Sample records for nuclear detonation nurse

  1. Post detonation nuclear forensics

    SciTech Connect (OSTI)

    Davis, Jay [The Hertz Foundation, 2300 First Street, Suite 250, Livermore, California (United States)

    2014-05-09T23:59:59.000Z

    The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

  2. Program to Prevent Accidental or Unauthorized Nuclear Explosive Detonations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-12-18T23:59:59.000Z

    The order establishes the DOE program to prevent accidental or unauthorized nuclear explosive detonations, and to define responsibilities for DOE participation in the Department of Defense program for nuclear weapon and nuclear weapon system safety. Does not cancel other directives.

  3. Reducing the Consequences of a Nuclear Detonation.

    SciTech Connect (OSTI)

    Buddemeier, B R

    2007-11-09T23:59:59.000Z

    The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

  4. Nuclear Detonation Detection | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838Nuclear Detection

  5. The Nuclear Detonation Detection System on the GPS satellites

    SciTech Connect (OSTI)

    Higbie, P.R. [Los Alamos National Lab., NM (United States); Blocker, N.K. [Sandia National Labs., Albuquerque, NM (United States)

    1993-07-27T23:59:59.000Z

    This article begins with a historical perspective of satellite usage in monitoring nuclear detonations. Current capabilities of the 24 GPS satellites in detecting the light, gamma rays, x-rays and neutrons from a nuclear explosion are described. In particular, an optical radiometer developed at Sandia National Laboratories is characterized. Operational information and calibration procedures are emphasized.

  6. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect (OSTI)

    Casey, Leslie A.

    2014-01-13T23:59:59.000Z

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  7. detonation detection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian NuclearNational5/%2A en Office| Nationaldetonation

  8. Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices

    E-Print Network [OSTI]

    Cizelj, Leon

    Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices Marko threats to a nuclear power plant in the year 1991 and after the 9/11 events in 2001. The methodology which strength and injuries of human beings with nuclear power plant models used in probabilistic safety

  9. Analysis of sheltering and evacuation strategies for a Chicago nuclear detonation scenario.

    SciTech Connect (OSTI)

    Yoshimura, Ann S.; Brandt, Larry D.

    2011-09-01T23:59:59.000Z

    Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. Extensive studies have been performed and guidance published that highlight the key principles for saving lives following such an event. However, region-specific data are important in the planning process as well. This study examines some of the unique regional factors that impact planning for a 10 kt detonation in Chicago. The work utilizes a single scenario to examine regional impacts as well as the shelter-evacuate decision alternatives at selected exemplary points. For many Chicago neighborhoods, the excellent assessed shelter quality available make shelter-in-place or selective transit to a nearby shelter a compelling post-detonation strategy.

  10. Analysis of sheltering and evacuation strategies for a national capital region nuclear detonation scenario.

    SciTech Connect (OSTI)

    Yoshimura, Ann S.; Brandt, Larry D.

    2011-12-01T23:59:59.000Z

    Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. Extensive studies have been performed and guidance published that highlight the key principles for saving lives following such an event. However, region-specific data are important in the planning process as well. This study examines some of the unique regional factors that impact planning for a 10 kT detonation in the National Capital Region. The work utilizes a single scenario to examine regional impacts as well as the shelter-evacuate decision alternatives at one exemplary point. For most Washington, DC neighborhoods, the excellent assessed shelter quality available make shelter-in-place or selective transit to a nearby shelter a compelling post-detonation strategy.

  11. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    SciTech Connect (OSTI)

    Hicks, H.G.

    1981-11-01T23:59:59.000Z

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  12. ORISE: Message Testing for a Nuclear Detonation | How ORISE is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security, Federal Emergency Management Agency, the Environmental Protection Agency, the Nuclear Regulatory Commission, Department of Energy, Department of Defense, Department of...

  13. Process for estimating likelihood and confidence in post detonation nuclear forensics.

    SciTech Connect (OSTI)

    Darby, John L.; Craft, Charles M.

    2014-07-01T23:59:59.000Z

    Technical nuclear forensics (TNF) must provide answers to questions of concern to the broader community, including an estimate of uncertainty. There is significant uncertainty associated with post-detonation TNF. The uncertainty consists of a great deal of epistemic (state of knowledge) as well as aleatory (random) uncertainty, and many of the variables of interest are linguistic (words) and not numeric. We provide a process by which TNF experts can structure their process for answering questions and provide an estimate of uncertainty. The process uses belief and plausibility, fuzzy sets, and approximate reasoning.

  14. Planning and Response to the Detonation of an Improvised Nuclear Device: Past, Present, and Future Research

    SciTech Connect (OSTI)

    Bentz, A

    2008-07-31T23:59:59.000Z

    While the reality of an improvised nuclear device (IND) being detonated in an American city is unlikely, its destructive power is such that the scenario must be planned for. Upon reviewing the academic literature on the effects of and response to IND events, this report looks to actual responders from around the country. The results from the meetings of public officials in the cities show where gaps exist between theoretical knowledge and actual practice. In addition to the literature, the meetings reveal areas where future research needs to be conducted. This paper recommends that local response planners: meet to discuss the challenges of IND events; offer education to officials, the public, and responders on IND events; incorporate 'shelter-first' into response plans; provide information to the public and responders using the 3 Cs; and engage the private sector (including media) in response plans. In addition to these recommendations for the response planners, the paper provides research questions that once answered will improve response plans around the country. By following the recommendations, both groups, response planners and researchers, can help the country better prepare for and mitigate the effects of an IND detonation.

  15. Analysis of sheltering and evacuation strategies for an urban nuclear detonation scenario.

    SciTech Connect (OSTI)

    Yoshimura, Ann S.; Brandt, Larry D.

    2009-05-01T23:59:59.000Z

    Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. This study examines shelter-evacuate policies and effectiveness focusing on a 10 kt scenario in Los Angeles. The goal is to provide technical insights that can support development of urban response plans. Results indicate that extended shelter-in-place can offer the most robust protection when high quality shelter exists. Where less effective shelter is available and the fallout radiation intensity level is high, informed evacuation at the appropriate time can substantially reduce the overall dose to personnel. However, uncertainties in the characteristics of the fallout region and in the exit route can make evacuation a risky strategy. Analyses indicate that only a relatively small fraction of the total urban population may experience significant dose reduction benefits from even a well-informed evacuation plan.

  16. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    SciTech Connect (OSTI)

    Casey, Leslie A.

    2014-01-13T23:59:59.000Z

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  17. Implications of an Improvised Nuclear Device Detonation on Command and Control for Surrounding Regions at the Local, State and Federal Levels

    SciTech Connect (OSTI)

    Pasquale, David A.; Hansen, Richard G.

    2013-01-23T23:59:59.000Z

    This paper discusses command and control issues relating to the operation of Incident Command Posts (ICPs) and Emergency Operations Centers (EOCs) in the surrounding area jurisdictions following the detonation of an Improvised Nuclear Device (IND). Although many aspects of command and control will be similar to what is considered to be normal operations using the Incident Command System (ICS) and the National Incident Management System (NIMS), the IND response will require many new procedures and associations in order to design and implement a successful response. The scope of this white paper is to address the following questions: • Would the current command and control framework change in the face of an IND incident? • What would the management of operations look like as the event unfolded? • How do neighboring and/or affected jurisdictions coordinate with the state? • If the target area’s command and control infrastructure is destroyed or disabled, how could neighboring jurisdictions assist with command and control of the targeted jurisdiction? • How would public health and medical services fit into the command and control structure? • How can pre-planning and common policies improve coordination and response effectiveness? • Where can public health officials get federal guidance on radiation, contamination and other health and safety issues for IND response planning and operations?

  18. C+O detonations in thermonuclear supernovae: Interaction with previously burned material

    E-Print Network [OSTI]

    A. Maier; J. C. Niemeyer

    2006-05-12T23:59:59.000Z

    In the context of explosion models for Type Ia Supernovae, we present one- and two-dimensional simulations of fully resolved detonation fronts in degenerate C+O White Dwarf matter including clumps of previously burned material. The ability of detonations to survive the passage through sheets of nuclear ashes is tested as a function of the width and composition of the ash region. We show that detonation fronts are quenched by microscopically thin obstacles with little sensitivity to the exact ash composition. Front-tracking models for detonations in macroscopic explosion simulations need to include this effect in order to predict the amount of unburned material in delayed detonation scenarios.

  19. Reverse slapper detonator

    DOE Patents [OSTI]

    Weingart, Richard C. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

  20. Type Ia Supernova Explosion: Gravitationally Confined Detonation

    E-Print Network [OSTI]

    Tomasz Plewa; Alan Calder; Don Lamb

    2004-05-08T23:59:59.000Z

    We present a new mechanism for Type Ia supernova explosions in massive white dwarfs. The proposed scenario follows from relaxing the assumption of symmetry in the model and involves a detonation created in an unconfined environment. The explosion begins with an essentially central ignition of stellar material initiating a deflagration. This deflagration results in the formation of a buoyantly-driven bubble of hot material that reaches the stellar surface at supersonic speeds. The bubble breakout forms a strong pressure wave that laterally accelerates fuel-rich outer stellar layers. This material, confined by gravity to the white dwarf, races along the stellar surface and is focused at the location opposite to the point of the bubble breakout. These streams of nuclear fuel carry enough mass and energy to trigger a detonation just above the stellar surface. The flow conditions at that moment support a detonation that will incinerate the white dwarf and result in an energetic explosion. The stellar expansion following the deflagration redistributes stellar mass in a way that ensures production of intermediate mass and iron group elements consistent with observations. The ejecta will have a strongly layered structure with a mild amount of asymmetry following from the early deflagration phase. This asymmetry, combined with the amount of stellar expansion determined by details of the evolution (principally the energetics of deflagration, timing of detonation, and structure of the progenitor), can be expected to create a family of mildly diverse Type Ia supernova explosions.

  1. A Review of Direct Numerical Simulations of Astrophysical Detonations and Their Implications

    SciTech Connect (OSTI)

    Parete-Koon, Suzanne T [ORNL; Messer, Bronson [ORNL; Smith, Chris R [ORNL; Papatheodore, Thomas L [ORNL

    2013-01-01T23:59:59.000Z

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1 107 g cm 3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1 107 g cm 3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.

  2. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Kopczewski, Michael R. (Albuquerque, NM); Schwarz, Alfred C. (Albuquerque, NM)

    1986-01-01T23:59:59.000Z

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives.

  3. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

    1985-01-04T23:59:59.000Z

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives. 3 figs.

  4. The world's first nuclear detonation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints ofProject HomeThe SevenHistory »

  5. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19T23:59:59.000Z

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  6. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Grubelich, Mark C. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  7. CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect (OSTI)

    Holcomb, Cole; Guillochon, James; De Colle, Fabio; Ramirez-Ruiz, Enrico [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-07-01T23:59:59.000Z

    Several models for Type Ia-like supernova events rely on the production of a self-sustained detonation powered by nuclear reactions. In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range between 1 and 10{sup 10} cm. A simple estimate of the length scales over which the total consumption of fuel will occur for steady-state detonations is provided by the Chapman-Jouguet (CJ) formalism. Our initiation lengths are consistently smaller than the corresponding CJ length scales by a factor of {approx}100, providing opportunities for thermonuclear explosions in a wider range of low-mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 M{sub Sun} can be detonated, and that even less massive WDs can be detonated if a sizable fraction of their mass is raised to a higher adiabat. That the initiation length is exceeded by the CJ length implies that certain systems may not reach nuclear statistical equilibrium within the time it takes a detonation to traverse the object. In support of this hypothesis, we demonstrate that incomplete burning will occur in the majority of He WD detonations and that {sup 40}Ca, {sup 44}Ti, or {sup 48}Cr, rather than {sup 56}Ni, is the predominant burning product for many of these events. We anticipate that a measure of the quantity of the intermediate-mass elements and {sup 56}Ni produced in a helium-rich thermonuclear explosion can potentially be used to constrain the nature of the progenitor system.

  8. Detonation Diffraction into a Confined Volume

    E-Print Network [OSTI]

    Polley, Nolan Lee

    2012-02-14T23:59:59.000Z

    little attention. Experimental work needs to be conducted on detonation diffraction into a confined volume to better understand how the interaction of the diffracted shock wave with a confining wall impacts the detonation diffraction process. Therefore, a...

  9. Surface detonation in type Ia supernova explosions?

    E-Print Network [OSTI]

    F. K. Roepke; S. E. Woosley

    2006-09-25T23:59:59.000Z

    We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.

  10. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-05T23:59:59.000Z

    The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  11. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  12. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  13. Deflagrations and Detonations in Thermonuclear Supernovae

    E-Print Network [OSTI]

    Vadim N. Gamezo; Alexei M. Khokhlov; Elaine S. Oran

    2004-06-03T23:59:59.000Z

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast to the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae.

  14. Performance characterization of the NASA standard detonator

    SciTech Connect (OSTI)

    Tarbell, W.W. [Sandia National Labs., Albuquerque, NM (United States); Burke, T.L.; Solomon, S.E. [Component Engineering, USBI, Huntsville, AL (United States)

    1995-05-01T23:59:59.000Z

    The NASA Standard Detonator (NSD) is employed in support of a number of current applications, including the Space Shuttle. This effort was directed towards providing test results to characterize the output of this device for its use in a safe and arm device. As part of the investigation, flash X-ray was used to provide stop-motion photographs of the flying metal plate that is created by initiation of the detonator. This provided researchers with a better understanding of the shape and character of the high-velocity disk as it propagated across the gap between the detonator and next assembly. The second portion of the study used a velocity interferometer to evaluate the acceleration and velocity histories of the flying plate, providing a quantified assessment of the detonator`s ability to initiate the explosive in the next explosive.

  15. Shock and Detonation Physics at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robbins, David L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve A [Los Alamos National Laboratory

    2012-08-22T23:59:59.000Z

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  16. Initiation of the detonation in the gravitationally confined detonation model of type Ia supernovae.

    SciTech Connect (OSTI)

    Seitenzahl, I. R.; Meakin, C. A.; Lamb, D. Q.; Truran, J. W. (Physics); (Univ. of Chicago); (Max-Planck-Inst. for Astrophysics); (Univ. of Arizona)

    2009-07-20T23:59:59.000Z

    We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

  17. INITIATION OF THE DETONATION IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Seitenzahl, Ivo R. [Department of Physics, University of Chicago, Chicago, IL 60637 (United States); Meakin, Casey A.; Truran, James W. [Joint Institute for Nuclear Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Lamb, Don Q. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 (United States)

    2009-07-20T23:59:59.000Z

    We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

  18. Study of the detonation phase in the gravitationally confined detonation model of type Ia supernovae.

    SciTech Connect (OSTI)

    Meakin, C. A.; Seitenzahl, I.; Jordan, G. C.; Truran,, J.; Lamb, D.; Physics; Univ. of Chicago; Univ. of Arizona

    2009-07-20T23:59:59.000Z

    We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zeldovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

  19. Detonation and incineration products of PBX explosives

    SciTech Connect (OSTI)

    Fletcher, M.A.; Loughran, E.D.

    1992-01-01T23:59:59.000Z

    A series of experiments are planned to determine detonation product gases that are released into the environment when high explosives are tested. These experiments will be done in a 1.8-m-diam confinement vessel at ambient air pressure and partial vacuum. A matrix of four shots of PBX 9501, three shots of PBX 9502 and one shot of LX-10 are analyzed to determine the reproducibility and mass balance of materials in the detonation. This paper will only report on the detonation product gases as other experiments are planned.

  20. Detonator comprising a nonlinear transmission line

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-12-30T23:59:59.000Z

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  1. Fracture response of externally flawed aluminum cylindrical shells under internal gaseous detonation loading

    E-Print Network [OSTI]

    Barr, Al

    , there is a lack of standard guidance in designing and testing pressure vessels and piping under explosive-mechanics driven design and safety criteria for pressure vessels under gaseous detonation load- ing. At this time pipelines, nuclear plant, and petrochemical piping. This study may also guide forensic analysis

  2. One Year Term Review as a Participating Guest in the Detonator and Detonation Physics Group

    SciTech Connect (OSTI)

    Lefrancois, A; Roeske, F; Tran, T; Lee, R S

    2006-02-06T23:59:59.000Z

    The one year stay was possible after a long administrative process, because of the fact that this was the first participating guest of B division as a foreign national in HEAF (High Explosives Application Facility) with the Detonator/Detonation Physics Group.

  3. Precursor detonation wave development in ANFO due to aluminum confinement

    SciTech Connect (OSTI)

    Jackson, Scott I [Los Alamos National Laboratory; Klyanda, Charles B [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.

  4. Detonator cable initiation system safety investigation: Consequences of energizing the detonator and actuator cables

    SciTech Connect (OSTI)

    Osher, J.; Chau, H.; Von Holle, W.

    1994-03-01T23:59:59.000Z

    This study was performed to explore and assess the worst-case response of a W89-type weapons system, damaged so as to expose detonator and/or detonator safing strong link (DSSL) cables to the most extreme, credible lightning-discharge, environment. The test program used extremely high-current-level, fast-rise-time (1- to 2-{mu}s) discharges to simulate lightning strikes to either the exposed detonator or DSSL cables. Discharges with peak currents above 700 kA were required to explode test sections of detonator cable and launch a flyer fast enough potentially to detonate weapon high explosive (HE). Detonator-safing-strong-link (DSSL) cables were exploded in direct contact with hot LX-17 and Ultrafine TATB (UFTATB). At maximum charging voltage, the discharge system associated with the HE firing chamber exploded the cables at more than 600-kA peak current; however, neither LX-17 nor UFTATB detonated at 250{degree}C. Tests showed that intense surface arc discharges of more than 700 kA/cm in width across the surface of hot UFTATB [generally the more sensitive of the two insensitive high explosives (IHE)] could not initiate this hot IHE. As an extension to this study, we applied the same technique to test sections of the much-narrower but thicker-cover-layer W87 detonator cable. These tests were performed at the same initial stored electrical energy as that used for the W89 study. Because of the narrower cable conductor in the W87 cables, discharges greater than 550-kA peak current were sufficient to explode the cable and launch a fast flyer. In summary, we found that lightning strikes to exposed DSSL cables cannot directly detonate LX-17 or UFTATB even at high temperatures, and they pose no HE safety threat.

  5. LATERALLY PROPAGATING DETONATIONS IN THIN HELIUM LAYERS ON ACCRETING WHITE DWARFS

    SciTech Connect (OSTI)

    Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States); Moore, Kevin; Bildsten, Lars, E-mail: Dean.M.Townsley@ua.edu [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2012-08-10T23:59:59.000Z

    Theoretical work has shown that intermediate mass (0.01 M{sub Sun} < M{sub He} < 0.1 M{sub Sun }) helium shells will unstably ignite on the accreting white dwarf (WD) in an AM CVn binary. For more massive (M > 0.8 M{sub Sun }) WDs, these helium shells can be dense enough (>5 Multiplication-Sign 10{sup 5} g cm{sup -3}) that the convectively burning region runs away on a timescale comparable to the sound travel time across the shell, raising the possibility for an explosive outcome rather than an Eddington limited helium novae. The nature of the explosion (i.e., deflagration or detonation) remains ambiguous, is certainly density dependent, and likely breaks spherical symmetry. In the case of detonation, this causes a laterally propagating front whose properties in these geometrically thin and low-density shells we begin to study here. Our calculations show that the radial expansion time of <0.1 s leads to incomplete helium burning, in agreement with recent work by Sim and collaborators, but that the nuclear energy released is still adequate to realize a self-sustaining laterally propagating detonation. These detonations are slower than the Chapman-Jouguet speed of 1.5 Multiplication-Sign 10{sup 9} cm s{sup -1}, but still fast enough at 0.9 Multiplication-Sign 10{sup 9} cm s{sup -1} to go around the star prior to the transit through the star of the inwardly propagating weak shock. Our simulations resolve the subsonic region behind the reaction front in the detonation wave. The two-dimensional nucleosynthesis is shown to be consistent with a truncated one-dimensional Zeldovich-von Neumann-Doering calculation at the slower detonation speed. The ashes from the lateral detonation are typically He rich, and consist of predominantly {sup 44}Ti, {sup 48}Cr, along with a small amount of {sup 52}Fe, with very little {sup 56}Ni and with significant {sup 40}Ca in carbon-enriched layers. If this helium detonation results in a Type Ia supernova, its spectral signatures would appear for the first few days after explosion.

