah Solar Electric Generating System  

Broader source: Energy.gov (indexed) [DOE]

CALIFORNIA DESERT CONSERVATION AREA PLAN CALIFORNIA DESERT CONSERVATION AREA PLAN AMENDMENT / FINAL ENVIRONMENTAL IMPACT STATEMENT FOR IVANPAH SOLAR ELECTRIC GENERATING SYSTEM FEIS-10-31 JULY 2010 BLM/CA/ES-2010-010+1793 In Reply Refer To: In reply refer to: 1610-5.G.1.4 2800lCACA-48668 Dear Reader: Enclosed is the proposed California Desert Conservation Area Plan Amendment and Final Environmental Impact Statement (CDCA Plan Amendment/FEIS) for the Ivanpah Solar Electric Generating System (ISEGS) project. The Bureau of Land Management (BLM) prepared the CDCA Plan Amendment/FEIS for the ISEGS project in consultation with cooperating agencies and California State agencies, taking into account public comments received during the National Environmental Policy Act (NEPA) process. The proposed plan amendment adds the Ivanpah

265

Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure  

SciTech Connect (OSTI)

The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

Marnay, Chris; Venkataramanan, Giri

2006-02-01T23:59:59.000Z

266

New Zealand Interactive Electricity Generation Cost Model 2010 | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New Zealand Interactive Electricity Generation Cost Model 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: New Zealand Interactive Electricity Generation Cost Model 2010 Agency/Company /Organization: New Zealand Energy Authority Sector: Energy Topics: Finance, Implementation, Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.med.govt.nz/templates/MultipageDocumentTOC____45553.aspx Country: New Zealand Cost: Free Australia and New Zealand Coordinates: -40.900557°, 174.885971°

267

BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION  

SciTech Connect (OSTI)

SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

2006-07-01T23:59:59.000Z

268

Extreme Harmonic Generation in Electrically Driven Spin Resonance  

Science Journals Connector (OSTI)

We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.

J. Stehlik; M.?D. Schroer; M.?Z. Maialle; M.?H. Degani; J.?R. Petta

2014-06-06T23:59:59.000Z

269

Use of a thermophotovoltaic generator in a hybrid electric vehicle  

Science Journals Connector (OSTI)

Viking 29 is the World’s first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration speed and handling compare to modern high performance sports cars while emissions are cleaner than current internal combustion engine vehicles.

Orion Morrison; Michael Seal; Edward West; William Connelly

1999-01-01T23:59:59.000Z

270

Regulated apparatus for the generation of electrical energy, such as a wind generator  

SciTech Connect (OSTI)

The invention relates to a regulated apparatus for the generation of electrical energy. A wind generator comprises a propeller having fixed blades and a generator connected by a transmission to the propeller and having sets of main and secondary brushes. The hub of the propeller comprises a rotor of an eddy-current brake whose inductor stator is supplied by a current delivered, starting from a certain speed , by the secondary brushes of the generator which are angularly shifted relative to their neutral position.

Kant, M.

1980-04-15T23:59:59.000Z

271

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

272

Policy Makers' Guidebook for Geothermal Electricity Generation | Open  

Open Energy Info (EERE)

Policy Makers' Guidebook for Geothermal Electricity Generation Policy Makers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Create a Vision, Evaluate Options, Develop Goals, Develop Finance and Implement Projects Resource Type: Guide/manual, Case studies/examples, Templates, Technical report User Interface: Website Website: www.nrel.gov/geothermal/publications.html Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Low-power electricity generation from dynamical systems  

Science Journals Connector (OSTI)

This talk will review our research on energy harvesting from electroelastic dynamical systems for low-power electricity generation with an emphasis on piezoelectric transduction. The transformation of vibrations into electricity using piezoelectric materials with the goal of powering small electronic components has received growing attention over the last decade. Enabling energy-autonomous small electronic components can lead to reduced maintenance costs in various wireless applications such as structural health monitoring of civil and military systems. After a brief discussion of energy harvesting methods for low-power electricity generation this talk will be focused on linear and nonlinear energy harvesting using piezoelectric materials through the topics of distributed-parameter electroelastic dynamics of energy harvesters performance and frequency bandwidth enhancement by exploiting nonlinear dynamic phenomena deterministic and stochastic excitation of monostable and bistable configurations effects of dissipative and inherent electroelastic nonlinearities electroaeroelastic flow energy harvesting using airfoil-based and bluff body-based configurations and enhanced harvesting of structure-borne propagating waves using elastoacoustic mirrors and metamaterial structures. A brief introduction to our efforts on multifunctional underwater thrust and power generation using flexible piezoelectric composites will also be given.

Alper Erturk

2013-01-01T23:59:59.000Z

274

Generating the Option of a Two-Stage Nuclear Renaissance  

Science Journals Connector (OSTI)

...inhomogeneously distributed fission gas bubbles and oxides, and noble metal precipitates...conventional “island” (the turbine and generator). At the end of its...coproduct of nonrenewable natural gas), although various measures such as cooling...International Forum, “A Technology Roadmap for Generation IV Nuclear Energy...

Robin W. Grimes; William J. Nuttall

2010-08-13T23:59:59.000Z

275

The potential contribution of small hydroelectric generation to meeting electrical demand on Vancouver Island.  

E-Print Network [OSTI]

??This work focuses on the electrical contribution small hydro generation can make to meeting Vancouver Island's electrical demand, today, and as further development proceeds. A… (more)

Schuett, Matthew T.

2008-01-01T23:59:59.000Z

276

TEC as electric generator in an automobile catalytic converter  

SciTech Connect (OSTI)

Modern cars use more and more electric power due to more on-board electric systems, e.g., ABS brakes, active suspension systems, electric windows, chair adjustment systems and electronic engine control systems. One possible energy source for electricity generation is to use the waste heat from the car`s engine, which generally is as much as 80% of the total energy from the combustion of the gasoline. Maybe the best location to tap the excess heat is the Catalytic Converter (Cat) in the exhaust system or perhaps at the exhaust pipes close to the engine. The Cat must be kept within a certain temperature interval. Large amounts of heat are dissipated through the wall of the Cat. A Thermionic Energy Converter (TEC) in coaxial form could conveniently be located around the ceramic cartridge of the Cat. Since the TEC is a rather good heat insulator before it reaches its working temperature the Cat will reach working temperature faster, and the final temperature of it can be controlled better when encapsulated in a concentric TEC arrangement. It is also possible to regulate the temperature of the Cat and the TEC by controlling the electrical load of the TEC. The possible working temperatures of present and future Cats appear very suitable for the new low work function collector TEC, which has been demonstrated to work down to 470 K.

Svensson, R. [Chalmers Univ. of Technology, Goeteborg (Sweden); Holmlid, L. [Univ. of Goeteborg (Sweden). Dept. of Physical Chemistry

1996-12-31T23:59:59.000Z

277

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

278

Method and apparatus for generating low energy nuclear particles  

DOE Patents [OSTI]

A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

Powell, James R. (Shoreham, NY); Reich, Morris (Flushing, NY); Ludewig, Hans (Brookhaven, NY); Todosow, Michael (Miller Place, NY)

1999-02-09T23:59:59.000Z

279

Method and apparatus for generating low energy nuclear particles  

DOE Patents [OSTI]

A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

1999-02-09T23:59:59.000Z

280

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

282

Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Traciton Motors in Hybrid Electric Vehicles Xiaofeng Ding 1 , Jinglin Liu 2 , and Chris Mi 3 1 Department Generation of Traciton Motors in Hybrid Electric Vehicles 1460 2. SIMPLE ANALYTICAL MODEL OF UCG 2.1 ModelJournal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 1459 Uncontrolled Generation

Mi, Chunting "Chris"

283

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems  

SciTech Connect (OSTI)

The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

Timothy J. Leahy

2010-06-01T23:59:59.000Z

284

Generating the Option of a Two-Stage Nuclear Renaissance  

Science Journals Connector (OSTI)

...in the 2030s. Nuclear power could also be widely used for desalination, another efficient way to use surplus power in an electricity...country of origin would have access to the spent fuel. The economics of small and fueled-for-life reactors versus large reactors...

Robin W. Grimes; William J. Nuttall

2010-08-13T23:59:59.000Z

285

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOE Patents [OSTI]

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, C.D.

1992-11-03T23:59:59.000Z

286

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear tors. for of of These studies can examine safety systems or safety research programsnuclear power plants, and at risk. to reduce population The Light-water Reactor Safety Research Program

Nero, A.V.

2010-01-01T23:59:59.000Z

287

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

288

Risk implications of the deployment of renewables for investments in electricity generation  

E-Print Network [OSTI]

This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

2014-01-01T23:59:59.000Z

289

Electric Power Generation from Co-Produced and Other Oil Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

290

Production and maintenance planning for electricity generators: modeling and application to Indian power systems  

E-Print Network [OSTI]

Production and maintenance planning for electricity generators: modeling and application to Indian power systems Debabrata Chattopadhyay Department of Management, University of Canterbury, Private Bag describes the development of an optimization model to perform the fuel supply, electricity generation

Dragoti-Ã?ela, Eranda

291

Development and Deployment of Generation 3 Plug-In Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells...

292

Table E13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation...

293

Methane generation at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

The methane generation at Grand Gulf has been brought to light twice. The initial event occurred in February 1990 and the second in December 1993. Both events involved the receipt of a cask at Barnwell Waste Management Facility that when opened indicated a gas escaping. The gas was subsequently sampled and indicated a percentage of explosive gas. Both events involved powdered resin and indicated that the generation was from a bacterial attack of the organic materials (cellulose in the powdered resin mixture). The first event occurred and was believed to be isolated in a particular waste stream. The situation was handled and a biocide was found to be effective in treatment of liners until severe cross contamination of another waste stream occurred. This allowed the shipment of a liner that was required to be sampled for explosive gases. The biocide used by GGNS was allowed reintroduction into the floor drains and this allowed the buildup of immunity of the bacterial population to this particular biocide. The approval of a new biocide has currently allowed GGNS to treat liners and ship them offsite.