  6. A Model for Multidimensional Delayed Detonations in SN Ia Explosions

    E-Print Network [OSTI]

    I. Golombek; J. C. Niemeyer

    2005-03-29T23:59:59.000Z

    We show that a flame tracking/capturing scheme originally developed for deflagration fronts can be used to model thermonuclear detonations in multidimensional explosion simulations of type Ia supernovae. After testing the accuracy of the front model, we present a set of two-dimensional simulations of delayed detonations with a physically motivated off-center deflagration-detonation-transition point. Furthermore, we demonstrate the ability of the front model to reproduce the full range of possible interactions of the detonation with clumps of burned material. This feature is crucial for assessing the viability of the delayed detonation scenario.

  7. Detonation propagation in a high loss configuration

    SciTech Connect (OSTI)

    Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH

    2009-01-01T23:59:59.000Z

    This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

  8. Proton radiography of PBX 9502 detonation shock dynamics confinement sandwich test

    SciTech Connect (OSTI)

    Aslam, Tariq D [Los Alamos National Laboratory; Jackson, Scott I [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Recent results utilizing proton radiography (P-Rad) during the detonation of the high explosive PBX 9502 are presented. Specifically, the effects of confinement of the detonation are examined in the LANL detonation confinement sandwich geometry. The resulting detonation velocity and detonation shock shape are measured. In addition, proton radiography allows one to image the reflected shocks through the detonation products. Comparisons are made with detonation shock dynamics (DSD) and reactive flow models for the lead detonation shock and detonation velocity. In addition, predictions of reflected shocks are made with the reactive flow models.

  9. Detonation of Meta-stable Clusters

    SciTech Connect (OSTI)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31T23:59:59.000Z

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  10. Characterizing detonator output using dynamic witness plates

    SciTech Connect (OSTI)

    Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

  11. Clinical Nurse Leader Option Master of Nursing

    E-Print Network [OSTI]

    Dyer, Bill

    Clinical Nurse Leader Option Master of Nursing Graduate Degree Program Clinical Manual 2012....................................................................................................................1 Clinical Nurse Leader Major Role Function...................................................................1 Goal of the Clinical Practicum

  12. BNCP prototype detonator studies using a semiconductor bridge initiator

    SciTech Connect (OSTI)

    Fyfe, D.W.; Fronabarger, J.W. [Pacific Scientific Co., Avondale-Goodyear, AZ (United States). Energy Dynamics Div.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

    1994-06-01T23:59:59.000Z

    We report on experiments with prototype BNCP detonators incorporating a semiconductor bridge, SCB. We tested two device designs; one for DoD and one for DOE applications. We report tests with the DoD detonator using different firing conditions and two different grain sizes of BNCP. The DOE detonator utilized a 50 {mu}F CDU firing set with a 24 V all-fire condition.

  13. Safety and performance enhancement circuit for primary explosive detonators

    DOE Patents [OSTI]

    Davis, Ronald W. (Tracy, CA)

    2006-04-04T23:59:59.000Z

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  14. NEW DETONATION CONCEPTS FOR PROPULSION AND POWER GENERATION

    E-Print Network [OSTI]

    Texas at Arlington, University of

    gas model is used for a thermal efficiency prediction of a detonation wave based on the work and heat with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expands towards the nozzle. Air and fuel enter the combustor when

  15. Proof-of-Principle Detonation Driven, Linear Electric Generator Facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    . Atmospheric initial mixtures of oxygen with hydrogen, propane, and methane were detonated. A load wall. Nomenclature A Piston face area, m2 CJ Chapman-Jouguet property cp Constant pressure heat capacity, kJ/(kg·K) F COMBUSTION via detonation releases the chemical energy of a reactive mixture with higher efficiency compared

  16. Effects of vortical and entropic forcing on detonation dynamics

    E-Print Network [OSTI]

    Texas at Arlington, University of

    combustion. The present research examines the interaction of detonation with turbulence with emphasis to a set of parameters de- scribed below. For a CJ detonation, the heat release parameter Q is expressed to a CJ velocity of vcj 1800m/s, in good agreement with methane/air and propane/air mixtures [2]. A final

  17. Carbon Detonation and Shock-Triggered Helium Burning in Neutron Star Superbursts

    E-Print Network [OSTI]

    Nevin N. Weinberg; Lars Bildsten

    2007-08-13T23:59:59.000Z

    The strong degeneracy of the 12C ignition layer on an accreting neutron star results in a hydrodynamic thermonuclear runaway, in which the nuclear heating time becomes shorter than the local dynamical time. We model the resulting combustion wave during these superbursts as an upward propagating detonation. We solve the reactive fluid flow and show that the detonation propagates through the deepest layers of fuel and drives a shock wave that steepens as it travels upward into lower density material. The shock is sufficiently strong upon reaching the freshly accreted H/He layer that it triggers unstable 4He burning if the superburst occurs during the latter half of the regular Type I bursting cycle; this is likely the origin of the bright Type I precursor bursts observed at the onset of superbursts. The cooling of the outermost shock-heated layers produces a bright, ~0.1s, flash that precedes the Type I burst by a few seconds; this may be the origin of the spike seen at the burst onset in 4U 1820-30 and 4U 1636-54, the only two bursts observed with RXTE at high time resolution. The dominant products of the 12C detonation are 28Si, 32S, and 36Ar. Gupta et al. showed that a crust composed of such intermediate mass elements has a larger heat flux than one composed of iron-peak elements and helps bring the superburst ignition depth into better agreement with values inferred from observations.

  18. Lattice Boltzmann model for combustion and detonation

    E-Print Network [OSTI]

    Yan, Bo; Zhang, Guang-Cai; Ying, Yang-Jun; Li, Hua; 10.1007/s11467-013-0286-z

    2013-01-01T23:59:59.000Z

    In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibri...

  19. Spark-safe low-voltage detonator

    DOE Patents [OSTI]

    Lieberman, Morton L. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  20. Bonfire-safe low-voltage detonator

    DOE Patents [OSTI]

    Lieberman, Morton L. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

  1. Bonfire-safe low-voltage detonator

    DOE Patents [OSTI]

    Lieberman, M.L.

    1988-07-01T23:59:59.000Z

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half. 2 figs.

  2. 1 School of Nursing SCHOOL OF NURSING

    E-Print Network [OSTI]

    Vertes, Akos

    1 School of Nursing SCHOOL OF NURSING Dean J. Johnson Interim Senior Associate Dean M.J. Schumann of the School of Medicine and Health Sciences established in 1825, The George Washington University School of Nursing (SON) was established in May 2010 as GW's tenth school. The School of Nursing develops nursing

  3. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-06T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

  4. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-01-17T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

  5. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B. Canceled by DOE O 452.1D

  6. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Canceled by DOE O 452.1D Admin Chg 1.

  7. Lattice Boltzmann model for combustion and detonation

    E-Print Network [OSTI]

    Bo Yan; Aiguo Xu; Guangcai Zhang; Yangjun Ying; Hua Li

    2013-05-10T23:59:59.000Z

    In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibrium in opposite directions. In the front of von Neumann peak, due to the strong compression from the reaction product behind the von Neumann peak, the system experiences a sudden deviation from thermodynamic equilibrium. Behind the von Neumann peak, the release of chemical energy results in thermal expansion of the matter within the reaction zone, which drives the system to deviate the thermodynamic equilibrium in the opposite direction. From the deviation from thermodynamic equilibrium, defined in this paper, one can understand more on the macroscopic effects of the system due to the deviation from its thermodynamic equilibrium.

  8. Blasting detonators incorporating semiconductor bridge technology

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.

    1994-05-01T23:59:59.000Z

    The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.

  9. Spark-safe low-voltage detonator

    DOE Patents [OSTI]

    Lieberman, M.L.

    1988-07-01T23:59:59.000Z

    A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.

  10. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  11. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    SciTech Connect (OSTI)

    Reaugh, J E

    2011-11-22T23:59:59.000Z

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

  12. Deflagration to detonation experiments in granular HMX

    SciTech Connect (OSTI)

    Burnside, N.J.; Son, S.F.; Asay, B.W.; Dickson, P.M.

    1998-03-01T23:59:59.000Z

    In this paper the authors report on continuing work involving a series of deflagration-to-detonation transition (DDT) experiments in which they study the piston-initiated DDT of heavily confined granular cyclotetramethylenetetranitramine (HMX). These experiments were designed to he useful in model development and evaluation. A main focus of these experiments is the effect of density on the DDT event. Particle size distribution and morphology are carefully characterized. In this paper they present recent surface area analysis. Earlier studies demonstrated extensive fracturing and agglomeration in samples at densities as low as 75% TMD as evidenced by dramatic decreases in particle size distribution due to mild stimulus. This is qualitatively confirmed with SEM images and quantitatively studied with gas absorption surface area analysis. Also, in this paper they present initial results using a microwave interferometer technique. Dynamic calibration of the technique was performed, a 35 GHz signal is used to increase resolution, and the system has been designed to be inexpensive for repeated experiments. The distance to where deformation of the inner wall begins for various densities is reported. This result is compared with the microwave interferometer measurements.

  13. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  14. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.

    1994-05-01T23:59:59.000Z

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs ( i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  15. Investigations on detonation shock dynamics and related topics. Final report

    SciTech Connect (OSTI)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics

    1993-11-01T23:59:59.000Z

    This document is a final report that summarizes the research findings and research activities supported by the subcontract DOE-LANL-9-XG8-3931P-1 between the University of Illinois (D. S. Stewart Principal Investigator) and the University of California (Los Alamos National Laboratory, M-Division). The main focus of the work has been on investigations of Detonation Shock Dynamics. A second emphasis has been on modeling compaction of energetic materials and deflagration to detonation in those materials. The work has led to a number of extensions of the theory of Detonation Shock Dynamics (DSD) and its application as an engineering design method for high explosive systems. The work also enhanced the hydrocode capabilities of researchers in M-Division by modifications to CAVEAT, an existing Los Alamos hydrocode. Linear stability studies of detonation flows were carried out for the purpose of code verification. This work also broadened the existing theory for detonation. The work in this contract has led to the development of one-phase models for dynamic compaction of porous energetic materials and laid the groundwork for subsequent studies. Some work that modeled the discrete heterogeneous behavior of propellant beds was also performed. The contract supported the efforts of D. S. Stewart and a Postdoctoral student H. I. Lee at the University of Illinois.

  16. Ferrite core coupled slapper detonator apparatus and method

    DOE Patents [OSTI]

    Boberg, R.E.; Lee, R.S.; Weingart, R.C.

    1989-08-01T23:59:59.000Z

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.

  17. Ferrite core coupled slapper detonator apparatus and method

    DOE Patents [OSTI]

    Boberg, Ralph E. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Weingart, Richard C. (Livermore, CA)

    1989-01-01T23:59:59.000Z

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  18. Flying-plate detonator using a high-density high explosive

    DOE Patents [OSTI]

    Stroud, John R. (Livermore, CA); Ornellas, Donald L. (Livermore, CA)

    1988-01-01T23:59:59.000Z

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  19. Under consideration for publication in J. Fluid Mech. 1 Condensed-phase detonation stability for a

    E-Print Network [OSTI]

    Anguelova, Iana

    of increasing the ambient sound speed in the material, for a given detonation speed, has a stabilizing effect liquid nitromethane, where the detonation structure is characterized by a fast reaction stage behind in a following reaction zone, which can occur in gaseous, liquid or solid explosives. The idealised detonation

  20. The Use of Steady and Pulsed Detonations for Propulsion Systems

    SciTech Connect (OSTI)

    Adelman, H.G.; Menees, G.P.; Cambier, J.L.; Bowles, J.V.

    1996-02-01T23:59:59.000Z

    Objectives of the ODWE concept studies are: demonstrate the feasibility of the oblique detonation wave engine (ODWE) for hypersonic propulsion; demonstrate the existance and stability of an oblique detonation wave in hypersonic wind tunnels; develop engineering codes which predict the performance characteristics of the ODWE including specific impulse and thrust coefficients for various operating conditions; develop multi-dimensional computer codes which can model all aspects of the ODWE including fuel injection, mixing, ignition, combustion and expansion with fully detailed chemical kinetics and turbulence models; and validate the codes with experimental data use the simulations to predict the ODWE performance for conditions not easily obtained in wind tunnels.

  1. Can Deflagration-Detonation-Transitions occur in Type Ia Supernovae?

    E-Print Network [OSTI]

    J. C. Niemeyer

    1999-07-19T23:59:59.000Z

    The mechanism for deflagration-detonation-transition (DDT) by turbulent preconditioning, suggested to explain the possible occurrence of delayed detonations in Type Ia supernova explosions, is argued to be conceptually inconsistent. It relies crucially on diffusive heat losses of the burned material on macroscopic scales. Regardless of the amplitude of turbulent velocity fluctuations, the typical gradient scale for temperature fluctuations is shown to be the laminar flame width or smaller, rather than the factor of thousand more required for a DDT. Furthermore, thermonuclear flames cannot be fully quenched in regions much larger than the laminar flame width as a consequence of their simple ``chemistry''. Possible alternative explosion scenarios are briefly discussed.

  2. Strategies for understanding the deflagration-to-detonation transition

    SciTech Connect (OSTI)

    Asay, B.W.

    1992-05-01T23:59:59.000Z

    The deflagration-to-detonation (DDT) phenomenon has been studied for many years. However, no comprehensive model of the DDT process is available. It is important to understand the mechanism by which an explosive will detonate when the source of ignition is a weak shock or flame, and to able to predict this response. We have identified several key areas of the DDT problem which need to be understood before any such prediction can be made, and have established a modest program to obtain a more fundamental understanding of the behavior of explosive under the conditions that can lead to DDT.

  3. Strategies for understanding the deflagration-to-detonation transition

    SciTech Connect (OSTI)

    Asay, B.W.

    1992-01-01T23:59:59.000Z

    The deflagration-to-detonation (DDT) phenomenon has been studied for many years. However, no comprehensive model of the DDT process is available. It is important to understand the mechanism by which an explosive will detonate when the source of ignition is a weak shock or flame, and to able to predict this response. We have identified several key areas of the DDT problem which need to be understood before any such prediction can be made, and have established a modest program to obtain a more fundamental understanding of the behavior of explosive under the conditions that can lead to DDT.

  4. Carbon Detonation and Shock-Triggered Helium Burning in Neutron Star Superbursts

    E-Print Network [OSTI]

    Weinberg, Nevin N

    2007-01-01T23:59:59.000Z

    The strong degeneracy of the 12C ignition layer on an accreting neutron star results in a hydrodynamic thermonuclear runaway, in which the nuclear heating time becomes shorter than the local dynamical time. We model the resulting combustion wave during these superbursts as an upward propagating detonation. We solve the reactive fluid flow and show that the detonation propagates through the deepest layers of fuel and drives a shock wave that steepens as it travels upward into lower density material. The shock is sufficiently strong upon reaching the freshly accreted H/He layer that it triggers unstable 4He burning if the superburst occurs during the latter half of the regular Type I bursting cycle; this is likely the origin of the bright Type I precursor bursts observed at the onset of superbursts. The cooling of the outermost shock-heated layers produces a bright, ~0.1s, flash that precedes the Type I burst by a few seconds; this may be the origin of the spike seen at the burst onset in 4U 1820-30 and 4U 1636...

  5. Detonation equation of state at LLNL, 1995. Revision 3

    SciTech Connect (OSTI)

    Souers, P.C.; Wu, B.; Haselman, L.C. Jr.

    1996-02-01T23:59:59.000Z

    JWL`s and 1-D Look-up tables are shown to work for ``one-track`` experiments like cylinder shots and the expanding sphere. They fail for ``many-track`` experiments like the compressed sphere. As long as the one-track experiment has dimensions larger than the explosive`s reaction zone and the explosive is near-ideal, a general JWL with R{sub 1} = 4.5 and R{sub 2} = 1.5 can be constructed, with both {omega} and E{sub o} being calculated from thermochemical codes. These general JWL`s allow comparison between various explosives plus recalculation of the JWL for different densities. The Bigplate experiment complements the cylinder test by providing continuous oblique angles of shock incidence from 0{degrees} to 70{degrees}. Explosive reaction zone lengths are determined from metal plate thicknesses, extrapolated run-to-detonation distances, radius size effects and detonation front curvature. Simple theories of the cylinder test, Bigplate, the cylinder size effect and detonation front curvature are given. The detonation front lag at the cylinder edge is shown to be proportional to the half-power of the reaction zone length. By calibrating for wall blow-out, a full set of reaction zone lengths from PETN to ANFO are obtained. The 1800--2100 K freezing effect is shown to be caused by rapid cooling of the product gases. Compiled comparative data for about 80 explosives is listed. Ten Chapters plus an Appendix.

  6. AIAA 95-2197 Experimental Investigation of Pulse Detonation Wave

    E-Print Network [OSTI]

    Texas at Arlington, University of

    conventional rocket motors.' This technology may also be used to clean slag offof coal furnaces which would Engines, any one of these applications would justify the development of this technology. As a result of the promising nature of this technology a detailed study of the properties of detonations needed to be conducted

  7. Modeling of a detonation driven, linear electric generator facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    the heat and the force produced from the detonation wave. In previous experimental work, a single that involve coupling a PDE with different systems to drive a generator and produce electricity [2, 3]. One. For instance, it may be possible to design a generator that uses the force created by the pressure rise from

  8. Station blackout at nuclear power plants: Radiological implications for nuclear war

    SciTech Connect (OSTI)

    Shapiro, C.S.

    1986-12-01T23:59:59.000Z

    Recent work on station blackout is reviewed its radiological implications for a nuclear war scenario is explored. The major conclusion is that the effects of radiation from many nuclear weapon detonations in a nuclear war would swamp those from possible reactor accidents that result from station blackout.

  9. The ignition of carbon detonations via converging shock waves in white dwarfs

    SciTech Connect (OSTI)

    Shen, Ken J. [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Bildsten, Lars, E-mail: kenshen@astro.berkeley.edu, E-mail: bildsten@kitp.ucsb.edu [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)

    2014-04-10T23:59:59.000Z

    The progenitor channel responsible for the majority of Type Ia supernovae is still uncertain. One emergent scenario involves the detonation of a He-rich layer surrounding a C/O white dwarf, which sends a shock wave into the core. The quasi-spherical shock wave converges and strengthens at an off-center location, forming a second, C-burning, detonation that disrupts the whole star. In this paper, we examine this second detonation of the double detonation scenario using a combination of analytic and numeric techniques. We perform a spatially resolved study of the imploding shock wave and outgoing detonation and calculate the critical imploding shock strengths needed to achieve a core C detonation. We find that He detonations in recent two-dimensional simulations yield converging shock waves that are strong enough to ignite C detonations in high-mass C/O cores, with the caveat that a truly robust answer requires multi-dimensional detonation initiation calculations. We also find that convergence-driven detonations in low-mass C/O cores and in O/Ne cores are harder to achieve and are perhaps unrealized in standard binary evolution.

  10. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-20T23:59:59.000Z

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  11. Method for fabricating non-detonable explosive simulants

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1995-05-09T23:59:59.000Z

    A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  12. Method for fabricating non-detonable explosive simulants

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  13. United States Nuclear Tests, July 1945 through September 1992, December 2000

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-12-01T23:59:59.000Z

    This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

  14. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1992-01-01T23:59:59.000Z

    The invention provides a more efficient electric gun or slapper detonator ich provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal.

  15. air-breathing pulse detonation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arlington, University of 7 Preliminary Design of a Pulsed Detonation Based Combined Cycle Engine Ramakanth Munipalli* Engineering Websites Summary: ' vehicle) and was fueled with...

  16. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    SciTech Connect (OSTI)

    Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

    2008-08-15T23:59:59.000Z

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

  17. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  18. Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers,

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers in comparison to cases without the spiral. Tests through a range of cycle frequencies up to 20 Hz in oxygen-propane spiral in a pulsed detonation engine operating with propane and oxygen. A high-energy igniter is used

  19. Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection F-acting solenoid valves to meet the demands of pulsed detonation fuel injection and other high-frequency devices is presented. The micro-valve was found to performance well above the manufacturer's rated frequency under no

  20. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

    1998-03-24T23:59:59.000Z

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

  1. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O'Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  2. Direct Simulation of Pathological Detonations James B. Anderson and Lyle N. Long

    E-Print Network [OSTI]

    of fixed diameter without internal energies. Rotational and vi conservation laws provide reasonable predictions of temperature jumps across the detonation and the detonation if we run an unsteady code and perform ensemble averaging. A no-time-counter collision routine is used

  3. American Institute of Aeronautics and Astronautics Application of Pulsed Detonation Engine for Electric Power

    E-Print Network [OSTI]

    Texas at Arlington, University of

    a small ac generator by means of speed reduction wheels. The PDE was tested with propane-oxygen mixture universally accepted that detonation is a much more efficient form of combustion than deflagration. Presently to increase the static pressure and temperature of the fluid before heat addition, in a PDE, a detonation wave

  4. Consequence Management | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    to include analysts, scientists, doctors, nurses, specialized equipment and systems to support radiological or nuclear response operations in protecting the health and...

  5. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    SciTech Connect (OSTI)

    Klingensmith, A. L.

    2012-03-21T23:59:59.000Z

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  6. An Equilibrium-Based Model of Gas Reaction and Detonation

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    2000-04-01T23:59:59.000Z

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.

  7. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect (OSTI)

    Kuehn, Jeffery A [ORNL; Kassoy, Dr. David R [University of Colorado; Nabity, Mr. Matthew W. [University of Colorado; Clarke, Dr. John F. [Cranfield University

    2006-01-01T23:59:59.000Z

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A nonlinear transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gas dynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  8. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect (OSTI)

    Kassoy, Dr. David R [University of Colorado; Kuehn, Jeffery A [ORNL; Nabity, Mr. Matthew W. [University of Colorado; Clarke, Dr. John F. [Cranfield University

    2008-01-01T23:59:59.000Z

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gasdynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  9. Occupational Health Nurse

    Broader source: Energy.gov [DOE]

    The Occupational Health Nurse position is located in the Talent Sustainment group within the Human Capital Management (HCM) organization. The Talent Sustainment organization ensures that effective...

  10. Delayed detonations in full-star models of Type Ia supernova explosions

    E-Print Network [OSTI]

    F. K. Roepke; J. C. Niemeyer

    2007-03-14T23:59:59.000Z

    Aims: We present the first full-star three-dimensional explosion simulations of thermonuclear supernovae including parameterized deflagration-to-detonation transitions that occur once the flame enters the distributed burning regime. Methods: Treating the propagation of both the deflagration and the detonation waves in a common front-tracking approach, the detonation is prevented from crossing ash regions. Results: Our criterion triggers the detonation wave at the outer edge of the deflagration flame and consequently it has to sweep around the complex structure and to compete with expansion. Despite the impeded detonation propagation, the obtained explosions show reasonable agreement with global quantities of observed type Ia supernovae. By igniting the flame in different numbers of kernels around the center of the exploding white dwarf, we set up three different models shifting the emphasis from the deflagration phase to the detonation phase. The resulting explosion energies and iron group element productions cover a large part of the diversity of type Ia supernovae. Conclusions: Flame-driven deflagration-to-detonation transitions, if hypothetical, remain a possibility deserving further investigation.

  11. Deflagration-to-detonation transition project: quarterly report for the period September through November 1979

    SciTech Connect (OSTI)

    Lieberman, M. L. [ed.

    1980-07-01T23:59:59.000Z

    The activities of the Sandia Laboratories project on deflagration-to-detonation transition (DDT) pertain primarily to the development of small, safe, low-voltage, hot-wire detonators. Its major goals are: the formulation of a modeling capability for DDT of the explosive 2-(5-cyanotetrazolato)pentaamminecobalt(III) perchlorate (CP); the development of improved DDT materials; the establishment of a data base for corrosion, compatibility, and reliability of CP-loaded detonators; and the design and development of advanced DDT components. Progress in this research is reported. The planned development of the MC3423 detonator has been completed and the final design review meeting has been held. Additional work must be performed to establish satisfactory output function. Ignition sensitivity data have also been obtained. Ignition and shock testing experiments for development of the MC3533 detonator have been planned. An initial version of the component will utilize available MC3423 headers, while the final design will incorporate a new header that has been designed and ordered. Detonator performance studies have been planned to optimize CP density-length factors. Feasibility studies on the MC3196A detonator have continued in an effort to obtain a reliable 50-200 ..mu..s function time.

  12. Unsteady self-sustained detonation waves in flake aluminum dust/air mixtures

    E-Print Network [OSTI]

    Liu, Qingming; Zhang, Yunming; Li, Shuzhuan

    2015-01-01T23:59:59.000Z

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration exist in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

  13. GeoffBrumfiel,Washington Nuclear watchdogs and former weapons

    E-Print Network [OSTI]

    is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weaponsGeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue existing bombs detonate, so that the stockpile can be maintained without testing the weapons it contains

  14. United States nuclear tests, July 1945 through September 1992

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  15. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

  16. Type Ia Supernovae: Can Coriolis force break the symmetry of the gravitational confined detonation explosion mechanism?

    E-Print Network [OSTI]

    García-Senz, D; Domínguez, I; Thielemann, F K

    2015-01-01T23:59:59.000Z

    Nowadays the number of models aimed at explaining the Type Ia supernova phenomenon is high and discriminating between them is a must-do. In this work we explore the influence of rotation in the evolution of the nuclear flame which drives the explosion in the so called gravitational confined detonation models. Assuming that the flame starts in a point-like region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the white dwarf at the moment of the ignition. The impact of rotation is larger for angles close to 90{\\deg} because the Coriolis force on a floating element of fluid is maximum, and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the converg...

  17. Non-detonable and non-explosive explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  18. Non-detonable and non-explosive explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  19. Volume Ignition via Time-like Detonation in Pellet Fusion

    E-Print Network [OSTI]

    Csernai, L P

    2015-01-01T23:59:59.000Z

    Relativistic fluid dynamics and the theory of relativistic detonation fronts are used to estimate the space-time dynamics of the burning of the D-T fuel in Laser driven pellet fusion experiments. The initial "High foot" heating of the fuel makes the compressed target transparent to radiation, and then a rapid ignition pulse can penetrate and heat up the whole target to supercritical temperatures in a short time, so that most of the interior of the target ignites almost simultaneously and instabilities will have no time to develop. In these relativistic, radiation dominated processes both the interior, time-like burning front and the surrounding space-like part of the front will be stable against Rayleigh-Taylor instabilities. To achieve this rapid, volume ignition the pulse heating up the target to supercritical temperature should provide the required energy in less than ~ 10 ps.

  20. Type Ia supernovae from merging white dwarfs. I. Prompt detonations

    SciTech Connect (OSTI)

    Moll, R.; Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Raskin, C.; Kasen, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-04-20T23:59:59.000Z

    Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). Numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such prompt detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase, and generating synthetic light curves and spectra. Three models are considered with primary masses 0.96 M {sub ?}, 1.06 M {sub ?}, and 1.20 M {sub ?}. Of these, the 0.96 M {sub ?} dwarf merging with a 0.81 M {sub ?} companion, with an {sup 56}Ni yield of 0.58 M {sub ?}, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to 'super-Chandrasekhar' mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of two with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. The set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.

  1. Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics

    E-Print Network [OSTI]

    Tomasz Plewa

    2006-11-24T23:59:59.000Z

    We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.

  2. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, J.E.

    1992-01-14T23:59:59.000Z

    The invention provides a more efficient electric gun or slapper detonator which provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal. 8 figs.

  3. Estimating the exposure to first receivers from a contaminated victim of a radiological dispersal device detonation

    E-Print Network [OSTI]

    Phillips, Holly Anne

    2009-05-15T23:59:59.000Z

    The threat of a Radiological Dispersal Device (RDD) detonation arouses the concern of contaminated victims of all ages. The purpose of this study was to investigate the dose to a uniformly contaminated five-year old male. It also explores...

  4. Computational Analysis of Zel'dovich-von Neumann-Doering (ZND) Detonation

    E-Print Network [OSTI]

    Nakamura, Tetsu

    2010-07-14T23:59:59.000Z

    fuels (hydrogen and methane) and oxidizers (oxygen and air). The detailed thermochemistry results of the calculations are critically examined for use in a future induced-detonation compression system....

  5. National Nuclear Security Administration's Space-Based Nuclear Detonation Detection Program

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy SutleyNational LabsNational

  6. A report on the deflagration-to-detonation transition (DDT) in the high explosive LX-04

    SciTech Connect (OSTI)

    Hare, D E; Forbes, J W; Garcia, F; Granholm, R H; Tarver, C M; Vandersall, K S; Sandusky, H W

    2004-06-30T23:59:59.000Z

    The deflagration-to-detonation transition (DDT) was investigated for 1.874 g/cc (98.8 % of theoretical maximum density) LX-04 in moderate confinement (4340 steel tube at R{sub C} 32 with 1.020 inch inside diameter and 0.235 inch thick wall) at both ambient initial temperature (roughly 20 C) and at an initial temperature of 186 C. No transition to detonation was observed in a 295 mm column length for either case.

  7. THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES

    SciTech Connect (OSTI)

    Moore, Kevin; Bildsten, Lars [Department of Physics, University of California, Santa Barbara, CA (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States)

    2013-10-20T23:59:59.000Z

    Accreted helium layers on white dwarfs have been highlighted for many decades as a possible site for a detonation triggered by a thermonuclear runaway. In this paper, we find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically {sup 12}C and {sup 16}O. Detonations in these thin helium layers have speeds slower than the Chapman-Jouget (CJ) speed from complete helium burning, v{sub CJ} = 1.5 × 10{sup 9} cm s{sup –1}. Though gravitationally unbound, the ashes still have unburned helium (?80% in the thinnest cases) and only reach up to heavy elements such as {sup 40}Ca, {sup 44}Ti, {sup 48}Cr, and {sup 52}Fe. It is rare for these thin shells to generate large amounts of {sup 56}Ni. We also find a new set of solutions that can propagate in even thinner helium layers when {sup 16}O is present at a minimum mass fraction of ?0.07. Driven by energy release from ? captures on {sup 16}O and subsequent elements, these slow detonations only create ashes up to {sup 28}Si in the outer detonated He shell. We close by discussing how the unbound helium burning ashes may create faint and fast 'Ia' supernovae as well as events with virtually no radioactivity, and speculate on how the slower helium detonation velocities impact the off-center ignition of a carbon detonation that could cause a Type Ia supernova in the double detonation scenario.

  8. MULTI-DIMENSIONAL MODELS FOR DOUBLE DETONATION IN SUB-CHANDRASEKHAR MASS WHITE DWARFS

    SciTech Connect (OSTI)

    Moll, R.; Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-09-10T23:59:59.000Z

    Using two-dimensional and three-dimensional simulations, we study the ''robustness'' of the double detonation scenario for Type Ia supernovae, in which a detonation in the helium shell of a carbon-oxygen white dwarf induces a secondary detonation in the underlying core. We find that a helium detonation cannot easily descend into the core unless it commences (artificially) well above the hottest layer calculated for the helium shell in current presupernova models. Compressional waves induced by the sliding helium detonation, however, robustly generate hot spots which trigger a detonation in the core. Our simulations show that this is true even for non-axisymmetric initial conditions. If the helium is ignited at multiple points, then the internal waves can pass through one another or be reflected, but this added complexity does not defeat the generation of the hot spot. The ignition of very low-mass helium shells depends on whether a thermonuclear runaway can simultaneously commence in a sufficiently large region.

  9. Detonation Shock Dynamics (DSD) Calibration for LX-17

    SciTech Connect (OSTI)

    Aslam, Tariq D [Los Alamos National Laboratory

    2012-04-24T23:59:59.000Z

    The goal of this report is to summarize the results of a Detonation shock dynamics (DSD) calibration for the explosive LX-17. Considering that LX-17 is very similar to PBX 9502 (LX-17 is 92.5% TATB with 7.5% Kel-F 800 binder, while PBX 9502 is 95% TATB with 5% Kel-F 800 binder), we proceed with the analysis assuming many of the DSD constants are the same. We only change the parameters D{sub CJ}, B and {bar C}{sub 6} ({bar C}{sub 6} controls the how D{sub CJ} changes with pressing density). The parameters D{sub CJ} and {bar C}{sub 6} were given by Josh Coe and Sam Shaw's EOS. So, only B was optimized in fitting all the calibration data. This report first discusses some general DSD background, followed by a presentation of the available dataset to perform the calibration, and finally gives the results of the calibration and draws some conclusions. A DSD calibration of LX-17 has been conducted using the existing diameter effect data and shock shape records. The new DSD fit is based off the current PBX 9502 calibration and takes into account the effect of pressing density. Utilizing the PBX 9502 calibration, the effects of initial temperature can also be taken into account.

  10. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-02-07T23:59:59.000Z

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  11. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  12. Recent papers from DX-1, detonation science and technology

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    Over the past year members of DX-1 have participated in several conferences where presentations were made and papers prepared for proceedings. There have also been several papers published in or submitted to refereed journals for publication. Rather that attach all these papers to the DX-1 Quarterly Report, we decided to put them in a Los Alamos report that could be distributed to those who get the quarterly, as well as others that have an interest in the work being done in DX-1 both inside and outside the Laboratory. This compilation does not represent all the work reported during the year because some people have chosen not to include their work here. In particular, there were a number of papers relating to deflagration-to-detonation modeling that were not included. However, this group of papers does present a good picture of much of the unclassified work being done in DX-1. Several of the papers include coauthors from other groups or divisions at the Laboratory, providing an indication of the collaborations in which people in DX-1 are involved. Discussed topics of submitted papers include: shock compression of condensed matter, pyrotechnics, shock waves, molecular spectroscopy, sound speed measurements in PBX-9501, chemical dimerization, and micromechanics of spall and damage in tantalum.

  13. Evaluating systematic dependencies of type Ia supernovae : the influence of deflagration to detonation density.

    SciTech Connect (OSTI)

    Jackson, A. P.; Calder, A. C.; Townsley, D. M.; Chamulak, D. A.; Brown, E. F.; Timmes, F. X. (Physics); (State Univ. of New York); (Univ. of Alabama); (Michigan State Univ.); (Arizona State Univ.); (Joint Inst. for Nuclear Astrophysics)

    2010-09-01T23:59:59.000Z

    We explore the effects of the deflagration to detonation transition (DDT) density on the production of {sup 56}Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of {sup 56}Ni masses to those inferred from observations. Within this framework, we utilize a more realistic 'simmered' white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of {sup 56}Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) x 10{sup 7} g cm{sup -3}. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 {+-} 0.004 M {circle_dot} for a 1 Z {circle_dot} increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 {+-} 0.004 M {circle_dot} decrease in the {sup 56}Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.

  14. EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF DEFLAGRATION TO DETONATION DENSITY

    SciTech Connect (OSTI)

    Jackson, Aaron P.; Calder, Alan C. [Department of Physics and Astronomy, State University of New York-Stony Brook, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Chamulak, David A. [Argonne National Laboratory, Argonne, IL (United States); Brown, Edward F.; Timmes, F. X. [Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States)

    2010-09-01T23:59:59.000Z

    We explore the effects of the deflagration to detonation transition (DDT) density on the production of {sup 56}Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of {sup 56}Ni masses to those inferred from observations. Within this framework, we utilize a more realistic 'simmered' white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of {sup 56}Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) x10{sup 7} g cm{sup -3}. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 {+-} 0.004 M {sub sun} for a 1 Z{sub sun} increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 {+-} 0.004 M{sub sun} decrease in the {sup 56}Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.

  15. Exploring high temperature phenomena related to post-detonation using an electric arc

    SciTech Connect (OSTI)

    Dai, Z. R., E-mail: dai1@llnl.gov; Crowhurst, J. C.; Grant, C. D.; Knight, K. B.; Tang, V.; Chernov, A. A.; Cook, E. G.; Lotscher, J. P.; Hutcheon, I. D. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

    2013-11-28T23:59:59.000Z

    We report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to 100??s. Samples took the form of a 4??m-thick film deposited onto 8 pairs of 17??m-thick Cu electrodes supported on a 25??m-thick Kapton backing and sandwiched between glass plates. Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered materials included a variety of crystalline compounds (e.g., UO{sub 2}, UC{sub 2}, UCu{sub 5},) as well as mixtures of uranium and amorphous glass. Most of the materials collected on the glass plates took the form of spherules having a wide range of diameters from tens of nanometers to tens of micrometers. The composition and size of the spherules depended on location, indicating different chemical and physical environments. A theoretical analysis we have carried out suggests that the submicron spherules presumably formed by deposition during the arc discharge, while at the same time the glass plates were strongly heated due to absorption of plasma radiation mainly by islands of deposited metals (Cu, U). The surface temperature of the glass plates is expected to have risen to ?2300?K thus producing a liquefied glass layer, likely diffusions of the deposited metals on the hot glass surface and into this layer were accompanied by chemical reactions that gave rise to the observed materials. These results, together with the compact scale and relatively low cost, suggest that the experimental technique provides a practical approach to investigate the complex physical and chemical processes that occur when actinide-containing material interacts with the environment at high temperature, for example, during fallout formation following a nuclear detonation.

  16. 47th AIAA Aerospace Science Meeting and Exhibit, 5-8 January 2009, Orlando, Florida The Dynamics of Unsteady Detonation in Ozone

    E-Print Network [OSTI]

    The Dynamics of Unsteady Detonation in Ozone Tariq D. Aslam , Los Alamos National Laboratory, Los Alamos, New. Introduction We significantly extend calculations of unsteady detonation in ozone mixtures first reported

  17. Experimental observations of detonation in ammonium-nitrate-fuel-oil (ANFO) surrounded by a high-sound speed, shockless, aluminum confiner

    SciTech Connect (OSTI)

    Jackson, Scott I [Los Alamos National Laboratory; Klyanda, Charles B [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could desensitize the explosive by crushing porosity required for shock initiation or destroying confinement ahead of the detonation. As these phenomena are not well understood, most numerical explosive models are unable to account for them. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by an aluminum confining tube. Detonation velocity, detonation front curvature, and aluminum response are recorded as a function of confiner wall thickness and length. Front curvature profiles display detonation acceleration near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness due to the additional inertial confinement of the reaction zone flow. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected which interfered with the front curvature measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation.

  18. Advancing the environmental acceptability of open burning/open detonation

    SciTech Connect (OSTI)

    Sexton, K.D.; Tope, T.J. [Radian Corp., Oak Ridge, TN (United States)

    1996-12-01T23:59:59.000Z

    Manufacturers and users of energetic material (e.g., propellants, explosives, pyrotechnics (PEP)) generate unserviceable, obsolete, off-specification, damaged, and contaminated items that are characterized as reactive wastes by definition, and therefore regulated under RCRA, Subtitle C, as hazardous waste. Energetic wastes, to include waste ordnance and munitions items, have historically been disposed of by open burning/open detonation (OB/OD), particularly by the Department of Defense (DoD). However, increasing regulatory constraints have led to the recent reduction and limited use of OB/OD treatment. DoD maintains that OB/OD is the most viable treatment option for its energetic waste streams, and has spurred research and development activities to advance the environmental acceptability of OB/OD. DoD has funded extensive testing to identify and quantify contaminant releases from OB/OD of various PEP materials. These data are actively being used in risk assessment studies to evaluate the impact of OB/OD on human health and the environment. Additionally, in an effort to satisfy regulatory concerns, DoD has been forced to reevaluate its current PEP disposal operations as they relate to the environment. As a result, numerous pollution prevention initiatives have been identified and initiated, and life cycle analyses of treatment options have been conducted. Many of the DoD initiatives can be applied to the commercial explosives industry as well. Implementation of proactive and innovative pollution prevention strategies and the application of sound technical data to evaluate risk will serve to advance the environmental acceptability of OB/OD amongst the regulatory community and the public and can result in significant cost savings as well.