Carver, M.L. [Entergy Operations, Inc., Grand Gulf Nuclear Station, Port Gibson, MS (United States)

1995-09-01T23:59:59.000Z

294

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

Pedram, Massoud

295

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout – Renewable Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE)

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout – Renewable Electricity Generation, May 2013.

296

Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies  

SciTech Connect (OSTI)

Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

2011-03-01T23:59:59.000Z

297

Electrical motor/generator drive apparatus and method  

DOE Patents [OSTI]

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

Su, Gui Jia

2013-02-12T23:59:59.000Z

298

Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion  

Science Journals Connector (OSTI)

Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

George R. Schmidt; David H. Manzella; Hani Kamhawi; Tibor Kremic; Steven R. Oleson; John W. Dankanich; Leonard A. Dudzinski

2010-01-01T23:59:59.000Z

299

A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders  

E-Print Network [OSTI]

A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders Department, construction and testing of an electrical generator intended for interface with a MEMS internal combustion (IC fuels through the use of internal combustion (IC) engines paired with electrical generators (see [4

Sanders, Seth

300

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel  

E-Print Network [OSTI]

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell organic matter using elec- trochemically active bacteria as catalysts to generate electrical energy of the most exciting applications of MFCs is their use as benthic unattended generators to power electrical

Sun, Baolin

302

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

303

Submerged electricity generation plane with marine current-driven motors  

DOE Patents [OSTI]

An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

2014-07-01T23:59:59.000Z

304

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

technologies such as diesel, electric, hybrid, and hydrogen mode  (e.g. ,  diesel  trains  or  electric  trains).  

Birman, Kenneth

2012-01-01T23:59:59.000Z

305

Renewable Energy for Electricity Generation in Latin America...  

Open Energy Info (EERE)

webinar-renewable-energy-electricity-generatio Equivalent URI: cleanenergysolutions.orgcontentrenewable-energy-electricity-generati Language: English Policies: "Deployment...

306

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

307

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

308

International Natural Gas Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per 107 Kilocalories - Gross Calorific Value2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria NA NA NA NA NA NA NA NA NA Barbados NA NA NA NA NA NA NA NA NA Belgium C C C C C C C C C Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 145.5 144.7 174.9 171.9 225.2 NA NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 244.7 252.1 258.6 281.0 326.2 348.5 400.8 499.3 NA

309

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

310

High efficiency electric power generation: The environmental role  

Science Journals Connector (OSTI)

Electric power generation system development is reviewed with special attention to plant efficiency. It is generally understood that efficiency improvement that is consistent with high plant reliability and low cost of electricity is economically beneficial, but its effect upon reduction of all plant emissions without installation of additional environmental equipment, is less well appreciated. As CO2 emission control is gaining increasing acceptance, efficiency improvement, as the only practical tool capable of reducing CO2 emission from fossil fuel plant in the short term, has become a key concept for the choice of technology for new plant and upgrades of existing plant. Efficiency is also important for longer-term solutions of reducing CO2 emission by carbon capture and sequestration (CCS); it is essential for the underlying plants to be highly efficient so as to mitigate the energy penalty of CCS technology application. Power generating options, including coal-fired Rankine cycle steam plants with advanced steam parameters, natural gas-fired gas turbine-steam, and coal gasification combined cycle plants are discussed and compared for their efficiency, cost and operational availability. Special attention is paid to the timeline of the various technologies for their development, demonstration and commercial availability for deployment.

János M. Beér

2007-01-01T23:59:59.000Z

311

Generating the Option of a Two-Stage Nuclear Renaissance  

Science Journals Connector (OSTI)

...capacity of waste repositories for decommissioning waste in the second half of the century will...is returned to the manufacturer for decommissioning and disposal. Because fuel handling is avoided at the...International Forum, “A Technology Roadmap for Generation IV Nuclear Energy Systems...

Robin W. Grimes; William J. Nuttall

2010-08-13T23:59:59.000Z

312

Generating the Option of a Two-Stage Nuclear Renaissance  

Science Journals Connector (OSTI)

...be refueled while remaining online (LWRs have...distributed fission gas bubbles and oxides, and...long-term storage. Life extension. This...16) (which have remaining design work to be...the fueled-for-life core, that is, a nuclear...island” (the turbine and generator...

Robin W. Grimes; William J. Nuttall

2010-08-13T23:59:59.000Z

313

A Second Generation Biofuel from Cellulosic Agricultural By-product Fermentation Using Clostridium Species for Electricity Generation  

Science Journals Connector (OSTI)

Abstract The production of second generation biofuel is essential for limiting food versus fuel competition. Butanol is one of the important biofuel for the future. Agricultural by-products namely bagasse and potato peel were hydrolyzed to produce readily fermented sugar for butanol fermentation. The butanol concentration was 1 – 2 g/l. To test the electricity generation, a customized generator was used for butanol combustion. The electricity produced was up to 1300 watts. Further improvements are needed in the hydrolysis method, medium composition, and generator design. This research has demonstrated that bagasse and potato peel are potential feedstock for producing butanol for generating electricity

Yalun Arifin; Ellen Tanudjaja; Arbi Dimyati; Reinhard Pinontoan

2014-01-01T23:59:59.000Z

314

On parallel electric field generation in transversely inhomogeneous plasmas  

E-Print Network [OSTI]

The generation of parallel electric fields by the propagation of ion cyclotron waves in the plasma with a transverse density inhomogeneity was studied. It was proven that the minimal model required to reproduce the previous kinetic simulation results of E_{||} generation [Tsiklauri et al 2005, Genot et al 2004] is the two-fluid, cold plasma approximation in the linear regime. By considering the numerical solutions it was also shown that the cause of E_{||} generation is the electron and ion flow separation induced by the transverse density inhomogeneity. We also investigate how E_{||} generation is affected by the mass ratio and found that amplitude attained by E_{||} decreases linearly as inverse of the mass ratio m_i/m_e. For realistic mass ratio of m_i/m_e=1836, such empirical scaling law, within a time corresponding to 3 periods of the driving ion cyclotron wave, is producing E_{||}=14 Vm^{-1} for solar coronal parameters. Increase in mass ratio does not have any effect on final parallel (magnetic field aligned) speed attained by electrons. However, parallel ion velocity decreases linearly with inverse of the mass ratio m_i/m_e. These results can be interpreted as following: (i) ion dynamics plays no role in the E_{||} generation; (ii) E_{||} \\propto 1/m_i scaling is caused by the fact that omega_d = 0.3 omega_{ci} \\propto 1/m_i is decreasing with the increase of ion mass, and hence the electron fluid can effectively "short-circuit" (recombine with) the slowly oscillating ions, hence producing smaller E_{||}.

David Tsiklauri

2007-11-28T23:59:59.000Z

315

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

emergencies, Le. , accidents at nuclear facilities, there isas a result of nuclear accidents; these are the Protectiveassociated with a nuclear accident is of greater importance

Nero, A.V.

2010-01-01T23:59:59.000Z

316

Unbundling generation and transmission services for competitive electricity markets  

SciTech Connect (OSTI)

Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

Hirst, E.; Kirby, B.

1998-01-01T23:59:59.000Z

317

Computational Needs for the Next Generation Electric Grid Proceedings  

SciTech Connect (OSTI)

The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

2011-10-05T23:59:59.000Z

318

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

power systems.  Electric Power Systems Research, 80(6):627?system”, Electric Power Systems Research, 20 (1990), pp.  1?Measurements”,  Electric  Power Systems Research, Vol.  79 

Birman, Kenneth

2012-01-01T23:59:59.000Z

319

8.01 - Generating Electrical Power from Ocean Resources  

Science Journals Connector (OSTI)

Abstract Ocean energy resources derived from wind, waves, tidal or marine currents can be utilized and converted to large scale sustainable electrical power. Conversion technologies are easily adaptable and can be integrated within the current utility infrastructure. However, ocean energy has many forms - tides, surface waves, ocean circulation, salinity, and thermal gradients. The focus of this chapter is dedicated to two of these, namely waves and tidal energy. The first are the result of wind-driven waves derived ultimately from solar energy and the latter represents those found in tidal or marine currents, driven by gravitational effects. This chapter also gives an analysis of the current state of art of generating electricity from wave and tidal currents (termed ocean energy). Section 8.01.1 provides an overview of ocean wave and marine current energy conversion with more emphasis on the latter; Sections 8.01.2, 8.01.3, 8.01.4, and 8.01.5 address respectively the history of wave energy, wave resource assessment, wave device development, and air turbines; and Section 8.01.6 gives a review of the economics of ocean energy as applied to wave and tidal energy conversion technologies.

A.S. Bahaj

2012-01-01T23:59:59.000Z

320

Life cycle water use for electricity generation: a review and harmonization of literature estimates  

Science Journals Connector (OSTI)

This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

J Meldrum; S Nettles-Anderson; G Heath; J Macknick

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Strategic Investment in Power Generation under Uncertainty Electric Reliability Council of Texas  

E-Print Network [OSTI]

Strategic Investment in Power Generation under Uncertainty Electric Reliability Council of Texas and Engineering Systems Director, Technology and Policy Program #12;#12;Strategic Investment in Power Generation to the Electricity Student Research Group for the contagious passion for electricity and sharing of knowledge

322

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations  

E-Print Network [OSTI]

engine vehicles refuel at gas stations, EVs might also be charged at other facilities which provideAnalysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs

Wong, Vincent

323

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

324

RESEARCH ARTICLE The proteome survey of an electricity-generating organ  

E-Print Network [OSTI]

RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

Vertes, Akos

325

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

326

Studies on electrical cable insulation for nuclear applications  

SciTech Connect (OSTI)

Two new polyethylene cable insulations have been formulated for nuclear applications, and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb{sub 2}O{sub 3} as additives. The test results show that the concept of using inorganic anti-oxidants to retard radiation initiated oxidation is viable, and PbO is more effective than Sb{sub 2}O{sub 3} in slowing down radiation initiated oxidation (RIO). Also, radiation degradation data for polyethylene and polyvinyl chloride at 60{degrees}C have been generated, which will be used to understand radiation initiated oxidation process on these materials combined with the 25{degrees}C data that will be generated in the future. 14 refs., 41 figs., 3 tabs.