  19. LOUISIANA STATE UNIVERSITY HEALTH SCIENCE CENTER SCHOOL OF NURSING

    E-Print Network [OSTI]

    ), and the Nurse Anesthesia Program is accredited by the Council on Accreditation of Nurse Anesthesia Educational ............................................................... 15 Nurses Physicians Preceptors for Nurse Anesthesia Students Additional Criteria Roles

  20. arXiv:1011.0897v1[math.NA]3Nov2010 EFFICIENT NUMERICAL STABILITY ANALYSIS OF DETONATION

    E-Print Network [OSTI]

    Humpherys, Jeffrey

    to the number of physical parameters (four for a polytropic gas1 ) and the difficulty of individual computations literature on stability of ZND detonations. 1 Gas constant = -1, heat release coefficient q, activation unstable eigenvalues of detonations of a polytropic gas with gas constant = 1.2 as activation energy

  1. Investigations on deflagration to detonation transition in porous energetic materials. Final report

    SciTech Connect (OSTI)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States)

    1999-07-01T23:59:59.000Z

    The research carried out by this contract was part of a larger effort funded by LANL in the areas of deflagration to detonation in porous energetic materials (DDT) and detonation shock dynamics in high explosives (DSD). In the first three years of the contract the major focus was on DDT. However, some researchers were carried out on DSD theory and numerical implementation. In the last two years the principal focus of the contract was on DSD theory and numerical implementation. However, during the second period some work was also carried out on DDT. The paper discusses DDT modeling and DSD modeling. Abstracts are included on the following topics: modeling deflagration to detonation; DSD theory; DSD wave front tracking; and DSD program burn implementation.

  2. Deflagration-to-detonation transition project. Quarterly report, December 1979-February 1980

    SciTech Connect (OSTI)

    Lieberman, M.L. (ed.) [ed.

    1980-09-01T23:59:59.000Z

    Progress in a project on deflagration-to-detonation transition (DDT) is reported. The activities of this project pertain primarily to the development of small, safe, low-voltage, hot-wire detonators. Its major goals are: the formulation of a modeling capability for DDT of the explosive 2-(5-cyanotetrazolato)pentaamminecobalt (III) perchlorate (CP); the development of improved DDT materials; the establishment of a data base for corrosion, compatibility, and reliability of CP-loaded detonators; and the design and development of advanced DDT components. Information is included on materials development, component development, and compatibility studies encompassing the thermal and chemical stability of CP in contact with the component materials. (LCL)

  3. THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W. [Astronomy Department, University of Chicago, Chicago, IL 60637 (United States); Meyer, B. S. [Physics and Astronomy Department, Clemson University, Clemson, SC 29634 (United States)

    2013-07-01T23:59:59.000Z

    A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

  4. Equation of state for the detonation products of several simple explosives

    SciTech Connect (OSTI)

    Shaw, M.S.; Holian, B.L.; Johnson, J.D.

    1983-01-01T23:59:59.000Z

    Effective spherical potentials for N/sub 2/O/sub 2/, NO, CO, and CO/sub 2/ are obtained by fitting to various experimental and calculated quantities. An equation of state for mixtures of these molecules is determined by using ideal mixing and the hard-sphere perturbation theory of Ross. Calculations are then compared with Hugoniot data for N/sub 2/ + O/sub 2/ mixtures and overdriven NO detonations with excellent agreement. Also, the detonation velocities of O/sub 3//O/sub 2/ mixtures, NO, TNM, and HNB were calculated and were found to be in very good agreement with experiment.

  5. Flashing Dark Matter-- Gamma-Ray Bursts from Relativistic Detonations of Electro-Dilaton Stars

    E-Print Network [OSTI]

    V. Folomeev; V. Gurovich; H. Kleinert; H. -J. Schmidt

    2002-08-03T23:59:59.000Z

    We speculate that the universe is filled with stars composed of electromagnetic and dilaton fields which are the sources of the powerful gamma-ray bursts impinging upon us from all directions of the universe. We calculate soliton-like solutions of these fields and show that their energy can be converted into a relativistic plasma in an explosive way. As in classical detonation theory the conversion proceeds by a relativistic self-similar solution for a spherical detonation wave which extracts the energy from the scalar field via a plasma in the wave front.

  6. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems

    SciTech Connect (OSTI)

    Kessler, D.A.; Gamezo, V.N.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC (United States)

    2010-11-15T23:59:59.000Z

    Flame acceleration and deflagration-to-detonation transitions (DDT) in large obstructed channels filled with a stoichiometric methane-air mixture are simulated using a single-step reaction mechanism. The reaction parameters are calibrated using known velocities and length scales of laminar flames and detonations. Calculations of the flame dynamics and DDT in channels with obstacles are compared to previously reported experimental data. The results obtained using the simple reaction model qualitatively, and in many cases, quantitatively match the experiments and are found to be largely insensitive to small variations in model parameters. (author)

  7. High temperature erosion and fatigue resistance of a detonation gun chromium carbide coating for steam turbines

    SciTech Connect (OSTI)

    Quets, J.M.; Walsh, P.N. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States); Srinivasan, V. [Westinghouse Electric Corp., Orlando, FL (United States); Tucker, R.C. Jr. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States)

    1994-12-31T23:59:59.000Z

    Chromium carbide based detonation gun coatings have been shown to be capable of protecting steam turbine components from particle erosion. To be usable, however, erosion resistant coatings must not degrade the fatigue characteristics of the coated components. Recent studies of the fatigue properties of a detonation gun coated martensitic substrate at 538 C (1,000 F) will be presented with an emphasis on its long term performance. This study will show the retention of acceptable fatigue performance of coated substrates into the high cycle regime, and will include a discussion on the mechanism of fatigue.

  8. Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets

    SciTech Connect (OSTI)

    Marx, K.D. [Sandia National Labs., Livermore, CA (United States); Ingersoll, D.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

    1998-11-01T23:59:59.000Z

    In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

  9. Detonations in Hydrocarbon Fuel Blends J.M. Austin and J.E. Shepherd

    E-Print Network [OSTI]

    Low, Steven H.

    in high-molecular weight hydrocarbon fuels of interest to pulse detonation engine applications of thermally decomposed JP-10 was studied at 295 K. This blend consisted of hydrogen, carbon monoxide, methane to be comparable. The addition of lower molecular weight fuels (hydrogen, acetylene, ethylene, 1 #12;and carbon

  10. Some perspectives on pulse detonation propulsion F.K. Lu and D.R. Wilson

    E-Print Network [OSTI]

    Texas at Arlington, University of

    included air and oxygen. The purge gas is air. Most of the results reported here pertains to propane of eliminating high-pressure pumps in rocket applications, or reducing turbomachinery stages in air interdependent processes, namely, filling of the chamber with a fresh fuel­oxidizer mixture, detonation

  11. Experimental Study on Transmission of an Overdriven Detonation Wave Across a Mixture

    E-Print Network [OSTI]

    Texas at Arlington, University of

    , ex- periments were performed wherein a propane/oxygen mixture was separated from a propane/air, main combustor filled with a gaseous or liquid hydrocarbon-air mixture. Nevertheless, Schultz examines the transmission of an overdriven detonation from a C3H8/O2 mixture to a C3H8/air mixture. #12;2 J

  12. Temperature effects on failure thickness and deflagration-to-detonation transition in PBX 9502 and TATB

    SciTech Connect (OSTI)

    Asay, B.W.; McAfee, J.B.

    1993-04-01T23:59:59.000Z

    The deflagration-to-detonation (DDT) behavior of TATB has been investigated at high temperatures and severe confinement. comparison is made to other common explosives under similar confinement. TATB did not DDT under these conditions. The failure thickness of PBX 9502 at 250{degrees}C has also been determined. Two mm appears to be the limiting value at this temperature.

  13. Mechanisms of deflagration-to-detonation transition under initiation by high-voltage nanosecond discharges

    SciTech Connect (OSTI)

    Rakitin, Aleksandr E.; Starikovskii, Andrei Yu. [Physics of Nonequilibrium Systems Lab, Moscow Institute of Physics and Technology, 9 Institutski Lane, Dolgoprudny 141700 (Russian Federation)

    2008-10-15T23:59:59.000Z

    An experimental study of detonation initiation in a stoichiometric propane-oxygen mixture by a high-voltage nanosecond gas discharge was performed in a detonation tube with a single-cell discharge chamber. The discharge study performed in this geometry showed that three modes of discharge development were realized under the experimental conditions: a spark mode with high-temperature channel formation, a streamer mode with nonuniform gas excitation, and a transient mode. Under spark and transient initiation, simultaneous ignition inside the discharge channel occurred, forming a shock wave and leading to a conventional deflagration-to-detonation transition (DDT) via an adiabatic explosion. The DDT length and time at 1 bar of initial pressure in the square smooth tube with a 20-mm transverse size amounted to 50 mm and 50{mu}s, respectively. The streamer mode of discharge development at an initial pressure of 1 bar resulted in nonuniform mixture excitation and a successful DDT via a gradient mechanism, which was confirmed by high-speed time resolved ICCD imaging. The gradient mechanism implied a longer DDT time of 150{mu}s, a DDT run-up distance of 50 mm, and an initiation energy of 1 J, which is two orders of magnitude less than the direct initiation energy for a planar detonation under these conditions. (author)

  14. Temperature effects on failure thickness and deflagration-to-detonation transition in PBX 9502 and TATB

    SciTech Connect (OSTI)

    Asay, B.W.; McAfee, J.B.

    1993-01-01T23:59:59.000Z

    The deflagration-to-detonation (DDT) behavior of TATB has been investigated at high temperatures and severe confinement. comparison is made to other common explosives under similar confinement. TATB did not DDT under these conditions. The failure thickness of PBX 9502 at 250[degrees]C has also been determined. Two mm appears to be the limiting value at this temperature.

  15. PBX 9404 detonation copper cylinder tests: a comparison of new and aged material

    SciTech Connect (OSTI)

    Hill, Larry G [Los Alamos National Laboratory; Mier, Robert [Los Alamos National Laboratory; Briggs, Matthew E [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We present detonation copper cylinder test results on aged PBX 9404 (94 wt% HMX, 3 wt% CEF, 2.9 wt% NC, 0.1 wt% DPA) explosive. The charges were newly pressed from 37.5 year-old molding powder. We compare these results to equivalent data performed on the same lot when it was 3.5 years old. Comparison of the detonation energy inferred from detonation speed to that inferred from wall motion suggests that the HMX energy is unchanged but the NC energy has decreased to {approx}25% of its original value. The degradation of explosives and their binders is a subject of continual interest. Secondary explosives such as HMX are sufficiently stable near room temperature that they do not measurably degrade over a period of at least several decades. For formulated systems the bigger concern is binder degradation, for which the three main issues are strength, initiation safety, and (if the binder is energetic) energy content. In this paper we examine the detonation energy of new and aged PBX 9404 (94 wt% HMX, 3 wt% tris-{beta} chloroethylphosphate (CEF), 2.9 wt% nitrocellulose (NC), 0.1 wt% diphenylamine (DPA) [1, 2]), measured via the detonation copper cylinder test. In 1959, two independent PBX 9404 accidents [3] raised serious concerns about the safety of the formulation. Over about a decade's time, Los Alamos pursued a safer, energetically equivalent replacement, which ultimately became PBX 9501. In order to accurately compare the performance of the PBX 9404 and PBX 9501 formulations, W. Campbell and R. Engelke (C & E) developed a stringent cylinder test protocol that they called the Los Alamos Precision Cylinder Test [4]. The present aging study is possible because excellent PBX 9404 data from those qualification tests endures.

  16. The influence of initial temperature on flame acceleration and deflagration-to-detonation transition

    SciTech Connect (OSTI)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T. [and others

    1996-07-01T23:59:59.000Z

    The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, {lambda}, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}{approximately}1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/{lambda} = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances.

  17. Clinical Nurse Leader (CNL) Option Clinical Manual

    E-Print Network [OSTI]

    Dyer, Bill

    Clinical Nurse Leader (CNL) Option Clinical Manual 2011-2012 Reviewed August, 2011 Associate Dean...................................................................................................................................1 Clinical Nurse Leader Major Role Function.................................................................................1 Goal of the Clinical Practicum

  18. Masters of Nursing (MN) Degree Clinical Nurse Leader (CNL)

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Masters of Nursing (MN) Degree Clinical Nurse Leader (CNL) 4 Semester Program of Study Fall Design of Healthcare Delivery Systems ­ Lab (required) 1 (1 clinical lab) 611 Program Planning and Eval, Outcomes, & QI (required) 3 (3 lec) 510 Program Planning and Eval, Outcomes, & QI - Lab (required) 1 (1

  19. MSU College of Nursing Clinical Nurse Leader (CNL) Option

    E-Print Network [OSTI]

    Dyer, Bill

    of Clinical Outcomes 4 (3 lecture; 1 clinical lab) NRSG 509 Design of Healthcare Delivery Systems Lab 1 (1MSU College of Nursing Clinical Nurse Leader (CNL) Option 1 ½ Year Program of Study Semester 1 clinical lab) NRSG 553 Financing & Budgeting of Health Care Systems 2 (2 lecture) NRSG 575 Professional

  20. MSU College of Nursing Clinical Nurse Leader (CNL) Option

    E-Print Network [OSTI]

    Dyer, Bill

    of Clinical Outcomes 4 (3 lecture; 1 clinical lab) NRSG 553 Financing & Budgeting of Health Care Systems 2 (2MSU College of Nursing Clinical Nurse Leader (CNL) Option 2 ½ Year Program of Study Semester 1 of Healthcare Delivery Systems 3 (3 lecture) NRSG 509 Design of Healthcare Delivery Systems Lab 1 (1 clinical

  1. Masters of Nursing (MN) Degree Clinical Nurse Leader (CNL)

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    , & QI (required) 3 (3 lec) 510 Program Planning and Eval, Outcomes, & QI - Lab (required) 1 (1 clinicalMasters of Nursing (MN) Degree Clinical Nurse Leader (CNL) 6 Semester Program of Study Fall Systems - Lab (required) 1 (1 clinical lab) 613 Finance and Budget (required) 2 6 (required) 612 Ethics

  2. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    SciTech Connect (OSTI)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30T23:59:59.000Z

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of the detonation tube, the better are their removals. Side facing slags are found to shear off without breaking. Wave strength and slag orientation also has different effects on the chipping off of the slag. One of the most important results from this study is the observation that the pressure of the waves plays a vital role in removing slag. The wave frequency is also important after a threshold pressure level is attained.

  3. APPLICATION OF THE EMBEDDED FIBER OPTIC PROBE IN HIGH EXPLOSIVE DETONATION STUDIES: PBX-9502 AND LX-17

    SciTech Connect (OSTI)

    Hare, D; Goosman, D; Lorenz, K; Lee, E

    2006-09-26T23:59:59.000Z

    The Embedded Fiber Optic probe directly measures detonation speed continuously in time, without the need to numerically differentiate data, and is a new tool for measuring time-dependent as well as steady detonation speed to high accuracy. It consists of a custom-design optical fiber probe embedded in high explosive. The explosive is detonated and a refractive index discontinuity is produced in the probe at the location of the detonation front by the compression of the detonation. Because this index-jump tracks the detonation front a measurement of the Doppler shift of laser light reflected from the jump makes it possible to continuously measure detonation velocity with high spatial and temporal resolution. We have employed this probe with a Fabry-Perot-type laser Doppler velocimetry system additionally equipped with a special filter for reducing the level of non-Doppler shifted light relative to the signal. This is necessary because the index-jump signal is relatively weak compared to the return expected from a well-prepared surface in the more traditional and familiar example of material interface velocimetry. Our observations were carried out on a number of explosives but this work is focused on our results on PBX-9502 (95% TATB, 5% Kel-F) and LX-17 (92.5% TATB, 7.5% Kel-F) at varying initial charge density. Our measurements reveal a density dependence significantly lower than previous quoted values and lower than theoretical calculations. Our limited data on detonation speed dependence on wave curvature is in reasonable agreement with previous work using more standard methods and confirms deviation from the Wood-Kirkwood theoretical formula.

  4. An analytical investigation of the effects of water injection on combustion products and detonation in spark ignition engines

    E-Print Network [OSTI]

    Brown, William Charles

    1979-01-01T23:59:59.000Z

    AN ANALYTICAL INVESTIGATION OF THE EFFECTS OF WATER INJECTION ON COMBUSTION PRODUCTS AND DETONATION IN SPARK IGNITION ENGINES A Thesis by WILIIAM CHARLES BROWN Submitted to the Graduate College of Texas ANNI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Aerospace Engineering AN ANALYTICAL INVESTIGATION Ol' THE El'FECTS OF WATER INJECTION ON COMBUSTION PRODUCTS AND DETONATION IN SPARK IGNITION ENGINES A Thesis by WILLIAM...

  5. Hydrodynamical simulation of detonations in superbursts. I. The hydrodynamical algorithm and some preliminary one-dimensional results

    E-Print Network [OSTI]

    C. Noel; Y. Busegnies; M. V. Papalexandris; V. Deledicque; A. El Messoudi

    2007-05-18T23:59:59.000Z

    Aims. This work presents a new hydrodynamical algorithm to study astrophysical detonations. A prime motivation of this development is the description of a carbon detonation in conditions relevant to superbursts, which are thought to result from the propagation of a detonation front around the surface of a neutron star in the carbon layer underlying the atmosphere. Methods. The algorithm we have developed is a finite-volume method inspired by the original MUSCL scheme of van Leer (1979). The algorithm is of second-order in the smooth part of the flow and avoids dimensional splitting. It is applied to some test cases, and the time-dependent results are compared to the corresponding steady state solution. Results. Our algorithm proves to be robust to test cases, and is considered to be reliably applicable to astrophysical detonations. The preliminary one-dimensional calculations we have performed demonstrate that the carbon detonation at the surface of a neutron star is a multiscale phenomenon. The length scale of liberation of energy is $10^6$ times smaller than the total reaction length. We show that a multi-resolution approach can be used to solve all the reaction lengths. This result will be very useful in future multi-dimensional simulations. We present also thermodynamical and composition profiles after the passage of a detonation in a pure carbon or mixed carbon-iron layer, in thermodynamical conditions relevant to superbursts in pure helium accretor systems.

  6. Indexes of the Proceedings for the Ten International Symposia on Detonation 1951-93

    SciTech Connect (OSTI)

    Deal, William E.; Ramsay, John B.; Roach, Alita M.; Takala, Bruce E.

    1998-09-01T23:59:59.000Z

    The Proceedings of the ten Detonation Symposia have become the major archival source of information of international research in explosive phenomenology, theory, experimental techniques, numerical modeling, and high-rate reaction chemistry. In many cases, they contain the original reference or the only reference to major progress in the field. For some papers, the information is more complete than the complementary article appearing in a formal journal; yet for others, authors elected to publish only an abstract in the Proceedings. For the large majority of papers, the Symposia Proceedings provide the only published reference to a body of work. This report indexes the ten existing Proceedings of the Detonation Symposia by paper titles, topic phrases, authors, and first appearance of acronyms and code names.

  7. Indexes of the proceedings for the nine symposia (international) on detonation, 1951--89

    SciTech Connect (OSTI)

    Crane, S.L.; Deal, W.E.; Ramsay, J.B.; Roach, A.M.; Takala, B.E.