Lee, B.S.; Soo, P.; MacKenzie, D.R. [Brookhaven National Lab., Upton, NY (USA); Blackburn, P. [Beloit Junior-Senior High School, KS (USA)

1989-12-01T23:59:59.000Z

327

Air Quality Impact of Distributed Generation of Electricity  

E-Print Network [OSTI]

Distributed Generators .from a typical distributed generator. Therefore, there is aStations 3.3.1 Distributed Generators The physical

Jing, Qiguo

2011-01-01T23:59:59.000Z

328

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

7 7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68 Advanced Nuclear 2236 5275 11795 Municipal Solid Waste 50 8237 412 Conventional Hydropower (3) 500 2221 1111 Wind 100 2409 241 Stock Plant Type 2010 2015 2020 2025 2030 2035 Fossil Fuel Steam Heat Rate (Btu/kWh) Nuclear Energy Heat Rate (Btu/kWh) Note(s): Source(s): 1) Plant use of electricity is included in heat rate calculations; however, transmission and distribution losses of the electric grid are excluded.

329

An overview on doubly fed induction generators? controls and contributions to wind based electricity generation  

Science Journals Connector (OSTI)

Abstract Undoubtedly, energy has a significant role in economic growth and technical developments. Renewable energy resources are becoming more important in recent years due to their tremendous contributions to the independence of power generation industry from traditional fossil energy resources. Wind energy has been outstanding among renewable energy resources since continuous harvestable potential on the earth is approximately around 106 MW. Concerning the variable nature of wind energy, the variable speed machines, especially doubly fed induction generators (DFIG) are one of the considerations for wind energy conversion systems (WECS). Their implementation in renewable energy conversion systems is dramatically increasing due to their numerous advantages such as low cost and small size, the elimination of external DC source, the ability to produce maximum power under various wind and rotational speeds, the capability of controlling active and reactive power, and the opportunity to employ cheaper and smaller convertors and controllers. This paper is an extensive review of researches in the past 30 years on DFIG. The study starts with describing general perspective on wind energy and commonly used generators in wind conversion. Then it presents more details on \\{DFIGs\\} operational modes, utilizations, their modeling and simulation. It is followed by DFIG control methods and overviews of different employed electrical and mechanical controlling methods. Finally the review on the mutual impact of DFIG on power networks and vice versa, including wind uncertainty, power and frequency stability, power and voltage quality, operation under steady state, dynamic and fault conditions, and protections is given. Based on the review DFIG has advantages in terms of electrical, mechanical, and economic perspectives. It can be concluded that the DFIG has the most promising future for \\{WECSs\\} in power generation to complement the conventional systems.

Abdullah Asuhaimi B. Mohd Zin; Mahmoud Pesaran H.A.; Azhar B. Khairuddin; Leila Jahanshaloo; Omid Shariati

2013-01-01T23:59:59.000Z

330

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network [OSTI]

Solar Turbines Inc Olinda Generating Plant Marina Landfill GasSolar Turbines Inc Olinda Generating Plant Marina Landfill Gas

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

331

Salt disposal of heat-generating nuclear waste.  

SciTech Connect (OSTI)

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

332

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

333

Second Harmonic Generation by Metamagnetics: Interplay of Electric and Magnetic Resonances  

Science Journals Connector (OSTI)

We present the first experimental study of the interplay of electric and magnetic resonances in a metamaterial to measure their independent contributions to second-harmonic generation....

Chandrasekar, Rohith; Emani, Naresh; Lagutchev, Alexei; Shalaev, Vladimir M; Kildishev, Alexander; Ciraci, Cristian; Smith, David R

334

Application of PV panels into electricity generation system of compression stations in gas transporting systems.  

E-Print Network [OSTI]

??  This thesis deals with problems of electricity generation and saving at compression stations of magistral gas transporting pipelines in Russia. Russia is a biggest… (more)

Belyaev, Alexey

2013-01-01T23:59:59.000Z

335

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system.  

E-Print Network [OSTI]

??Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid… (more)

Issaeva, Natalia

2009-01-01T23:59:59.000Z

336

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

Hand, Maureen

2008-01-01T23:59:59.000Z

337

Nuclear qualified in-containment electrical connectors and method of connecting electrical conductors  

DOE Patents [OSTI]

A nuclear qualified in-containment electrical connection comprises an insulated, sheathed instrument lead having electrical conductors extending from one end thereof to provide two exposed lead wires, a watertight cable having electrical conducting wires therein and extending from one end of the cable to provide two lead wires therefrom, two butt splice connectors each connecting the ends of respective ones of the lead wires from the instrument lead and cable, a length of heat shrinkable plastic tubing positioned over each butt splice connector and an adjacent portion of a respective lead wire from the cable and heat shrunk into position, a length of heat shrinkable plastic tubing on the end portion of the instrument lead adjacent the lead wires therefrom and heat shrunk thereon and a length of outer heat shrinkable plastic tubing extending over the end portion of the instrument lead and the heat shrinkable tubing thereon and over the butt splice connectors and a portion of the cable adjacent the cable lead lines, the outer heat shrinkable tubing being heat shrunk into sealing position on the instrument lead and cable.

Powell, J. G. (Clifton Park, NY)

1991-01-01T23:59:59.000Z

338

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

339

Greenhouse gas emissions from electricity generated by offshore wind farms  

Science Journals Connector (OSTI)

Abstract For wind power generation offshore sites offer significantly better wind conditions compared to onshore. At the same time, the demand for raw materials and therefore the related environmental impacts increase due to technically more demanding wind energy converters and additional components (e.g. substructure) for the balance of plant. Additionally, due to environmental concerns offshore wind farms will be sited farshore (i.e. in deep water) in the future having a significant impact on the operation and maintenance efforts (O&M). Against this background the goal of this analysis is an assessment of the specific GHG (greenhouse gas) emissions as a function of the site conditions, the wind mill technology and the O&M necessities. Therefore, a representative offshore wind farm is defined and subjected to a detailed LCA (life cycle assessment). Based on parameter variations and modifications within the technical and logistical system, promising configurations regarding GHG emissions are determined for different site conditions. Results show, that all parameters related to the energy yield have a distinctive impact on the specific GHG emissions, whereas the distance to shore and the water depth affect the results marginally. By utilizing the given improvement potentials GHG emissions of electricity from offshore wind farms are comparable to those achieved onshore.

Britta Reimers; Burcu Özdirik; Martin Kaltschmitt

2014-01-01T23:59:59.000Z

340

Solar Electric Generating System II finite element analysis  

SciTech Connect (OSTI)

On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

Dohner, J.L.; Anderson, J.R.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Innovation Dynamics in the Development of Nuclear Energy and Electric Vehicles in France  

E-Print Network [OSTI]

Innovation Dynamics in the Development of Nuclear Energy and Electric Vehicles in France Abdelkrim-- innovation processes; nuclear energy; electric vehicles ; technological trajectory. I. INTRODUCTION of national energy security policy in France after the 1973 oil crisis that catalyzed a shift from dependence

de Weck, Olivier L.

342

High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion  

SciTech Connect (OSTI)

In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

El-Genk, Mohamed S.; Tournier, Jean-Michel P. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Department, The University of New Mexico, Albuquerque, NM (United States)

2002-07-01T23:59:59.000Z

343

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LCA can help determine environmental burdens from "cradle LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage differs by technology. For fossil-fueled technologies, fuel combustion during operation of the facility emits the vast majority of GHGs. For nuclear and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy Systems

344

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SAND2011-3119 SAND2011-3119 Unlimited Release Printed May 2011 Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Joseph W. Pratt, Leonard E. Klebanoff, Karina Munoz-Ramos, Abbas A. Akhil, Dita B. Curgus, and Benjamin L. Schenkman Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE -AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy

345

San Diego Solar Panels Generate Clean Electricity Along with Clean Water |  

Broader source: Energy.gov (indexed) [DOE]

Diego Solar Panels Generate Clean Electricity Along with Clean Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San Diego’s Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison San Diego's Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison Just north of the U.S.-Mexican border, San Diego's Otay Water Treatment Plant processes up to 34 million gallons of water a day. Thanks to the city's ambitious solar energy program, the facility may soon be able to do that with net zero electricity consumption. In early April, workers activated a 945-kW solar photovoltaic (PV) energy

346

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation 10.1073/pnas.1309334111...of unconventional natural gas, particularly shale gas...best-performing coal-fired generation under certain...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

347

Table N13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electricity: Components of Onsite Generation, 1998;" 2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.8,1.5,0.9

348

Innovative systems for sustainable nuclear energy generation and waste management  

Science Journals Connector (OSTI)

The limited amount of fossil resources, the impact of green-house gas emissions on the world climate, the rising demand of primary energy projected to 2050, lead to a potentially critical situation for the world energy supply. The need for alternative (to fossil energies) massive energy production is evaluated to 10 Gtoe. The potential of Nuclear Energy generation at the level of 5 Gtoe is examined. Such a sustainable production can only be met by a breeder reactor fleet for which a deployment scenario is described with the associated constraints. Waste management is discussed in connection with different nuclear energy development scenarios according to the point in time when breeder reactors are started. At the world level, it appears that the optimal handling of today's wastes rests on an early decision to develop tomorrow's breeder reactors.

Jm Loiseaux; S David

2006-01-01T23:59:59.000Z

349

Alternative similarity renormalization group generators in nuclear structure calculations  

E-Print Network [OSTI]

The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with oper...

Dicaire, Nuiok M; Navratil, Petr

2014-01-01T23:59:59.000Z

350

Alternative similarity renormalization group generators in nuclear structure calculations  

Science Journals Connector (OSTI)

The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with operators of block structure in the harmonic oscillator basis. In the no-core shell model calculations for 3H, 4He, and 6Li with chiral NN force, we demonstrate that their performances appear quite promising.

Nuiok M. Dicaire; Conor Omand; Petr Navrátil

2014-09-04T23:59:59.000Z

351

Alternative similarity renormalization group generators in nuclear structure calculations  

E-Print Network [OSTI]

The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with operators of block structure in the harmonic oscillator basis. In the no-core shell model calculations for 3H, 4He and 6Li with chiral NN force, we demonstrate that their performances appear quite promising.

Nuiok M. Dicaire; Conor Omand; Petr Navratil

2014-08-22T23:59:59.000Z

352

The Efficiency of Electricity Generation in the U.S. After Restructuring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Efficiency of Electricity Generation in the U.S. After Restructuring The Efficiency of Electricity Generation in the U.S. After Restructuring Speaker(s): Catherine Wolfram Date: June 9, 2003 - 12:00pm Location: Bldg. 90 Over the past eleven years, US electric utilities have faced significant changes to their competitive and regulatory environments. The industry restructuring is designed to enhance economic efficiency at all levels of operation, including distribution, transmission, generation and retail services. The gains are likely to be largest in electric generation because generation costs are the largest component of end-use costs and restructuring has a larger impact on generation than on other segments of the electricity industry, such as transmission and distribution, which are likely to remain more heavily regulated. This paper evaluates changes in

353

Development of a computational model for nuclear electric orbital transfer vehicles  

E-Print Network [OSTI]

DEVELOPMENT OF A COMPUTATIONAL MODEL FOR NUCLEAR ELECTRIC ORBITAL TRANSFER VEHICLES A Thesis by WILLIAM FOUNTAIN LYON III Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1989 Major Subject: Nuclear Engineering DEVELOPMENT OF A COMPUTATIONAL MODEL FOR NUCLEAR ELECTRIC ORBITAL TRANSFER VEHICLES A Thesis by WILLIAM FOUNTAIN LYON III Approved as to style and content by: K. L...

Lyon, William Fountain

2012-06-07T23:59:59.000Z

354

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

355

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

generation  equipment,  substations,  distribution  lines, energy resources (DER),  substation and distribution.  the next generation of substation automation solutions.  It 

Birman, Kenneth

2012-01-01T23:59:59.000Z

356

Nuclear Eclectic Power  

Science Journals Connector (OSTI)

...much higher future costs for oil and natural gas. However, the...ELECTRICITY GENERATION FROM COAL, OIL, AND NUCLEAR FUEL, NUCLEAR...electricity generation from coal, oil, and nuclear fuel, cite about...possibility that stimu-lated a marathon debate between the Union of...

David J. Rose

1974-04-19T23:59:59.000Z

357

Scientists decipher genome of bacterium that remediates uranium contamination, generates electricity Public release date: 11-Dec-2003  

E-Print Network [OSTI]

a microbe's capability to generate electricity and to help clean up radioactive contamination, scientistsScientists decipher genome of bacterium that remediates uranium contamination, generates that remediates uranium contamination, generates electricity Analysis of Geobacter sulfurreducens genes reveals

Lovley, Derek

358

Removal of deposited copper from nuclear steam generators  

SciTech Connect (OSTI)

A review of the copper-removal process implemented during the cleaning of the NPD nuclear steam generator in Ontario revealed that major shortcomings in the process were depletion of the strong ammonia solution and relatively poor copper removal. Tests have shown that the concentration of the ammonia solution can be preserved close to its initial value, and high concentrations of complexed copper obtained, by sparging the ammonia solution with oxygen recirculating through a gas recirculation loop. Using recirculating oxygen for sparging at ambient air temperature, approximately 11 g/l of copper were dissolved by 100 g/l ammonia solution while the gaseous ammonia content of the recirculating gas remained well below the lower flammability limit. The corrosion rates of mild steel and commonly used nuclear steam generator tube materials in oxygenated ammonia solution were less than 30 mil/yr and no intergranular attack of samples was observed during tests. A second technique studied for the removal of copper is to ammoniate the spent iron-removal solvent to approximately pH 9.5 and sparge with recirculating oxygen. Complexed ferric iron in the spent iron-removal solvent was found to be the major oxidizing agent for metallic copper. The ferric iron can be derived from oxidation of dissolved ferrous iron to the ferric state or from dissolved oxides of iron directly. To extract copper from the secondary sides of nuclear steam generators, strong ammonia solution sparged with recirculating oxygen is recommended as the first stage, while ammoniated spent iron-removal solvent sparged with recirculating oxygen may be used to remove the copper freshly exposed during the removal of iron.

McSweeney, P.

1982-05-01T23:59:59.000Z

359

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

transmission vision for wind integration.   www.aep.com/Corporation.  Eastern wind integration and transmission a recent study on wind integration (American Electric 

Birman, Kenneth

2012-01-01T23:59:59.000Z

360

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",75183893,85006849,92198096,93939609,98396809,100536445,98159139,102750838,14230...

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",96763006,99451077,95099161,90418339,94637160,97259636,94637956,95187030,9205415...

362

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",106615302,103334454,88057219,90733028,93162079,90531201,94067080,83152928,83500...

363

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",56188401,53328664,58902054,59225368,59780402,64316732,61176351,65456080,6510365...

364

Superconductivity for Electric Systems Program Review LANL Contributions to GE HTS Generator  

E-Print Network [OSTI]

-section · Develop a heat generation profile => thermal analysis #12;Superconductivity for Electric Systems Program of coolant loop to verify heat due to flow work on helium #12;Superconductivity for Electric Systems Program for Electric Systems Program Review Stationary heat pipe tests were necessary to determine performance impact

365

Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode  

E-Print Network [OSTI]

Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode D. Luo, H.T. Dai, X.W. Sun , H.V. Demir School of Electrical and Electronic Engineering, Nanyang Keywords: Diffraction Liquid crystal devices Propagation A pair of electrically switchable finite energy

Demir, Hilmi Volkan

366

Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost under a Dynamic Pricing  

E-Print Network [OSTI]

Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost lower cost. I. INTRODUCTION There is no substitute for the status of electrical energy, which. Availability of affordable and sustainable electrical energy has been the key to prosperity and continued socio

Pedram, Massoud

367

EV3 : Traction drives and generators A: Electric machine design and optimization 1  

E-Print Network [OSTI]

EV3 : Traction drives and generators A: Electric machine design and optimization 1 Influence Electrical Machine Type B. Aslan1 , J. Korecki1 , T. Vigier1 , E. Semail1 bassel.aslan@yahoo.com, korecki according to the electrical angle e (angle between current and back-EMF vector), for different values

Boyer, Edmond

368

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

369

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR  

E-Print Network [OSTI]

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR S. Das1 , D. P. Arnold2 presents the design, fabrication, and characterization of permanent-magnet (PM) generators for use, coupled to a transformer and rectifier, delivers 1.1 W of DC electrical power to a resistive load

370

Stirling engines in generating heat and electricity for micro: CHP systems  

Science Journals Connector (OSTI)

In this paper, an analysis of different generating heat and electricity systems with Stirling engine is made from the point of view of benefits and limitations, both operational and economic and environmental. Stirling engine has the ability to work ... Keywords: biomass, fossil fuels, generating heat and electricity system, m-CHP, stirling engine

Dan Scarpete; Krisztina Uzuneanu

2011-03-01T23:59:59.000Z

371

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect (OSTI)

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

372

Water Research 39 (2005) 49614968 Electricity generation from swine wastewater using microbial  

E-Print Network [OSTI]

Water Research 39 (2005) 4961­4968 Electricity generation from swine wastewater using microbial September 2005 Abstract Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters indicated that electricity could be generated from swine wastewater containing 83207190 mg/L of soluble

373

"Table A17. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Components of Onsite Electricity Generation by Census Region," 7. Components of Onsite Electricity Generation by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," "," ","RSE" "SIC"," "," "," "," "," ","Row" "Code(a)","Industry Groups and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.4,1.2

374

Characteristic Requirements of a Small Scale Squirrel Cage Induction Generator for Effective Electricity Generation from Wind Energy  

Science Journals Connector (OSTI)

Abstract This paper proposes characteristic requirements of a small scale squirrel cage induction generator for effective electricity generation from wind energy. These characteristics are obtained from modeling and testing results. Investigation into comparative performances between Standard and high efficiency induction generators is given in order to find out the characteristic requirements of a suitable induction generator. Performances of various features of the machine structure are given. The suitable design of the induction generator based on empirical rules is also included. The investigation of power loss of the induction machine both in theory using FEM (Finite Element Method) and tests has been made. In addition, static var (Volt-Ampere reactive power) compensator using power electronic control to keep terminal voltage of a self-excited induction generator constant is explained. These results can be guidelines for machine development and control method for effective electricity generation.

V. Kinnares; B. Sawetsakulanond

2013-01-01T23:59:59.000Z

375

Light weight space power reactors for nuclear electric propulsion  

SciTech Connect (OSTI)

A Nuclear Electric Propulsion (NEP) unit capable of propelling a manned vehicle to MARS will be required to have a value of {alpha} (kg/kWe) which is less than five. In order to meet this goal the reactor mass, and thus its contribution to the value of {alpha} will have to be minimized. In this paper a candidate for such a reactor is described. It consists of a gas cooled Particle Bed Reactor (PBR), with specially chosen materials which allow it to operate at an exit temperature of approximately 2000 K. One of the unique features of a PBR is the direct cooling of particulate fuel by the working fluid. This feature allows for high power densities, highest possible gas exit temperatures, for a given fuel temperature and because of the thin particle bed a low pressure drop. The PBR's described in this paper will have a ceramic moderator (Be{sub 2}C), ZrC coated fuel particles and a carbon/carbon hot frit. All the reactors will be designed with sufficient fissile loading to operate at full power for seven years. The burn up possible with particulate fuel is approximately 30%--50%. These rector designs achieve a value of {alpha} less than unity in the power range of interest (5 MWe). 5 refs., 3 figs.