    1993-07-01T23:59:59.000Z

    The Proceedings of the nine Detonation Symposia have become the major archival source of information of international research in explosive phenomenology, theory, experimental techniques, numerical modeling, and high-rate reaction chemistry. In many cases, they contain the original reference or the only reference to major progress in the field. For some papers, the information is more complete than the complementary article appearing in a formal journal, yet for others, authors elected to publish only an abstract in the Proceedings. For the large majority of papers, the Symposia Proceedings provide the only published reference to a body of work. This report indexes the nine existing Proceedings of the Detonation Symposia by paper titles, topic phrases, authors, and first appearance of acronyms and code names.

  8. Indexes of the proceedings for the nine symposia (international) on detonation, 1951--89

    SciTech Connect (OSTI)

    Crane, S.L.; Deal, W.E.; Ramsay, J.B.; Roach, A.M.; Takala, B.E.

    1993-01-01T23:59:59.000Z

    The Proceedings of the nine Detonation Symposia have become the major archival source of information of international research in explosive phenomenology, theory, experimental techniques, numerical modeling, and high-rate reaction chemistry. In many cases, they contain the original reference or the only reference to major progress in the field. For some papers, the information is more complete than the complementary article appearing in a formal journal, yet for others, authors elected to publish only an abstract in the Proceedings. For the large majority of papers, the Symposia Proceedings provide the only published reference to a body of work. This report indexes the nine existing Proceedings of the Detonation Symposia by paper titles, topic phrases, authors, and first appearance of acronyms and code names.

  9. US Air Force Launches Satellite Carrying NNSA-provided Nuclear Detonation

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmericaAdministrationLastNATIONALDetection Sensors |

  10. ORISE: Message Testing for a Nuclear Detonation | How ORISE is Making a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisisIndependentThe LymphocyteHow

  11. Faculty of Science & Health SCHOOL OF NURSING

    E-Print Network [OSTI]

    Humphrys, Mark

    to the evolving education, research and clinical agenda in nursing and health care in Ireland. SheFaculty of Science & Health SCHOOL OF NURSING Lecturer in Mental Health Nursing (5 year contract university based School of Nursing that is closely associated with a number of partner health services

  12. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect (OSTI)

    Gustavsen, Richard L [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Sanchez, Nathaniel (nate) J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  13. Detonability of DMSO/LX-10-1 and DMSO/PBX-9404 solutions

    SciTech Connect (OSTI)

    Helm, F.; Hoffman, D.M.

    1994-06-29T23:59:59.000Z

    Although Lawrence Livermore National Laboratory has been involved in weapons disassembly since its involvement in weapons design, the Lab was recently requested by the Department of Energy to extend its responsibility for LLNL-designed weapons to include dismantlement of some systems in the cold war arsenal. Dissolution of LX-10-1 and PBX-9404 explosive from two artillery fired atomic projectiles (AFAPs) can be accomplished using dimethyl sulfoxide. The composition of LX-10-1 and PBX-9404 are given. The authors have evaluated the detonability of solutions of these two plastic bonded explosives in dimethyl sulfoxide (DMSO) under shock and thermal scenarios based on the UN ``Recommendations on the Transport of Dangerous Goods - Tests and Criteria`` (ST/SG/AC.10/11) and US Army Technical Bulletin 700-2. Prior to the relatively large scale shock and thermal sensitivity testing, small scale safety tests and thermochemical code calculations were used as a preliminary estimate of the detonability and hazards associated with up to 33% of these explosives in DMSO. Thermochemical calculations, small scale safety testing, and gap testing all indicate that these solutions are not detonable. They are currently in the process of evaluating these solutions using the small scale cookoff bomb (SCB) test.

  14. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    SciTech Connect (OSTI)

    Chipman, V D

    2011-09-20T23:59:59.000Z

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  15. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    SciTech Connect (OSTI)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Tagawa, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Malliakos, A. [Nuclear Regulatory Commission, Washington, DC (United States)

    1998-05-01T23:59:59.000Z

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction and the mixture initial temperature. Decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer run-up distances. The density ratio across the flame and the speed of sound in the unburned mixture were found to be two parameters which influence the run-up distance.

  16. Nuclear winter: implications for US and Soviet nuclear strategy

    SciTech Connect (OSTI)

    Romero, P.J.

    1984-12-01T23:59:59.000Z

    In November 1983 Dr. Carl Sagan and his colleagues reported to press on the results of their study of the atmospheric consequences of nuclear war. The TTAPS study found that for a wide range of possible U.S. -Soviet nuclear exchanges, including relatively small ones, the fires from nuclear detonations would inject into the stratosphere quantities of dust and soot that would obscure sunlight for months. Under the cloud, which would spread over most of the Northern Hemisphere, temperatures might drop scores of degrees, well below the freezing point of water; thus, nuclear winter. The TTAPS team's findings suggested that the consequences of a nuclear war might be even more gruesome than previously supposed, and the long-term climatic and biological results might be nearly as severe for a war of 100 megatons as for 5,000. From the point of view of informing policymakers and the public concerning the consequences of wars involving nuclear weapons, the politicization of the nuclear winter issue is unfortunate. We can hope that in the next few years the criticism and defense of the initial TTAPS work will give rise to significant additional analyses, to illuminate the question. Realistically, further study will probably include both confirmations and contradictions of the original findings, without necessarily resolving the issue. Sadly, the surrounding political atmosphere may obstruct sober consideration of the policy implications of the possibility of nuclear winter.

  17. Origins of the deflagration-to-detonation transition in gas-phase combustion

    SciTech Connect (OSTI)

    Oran, Elaine S.; Gamezo, Vadim N. [Laboratory for Computational Physics & amp; Fluids Dynamics, US Naval Research Laboratory, Washington, DC 20375 (United States)

    2007-01-15T23:59:59.000Z

    This paper summarizes a 10-year theoretical and numerical effort to understand the deflagration-to-detonation transition (DDT). To simulate DDT from first principles, it is necessary to resolve the relevant scales ranging from the size of the system to the flame thickness, a range that can cover up to 12 orders of magnitude in real systems. This computational challenge resulted in the development of numerical algorithms for solving coupled partial and ordinary differential equations and a new method for adaptive mesh refinement to deal with multiscale phenomena. Insight into how, when, and where DDT occurs was obtained by analyzing a series of multidimensional numerical simulations of laboratory experiments designed to create a turbulent flame through a series of shock-flame interactions. The simulations showed that these interactions are important for creating the conditions in which DDT can occur. Flames enhance the strength of shocks passing through a turbulent flame brush and generate new shocks. In turn, shock interactions with flames create and drive the turbulence in flames. The turbulent flame itself does not undergo a transition, but it creates conditions in nearby unreacted material that lead to ignition centers, or 'hot spots,' which can then produce a detonation through the Zeldovich gradient mechanism involving gradients of reactivity. Obstacles and boundary layers, through their interactions with shocks and flames, help to create environments in which hot spots can develop. Other scenarios producing reactivity gradients that can lead to detonations include flame-flame interactions, turbulent mixing of hot products with reactant gases, and direct shock ignition. Major unresolved questions concern the properties of nonequilibrium, shock-driven turbulence, stochastic properties of ignition events, and the possibility of unconfined DDT. (author)

  18. Roadmap: Nursing Bachelor of Science in Nursing [NU-BSN-NURS

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Nursing ­ Bachelor of Science in Nursing [NU-BSN-NURS] College of Nursing Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 22-Apr-13/JS This roadmap is a recommended semester Kent Core Requirement 3 See Kent Core Summary on page 2 #12;Roadmap: Nursing ­ Bachelor of Science

  19. Health Sciences and Nursing Health Sociology ------------------------------------------------------------------------------------------

    E-Print Network [OSTI]

    Miyashita, Yasushi

    related to health problems and health care systems, through developing and applying theories, concepts44 Health Sciences and Nursing Health Sociology in interdisciplinary academic fields, involving health, medicine and nursing as well as the field of sociology

  20. On the mechanism of the deflagration-to-detonation transition in a hydrogen-oxygen mixture

    SciTech Connect (OSTI)

    Liberman, M. A., E-mail: misha.liberman@gmail.co [Uppsala University, Department of Physics (Sweden); Ivanov, M. F.; Kiverin, A. D. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Kuznetsov, M. S., E-mail: mike.kuznetsov@kit.ed [Forschungszentrum Karlsruhe (Germany); Rakhimova, T. V.; Chukalovskii, A. A. [Moscow State University, Institute of Nuclear Physics (Russian Federation)

    2010-10-15T23:59:59.000Z

    The flame acceleration and the physical mechanism underlying the deflagration-to-detonation transition (DDT) have been studied experimentally, theoretically, and using a two-dimensional gasdynamic model for a hydrogen-oxygen gas mixture by taking into account the chain chemical reaction kinetics for eight components. A flame accelerating in a tube is shown to generate shock waves that are formed directly at the flame front just before DDT occurred, producing a layer of compressed gas adjacent to the flame front. A mixture with a density higher than that of the initial gas enters the flame front, is heated, and enters into reaction. As a result, a high-amplitude pressure peak is formed at the flame front. An increase in pressure and density at the leading edge of the flame front accelerates the chemical reaction, causing amplification of the compression wave and an exponentially rapid growth of the pressure peak, which 'drags' the flame behind. A high-amplitude compression wave produces a strong shock immediately ahead of the reaction zone, generating a detonation wave. The theory and numerical simulations of the flame acceleration and the new physical mechanism of DDT are in complete agreement with the experimentally observed flame acceleration, shock formation, and DDT in a hydrogen-oxygen gas mixture.

  1. Faculty of Science & Health SCHOOL OF NURSING

    E-Print Network [OSTI]

    Humphrys, Mark

    and clinical agenda in nursing and health care in Ireland. She will be expected to take a lead roleFaculty of Science & Health SCHOOL OF NURSING Lecturer in Mental Health Nursing (5 year contract. Applicants must also have a minimum of three years work experience in the field of mental health. Previous

  2. detonation detection

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 |0/%2A en6/%2A9/%2A en

  3. Verification of 2-D Detonation Shock Dynamics in conjunction with Los Alamos Lagrangian hydrocode

    SciTech Connect (OSTI)

    Aida, Toru [Los Alamos National Laboratory; Walter, John W. [Los Alamos National Laboratory; Aslam, Tariq D. [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory

    2013-01-29T23:59:59.000Z

    As the latest version of the fast-tube Detonation Shock Dynamics (DSD) solver is linked with the Los Alamos Lagrangian hydrocode, verification problems from a 2006 DSD report (LA-14277 [1]) have been duplicated with some of the verification criteria changed to more quantitative ones. The observed error convergence is as good as or better than reported in [1], quite possibly due to the careful treatment of floating point numbers to ensure that their precision level is maintained throughout the code. This report duplicates the three sample verification problems in LA-14277 [1] using the Los Alamos ASC Lagrangian hydrocode (FLAG), official release of 3.2 Alpha6 with a few modifications. This version of FLAG is linked with the latest fast-tube Detonation Shock Dynamics (DSD) version beta 2 solver released in 2011 as part of the LanlDSD software product [2]. New verification criteria are used for the arcwave problem where two specific locations are chosen for burn arrival time comparison. For this report FLAG's internal driver code prepares the distance function ({Psi}) and material ID fields from its hydro setup, instead of the stand-alone driver that is being utilized by the other LANL hydrocodes currently interfaced to LanlDSD. As it is implemented in version 3.2 Alpha6, the {Psi} and material ID fields and other parameters are passed from FLAG to the DSD solver directly, and the burn table is directly passed back to FLAG as part of the calling arguments. The burn-front arrival time 'exact' solutions, mentioned in the sequel for the rate-stick and 'arc-wave' problems, are computed using a pair of special-purpose Fortran codes provided by Aslam [3]. In each case an ansatz for the form of the solution is made in which the radius from the detonator center point is used as the independent space coordinate. This leads to a simplified, problem-specific, 1D form of the governing equation. This equation is solved using 2nd-order spatial differencing and the forward Euler method on a very fine temporal and geometric mesh. The boundary conditions are handled exactly at the correct location, with second order accuracy. Care has been taken to ensure that this solution is fully converged. Most other technical details are omitted here as they are comprehensively discussed in [1].

  4. Assessment Plans College of Nursing

    E-Print Network [OSTI]

    Dyer, Bill

    . Identify clinical and cost outcomes that improve safety, effectiveness, timeliness, efficiency, quality 2014 Y Y Y #12;Doctor of Nursing Practice Degree (DNP) Program Learning Outcomes a. Produce a scholarly and defenses c. A statement on the assessment of the DNP degree program indicating if the program outcomes

  5. 677http://health.usf.edu/nocms/nursing/ SECTION 20

    E-Print Network [OSTI]

    Meyers, Steven D.

    Health Nursing (NAH) to AdultGerontology Primary Care Nursing (NAH) Occup. Hlth Nursing (NOH) to Pediatric Health Nursing (NCH) Adult & Occup. Health Nursing (NAO) Dual to AdultGeron. Primary Care AdultGerontology Primary Care Dual Oncology/AdultGerontology Primary Care Family Health Pediatric

  6. Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations

    SciTech Connect (OSTI)

    Boughton, B.A.; DeLaurentis, J.M.

    1992-10-01T23:59:59.000Z

    The Explosive Release Atmospheric Dispersion (ERAD) model is a three-dimensional numerical simulation of turbulent atmospheric transport and diffusion. An integral plume rise technique is used to provide a description of the physical and thermodynamic properties of the cloud of warm gases formed when the explosive detonates. Particle dispersion is treated as a stochastic process which is simulated using a discrete time Lagrangian Monte Carlo method. The stochastic process approach permits a more fundamental treatment of buoyancy effects, calm winds and spatial variations in meteorological conditions. Computational requirements of the three-dimensional simulation are substantially reduced by using a conceptualization in which each Monte Carlo particle represents a small puff that spreads according to a Gaussian law in the horizontal directions. ERAD was evaluated against dosage and deposition measurements obtained during Operation Roller Coaster. The predicted contour areas average within about 50% of the observations. The validation results confirm the model`s representation of the physical processes.

  7. Key Response Planning Factors for the Aftermath of Nuclear Terrorism

    SciTech Connect (OSTI)

    Buddemeier, B R; Dillon, M B

    2009-01-21T23:59:59.000Z

    Despite hundreds of above-ground nuclear tests and data gathered from Hiroshima and Nagasaki, the effects of a ground-level, low-yield nuclear detonation in a modern urban environment are still the subject of considerable scientific debate. Extensive review of nuclear weapon effects studies and discussions with nuclear weapon effects experts from various federal agencies, national laboratories, and technical organizations have identified key issues and bounded some of the unknowns required to support response planning for a low-yield, ground-level nuclear detonation in a modern U.S. city. This study, which is focused primarily upon the hazards posed by radioactive fallout, used detailed fallout predictions from the advanced suite of three-dimensional (3-D) meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory (LLNL), including extensive global Key Response Planning Factors for the Aftermath of Nuclear Terrorism geographical and real-time meteorological databases to support model calculations. This 3-D modeling system provides detailed simulations that account for complex meteorology and terrain effects. The results of initial modeling and analysis were presented to federal, state, and local working groups to obtain critical, broad-based review and feedback on strategy and messaging. This effort involved a diverse set of communities, including New York City, National Capitol Regions, Charlotte, Houston, Portland, and Los Angeles. The largest potential for reducing casualties during the post-detonation response phase comes from reducing exposure to fallout radiation. This can be accomplished through early, adequate sheltering followed by informed, delayed evacuation.B The response challenges to a nuclear detonation must be solved through multiple approaches of public education, planning, and rapid response actions. Because the successful response will require extensive coordination of a large number of organizations, supplemented by appropriate responses by local responders and the general population within the hazard zones, regional planning is essential to success. The remainder of this Executive Summary provides summary guidance for response planning in three areas: (1) Public Protection Strategy details the importance of early, adequate shelter followed by informed evacuation. (2) Responder Priorities identify how to protect response personnel, perform regional situational assessment, and support public safety. (3) Key Planning Considerations refute common myths and provide important information on planning how to respond in the aftermath of nuclear terrorism.

  8. Retention of Nursing Faculty: Associate Degree Administrators' Perspectives

    E-Print Network [OSTI]

    Harris, Jennifer

    2014-08-31T23:59:59.000Z

    Retention of faculty is a complex and dynamic challenge for nursing education. Nursing is facing the growing dilemma of a shrinking population of current nursing faculty (AACN, 2012; Banks, 2012; Evans, 2013, & Proto & ...

  9. Conceptualizing clinical nurse leader practice: An interpretive synthesis

    E-Print Network [OSTI]

    Bender, M

    2015-01-01T23:59:59.000Z

    and quality. Implications for nursing management Managersmanagement Clinical nurse leader-integrated care delivery systems highlight the benefits of nurse-led models of care for transforming healthcare quality.

  10. Courses: Nursing (NURS) Page 357Sonoma State University 2014-2015 Catalog Nursing (NURS)

    E-Print Network [OSTI]

    Ravikumar, B.

    care system reform including nursing's expanded professional role in promoting health and mitigating, and Nursing majors only. nurS 303 MAternity & WoMen'S HeALtH CAre (6) Seminar, 4 hours; practicum, 2 hours to the principles of mental health and illness. Nursing care therapeutics with populations experienc- ing mental

  11. Nuclear winter and nuclear policy: implications for US and Soviet deterrence strategies. Master's thesis

    SciTech Connect (OSTI)

    Griffin, G.A.

    1987-09-01T23:59:59.000Z

    Nuclear weapons were rapidly incorporated into the policies for maintaining the national security objectives of both the Soviet Union and the United States--in spite of poorly understood nuclear-weapons effects. The nuclear winter hypothesis, the basis of which was first proposed in 1982, directed scientific research into the consequences of massive amounts of dust and smoke, from nuclear detonations, on the earth's climate and subsequently on the ecology of the earth. This thesis presents the evolution of the nuclear winter hypothesis in order to elucidate its unique aspects for global devastation and the consensus of plausibility which the hypothesis holds in the scientific community. The hypothesis has aroused a flurry of debate on its implications for nuclear policy. With the historical aspects of the nuclear era as a backdrop, the question of incorporating new scientific information on the consequences of nuclear war into policy is discussed. The observed responses of the U.S. and Soviet Union and the implications for future actions in response to the nuclear winter hypothesis are examined-- leading to the conclusion that the hypothesis will have little or no impact on U.S. and Soviet nuclear policy.

  12. addressing nursing services: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    roadmap for admission into the concentration NURS 40075 Information and Patient Care Technology for Professional Nursing Sheridan, Scott 128 Roadmap: BSN for Registered Nurses...

  13. associate degree nursing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    own Seldin, Jonathan P. 7 The Graduate School Doctor of Nursing Practice (DNP) Degree Physics Websites Summary: The Graduate School Doctor of Nursing Practice (DNP) Degree...

  14. army nursing students: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of California Loudon, Catherine 11 Summer Research Internships for Nursing Students Engineering Websites Summary: Summer Research Internships for Nursing Students...

  15. Networking with Clinical Nurses: Fusing Magnet & Organizational Missions

    E-Print Network [OSTI]

    Wickline, Mary

    2009-01-01T23:59:59.000Z

    Nurses: Fusing Magnet & Organizational Missions © MaryFusing Magnet & Organizational Missions Mary Wickline, MLIS,Nurses: Fusing Magnet & Organizational Missions © Mary

  16. DEFLAGRATION-TO-DETONATION TRANSITION IN LX-04 AS A FUNCTION OF LOADING DENSITY, TEMPERATURE, AND CONFINEMENT

    SciTech Connect (OSTI)

    Sandusky, H W; Granholm, R H; Bohl, D G; Vandersall, K S; Hare, D E; Garcia, F

    2006-06-20T23:59:59.000Z

    The potential for deflagration-to-detonation transition (DDT) in LX-04 (85/15 HMX/Viton) is being evaluated as a function of loading density, temperature, and confinement. In the high confinement arrangement, a matrix of tests is nearly completed with the LX-04 loaded at {approx} 51, 70, 90, and {approx} 99% of theoretical maximum density (TMD); and temperatures of ambient, 160 C, and 190 C at each loading density. A more limited set of tests with {approx}99 %TMD loadings at medium confinement were conducted at temperatures of ambient and 186 C. LX-04 does not undergo DDT at near TMD loadings in both medium and high confinement, although the latter still results in significant fragmentation. Most porous beds in high confinement undergo DDT, with the minimum run distance to detonation (l) for a 70 %TMD loading at ambient temperature. LX-04 does not transit to detonation for a pour density (51.3 %TMD) loading at 160 C, but does at 190 C with a longer l than at ambient. The limited ambient temperature measurements for l in high confinement are similar to previous data for 91/9 HMX/wax, which has nearly the same %volume of HMX as LX-04.