Ludewig, H.; Mughabghab, S.; Lazareth, O.; Perkins, K.; Schmidt, E.; Powell, J.R.

1991-01-01T23:59:59.000Z

376

Generating Unstructured Nuclear Reactor Core Meshes in Parallel  

Science Journals Connector (OSTI)

Abstract Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

Rajeev Jain; Timothy J. Tautges

2014-01-01T23:59:59.000Z

377

Decomposition analysis of CO2 emissions from electricity generation in China  

Science Journals Connector (OSTI)

Electricity generation in China mainly depends on coal and its products, which has led to the increase in CO2 emissions. This paper intends to analyze the current status of CO2 emissions from electricity generation in China during the period 1991–2009, and apply the logarithmic mean Divisia index (LMDI) technique to find the nature of the factors influencing the changes in CO2 emissions. The main results as follows: (1) CO2 emission from electricity generation has increased from 530.96 Mt in 1991 to 2393.02 Mt in 2009, following an annual growth rate of 8.72%. Coal products is the main fuel type for thermal power generation, which accounts for more than 90% CO2 emissions from electricity generation. (2) This paper also presents CO2 emissions factor of electricity consumption, which help calculate CO2 emission from final electricity consumption. (3) In China, the economic activity effect is the most important contributor to increase CO2 emissions from electricity generation, but the electricity generation efficiency effect plays the dominant role in decreasing CO2 emissions.

Ming Zhang; Xiao Liu; Wenwen Wang; Min Zhou

2013-01-01T23:59:59.000Z

378

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network [OSTI]

of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements chains and emission factors for the generation, transmission and distribution portions of the electricity, for electricity and for particular products, results show environmental impacts split up by generation type

379

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

380

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

382

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

383

Adapting On-Site Electrical Generation Platforms for Producer...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

generation from waste biomass while reducing diesel fuel consumption and greenhouse gas (GHG) emissions. electricalgenerationplatformsfactsheet.pdf More Documents & Publications...

384

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

3 3 Electric Capacity Factors, by Year and Fuel Type (1) Conventional Coal Petroleum Natural Gas Nuclear Hydroelectric Solar/PV Wind Total 1990 59% 17% 23% 66% 45% 13% 18% 46% 1991 59% 18% 22% 70% 43% 17% 18% 46% 1992 59% 14% 22% 71% 38% 13% 18% 45% 1993 61% 16% 21% 70% 41% 16% 19% 46% 1994 61% 15% 22% 74% 38% 17% 23% 46% 1995 62% 11% 22% 77% 45% 17% 21% 47% 1996 65% 11% 19% 76% 52% 18% 22% 48% 1997 66% 13% 20% 72% 51% 17% 23% 48% 1998 67% 20% 23% 79% 47% 17% 20% 50% 1999 67% 20% 22% 85% 46% 15% 23% 51% 2000 70% 18% 22% 88% 40% 15% 27% 51% 2001 68% 20% 21% 89% 31% 16% 20% 48% 2002 69% 16% 18% 90% 38% 16% 27% 46% 2003 71% 21% 14% 88% 40% 15% 21% 44% 2004 71% 22% 16% 90% 39% 17% 25% 44% 2005 72% 22% 17% 89% 40% 15% 23% 45% 2006 71% 11% 19% 90% 42% 14% 27% 45% 2007 72% 12% 21% 92% 36% 14% 24% 45% 2008 71% 8% 20% 91% 37% 18% 26% 44% 2009 63% 7% 21% 90% 40% 16% 25% 42% 2010 (2) 65% 6% 23% 91% 37% 17% 29% 43% Note(s): Source(s) 1) EIA defines capacity factor to be "the ratio of the electrical energy produced by a generating unit for the period of time considered to the

385

Cost comparison of major low-carbon electricity generation options: An Australian case study  

Science Journals Connector (OSTI)

Abstract This paper compares the costs of significant deployment of key dispatchable low-emission electricity supply options in the Australian National Electricity Market. These include pulverised coal-fired power plants with carbon capture and storage, concentrating solar thermal with storage, biomass, enhanced geothermal systems and nuclear technologies. Our analysis draws upon published estimates of the potential underlying Australian energy resources for each technology, their technical performance and estimated costs. We identify appropriate locations for deployment subject to resource availability and the existing transmission network. The analysis includes estimates of the potential costs of new transmission lines and of augmenting the existing grid to integrate the different options at significant scale. We highlight the cost uncertainties associated with all technologies and the very high uncertainties for some, particularly when considering their potential exploration, appraisal and development costs. The ranking of technology costs show that biomass generation has likely both lower cost and lower cost uncertainties while enhanced geothermal systems have both higher mean cost and higher uncertainties. For the other technologies there is a trade-off between the expected costs and uncertainties.

Wanwan Hou; Guy Allinson; Iain MacGill; Peter Neal; Minh Ho

2014-01-01T23:59:59.000Z

386

Energy security and sustainable development implications for Guatemala of the Electricity Generation Expansion Plan 2014-2028.  

E-Print Network [OSTI]

?? Electricity consumption in Guatemala has been steadily increasing during the recent years, challenging the generation sector to keep up with the pace of electricity… (more)

Ochaeta Paz, Karen

2014-01-01T23:59:59.000Z

387

Electric Power Generation Using Geothermal Fluid Coproduced from...  

Open Energy Info (EERE)

Systems (PWPS), and the United StatesDepartment of Energy will demonstrate that electric power can begenerated from the geothermal heat co-produced when extractingoil and gas from...

388

Generation of Dielectrophoretic Force under Uniform Electric Field  

E-Print Network [OSTI]

Effective dipole moment method has been widely accepted as the de facto technique in predicting the dielectrophoretic force due to the non-uniform electric field. In this method, a finite-particle is modeled as an equivalent ...

Kua, C.H.

389

Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water  

E-Print Network [OSTI]

through removal of metals from solution, but also for producing useful products such as electricity from gases or liquid fuels such as hydrogen or methanol. However, new types of microbial fuel cells

390

Renewable Power Options for Electricity Generation on Kauai...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7% renewable energy installed in their system. Their strategic plan calls for 50% of electricity from renewable energy by 2023. KIUC is well on their way to achieving this goal...

391

INTEGRATING WIND GENERATED ELECTRICITY WITH SPACE HEATING AND STORAGE BATTERIES.  

E-Print Network [OSTI]

??The world faces two major energy-related challenges: reducing greenhouse-gas emissions and improving energy security. Wind-electricity, a clean and environmentally sustainable energy source, appears promising. However,… (more)

Muralidhar, Anirudh

2011-01-01T23:59:59.000Z

392

Electric Generating and Transmission Facilities – Emissions Management (Iowa)  

Broader source: Energy.gov [DOE]

This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

393

A Perspective on Nuclear Waste  

Science Journals Connector (OSTI)

The management of spent nuclear fuel and high-level nuclear waste has the deserved reputation as one of ... facing the United States and other nations using nuclear reactors for electric power generation. This pa...

D. Warner North

1999-08-01T23:59:59.000Z

394

Storing the Electric Energy Produced by an AC Generator  

Science Journals Connector (OSTI)

Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy and when we think about electric energygenerators one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a motivation for projects with students.

P. Simeão Carvalho; Ana Paula Lima; Pedro Simeão Carvalho

2010-01-01T23:59:59.000Z

395

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

quality assurance Standard Review Plan totally dissolvedmore fully in the Standard Review Plan (see Stage 3). Seenuclear power plants: the Standard Review Plan The Nuclear

Nero, A.V.

2010-01-01T23:59:59.000Z

397

NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1  

ScienceCinema (OSTI)

Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

Thomas D'Agostino

2010-09-01T23:59:59.000Z

398

Nuclear electric propulsion : assessing the design of Project Prometheus.  

E-Print Network [OSTI]

The high fuel efficiency of electric propulsion makes it a viable alternative for long-distance space travel. Project Prometheus was a NASA-led project that sought to demonstrate that distant electric propulsion missions ...

Goycoolea, Martin

2013-01-01T23:59:59.000Z

399

International Energy Outlook 1999 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

nuclear.jpg (5137 bytes) nuclear.jpg (5137 bytes) Nuclear electricity generation remains flat in the IEO99 reference case, representing a declining share of the world’s total electricity consumption. Net reductions in nuclear capacity are projected for most industrialized nations. In 1997, a total of 2,276 billion kilowatthours of electricity was generated from nuclear power worldwide, providing 17 percent of the world’s electricity generation. Among the countries with operating nuclear power plants, national dependence on nuclear power for electricity varies greatly (Figure 53). Ten countries met at least 40 percent of their total electricity demand with generation from nuclear reactors. The prospects for nuclear power to maintain a significant share of worldwide electricity generation are uncertain, despite projected growth of

400

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

5 5 2010 Impacts of Saving an Electric Quad (1) Utility Average-Sized Aggregate Number of Units Fuel Input Utility Unit (MW) to Provide the Fuel's Share Plant Fuel Type Shares (%) in 2010 of the Electric Quad (2) Coal 49% 36 Petroleum 1% 96 Natural Gas 19% 141 Nuclear 22% 3 Renewable (3) 10% 184 Total 100% 460 Note(s): Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2; and EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2 for consumption and Table A8 for electricity supply. 245 17 85 1,026 22 1) This table displays the breakdown of electric power plants that could be eliminated by saving an electric quad, in exact proportion to the actual primary fuel shares for electricity produced nationwide in 2010. Use this table to estimate the avoided capacity implied by saving one

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

402

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

403

Next Generation Nuclear Plant Resilient Control System Functional Analysis  

SciTech Connect (OSTI)

Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

Lynne M. Stevens

2010-07-01T23:59:59.000Z

404

Event generator for nuclear collisions at intermediate energies  

Science Journals Connector (OSTI)

An event generator, HIPSE (heavy-ion phase-space exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or?and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA Collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50MeV?nucleon and Ni+Ni at 82MeV?nucleon.