  17. DEFLAGRATION-TO-DETONATION TRANSITION IN LX-04 AS A FUNCTION OF LOADING DENSITY, TEMPERATURE, AND CONFINEMENT

    SciTech Connect (OSTI)

    Sandusky, H W; Granholm, R H; Bohl, D G; Hare, D E; Vandersall, K S; Garcia, F

    2005-06-01T23:59:59.000Z

    The potential for deflagration-to-detonation transition (DDT) in LX-04 (85/15 HMX/Viton) is being evaluated as a function of loading density, temperature, and confinement. In the high confinement arrangement, a matrix of tests will be performed with the LX-04 loaded at {approx}50, 70, 90, and {approx}99 %TMD; and temperatures of ambient, 160 C, and 190 C, at each loading density. A more limited set of tests at medium confinement will be conducted. As expected, LX-04 does not undergo DDT at near TMD loadings in both medium and high confinement, although the later still results in significant fragmentation. In high confinement at pour density (50.3 %TMD), LX-04 does not transit to detonation at 160 C, but does at ambient and 190 C with the shortest run distance to detonation (l) at ambient temperature. With a 70% TMD loading at ambient temperature, l was even less. The limited ambient temperature measurements for l in high confinement are similar to previous data for 91/9 HMX/wax, which has nearly the same %volume of HMX as LX-04.

  18. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect (OSTI)

    C. Cooper; M. Ye; J. Chapman

    2008-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

  19. Source terms for plutonium aerosolization from nuclear weapon accidents

    SciTech Connect (OSTI)

    Stephens, D.R.

    1995-07-01T23:59:59.000Z

    The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

  20. Nursing PhD 2010 Edition

    E-Print Network [OSTI]

    Saskatchewan, University of

    Nursing PhD Handbook 2010 Edition 107 Wiggins Rd, Saskatoon SK S7N 5E5 Phone: (306) 966-8239 Fax ress-free as possible. Lynnette Leeseberg Stamler, RN, PhD Assistant Dean, Graduate Studies & Continuing Nursing Education #12;PhD Manual 2 Table of Contents General Information

  1. FAILED-DETONATION SUPERNOVAE: SUBLUMINOUS LOW-VELOCITY Ia SUPERNOVAE AND THEIR KICKED REMNANT WHITE DWARFS WITH IRON-RICH CORES

    SciTech Connect (OSTI)

    Jordan, George C. IV; Van Rossum, Daniel R. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 (United States); Perets, Hagai B. [Physics Department, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Fisher, Robert T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States)

    2012-12-20T23:59:59.000Z

    Type Ia supernovae (SNe Ia) originate from the thermonuclear explosions of carbon-oxygen (C-O) white dwarfs (WDs). The single-degenerate scenario is a well-explored model of SNe Ia where unstable thermonuclear burning initiates in an accreting, Chandrasekhar-mass WD and forms an advancing flame. By several proposed physical processes, the rising, burning material triggers a detonation, which subsequently consumes and unbinds the WD. However, if a detonation is not triggered and the deflagration is too weak to unbind the star, a completely different scenario unfolds. We explore the failure of the gravitationally confined detonation mechanism of SNe Ia, and demonstrate through two-dimensional and three-dimensional simulations the properties of failed-detonation SNe. We show that failed-detonation SNe expel a few 0.1 M{sub Sun} of burned and partially burned material and that a fraction of the material falls back onto the WD, polluting the remnant WD with intermediate-mass and iron-group elements that likely segregate to the core forming a WD whose core is iron rich. The remaining material is asymmetrically ejected at velocities comparable to the escape velocity from the WD, and in response, the WD is kicked to velocities of a few hundred km s{sup -1}. These kicks may unbind the binary and eject a runaway/hypervelocity WD. Although the energy and ejected mass of the failed-detonation SN are a fraction of typical thermonuclear SNe, they are likely to appear as subluminous low-velocity SNe Ia. Such failed detonations might therefore explain or are related to the observed branch of peculiar SNe Ia, such as the family of low-velocity subluminous SNe (SN 2002cx/SN 2008ha-like SNe).

  2. Detailed Spectral Modeling of a 3-D Pulsating Reverse Detonation Model: Too Much Nickel

    E-Print Network [OSTI]

    E. Baron; David J. Jeffery; David Branch; Eduardo Bravo; Domingo Garcia-Senz; Peter H. Hauschildt

    2007-09-26T23:59:59.000Z

    We calculate detailed NLTE synthetic spectra of a Pulsating Reverse Detonation (PRD) model, a novel explosion mechanism for Type Ia supernovae. While the hydro models are calculated in 3-D, the spectra use an angle averaged hydro model and thus some of the 3-D details are lost, but the overall average should be a good representation of the average observed spectra. We study the model at 3 epochs: maximum light, seven days prior to maximum light, and 5 days after maximum light. At maximum the defining Si II feature is prominent, but there is also a prominent C II feature, not usually observed in normal SNe Ia near maximum. We compare to the early spectrum of SN 2006D which did show a prominent C II feature, but the fit to the observations is not compelling. Finally we compare to the post-maximum UV+optical spectrum of SN 1992A. With the broad spectral coverage it is clear that the iron-peak elements on the outside of the model push too much flux to the red and thus the particular PRD realizations studied would be intrinsically far redder than observed SNe Ia. We briefly discuss variations that could improve future PRD models.

  3. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect (OSTI)

    Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Moll, Rainer; Woosley, Stan [Department of Physics and Department of Astronomy, University of California, Santa Cruz, CA (United States); Schwab, Josiah [Department of Physics and Department of Astronomy, University of California, Berkeley, CA (United States)

    2014-06-10T23:59:59.000Z

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  4. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    E-Print Network [OSTI]

    Liberman, M A; Kiverin, A D

    2015-01-01T23:59:59.000Z

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  5. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOE Patents [OSTI]

    Studebaker, Irving G. (Grand Junction, CO); Hefelfinger, Richard (Grand Junction, CO)

    1980-01-01T23:59:59.000Z

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  6. FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale

    SciTech Connect (OSTI)

    Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

    1989-04-01T23:59:59.000Z

    This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H/sub 2/), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H/sub 2/ with obstacles and no transverse venting. 67 refs., 62 figs.

  7. ENVIRONMENTAL IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: Gas productionDynamic ,kL2'

  8. Turbulent flame speeds in ducts and the deflagration/detonation transition

    SciTech Connect (OSTI)

    Bradley, D.; Lawes, M.; Liu, Kexin [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2008-07-15T23:59:59.000Z

    A methodology is proposed for determining whether a deflagration-to-detonation transition (DDT) might occur for flame propagation along a duct with baffles, closed at the ignition end. A flammable mixture can attain a maximum turbulent burning velocity. If this is sufficiently high, a strong shock is formed ahead of the flame. It is assumed that this maximum burning velocity is soon attained and on the basis of previous studies, this value can be obtained for the given conditions. The increase in temperature and pressure of the reactants, due to the shock, further increases the maximum turbulent burning velocity. The gas velocity ahead of the flame is linked to one-dimensional shock wave equations in a numerical analysis. The predicted duct flame speeds with the appropriate maximum turbulent burning velocities are in good agreement with those measured in the slow and fast flame regimes of a range of CH{sub 4}-air and H{sub 2}-air mixtures. DDTs are possible if autoignition of the reactants occurs in the time available, and if the projected flame speed approaches the Chapman-Jouguet velocity at the same temperature and pressure. Prediction of the first condition requires values of the autoignition delay time of the mixture at the shocked temperatures and pressures. Prediction of the second requires values of the laminar burning velocity and Markstein number. With the appropriate values of these parameters, it is shown numerically that there is no DDT with CH{sub 4}-air. With H{sub 2}-air, the onset of DDT occurs close to the values of equivalence ratio at which it has been observed experimentally. The effects of different duct sizes also are predicted, although details of the DDT cannot be predicted. Extension of the study to a wider range of fuels requires more data on their laminar burning velocities and Markstein numbers at higher temperatures and pressures and on autoignition delay times at lower temperatures and pressures. (author)

  9. Ignition of a deuterium micro-detonation with a gigavolt super marx generator

    E-Print Network [OSTI]

    Friedwardt Winterberg

    2008-12-01T23:59:59.000Z

    The Centurion-Halite experiment demonstrated the feasibility of igniting a deuterium-tritium micro-explosion with an energy of not more than a few megajoule, and the Mike test, the feasibility of a pure deuterium explosion with an energy of more than 10^6 megajoule. In both cases the ignition energy was supplied by a fission bomb explosive. While an energy of a few megajoule, to be released in the time required of less than 10^-9 sec, can be supplied by lasers and intense particle beams, this is not enough to ignite a pure deuterium explosion. Because the deuterium-tritium reaction depends on the availability of lithium, the non-fusion ignition of a pure deuterium fusion reaction would be highly desirable. It is shown that this goal can conceivably be reached with a "Super Marx Generator", where a large number of "ordinary" Marx generators charge (magnetically insulated) fast high voltage capacitors of a second stage Marx generator, called a "Super Marx Generator", ultimately reaching gigavolt potentials with an energy output of 100 megajoule. An intense 10^7 Ampere-GeV proton beam drawn from a "Super Marx Generator" can ignite a deuterium thermonuclear detonation wave in a compressed deuterium cylinder, where the strong magnetic field of the proton beam entraps the charged fusion reaction products inside the cylinder. In solving the stand-off problem, the stiffness of a GeV proton beam permits to place the deuterium target at a comparatively large distance from the wall of a cavity confining the deuterium micro-explosion.

  10. Nuclear electromagnetic pulse and the electric power system

    SciTech Connect (OSTI)

    Legro, J.R.; Reed, T.J.

    1985-01-01T23:59:59.000Z

    A single, high-altitude nuclear detonation over the continental United States can expose large geographic areas to transient, electromagnetic pulse (EMP). The initial electromagnetic fields produced by this event have been defined as high-altitude electromagnetic pulse (HEMP). Later-time, low frequency fields have been defined as magnetohydrodynamic-electromagnetic pulse (MHD-EMP). Nuclear detonations at, or near the surface of the earth can also produce transient EMP. These electromagnetic phenomena have been defined as source region electromagnetic pulse (SREMP). The Division of Electric Energy Systems (EES) of the United States Department of Energy (DOE) has formulated and implemented a Program Plan to assess the possible effects of the above nuclear EMP on civilian electric power systems. This unclassified research effort is under the technical leadership of the Oak Ridge National Laboratory. This paper presents a brief perspective of EMP phenomenology and important interaction issues for power systems based on research performed by Westinghouse Advanced Systems Technology as a principal subcontractor in the research effort.

  11. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  12. Plane thermonuclear detonation waves initiated by proton beams and quasi-one-dimensional model of fast ignition

    E-Print Network [OSTI]

    Charakhch'yan, Alexander A

    2014-01-01T23:59:59.000Z

    The one-dimensional (1D) problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with length $2H$ and density $\\rho_0 \\leqslant 100\\rho_s$, where $\\rho_s$ is the fuel solid-state density at atmospheric pressure and temperature of 4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is $10^{19}$ W/cm$^2$ and duration is 50 ps. A mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by alpha-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave, appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile along the spatial variable $x$ and with a weak dependence of the thermodynamic functions of $x$ occurs. An appropriate solution of the equations of hydrodynamics is...

  13. DNP-Nurse Anesthesia TN Tuition O/S Tuition

    E-Print Network [OSTI]

    Cui, Yan

    Nurse Anesthesia (DNP) DNP-Nurse Anesthesia TN Tuition O/S Tuition (Total) Health Service Fee Anesthesia is a 36-month program, extending over 4 academic years. This distinction is very important

  14. ENHANCING THE COMPETENCY OF THE CORRECTIONAL NURSING WORKFORCE

    E-Print Network [OSTI]

    Oliver, Douglas L.

    School of Nursing Deborah Shelton, PhD, RN, NE-BC, CCHP, FAAN E. Jane Martin Professor Associate Dean Butler, MA University of Connecticut School of Nursing: Denise Panosky, DNP, RN, CNE, CCHP, FCNS Funded

  15. Nursing Faculty Descriptions of Horizontal Violence in Academe

    E-Print Network [OSTI]

    Davis, Nancy P.

    2014-08-31T23:59:59.000Z

    Horizontal violence (HV) is a well-documented phenomenon in nursing that has been studied primarily among staff nurses in clinical practice settings. Characteristics of peer-to-peer HV include, but are not limited to, ...

  16. ODETTE GRISCTI BSc Honours (Nursing), University of Malta, 1992

    E-Print Network [OSTI]

    Brooks, Stephen

    ODETTE GRISCTI BSc Honours (Nursing), University of Malta, 1992 MScH (Nursing & Midwifery Education), University of Malta, 1999 ABSTRACT Positive hospital experiences and health outcomes for chronically ill

  17. Preserving Nuclear Grade Knowledge

    SciTech Connect (OSTI)

    Lange, Bob

    2008-02-05T23:59:59.000Z

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most don’t really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding the ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)

  18. From aspirations to “dream-trap”: nurse education in Nepal and Nepali nurse migration to the UK 

    E-Print Network [OSTI]

    Adhikari, Radha

    2011-11-25T23:59:59.000Z

    The migration of nurses is stimulating international debate around globalisation, ethics, and the effects on health systems. This thesis examines this phenomenon through nurses trained in Nepal who migrate to the UK. ...

  19. Administrative Protocol Page 1 of 2 Nursing Practice Manual

    E-Print Network [OSTI]

    Oliver, Douglas L.

    for accuracy, with review or revision occurring every three years at a minimum. a. Nursing Practice Manual (NPM) clinical documents are reviewed by the Nursing Standards Committee b. Nursing Practice Manual (NPM modifications to documents are completed. a. NPM documents with updated review and/or revision dates

  20. Effect of composition changes on the structure and properties of W-Cr-Ni-C detonation gun coatings

    SciTech Connect (OSTI)

    Stavros, A.J. [Praxair Surface Technologies Inc., Indianapolis, IN (United States)

    1995-12-31T23:59:59.000Z

    Changes in the microstructure and wear behavior of W-Cr-Ni-C coatings as a function of the composition of the starting powder were studied. The experimental powder compositions were chosen so that the results could be analyzed statistically as a mixture problem with the extreme vertices design. All coatings were deposited by identical detonation gun operating conditions. Although the variation of powder chemistry resulted in distinctively different powder morphologies, all coatings were found to be composed of the same 4 (possibly more) complex carbides. The amount and, to some degree, morphology of a particular carbide was found to change with composition. However, neither amount nor morphology could be correlated to microhardness or wear test results. Predictive equations based on powder composition were obtained which fit the wear test results very well.

  1. Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, October--December, 1995

    SciTech Connect (OSTI)

    Huque, Z.; Zhou, J.; Mei, D.; Biney, P.O.

    1995-12-25T23:59:59.000Z

    Experiments will mainly focus on breaking the bonds within the slag itself using detonation wave. For the experiments, initial suggestion was to build up slag deposit around a representative tube by placing it inside the convection pass of an actual boiler at the Northern States Power Company. But it was later concluded that once the tube is cooled to room condition, the thermal stress will greatly reduce the bonding between the heat transfer surface and the slag. It was concluded that the slag will be attached to the tube using high density epoxy resin. High density epoxy will be used so that they do not diffuse into the slag and strengthen the bonding within the slag. Suggestions on candidate epoxy are provided by MTI lab. MTI also provided PVAMU with different kinds of slags for testing. The deposits for characterization were from a subbituminous coal fired utility boiler.

  2. The University of Texas at Austin School of Nursing Professional and Technical Standards for Nursing Practice

    E-Print Network [OSTI]

    Johnston, Daniel

    practice are determined by the Board of Nursing, national accreditation guidelines evaluation tools and course guidelines, students must be able to provide safe must be able to measure, calculate, reason and quickly analyze information

  3. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

  4. Nuclear winter: global consequences of multiple nuclear explosions

    SciTech Connect (OSTI)

    Turco, R.P.; Toon, O.B.; Ackerman, T.P.; Pollack, J.B.; Sagan, C.

    1983-12-23T23:59:59.000Z

    The potential global atmospheric and climatic consequences of nuclear war are investigated using models previously developed to study the effects of volcanic eruptions. Although the results are necessarily imprecise, the most probable first-order effects are serious. Significant hemispherical attenuation of the solar radiation flux and subfreezing land temperatures may be caused by fine dust raised in high-yield nuclear surface bursts and by smoke from fires. For many simulated exchanges of several thousand megatons, in which dust and smoke are generated and encircle the earth within 1 to 2 weeks, average light levels can be reduced to a few percent of ambient and land temperatures can reach -15/sup 0/ to -25/sup 0/C. The yield threshold for major optical and climatic consequences may be very low: only about 100 megatons detonated over major urban centers can create average hemispheric smoke optical depths greater than 2 for weeks and, subfreezing land temperatures for months. In a 5000-megaton war, at northern mid-latitude sites remote from targets, radioactive fallout on time scales of days to weeks can lead to chronic mean doses of up to 50 rads from external whole-body gamma-ray exposure, with a likely equal or greater internal dose from biologically active radionuclides. Large horizontal and vertical temperature gradients caused by adsorption of sunlight in smoke and dust clouds may greatly accelerate transport of particles and radioactivity from the Northern Hemisphere to the Southern Hemisphere. When combined with the prompt destruction from nuclear blast, fires, and fallout and the later enhancement of solar ultraviolet radiation due to ozone depletion, long-term exposure to cold, dark, and radioactivity could pose a serious threat to human survivors and to other species.

  5. The Johns Hopkins University School of Nursing

    E-Print Network [OSTI]

    Niebur, Ernst

    by the faculty member with assistance from the Administrative Manager and approved by the Department Chair prior on research or practice projects or publications. Faculty members should not contact the potential reviewers to the list. 3. Curriculum Vitae (CV) in School of Nursing format (guide available on the SON Intranet). 4

  6. Faculty of Science & Health School of Nursing

    E-Print Network [OSTI]

    Humphrys, Mark

    the perspective of a publicly funded health service in relation to health and social care costs but it will also of Ireland, from a public health care payer perspective · To determine the direct medical costs of overweightFaculty of Science & Health School of Nursing Research Officer (16 month contract until 31st July

  7. Faculty of Science & Health School of Nursing

    E-Print Network [OSTI]

    Humphrys, Mark

    to undergraduate and postgraduate syllabus development across all disciplines in mental health and primary careFaculty of Science & Health School of Nursing Research Officer ­ Expert by Experience (contract at DCU has well- developed, collaborative relationships with its key stakeholders and partner health

  8. Grants Manual Vanderbilt University School of Nursing

    E-Print Network [OSTI]

    Simaan, Nabil

    1 Grants Manual Vanderbilt University School of Nursing March 19, 2007 General Guidelines and expensive resources. Ensuring the best possible quality of each submission will reduce the costs associated Manager (GM) and Research Team Leader to discuss the budget, space and equipment needs, and research

  9. The Journal of Doctoral Nursing Practice

    E-Print Network [OSTI]

    Grishok, Alla

    are com- peting for scarce dollars. Is it most effective to supply measles vaccine to children intervention. But look where this extreme drought is not wreaking havoc--Ethiopia, Eritrea, eastern Kenya Nursing 69 where resilient systems of agriculture and water supply have been built up over the last 20

  10. Detonation-wave technique for on-load deposit removal from surfaces exposed to fouling; Part 2: Full-scale application

    SciTech Connect (OSTI)

    Hanjalic, K. (Univ. of Erlangen-Nuernberg (Germany)); Smajevic, I. (Univ. of Sarajevo, Bosnia (Yugoslavia))

    1994-01-01T23:59:59.000Z

    The paper reports on the full-scale application and testing of the detonation-wave technique in two boilers, fired with pulverized coal, of total thermal power of 600 MW. Continuous monitoring over a period of several years confirmed earlier laboratory findings, reported in the companion Part 1 of the paper. The testing proved that the technique is efficient and reliable, with a number of advantages in comparison with various conventional cleaning methods. In spite of the fact that the lining of one of the boilers is made of classic refractory material, careful records and inspection over several years of daily application of the detonation wave technique showed no signs of any undesirable effects. The method was officially adopted as a routine deposits removal technique in the Power Plant Kakanj'' in Bosnia.