Denis Lacroix; Aymeric Van Lauwe; Dominique Durand

2004-05-12T23:59:59.000Z

405

Investing in the Next Generation of U.S. Nuclear Energy Leaders |  

Broader source: Energy.gov (indexed) [DOE]

the Next Generation of U.S. Nuclear Energy Leaders the Next Generation of U.S. Nuclear Energy Leaders Investing in the Next Generation of U.S. Nuclear Energy Leaders August 9, 2011 - 5:12pm Addthis Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy As part of the Energy Department's Nuclear Energy University Programs (NEUP) annual workshop, I met today with professors from across the country and announced awards of up to $39 million for research projects aimed at developing cutting-edge nuclear energy technologies. The awards will also help train and educate the next generation of nuclear industry leaders in the U.S. These projects, led by 31 universities in more than 20 states, will help to enable the safe, secure and sustainable expansion of nuclear energy in the United States.

406

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-08-01T23:59:59.000Z

407

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has been estimated

McCalley, James D.

408

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

of the health and safety impact of fossil fuel emissions.to public health and safety, of any fossil fuel plant areHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

409

ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology  

SciTech Connect (OSTI)

We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.

Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

2006-10-02T23:59:59.000Z

410

Applications of Extraction Chromatography in the Development of Radionuclide Generator Systems for Nuclear Medicine  

Science Journals Connector (OSTI)

Applications of Extraction Chromatography in the Development of Radionuclide Generator Systems for Nuclear Medicine ... Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 ...

Mark L. Dietz; E. Philip Horwitz

2000-08-12T23:59:59.000Z

411

Notice of Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office intends to issue a new funding opportunity for work to develop Next Generation of Electric Machines (NGEM). NGEMs combine high power density, high RPM motors with integrated power electronics.

412

Electricity generation:: regulatory mechanisms to incentive renewable alternative energy sources in Brazil  

Science Journals Connector (OSTI)

The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany.

Carla Kazue Nakao Cavaliero; Ennio Peres Da Silva

2005-01-01T23:59:59.000Z

413

A new-generation energy-saving industrial controlled electric drive  

Science Journals Connector (OSTI)

Results of the innovative development of an efficiently controlled, new-generation, energy-saving, industrial AC electric drive are presented. ... filter in the intermediate link. The improved energy and electrom...

R. T. Shreiner; V. K. Krivovyaz; A. I. Kalygin…

2007-11-01T23:59:59.000Z

414

Did English generators play cournot? : capacity withholding in the electricity pool  

E-Print Network [OSTI]

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

Green, Richard

2004-01-01T23:59:59.000Z

415

Floating offshore wind farms : demand planning & logistical challenges of electricity generation  

E-Print Network [OSTI]

Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

416

Renewable Generation and Interconnection to the Electrical Grid in Southern California  

Broader source: Energy.gov [DOE]

Presentation covers the topic of "Renewable Generation and Interconnection to the Electrical Grid in Southern California," given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

417

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Ol’khovskii; A. V. Ageev; S. V. Malakhov…

2006-07-01T23:59:59.000Z

418

If I generate 20 percent of my national electricity from wind...  

Open Energy Info (EERE)

generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

419

Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)  

SciTech Connect (OSTI)

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

Heath, G.

2012-06-01T23:59:59.000Z

420

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system   

E-Print Network [OSTI]

Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

Issaeva, Natalia

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells  

Broader source: Energy.gov [DOE]

The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

422

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect (OSTI)

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

423

Simplest AB-Thermonuclear Space Propulsion and Electric Generator  

E-Print Network [OSTI]

The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

Alexander Bolonkin

2007-01-19T23:59:59.000Z

424

Risk analysis of buried wastes from electricity generation  

Science Journals Connector (OSTI)

There has been a great deal of public concern about the dangers of buried radioactive waste from the nuclear industry. The rational approach to evaluating these concerns is to develop quantitative estimates of the health impacts to be expected from these wastes and compare them with the health impacts of wastes from alternative technologies. It is our purpose here to outline that process and develop the results.

Bernard L. Cohen

1986-01-01T23:59:59.000Z

425

Honoring Our Past, Securing Our Future | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

nuclear weapons into LEU fuel for U.S. power plants, generating 10 percent of U.S. electricity. Preventing nuclear smuggling and strengthening the nonproliferation regime -...

426

ENSURING A SKILLED WORKFORCE FOR THE NUCLEAR RENAISSANCE The...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carolina. Georgia's four nuclear units account for more than one-fourth of the State's electricity generation. South Carolina's five nuclear units supply about half of the...

427

Bulk Electricity Generating Technologies This appendix describes the technical characteristics and cost and performance  

E-Print Network [OSTI]

and technologies expected to be available to meet bulk power generation needs during the period of the power plan PRICES The price forecasts for coal, fuel oil and natural gas are described in Appendix B. COAL-FIRED STEAM-ELECTRIC PLANTS Coal-fired steam-electric power plants are a mature technology, in use for over

428

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

429

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

430

"Table A27. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region," Components of Onsite Electricity Generation by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" ," "," "," "," " " "," "," "," ",," ","RSE" "SIC"," "," "," ",," ","Row" "Code(a)","Industry Group and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.6,1 , 20,"Food and Kindred Products",6962,6754,90,118,11.2

431

Abstract--Piezoelectricity is an ability of some materials to generate an electric potential in response to applied mechanical  

E-Print Network [OSTI]

Abstract--Piezoelectricity is an ability of some materials to generate an electric potential, PZT ceramics I. INTRODUCTION Piezoelectricity is an ability to generate an electric potential that demonstrate the direct piezoelectric effect, which is the generation of electricity upon applied mechanical

Ha, Dong S.

432

Paving the path for next-generation nuclear energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Nuclear power reactors currently under construction worldwide boast modern safety and operational enhancements that were designed by the global nuclear energy industry and enhanced through research and development (R&D)

433

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

434

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

435

Generation of Electricity Without the use of Rotating Machinery  

Science Journals Connector (OSTI)

... It seems likely that advances in efficiency above about 40 per cent of the heat engines (steam or Diesel) used for large-scale power generation will be achieved only with ... molecules, the fuel cell acts isothermally and escapes the Carnot limitation inherent in all heat engines. Consequently, the apparent thermodynamic efficiency may be very high-more than 90 per cent ...

K. H. SPRING

1961-04-22T23:59:59.000Z

436

Preliminary estimates of electrical generating capacity of slim holes--a theoretical approach  

SciTech Connect (OSTI)

The feasibility of using small geothermal generators (< 1 MWe) for off-grid electrical power in remote areas or for rural electrification in developing nations would be enhanced if drilling costs could be reduced. This paper examines the electrical generating capacity of fluids which can be produced from typical slim holes (six-inch diameter or less), both by binary techniques (with downhole pumps) and, for hotter reservoir fluids, by conventional spontaneous-discharge flash-steam methods. Depending mainly on reservoir temperature, electrical capacities from a few hundred kilowatts to over one megawatt per slim hole appear to be possible.

Pritchett, John W.

1995-01-26T23:59:59.000Z

437

Algorithm for calculation of characterisitcs of thermionic electricity-generating assemblies  

SciTech Connect (OSTI)

A numerical algorithm has been developed for calculating the kinetic characteristics of electricity-generating coaxial cells and assemblies; it is based on separate solution of the equations describing the thermal and electrical processes with their subsequent coordination by way of the volt-ampere characteristics of an elementary thermionic converter by means of piecewise-linear approximation of the nonlinear characteristics at the operating points. The possibilities and advantages of the proposed calculation algorithm for investigation of the transients occurring in the course of operation of the electricity generating assemblies (EGA) are indicated. Results are reported for sample calculations of several EGA static and kinetic characteristics. 10 refs.

Babushkin, Yu.V.; Mendel'baum, M.A.; Savinov, A.P.; Sinyavskii, V.V.

1981-01-01T23:59:59.000Z

438

The Evolution of Nuclear Power Generation for Mars  

Science Journals Connector (OSTI)

Among the available energy alternatives nuclear power offers important advantages and in many cases is the only viable alternative given actual operation conditions on Mars. We know that nuclear is the most co...

Liviu Popa-Simil

2009-01-01T23:59:59.000Z

439

Generating the Option of a Two-Stage Nuclear Renaissance  

Science Journals Connector (OSTI)

...system using battery energy storage. The widespread...intermittent renewable energies and might restore the cost benefits of nuclear energy in the 2030s. Nuclear...plant and appropriate grid infrastructure, economic considerations...

Robin W. Grimes; William J. Nuttall

2010-08-13T23:59:59.000Z

440

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network [OSTI]

the economics of power production. For example, new gas-fired combined cycle power plants are more effi- cientA Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission the behavior of the various decision-makers, who operate in a decentralized manner and include power generators

Nagurney, Anna

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics  

E-Print Network [OSTI]

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics) structure, termed plasmonic-enhanced, charge-assisted second-harmonic generator (p-CASH), that not only in many fields, such as commu- nications, sensors, imaging, medical treatments, displays, solar cells

442

Decoherence and coherence in gravitational, electric and strong nuclear fields  

E-Print Network [OSTI]

Inspired in the work of Erich Joos which appreciated the role played by matter in making the decoherence of the gravitational field, we developed an alternative way of treating the former problem. Besides this, we used the alternative approach to examine the decoherence of the electric field performed by the conduction electrons in metals. As a counterpoint, we studied the coherence of the electric color field inside nucleons, which renders the strong field a totally quantum character.

P. R. Silva

2010-10-25T23:59:59.000Z

443

Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management  

SciTech Connect (OSTI)

The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

A. David Lester

2008-10-17T23:59:59.000Z

444

FORM EIA-860M MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

PURPOSE Form EIA-860M collects data on the status of: a) Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; b) Existing generators scheduled to retire from service within the subsequent 12 months; and c) Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED RESPONDENTS Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860, ANNUAL ELECTRIC GENERATOR REPORT, respondents who have indicated in a previous filing to

445

Interconnection of on-site photovoltaic generation to the electric utility. [Conference paper  

SciTech Connect (OSTI)

Electrical interconnection with the local electric utility of small, privately owned, on-site photovoltaic generating systems will be necessary. Legal guidelines exist through PURPA, administered by FERC, to establish interconnection, but economic viability will be the deciding factor in constructing photovoltaic generating systems. Although nationally recognized technical standards do not yet exist for interconnecting photovoltaic generation with an electric utility, most utilities have considered the need for developing cogeneration standards, and a few have developed such standards independently. Additional costs incurred by utilities in providing service interconnections to customers with cogeneration will be passed along to those customers, either as a direct assessment or as part of the applicable rate schedule. An economic-analysis methodology has been developed to allow comparing various possible photovoltaic-generating-system configurations under different utility rate structures and varying economic climates on a consistent basis.

Eichler, C.H.; Kilar, L.A.; Stiller, P.H.

1980-01-01T23:59:59.000Z

446

Feasibility Study of Biomass Electrical Generation on Tribal Lands  

SciTech Connect (OSTI)

The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

2005-03-29T23:59:59.000Z

447

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Broader source: Energy.gov (indexed) [DOE]

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

448

The implications of using hydrocarbon fuels to generate electricity for hydrogen fuel powered automobiles on electrical capital, hydrocarbon consumption, and anthropogenic emissions  

Science Journals Connector (OSTI)

This paper considers some of the impacts of adopting hydrogen fuel cell powered electric automobiles in the US. The change will need significant adjustments to the electrical generation industry including additional capital and hydrocarbon fuel consumption as well as impacting anthropogenic greenhouse emissions. Examining the use of three fuels to generate hydrogen fuels, using three production methods, distributed in three geographic scenarios, we determine that while the change reduces anthropogenic greenhouse emissions with minimal additional electrical generation capital expenditures, it accelerates the use of natural gas. Electrolysis provides a sustainable, longer-term solution, but requires more capital investment in electrical generation and yields an increase in anthropogenic greenhouse emissions.

Derek Tittle; Jingwen Qu

2013-01-01T23:59:59.000Z

449

Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Workshop  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume II, reports the results of an industry-wide workshop held on May 28 and 29, 1986, to discuss the technical issues associated with aging of nuclear service emergency diesel generators. The technical issues discussed most extensively were: man/machine interfaces, component interfaces, thermal gradients of startup and cooldown and the need for an accurate industry database for trend analysis of the diesel generator system.

Hoopingarner, K.R.; Vause, J.W.

1987-08-01T23:59:59.000Z

450

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs  

SciTech Connect (OSTI)

Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV) concepts, such as the NGNP, it is fully expected that the behavior of these graphites will conform to the recognized trends for near isotropic nuclear graphite. Thus, much of the data needed is confirmatory in nature. Theories that can explain graphite behavior have been postulated and, in many cases, shown to represent experimental data well. However, these theories need to be tested against data for the new graphites and extended to higher neutron doses and temperatures pertinent to the new Gen IV reactor concepts. It is anticipated that current and planned future graphite irradiation experiments will provide the data needed to validate many of the currently accepted models, as well as providing the needed data for design confirmation.

Burchell, Timothy D [ORNL; Bratton, Rob [Idaho National Laboratory (INL); Marsden, Barry [University of Manchester, UK; Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission; Penfield, Scott [Technology Insights; Mitchell, Mark [PBMR (Pty) Ltd.; Windes, Will [Idaho National Laboratory (INL)

2008-03-01T23:59:59.000Z

451

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

452

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

453

Monthly Nuclear Utility Generation by State and Reactor, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

194,1095428,1211897,1374523,1347985,1262403,1340639,1347577,1387346,15503218 "Arkansas Nuclear One 1",840,,639800,598183,639443,403029,346066,489260,629320,629209,610996,637714,619...

454

Monthly Nuclear Utility Generation by State and Reactor, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

2889,1359120,1330655,1334646,1369191,1335231,1264610,725939,1043730,14168091 "Arkansas Nuclear One 1",842,,640210,332640,639812,611739,611473,610763,626182,625966,612739,514485,-32...

455

Monthly Nuclear Utility Generation by State and Reactor, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

049398,1385659,1329546,1365357,1364550,1315097,826104,724688,842506,13689571 "Arkansas Nuclear One 1",836,,642446,580408,640573,616442,635753,607660,621404,622382,608955,74815,-336...

456

Monthly Nuclear Utility Generation by State and Reactor, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

0183,1370443,1333879,1333266,1232981,970683,1026829,1008188,1033852,14689416 "Arkansas Nuclear One 1",840,,638732,576736,637898,614123,622312,611199,598045,569278,582588,637484,278...

457

Monthly Nuclear Utility Generation by State and Reactor, 2007  

U.S. Energy Information Administration (EIA) Indexed Site

2613,979493,1330868,1372259,1363174,1328057,1383098,1348837,1393879,15486102 "Arkansas Nuclear One 1",843,,642145,579996,631611,425625,233279,610804,629284,623738,610379,634652,620...

458

Innovation Dynamics in the Development of Nuclear Energy and Electric Vehicles in France  

E-Print Network [OSTI]

Technological change is shaped by a confluence of processes that are governed by socio-political, economic, and regulatory factors within a region. In this paper we describe the transformation of the electricity generation ...

Doufene, Abdelkrim

459

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

460

Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions  

E-Print Network [OSTI]

Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-harmonic generation and terahertz radiation emission indicates that the observed dominant surface electric-field-induced contributions Matthew Reid, Igor V. Cravetchi, and Robert Fedosejevs Department of Electrical and Computer

Reid, Matthew

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Piezoelectric & Optical Set-up to measure an Electrical Field. Application to the Longitudinal Near-Field generated by a  

E-Print Network [OSTI]

influences the longitudinal electrical near-field generated by it. For this application, we designed our set extremity on the longitudinal electrical near-field generated by a coaxial cable. Considering1/12 Piezoelectric & Optical Set-up to measure an Electrical Field. Application to the Longitudinal

Paris-Sud XI, Université de

462

DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeks Additional Input on Next Generation Nuclear Plant Seeks Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest from prospective participants and interested parties on utilizing cutting-edge high temperature gas reactor technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels used by industry for process heat. "This is an opportunity to advance the development of safe, reliable, and

463

Integrated facility for municipal solid waste disposal, electrical generation, and desalination. Master`s thesis  

SciTech Connect (OSTI)

A preliminary design was completed for a facility that uses municipal solid waste as fuel for generating electricity and cogeneration steam for a seawater desalination unit. An average city of 100,000 population is the basis of the design. The design showed that heat from the combustion of municipal solid waste will provide nearly 2% of per capita electrical power needs and 7% of fresh water requirements. This thesis proposes a new arrangement of known technologies for use in Public Works.

Hanby, G.F.

1995-12-31T23:59:59.000Z

464

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa |  

Open Energy Info (EERE)

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Details Activities (2) Areas (1) Regions (0) Abstract: The San Luis basin is the largest and deepest basin in the Neogene Rio Grande rift, and has many similarities to the basins of the US Basin and Range Province. It is asymmetric with a displacement of as much as 9 km on its eastern margin, and approximately 6.4 km of sedimentary rocks of late Oligocene or younger age in the deepest portion of the basin. Temperature measurements in shallow wells in the northern basin have an average geothermal gradient of 59.0 ± 11.8°C km-1 (± standard

465

If I generate 20 percent of my national electricity from wind and solar -  

Open Energy Info (EERE)

If I generate 20 percent of my national electricity from wind and solar - If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home > Groups > DOE Wind Vision Community I think that the economics of fossil fuesl are well understood. Some gets to find the fuel and sell it. The fuel and all associated activities factor into the economic equation of the nation and the wrold. What is the economics of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ? The value of the electricity came into the system, but no coal is bought or sold. Submitted by Jamespr on 6 May, 2013 - 17:46 0 answers Groups Menu You must login in order to post into this group.

466

Renewable Power Options for Electricity Generation on Kaua'i: Economics  

Broader source: Energy.gov (indexed) [DOE]

Renewable Power Options for Electricity Generation on Kaua'i: Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. 52076.pdf More Documents & Publications Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

467

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

468

Exploring the Basic Principles of Electric Motors and Generators With a Low-Cost Sophomore-Level Experiment  

Science Journals Connector (OSTI)

In order to meet changing curricular needs, an electric motor and generator laboratory experience was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum and in that it focuses on modeling electric ... Keywords: Assessment, electric machines, electric motors, laboratory

T. F. Schubert; F. G. Jacobitz; E. M. Kim

2009-02-01T23:59:59.000Z

469

Application of the enabler to nuclear electric propulsion  

Science Journals Connector (OSTI)

This paper describes a power system concept that provides the electric power for a baseline electric propulsion system for a piloted mission to Mars. A 10?MWe space power system is formed by coupling an Enabler reactor with a simple non?recuperated closed Brayton cycle. The Enabler reactor is a gas?cooled reactor based on proven reactor technology developed under the NERVA/Rover programs. The selected power cycle which uses a helium?xenon mixture at 1920 K at the turbine inlet is diagramed and described. The specific mass of the power system over the power range from 5 to 70 MWe is given. The impact of operating life on the specific mass of a 10?MWe system is also shown.