  11. TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. II. INTERMITTENCY AND THE DEFLAGRATION-TO-DETONATION TRANSITION PROBABILITY

    SciTech Connect (OSTI)

    Schmidt, W.; Niemeyer, J. C. [Institut fuer Astrophysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Ciaraldi-Schoolmann, F. [Lehrstuhl fuer Astronomie und Astrophysik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Roepke, F. K.; Hillebrandt, W., E-mail: schmidt@astro.physik.uni-goettingen.d [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2010-02-20T23:59:59.000Z

    The delayed detonation model describes the observational properties of the majority of Type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for Type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. The bulk of turbulence in the ash regions appears to be less intermittent than predicted by the standard log-normal model and the She-Leveque model. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. The determination of the total number of regions at the flame surface, in which DDTs can be triggered, enables us to estimate the total number of events. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation between 0.7 and 0.8 s after the beginning of the deflagration phase for the multi-spot ignition scenario used in the simulation. However, the probability drops to virtually zero if a DDT is further constrained by the requirement that the turbulent velocity fluctuations reach about 500 km s{sup -1}. Under this condition, delayed detonations are only possible if the distribution of the velocity fluctuations is not log-normal. From our calculations follows that the distribution obtained by Roepke allow for multiple DDTs around 0.8 s after ignition at a transition density close to 1 x 10{sup 7} g cm{sup -3}.

  12. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

  13. Detonation-wave technique for on-load deposit removal from surfaces exposed to fouling; Part 1: Experimental investigation and development of the method

    SciTech Connect (OSTI)

    Hanjalic, K. (Univ. of Erlangen-Nuernberg (Germany). Lehrstuhl fuer Stroemungsmechanik); Smajevic, I. (Univ. of Sarajevo, Bosnia (Yugoslavia))

    1994-01-01T23:59:59.000Z

    The paper presents a description and results of the experimental research, development, and full-scale testing of a new technique for cleaning gas-swept surfaces exposed to fouling, such as found in boilers, furnaces, heat exchangers, reactors, and gas ducts, by means of detonation waves. Part 1 describes the principles and reports on experimental investigations and optimization of the technique. Part 2 reports on several years of experience in applying the technique in full-scale operation in two large coal-fired boilers. Experiments involved detailed measurements of the pressure wave characteristics at a laboratory-scale model of a boiler furnace at a range of operating conditions and produced necessary information for optimum design and operation of the detonation wave generator. The investigation enabled a close insight into the detonation and shock wave generation, their behavior during propagation through the connecting ducts, and attenuation in the inner space of the model furnace. A good indication has also been obtained of the wave impact and effects on deposit-removal from different packages of tube bundles, which were placed in the model boiler in order to mimic boiler heating surfaces.

  14. Turbulence in a 3D deflagration model for type Ia SNe: II. Intermittency and the deflagration-to-detonation transition probability

    E-Print Network [OSTI]

    Schmidt, W; Niemeyer, J C; Roepke, F K; Hillebrandt, W

    2009-01-01T23:59:59.000Z

    The delayed detonation model describes the observational properties of the majority of type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation be...

  15. Nuclear weapons and nuclear war

    SciTech Connect (OSTI)

    Cassel, C.; McCally, M.; Abraham, H.

    1984-01-01T23:59:59.000Z

    This book examines the potential radiation hazards and environmental impacts of nuclear weapons. Topics considered include medical responsibility and thermonuclear war, the threat of nuclear war, nuclear weaponry, biological effects, radiation injury, decontamination, long-term effects, ecological effects, psychological aspects, the economic implications of nuclear weapons and war, ethics, civil defense, arms control, nuclear winter, and long-term biological consequences of nuclear war.

  16. Three Dimensional Simulation of the Baneberry Nuclear Event

    SciTech Connect (OSTI)

    Lomov, I

    2003-07-16T23:59:59.000Z

    Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical investigations, coupled with a series of 1D and 2D computational studies were used to reconstruct the sequence of events that led to the catastrophic failure. However, the geological profile of the Baneberry site is complex and inherently three-dimensional, which meant that some geological features had to be simplified or ignored in the 2D simulations. This left open the possibility that features unaccounted for in the 2D simulations could have had an important influence on the eventual containment failure of the Baneberry event. This paper presents results from a high-fidelity 3D Baneberry simulation based on the most accurate geologic and geophysical data available. The results are compared with available data, and contrasted against the results of the previous 2D computational studies.

  17. Nuclear Matter and Nuclear Dynamics

    E-Print Network [OSTI]

    M Colonna

    2009-02-26T23:59:59.000Z

    Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

  18. Updated as of 8.14.2014 for AY 2014-2015 APPLYING TO THE NURSING EDUCATION PROGRAM

    E-Print Network [OSTI]

    Chapman, Michael S.

    Updated as of 8.14.2014 for AY 2014-2015 p. 1 APPLYING TO THE NURSING EDUCATION PROGRAM (MASTER OF NURSING) The School of Nursing offers a Master of Nursing (MN) in Nursing Education with a clinical focus for students enrolled in the Nursing Education program. In the next half century, the elderly population

  19. Interdisciplinary collaboration: The role of the clinical nurse leader

    E-Print Network [OSTI]

    Bender, M; Connelly, CD; Brown, C

    2013-01-01T23:59:59.000Z

    for quality outcomes Care environmental management:outcomes management: collect and share nursing qualitymanagement: create communication structure for cross-discipline quality

  20. advanced nursing practice: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domain Chapman, Michael S. 2 PROGRAMME SPECIFICATION Programme name Advanced Practice in Health and Social Care (Ophthalmic Nursing) Computer Technologies and Information Sciences...

  1. advanced practice nurse: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domain Chapman, Michael S. 2 PROGRAMME SPECIFICATION Programme name Advanced Practice in Health and Social Care (Ophthalmic Nursing) Computer Technologies and Information Sciences...

  2. advanced practice nurses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domain Chapman, Michael S. 2 PROGRAMME SPECIFICATION Programme name Advanced Practice in Health and Social Care (Ophthalmic Nursing) Computer Technologies and Information Sciences...

  3. acute care nurses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shortage, advancing age of the population, and concerns about equalizing access to health care have supported the movement of the Nurse Practitioner (NP) role into the acute...

  4. advanced nurse practitioner: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    promoting health and disease prevention. In the future, economics will shape our health care industry, placing a greater demand for nurse practitioners in this...

  5. advanced practice nursing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domain Chapman, Michael S. 2 PROGRAMME SPECIFICATION Programme name Advanced Practice in Health and Social Care (Ophthalmic Nursing) Computer Technologies and Information Sciences...

  6. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    SciTech Connect (OSTI)

    Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China)] [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China)

    2014-03-15T23:59:59.000Z

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.

  7. Responding to regulatory permitting requirements and notices of deficiencies for open burning/open detonation (OB/OD) treatment facilities

    SciTech Connect (OSTI)

    Murphy, K.D.; Rajic, P.I.; Tope, T.J. [Radian Corp., Oak Ridge, TN (United States); Dandeneau, M. [HQ ACC/CEVC, Langley AFB, VA (United States); Johnson, M.B. [Army Dugway Proving Ground, UT (United States)

    1995-12-31T23:59:59.000Z

    Manufacturers and users of energetic material [i.e., propellants, explosives, pyrotechnics (PEP)] generate unserviceable, obsolete, off-specification, and damaged items that are characterized as reactive waste. These items must be safely treated and disposed of or reclaimed/recycled, thereby controlling existing waste inventories at manageable levels. The most commonly used disposal and treatment method, particularly at US Department of Defense (DoD) installations, is open burning/open detonation (OB/OD). However, regulatory constraints and the inability of operators to obtain permits required for treating these waste has led to the recent reductions and limited use of OB/OD treatment at many installations. The discussion herein includes human health and environmental protection concerns that must be addressed in Resource Conservation and Recovery Act (RCRA) Subpart X permit applications. Determining the potential impacts of OB/OD on these areas of concern was performed using data obtained from the Dugway Proving Grounds Propellant, Explosive and Pyrotechnic Thermal Treatment Evaluation and Test Facility, commonly referred to as the BangBox. Specifically, data from the testing of munition items in the BangBox facility were used to support waste characterization, air modeling, and risk assessments required to resolve notice of deficiencies and prepare permit applications for OB/OD facilities at US Air Force (USAF) installations.

  8. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect (OSTI)

    Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

    2012-07-03T23:59:59.000Z

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

  9. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    to Journal of Nuclear Technology. [46] C.J. Hagmann and J.Library for Nuclear Science and Technology,” Nuclear Dataof Standards and Technology daughter nuclear data processing

  10. HEALTH POLICY AND SYSTEMS Nurses' Practice Environments, Error Interception Practices,

    E-Print Network [OSTI]

    Xie, Minge

    7,000 inpatient deaths per year in the United States (US). On average, a U.S. hospital patient of Nursing, Rutgers the State University of New Jersey, Newark, NJ 2 Associate Professor, University, Rutgers College of Nursing, Rutgers the State University of New Jersey, Newark, NJ 4 Professor

  11. The University of Connecticut Health Center Page 1 of 26 John Dempsey Hospital -Department of Nursing / Department of Ambulatory Nursing

    E-Print Network [OSTI]

    Oliver, Douglas L.

    . An underlying philosophy that guided the Clinical Recognition Project Team was the belief that professional and the professional literature, the Project Team adopted a model that focused on: clinical nursing practice and a nursing administrator. After collecting data, the Project Team adopted the synergy model that focused

  12. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety bases...

  13. Nuclear Navy

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This video tells the story of the Navy's development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  14. Nuclear Navy

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  15. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

  16. Nuclear electromagnetic pulse (EMP) and electric power systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Vance, E.F.; Askins, H.W. Jr.

    1984-04-01T23:59:59.000Z

    A nuclear detonation at high altitudes produces a transient electromagnetic pulse (EMP) of high-intensity electromagnetic fields. A single high-altitude burst can subject most of the continental United States to a strong EMP. These intense fields induce voltage and current transients in electrical conductors. Surges would be induced by EMP in transmission and distribution circuits and in control and communication elements in electric power systems throughout the national grid. Such widespread disturbances could upset the stability of electrical energy systems and result in massive power failures. The extent and nature of EMP-caused damages are not well known for utility electric power systems. Failures are likely to be associated with insulation damage and failures of low-voltage and solid-state components. It is concluded from a review of past studies that EMP may pose a serious threat to the nation's electrical energy supply.

  17. Parametric study of high altitude nuclear EMP fields. Master's thesis

    SciTech Connect (OSTI)

    Lavigne, R.J.

    1984-03-01T23:59:59.000Z

    A program is developed to model the electromagnetic pulse from a high altitude nuclear detonation. A Runge-Kutta numerical technique is used to solve for the electric fields. A continuous Fourier Transform of the EMP is used to determine the frequency profile of the EMP. Parametric studies are performed to determine cause and effect relationships between burst parameters and the EMP frequency profile from 100 KHz to 100 MHz. Burst parameters studied are: gamma pulse time history, gamma ray energies from 1 MeV to 10 MeV, gamma ray yield, height of burst from 75 Km to 200 Km and intersection angle of the slant range with the geomagnetic field from 90 degrees to 30 degrees.

  18. Surface effects of underground nuclear explosions

    SciTech Connect (OSTI)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01T23:59:59.000Z

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  19. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect (OSTI)

    Bing, G.F.

    1991-08-20T23:59:59.000Z

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  20. Updated as of 9.8.2014 for AY 2014-2015 APPLYING TO THE NURSE ANESTHESIA PROGRAM

    E-Print Network [OSTI]

    Chapman, Michael S.

    Updated as of 9.8.2014 for AY 2014-2015 p. 1 APPLYING TO THE NURSE ANESTHESIA PROGRAM (MASTER OF NURSING) The OHSU Nurse Anesthesia (NA) program prepares Registered Nurses to become Advanced Nurse Practitioners in the field of anesthesia where they administer general and regional anesthesia to surgical

  1. Chemical Concentrations in Field Mice from Open-Detonation Firing Sites TA-36 Minie and TA-39 Point 6 at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Fresquez, Philip R. [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    Field mice (mostly Peromyscus spp.) were collected at two open-detonation (high explosive) firing sites - Minie at Technical Area (TA) 36 and Point 6 at TA-39 - at Los Alamos National Laboratory in August of 2010 and in February of 2011 for chemical analysis. Samples of whole body field mice from both sites were analyzed for target analyte list elements (mostly metals), dioxin/furans, polychlorinated biphenyl congeners, high explosives, and perchlorate. In addition, uranium isotopes were analyzed in a composite sample collected from TA-36 Minie. In general, all constituents, with the exception of lead at TA-39 Point 6, in whole body field mice samples collected from these two open-detonation firing sites were either not detected or they were detected below regional statistical reference levels (99% confidence level), biota dose screening levels, and/or soil ecological chemical screening levels. The amount of lead in field mice tissue collected from TA-39 Point 6 was higher than regional background, and some lead levels in the soil were higher than the ecological screening level for the field mouse; however, these levels are not expected to affect the viability of the populations over the site as a whole.

  2. Identification and analysis of entry level characteristics that predict success on nursing board licensure: study of a selected vocational nursing program in Texas

    E-Print Network [OSTI]

    Hereford, Suann Lentz

    2007-04-25T23:59:59.000Z

    IDENTIFICATION AND ANALYSIS OF ENTRY LEVEL CHARACTERISTICS THAT PREDICT SUCCESS ON NURSING BOARD LICENSURE: STUDY OF A SELECTED VOCATIONAL NURSING PROGRAM IN TEXAS A Dissertation by SUANN LENTZ HEREFORD Submitted to the Office of Graduate... THAT PREDICT SUCCESS ON NURSING BOARD LICENSURE: STUDY OF A SELECTED VOCATIONAL NURSING PROGRAM IN TEXAS A Dissertation by SUANN LENTZ HEREFORD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  3. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Workforce Development Day Tuesday, October 22, 2013 Nuclear Medicine Topics: Pathways of Practice in Nuclear Medicine Radiopharmacy Patient Care ...

  4. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26T23:59:59.000Z

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Cancels DOE O 457.1 and DOE M 457.1-1.

  5. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  6. Education in anesthesia for nurses entered a new era in Michigan in September 1963. Nine registered nurses entered the program in anesthesia offered by Detroit Receiving

    E-Print Network [OSTI]

    Berdichevsky, Victor

    History Education in anesthesia for nurses entered a new era in Michigan in September 1963. Nine registered nurses entered the program in anesthesia offered by Detroit Receiving Hospital in collaborationD., the Wayne State University Nurse Anesthesia Program (WSUNAP), became the first in the country to offer

  7. Volume 10, No. 2 REACH...OF NURSING

    E-Print Network [OSTI]

    Valdivia, Raphael

    919.385.3150 ann.salina@dm.duke.edu Duke Nursing Alumni Affairs Staff Fran Mauney, Associate Dean, Development and Alumni Relations Diana Staples, Senior Major Gift Officer Ann Salina, Director, Alumni

  8. Official Doctor of Nursing Practice Program of Study Form

    E-Print Network [OSTI]

    Hutcheon, James M.

    Clinical Immersion Project 2: Implementation NURS 9923 Clinical Immersion Project 3: Outcomes NURS 9131 Biometrics for Advanced Practice Nursing NURS 9133 Clinical Scholarship and Policy Development NURS 9135 Outcomes Management Strategies for Improved Health Care Outcomes

  9. A Review of the Research on Response to Improvised Nuclear Device Events

    SciTech Connect (OSTI)

    Bentz, A; Buddemeier, B; Dombroski, M

    2008-07-01T23:59:59.000Z

    Following the events of September 11, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. Understanding the state of knowledge, identifying gaps, and making recommendations for how to fill those gaps, this paper will provide a framework under which past findings can be understood and future research can fit. The risk of an improvised nuclear device (IND) detonation may seem unlikely; and while this is hopefully true, due to its destructive capability, IND events must be prepared for. Many people still live under the Cold War mentality that if a city is attacked with a nuclear weapon, there is little chance of survival. This assumption, while perhaps true in the case of multiple, thermonuclear weapons exchanges, does not hold for the current threat. If a single IND were detonated in the United States, there would be many casualties at the point of impact; however, there would also be many survivors and the initial response by two major groups will mean the difference between life and death for many people. These groups are the first responders and the public. Understanding how these two groups prepare, react and interact will improve response to nuclear terrorism. Figure 1 provides a visualization of the response timeline of an IND event. For the purposes of this assessment, it is assumed that to accurately inform the public, three functions need to be fulfilled by response personnel, namely planning, developing situational awareness, and developing a public message. Planning varies widely from city to city, and to date no comprehensive study has been completed to assess how individual cities are progressing with preparation plans. Developing situational awareness about an IND detonation has been well researched over the years, yet it is far from fully understood. While messaging is an integral component to response, it is one that suffers from a dearth of knowledge. The public will have a certain level of education and preparation. After the detonation the public will respond naturally and upon receiving the responders message will react to the message and may modify their behavior accordingly. Reviewing the nodes under both headings, responders and public will help better prepare the country to meet the challenges of an IND attack.

  10. Group work with families of nursing home residents 

    E-Print Network [OSTI]

    Duncan, Richard Tillett

    1985-01-01T23:59:59.000Z

    the counseling orientation. Both formats have been offered to families of nursing home residents, but it is not known if one format offers more positive results than the other, or if there is any difference. The study attempts to measure results in terms... consist. Thus, one of the goals of this study was to eventually improve the programs and services which nursing homes provide. By observing and recording the development of each group and by measuring each group's effectiveness in the terms described...

  11. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

  12. Glass produced by underground nuclear explosions. [Rainier

    SciTech Connect (OSTI)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01T23:59:59.000Z

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10/sup 12/ calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 ..mu..m scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity.

  13. Detonating an insensitive explosive

    DOE Patents [OSTI]

    Lee, Kien-yin (Los Alamos, NM); Storm, Carlyle B. (Santa Fe, NM)

    1992-01-01T23:59:59.000Z

    A method for making 3-amino-5-nitro-1,2,4-triazole using ammonium 3,5-dinitro-1,2,4-triazole and hydrazine hydrate as starting materials and a method for providing energy derived from 3-amino-5-nitro-1,2,4-triazole.

  14. Cooperative measures to support the Indo-Pak Agreement Reducing Risk from Accidents Relating to Nuclear Weapons.

    SciTech Connect (OSTI)

    Mishra, Sitakanta; Ahmed, Mansoor

    2014-04-01T23:59:59.000Z

    In 2012, India and Pakistan reaffirmed the Agreement on Reducing the Risk from Accidents Relating to Nuclear Weapons. Despite a history of mutual animosity and persistent conflict between the two countries, this agreement derives strength from a few successful nuclear confidence building measures that have stood the test of time. It also rests on the hope that the region would be spared a nuclear holocaust from an accidental nuclear weapon detonation that might be misconstrued as a deliberate use of a weapon by the other side. This study brings together two emerging strategic analysts from South Asia to explore measures to support the Agreement and further develop cooperation around this critical issue. This study briefly dwells upon the strategic landscape of nuclear South Asia with the respective nuclear force management structures, doctrines, and postures of India and Pakistan. It outlines the measures in place for the physical protection and safety of nuclear warheads, nuclear materials, and command and control mechanisms in the two countries, and it goes on to identify the prominent, emerging challenges posed by the introduction of new weapon technologies and modernization of the respective strategic forces. This is followed by an analysis of the agreement itself leading up to a proposed framework for cooperative measures that might enhance the spirit and implementation of the agreement.