Bill L. Pierce

1991-01-01T23:59:59.000Z

470

Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.  

SciTech Connect (OSTI)

Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

Wu, M.; Peng, J. (Energy Systems); ( NE)

2011-02-24T23:59:59.000Z

471

Production Tax Credit for Renewable Electricity Generation (released in AEO2005)  

Reports and Publications (EIA)

In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

2005-01-01T23:59:59.000Z

472

Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing  

SciTech Connect (OSTI)

The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

Katayama, I. [Interdisciplinary Research Center, Yokohama National University, Yokohama 240-8501 (Japan); Shimosato, H.; Bito, M.; Furusawa, K. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Adachi, M.; Zen, H.; Kimura, S.; Katoh, M. [UVSOR, Institute of Molecular Science, Okazaki 444-8585 (Japan); School of Physical Sciences, Graduate Universities for Advanced Studies (SOKENDAI), Okazaki 444-8585 (Japan); Shimada, M. [High Energy Accelerator Research Organization, KEK, Tsukuba 305-0801 (Japan); Yamamoto, N.; Hosaka, M. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ashida, M. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); PRESTO, JST (Japan)

2012-03-12T23:59:59.000Z

473

Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project  

SciTech Connect (OSTI)

At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

L.E. Demick

2010-09-01T23:59:59.000Z

474

Nuclear & Uranium - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on nuclear operable units, nuclear electricity net Find statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. + EXPAND ALL Summary Additional Formats Nuclear Overview: PDF CSV XLS Monthly statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. PDFXLS Annual statistics on nuclear generating units, power plants operations, and uranium. › Nuclear Generating Units, 1955-2010 › PDF XLS Nuclear Power Plant Operations, 1957-2010 › PDF XLS Uranium Overview, 1949-2010 › PDF XLS Uranium & Nuclear Fuel Additional Formats U.S. Uranium Reserves Estimates › Release Date: July 2010 The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. PDF

475

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

Wilson, V.C. [General Electric RDC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico871059 (United States)

1997-01-01T23:59:59.000Z

476

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

Wilson, Volney C. [General Electric R and DC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico 87105 (United States)

1997-01-10T23:59:59.000Z

477

Table A20. Components of Onsite Electricity Generation by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region and" Components of Onsite Electricity Generation by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,,"RSE" " "," "," "," "," ","Row" "Economic Characteristics(a)","Total","Cogeneration","Renewables","Other(b)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.2,1.3 "Value of Shipments and Receipts" "(million dollars)" " Under 20",562,349,"W","W",23 " 20-49",4127,3917,79,131,20.1 " 50-99",8581,7255,955,371,10

478

Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation  

SciTech Connect (OSTI)

Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

2014-09-01T23:59:59.000Z

479

Table A28. Components of Onsite Electricity Generation by Census Region, Cens  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region, Census Division, and" Components of Onsite Electricity Generation by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,"Renewables" ,,,"(excluding Wood",,"RSE" " "," "," ","and"," ","Row" "Economic Characteristics(a)","Total","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.6,1.8,1.4 "Value of Shipments and Receipts" "(million dollars)" " Under 20",1098,868," W "," W ",22.3

480

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

Note: This page contains sample records for the topic "nuclear electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

482

Planning for future uncertainties in electric power generation : an analysis of transitional strategies for reduction of carbon and sulfur emissions  

E-Print Network [OSTI]

The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...

Tabors, Richard D.

1991-01-01T23:59:59.000Z

483

A model for estimation of potential generation of waste electrical and electronic equipment in Brazil  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Literature of WEEE generation in developing countries is reviewed. Black-Right-Pointing-Pointer We analyse existing estimates of WEEE generation for Brazil. Black-Right-Pointing-Pointer We present a model for WEEE generation estimate. Black-Right-Pointing-Pointer WEEE generation of 3.77 kg/capita year for 2008 is estimated. Black-Right-Pointing-Pointer Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the 'boom' in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

Araujo, Marcelo Guimaraes, E-mail: marcel_g@uol.com.br [Federal University of Rio de Janeiro, COPPE, Energy Planning Department (Brazil); Magrini, Alessandra [Federal University of Rio de Janeiro, COPPE, Energy Planning Department (Brazil); Mahler, Claudio Fernando [Federal University of Rio de Janeiro, COPPE, GETRES (Brazil); Bilitewski, Bernd [Technical University of Dresden, Institute of Waste Management and Contaminated Site Treatment (IAA) (Germany)

2012-02-15T23:59:59.000Z

484

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Executive Summary  

SciTech Connect (OSTI)

In 1983, the Bonneville Power Administration contracted for an evaluation and ranking of all geothermal resource sites in the states of Idaho, Montana, Oregon, and Washington which have a potential for electrical generation and/or electrical offset through direct utilization of the resource. The objective of this program was to consolidate and evaluate all geologic, environmental, legal, and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of all known geothermal sites. This data base would enhance the making of credible forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. The four states, working together under a cooperative agreement, identified a total of 1,265 potential geothermal sites. The 1,265 sites were screened to eliminate those with little or no chance of providing either electrical generation and/or electrical offset. Two hundred and forty-five of the original 1,265 sites were determined to warrant further study. The Four-State team proceeded to develop a methodology which would rank the sites based upon an estimate of development potential and cost. Development potential was estimated through the use of weighted variables selected to approximate the attributes which a geothermal firm might consider in its selection of a site for exploration and possible development. Resource; engineering; and legal, institutional, and environmental factors were considered. Cost estimates for electrical generation and direct utilization sites were made using the computer programs CENTPLANT, WELLHEAD, and HEATPLAN. Finally, the sites were ranked utilizing a technique which allowed for the integration of development and cost information. On the basis of the developability index, 78 high temperature sites and 120 direct utilization sites were identified as having ''good'' or ''average'' potential for development and should be studied in detail. On the basis of cost, at least 29 of the high temperature sites appear to be technically capable of supporting a minimum total of at least 1,000 MW of electrical generation which could be competitive with the busbar cost of conventional thermal generating technologies. Sixty direct utilization sites have a minimum total energy potential of 900+ MW and can be expected to provide substantial amounts of electrical offset at or below present conventional energy prices. The combined development and economic rankings can be used to assist in determining sites with superior characteristics of both types. Five direct utilization sites and eight high temperature sites were identified with both high development and economic potential. An additional 27 sites were shown to have superior economic characteristics, but development problems. The procedure seems validated by the fact that two of the highest ranking direct utilization sites are ones that have already been developed--Boise, Idaho and Klamath Falls, Oregon. Most of the higher ranking high temperature sites have received serious examination in the past as likely power production candidates.

Bloomquist, R.G.; Black, G.L.; Parker, D.S.; Sifford, A.; Simpson, S.J.; Street, L.V.

1985-06-01T23:59:59.000Z

485

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect (OSTI)

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

486

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Office of Energy Efficiency and Renewable Energy (EERE)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

487

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

488

Economic feasibility of carbon emission reduction in electricity generation, a case study based on Sri Lanka  

Science Journals Connector (OSTI)

The main purpose of this paper is an assessment of economic feasibility in reducing carbon dioxide emission of electricity generation in Sri Lanka. The paper shows that the present annual green house gas (GHG) emission with respect to electricity generation in Sri Lanka is about 2.8 million metric tons. The identified total GHG emission reduction potential in electricity generation is about 37 GW. The total reduction in GHG will be 16 million metric tons per year. Considering the savings on fossil fuel combustion, the total investment on CHG reduction methods would be recovered within a reasonable period as confirmed by a sensitivity analysis. To achieve these benefits, broad policies and guidelines are presented in-line with the country's environmental obligations. This is the first time that this type of scientific research study has been carried out in Sri Lanka to ascertain the current situation of GHG emission of electricity generation, to identify possible methods in reducing carbon dioxide emission and their economic feasibility. The methodology employed and the policies derived can be used as guides to similar types of research in other countries as well.

S.W.S.B. Dasanayaka; W. Jayarathne

2012-01-01T23:59:59.000Z

489

Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation  

E-Print Network [OSTI]

. The overall engine-generator efficiency at 7.5 kW electrical power load was lower at 19.81% for gasoline fueled engine compared to 35.27% for synthesis gas. The pressure swing adsorption (PSA) system increased the net heating value of the product gas...

Maglinao, Amado Latayan

2013-04-11T23:59:59.000Z

490

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid  

E-Print Network [OSTI]

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid March 2011 voltages are nominally 4.5kv and 13 2kv The solar system must maintain voltageand 13.2kv. The solar system) or multiple sites (multiple leases, interconnect points, construction forces) Ground based, roof top (weight

Homes, Christopher C.

491

Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure  

E-Print Network [OSTI]

facility, the sum capacity of which does not exceed 30 megawatts. (4) Solar. For purposes1 Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure that a retail seller offers to sell to consumers in California under terms and conditions specific to an offer

492

Water Research 39 (2005) 16751686 Electricity generation using membrane and salt bridge  

E-Print Network [OSTI]

Water Research 39 (2005) 1675­1686 Electricity generation using membrane and salt bridge microbial Hydrogen Energy (H2E) Center, The Pennsylvania State University, 212 Sackett Bld., University Park, PA, USA also examined power output in a MFC with a salt bridge instead of a membrane system. Power output

493

EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

494

Dynamically generated electric charge distributions in Abelian projected SU(2) lattice gauge theories  

E-Print Network [OSTI]

We show in the maximal Abelian gauge the dynamical electric charge density generated by the coset fields, gauge fixing and ghosts shows antiscreening as in the case of the non-Abelian charge. We verify that with the completion of the ghost term all contributions to flux are accounted for in an exact lattice Ehrenfest relation.

A. Hart; R. W. Haymaker; Y. Sasai

1998-08-28T23:59:59.000Z

495