  15. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  16. Nuclear war, nuclear proliferation, and their consequences

    SciTech Connect (OSTI)

    Aga Khan, S.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons proliferation. Topics considered include the Nuclear Non-Proliferation Treaty and its future, the spread of nuclear weapons among nations, the link between horizontal and vertical proliferation, national security, nuclear disarmament, the impact of nuclear weapons on Third World regional conflicts, the global effects of a nuclear war, medical effects on human populations, the nuclear winter, the nuclear arms race, and arms control.

  17. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

  18. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07T23:59:59.000Z

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  19. THE ELECTRONIC HEALTH RECORD FUNCTIONALITIES IN THE STATE OF KANSAS WITH REGARD TO NURSING PRACTICE

    E-Print Network [OSTI]

    Menninger-Corder, Mary Lynn

    2010-04-27T23:59:59.000Z

    The purpose of this study was to identify the electronic health record functionalities of acute care hospitals in the state of Kansas with regard to nursing practice. From the perspective of the Chief Nursing Officer, what ...

  20. ORISE: Nurse Triage Lines Support | How ORISE is Making a Difference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nurse triage lines as a promising method for reducing disparities in access to quality health care during an influenza pandemic. Nurse triage lines are used daily in the United...

  1. For Immediate Release --Thursday, May 15, 2014 Managing mistakes a key factor in developing nursing

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    mistakes impacts nursing students' clinical performance. He is looking to improve based on opinion alone and expect positive outcomes." Students are obviously in clinical settings. "Clinical is where nursing students really put everything

  2. Nuclear Celebrations

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-11-01T23:59:59.000Z

    Broadcast Transcript: The North Korean situation is frightening for many reasons but none, perhaps, more eerily disturbing than images of North Koreans celebrating in brightly colored costumes just days after the nation's underground nuclear test...

  3. PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES Programme name BSc (Hons) Primary Care (Practice Nursing)

    E-Print Network [OSTI]

    Weyde, Tillman

    Services contract in April, 2004. The diversity of services that the Practice Nurse can provide can range

  4. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10T23:59:59.000Z

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  5. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclear Science/Nuclear

  6. The Biggest Winner: Obesity Prevention Education for Nurses Marcia Costello PhD, RD, LDN

    E-Print Network [OSTI]

    Jackman, Todd

    The Biggest Winner: Obesity Prevention Education for Nurses Marcia Costello PhD, RD, LDN College of Nursing, Faculty Denice-Ferko-Adams MPH, RD, LDN Director, MacDonald Center for Obesity Prevention and Education Creative Ideas to Integrate Obesity Prevention Content into Nursing Education Curriculum Critique

  7. HUNTER-BELLEVUE SCHOOL OF NURSING & BARUCH COLLEGE SCHOOL OF PUBLIC AFFAIRS

    E-Print Network [OSTI]

    Qiu, Weigang

    Communication in Public Settings PAF 9120 Public and Nonprofit Management I PAF 9130 Economic AnalysisHUNTER-BELLEVUE SCHOOL OF NURSING & BARUCH COLLEGE SCHOOL OF PUBLIC AFFAIRS MS/MPA DUAL DEGREE PROGRAM HUNTER-BELLEVUE SCHOOL OF NURSING 425 E. 25th St., New York, NY 10010 MASTER'S PROGRAM IN NURSING

  8. HUNTER-BELLEVUE SCHOOL OF NURSING & BARUCH COLLEGE SCHOOL OF PUBLIC AFFAIRS

    E-Print Network [OSTI]

    Qiu, Weigang

    Settings PAF 9120 Public and Nonprofit Management I PAF 9130 Economic Analysis and Public Policy PAF 9140HUNTER-BELLEVUE SCHOOL OF NURSING & BARUCH COLLEGE SCHOOL OF PUBLIC AFFAIRS MS/MPA DUAL DEGREE PROGRAM HUNTER-BELLEVUE SCHOOL OF NURSING 425 E. 25th St., New York, NY 10010 MASTER'S PROGRAM IN NURSING

  9. HUNTER-BELLEVUE SCHOOL OF NURSING & BARUCH COLLEGE SCHOOL OF PUBLIC AFFAIRS

    E-Print Network [OSTI]

    Qiu, Weigang

    Management I PAF 9130 Economic Analysis and Public Policy PAF 9140 Budgeting, Accounting, and FinancialHUNTER-BELLEVUE SCHOOL OF NURSING & BARUCH COLLEGE SCHOOL OF PUBLIC AFFAIRS MS/MPA DUAL DEGREE PROGRAM HUNTER-BELLEVUE SCHOOL OF NURSING 425 E. 25th St., New York, NY 10010 MASTER'S PROGRAM IN NURSING

  10. HUNTER COLLEGE OF THE CITY UNIVERSITY OF NEW YORK HUNTER-BELLEVUE SCHOOL OF NURSING

    E-Print Network [OSTI]

    Qiu, Weigang

    in providing clinical outcomes management, care environment management, and clinical leadership for setting., N.Y., N.Y. 10010 MASTER'S PROGRAM IN CLINICAL NURSE LEADERTM (CNL) The Hunter-Bellevue School of Nursing of the City University of New York, a CCNE accredited school, offers a Clinical Nurse Leader

  11. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems. Volume I. Executive summary

    SciTech Connect (OSTI)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01T23:59:59.000Z

    It has been recognized for many years that the detonation of a nuclear weapon at high altitude leads to the creation of an intense electromagnetic field of very short duration, the electromagnetic pulse (EMP). The EMP from a single burst at the proper altitude could induce large currents and voltages in electrical equipment over the entire continental United States. Commercial nuclear power plants are not required to have protection against EMP. Therefore, the study has the following objectives: determine the vulnerability of systems required for safe shutdown of a specific nuclear plant to the effects of EMP; establish how any safe shutdown systems vulnerable to EMP may best be hardened against it; and characterize to the extent possible, the effects of EMP on nuclear plants in general based upon the results for systems in the example plant. The systems of concern in an example plant were identified and defined. Then, estimates were made of the currents and voltages which might exist at key points if the plant were subjected to EMP. Concurrently, component damage thresholds were estimated. These two sets of estimates were combined to assess the vulnerability of selected components. Because nuclear plants are complex, a modest experimental program was conducted to verify (or reject) conclusions reached about signal distribution and attenuation in the plant electrical systems.

  12. NUCLEAR PROXIMITY FORCES

    E-Print Network [OSTI]

    Randrup, J.

    2011-01-01T23:59:59.000Z

    One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

  13. Nuclear scales

    SciTech Connect (OSTI)

    Friar, J.L.

    1998-12-01T23:59:59.000Z

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  14. Nuclear winter

    SciTech Connect (OSTI)

    Ehrlich, A.

    1984-04-01T23:59:59.000Z

    The 13 speakers at the October 1983 Conference on the World After Nuclear War each contributed specialized knowledge to the climatic and biological effects of nuclear war. The author highlights the findings of the TTAPS (named for its authors) study and confirmation by Soviet scientists on the nuclear winter. Atmospheric consequences would come from debris blocking sunlight and creating conditions of cold and darkness that could preclude the continued existence of life. The biological consequences of cold and darkness would be reduced photosynthesis, devastating losses of food, damage and death from ionizing radiation, and a breakdown of ecosystems. Impacts on the human population would be intensified by a breakdown in social services. The author summarizes points of discussion during the conference. 4 references.

  15. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensor NodesNuclear

  16. Nuclear Golf

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-12-06T23:59:59.000Z

    Broadcast Transcript: Pay no attention to that nuclear warhead behind the 18th hole; just shout "Fore!" and drive your Titleist down the fairway. In a development that is bizarre even by North Korean standards, the country is making a move to sell...

  17. Clinical Procedure Page 1 of 4 Nursing Practice Manual

    E-Print Network [OSTI]

    Oliver, Douglas L.

    of Nursing The University of Connecticut Health Center PROCEDURE FOR: Infusion Therapy: Accessing Implanted transparent dressing Solution to be infused 10 ml NS drawn up in 10 or 12 ml syringe Heparin solution (100 of Connecticut Health Center PROCEDURE FOR: Infusion Therapy: Accessing Implanted Central Venous Access Ports

  18. Clinical Procedure Page 1 of 5 Nursing Practice Manual

    E-Print Network [OSTI]

    Oliver, Douglas L.

    of Nursing The University of Connecticut Health Center PROCEDURE FOR: Infusion Therapy: Blood Draws from: ACTION POINTS OF EMPHASIS 1. Explain procedure to the patient. 2. Assess all medications and infusions. Clamp catheter and disconnect infusion from entering the port being sampled. 5. Prep the injection site

  19. Clinical Procedure Page 1 of 3 Nursing Practice Manual

    E-Print Network [OSTI]

    Oliver, Douglas L.

    of Nursing The University of Connecticut Health Center PROCEDURE FOR: Infusion Therapy: Preparation infusions must be infused via an infusion pump using guardrails, as applicable. Specific documentation is required for dose and volume infused on the paper or electronic record. 2. Verify and document dose and

  20. The University of Memphis Loewenberg School of Nursing

    E-Print Network [OSTI]

    Memphis, University of

    chairs to aid in recruitment and retention of renowned faculty who have earned distinction in nursing and educators. With 1,000 students enrolled in our programs and market demand increasing, we must enlarge our, explaining why she implemented "audience response system" technology in her classroom. An assistant professor

  1. LOUISIANA STATE UNIVERSITY HEALTH SCIENCE CENTER SCHOOL OF NURSING

    E-Print Network [OSTI]

    . Faculty will work closely with the student and preceptor to achieve clinical and course outcomes: 504-568-4106 Fax: 504-599-0573 #12;3 Dear Preceptor, Thank you for agreeing to serve as a clinical and the roles and responsibilities of faculty, students, preceptors, School of Nursing and clinical facility

  2. LOUISIANA STATE UNIVERSITY HEALTH SCIENCE CENTER SCHOOL OF NURSING

    E-Print Network [OSTI]

    . Faculty will work closely with the student and preceptor to achieve clinical and course outcomes-568-4106 Fax: 504-599-0573 #12;3 Dear Preceptor, Thank you for agreeing to serve as a clinical preceptor and the roles and responsibilities of faculty, students, preceptors, School of Nursing and clinical facility

  3. Community Health Nursing and a reviewer for five other

    E-Print Network [OSTI]

    Capecchi, Mario R.

    at Manoa; and dean, Kent State University College of Nursing. In line with her research interests--self-care are working to discover, develop, and deliver new treatments for brain disorders, including multiple sclerosis, autism, Alzheimer's and Parkinson's diseases, depression, and addiction. John A. White, Ph.D. private

  4. Nuclear Forensics | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forensics | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  5. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  6. WORKSHOP ON NUCLEAR DYNAMICS

    E-Print Network [OSTI]

    Myers, W.D.

    2010-01-01T23:59:59.000Z

    L. Wilets, "Theories of Nuclear Fission", Clarendon Press,of the nuclear force, result in lower calculated fission

  7. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROM: SUBJECT: USIUK Memorandum of Understanding between National Nuclear Security Administration's (NNSA) Associate Administrator for Defense Nuclear Security (AADNS)...

  8. INSTRUCTIONS FOR SUBMITTING NUCLEAR

    E-Print Network [OSTI]

    waste management proceedings. Keywords Nuclear, nuclear power plant, spent fuel, nuclear waste, data of Submitted Data 3 NUCLEAR POWER PLANT DATA REQUESTS 6 A. Environmental Impacts 6 B. Spent Fuel Generation 8 C. Spent Nuclear Fuel Storage 9 D. Spent Nuclear Fuel Transport and Disposal Issues 10 E. Interim Spent

  9. NURSE FACULTY LOAN PROGRAM EMPLOYMENT CERTIFICATION FORM [Applicant's Name] ___________________________________entered into a contractual agreement with the Duke University School of Nursing as

    E-Print Network [OSTI]

    Reif, John H.

    NURSE FACULTY LOAN PROGRAM EMPLOYMENT CERTIFICATION FORM [Applicant's Name in the Nurse Faculty Loan Program (NFLP). This program requires the participant to be employed full/her loan. Please complete the Employment Certification Form at the bottom and return to the following: Mail

  10. A one-dimensional Chandrasekhar-mass delayed-detonation model for the broad-lined Type Ia supernova 2002bo

    E-Print Network [OSTI]

    Blondin, Stéphane; Hillier, D John

    2015-01-01T23:59:59.000Z

    We present 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer simulations of a Chandrasekhar-mass delayed-detonation model which synthesizes 0.51 Msun of 56Ni, and confront our results to the Type Ia supernova (SN Ia) 2002bo over the first 100 days of its evolution. Assuming only homologous expansion, this same model reproduces the bolometric and multi-band light curves, the secondary near-infrared (NIR) maxima, and the optical and NIR spectra. The chemical stratification of our model qualitatively agrees with previous inferences by Stehle et al., but reveals significant quantitative differences for both iron-group and intermediate-mass elements. We show that +/-0.1 Msun (i.e., +/-20 per cent) variations in 56Ni mass have a modest impact on the bolometric and colour evolution of our model. One notable exception is the U-band, where a larger abundance of iron-group elements results in less opaque ejecta through ionization effects, our model with more 56Ni displaying a higher nea...

  11. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in dust cloud flames: Origins of dust explosion

    E-Print Network [OSTI]

    Ivanov, Michael A Liberman M F

    2015-01-01T23:59:59.000Z

    We examines regimes of the hydrogen flames propagation and ignition of mixtures heated by the radiation emitted from the flame. The gaseous phase is assumed to be transparent for radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. Depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the unreacted mixture can be either the increase of the flame velocity for uniformly dispersed particles or ignition deflagration or detonation ahead of the flame via the Zel'dovich gradient mechanism in the...

  12. Nuclear photonics

    SciTech Connect (OSTI)

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09T23:59:59.000Z

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  13. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security The Order establishes...

  14. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the great scientific challenges is

  15. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the great scientific

  16. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838Nuclear Detectionmore

  17. Nuclear Nonproliferation,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensor Nodes for

  18. NUCLEAR ENERGY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy NREL:Education &NTSF NUCLEAR

  19. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1981-01-01T23:59:59.000Z

    Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

  20. Initial measurements of BN-350 spent fuel in dry storage casks using the dual slab verification detonator

    SciTech Connect (OSTI)

    Santi, Peter Angelo [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Freeman, Corey R [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory; Williams, Richard B [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The Dual Slab Verification Detector (DSVD) has been developed, built, and characterized by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of 3He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. By performing DSVD measurements at several different locations around the outer surface of the DUC, a signature 'fingerprint' can be established for each DUC based on the neutron flux emanating from inside the dry storage cask. The neutron fingerprint for each individual DUC will be dependent upon the spatial distribution of nuclear material within the cask, thus making it sensitive to the removal of a certain amount of material from the cask. An initial set of DSVD measurements have been performed on the first set of dry storage casks that have been loaded with canisters of spent fuel and moved onto the dry storage pad to both establish an initial fingerprint for these casks as well as to quantify systematic uncertainties associated with these measurements. The results from these measurements will be presented and compared with the expected results that were determined based on MCNPX simulations of the dry storage facility. The ability to safeguard spent nuclear fuel is strongly dependent on the technical capabilities of establishing and maintaining continuity of knowledge (COK) of the spent fuel as it is released from the reactor core and either reprocessed or packaged and stored at a storage facility. While the maintenance of COK is often done using continuous containment and surveillance (C/S) on the spent fuel, it is important that the measurement capabilities exist to re-establish the COK in the event of a significant gap in the continuous CIS by performing measurements that independently confirm the presence and content of Plutonium (Pu) in the spent fuel. The types of non-destructive assay (NDA) measurements that can be performed on the spent fuel are strongly dependent on the type of spent fuel that is being safeguarded as well as the location in which the spent fuel is being stored. The BN-350 Spent Fuel Disposition Project was initiated to improve the safeguards and security of the spent nuclear fuel from the BN-350 fast-breeder reactor and was developed cooperatively to meet the requirements of the International Atomic Energy Agency (IAEA) as well as the terms of the 1993 CTR and MPC&A Implementing Agreements. The unique characteristics of fuel from the BN-350 fast-breeder reactor have allowed for the development of an integrated safeguards measurement program to inventory, monitor, and if necessary, re-verify Pu content of the spent fuel throughout the lifetime of the project. This approach includes the development of a safeguards measurement program to establish and maintain the COK on the spent fuel during the repackaging and eventual relocation of the spent-fuel assemblies to a long-term storage site. As part of the safeguards measurement program, the Pu content of every spent-fuel assembly from the BN-350 reactor was directly measured and characterized while the spent-fuel assemblies were being stored in the spent-fuel pond at the BN-350 facility using the Spent Fuel Coincidence Counter (SFCC). Upon completion of the initial inventory of the Pu content of the individual spent-fuel assemblies, the assemblies were repackaged into welded steel canisters that were filled with inert argon gas and held either four or six individual spent-fuel assemblies depending on the type of assembly that was being packaged. This repackaging of the spent-fuel assemblies was performed in order to improve the stability of the spent-fuel assemblies for long-term storage and increase the proliferation resistance of the spent fuel. To maintain the capability of verifying the presence of the spent-fuel assemblies inside the welded steel canisters, measurements were performed on the canis

  1. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01T23:59:59.000Z

    J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusin connection with nuclear fission. The need for a better

  2. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  3. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  4. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  5. NUCLEAR STRUCTURE DATABASE

    E-Print Network [OSTI]

    Firestone, R.B.

    2010-01-01T23:59:59.000Z

    CALIFORNIA NUCLEAR STRUCTURE DATABASE R. B. Firestone and E.11089 NUCLEAR STRUCTURE DATABASE by R.B. Firestone and E.iii- NUCLEAR STRUCTURE DATABASE R.B Firestone and E. Browne

  6. RELATIVISTIC NUCLEAR COLLISIONS: THEORY

    E-Print Network [OSTI]

    Gyulassy, M.

    2010-01-01T23:59:59.000Z

    Effects in Relativistic Nuclear Collisions", Preprint LBL-Pion Interferometry of Nuclear Collisions. 18.1 M.Gyulassy,was supported by the Office of Nuclear Physics of the U.S.

  7. Nuclear Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the...

  8. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect (OSTI)

    Wente, William Baker

    2005-06-01T23:59:59.000Z

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  9. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  10. SUMMARY OF PROPOSED AMENDMENT TO REGULATION FSU-2.024, TUITION AND FEES; MS-NURSE ANESTHESIA PROGRAM; MD TUITION

    E-Print Network [OSTI]

    Weston, Ken

    SUMMARY OF PROPOSED AMENDMENT TO REGULATION FSU-2.024, TUITION AND FEES; MS-NURSE ANESTHESIA for a new Master of Science in Nurse Anesthesia program at the Panama City Florida Campus. The new program

  11. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings...

  12. Nuclear Power Overview

    Broader source: Energy.gov (indexed) [DOE]

    San Onofre Nuclear Generating Station San Onofre Nuclear Generating Station Bob Ashe-Everest Southern California Edison 10 Incoming New Fuel Inspecting New Fuel SONGS Unit 1 Fuel...

  13. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09T23:59:59.000Z

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  14. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  15. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Radiological Advisory Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  16. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  17. Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  18. Courses: Nursing (NURS) Page 367Sonoma State University 2013-2014 Catalog nurS 313 BACCALAureAte nurSing perSpeCtiVeS ii (4)

    E-Print Network [OSTI]

    Ravikumar, B.

    goals of current health care system reform including nursing¿s expanded professional role in promoting health and mitigating health care disparities and inequities. Prerequisites are admission to the nursing, and communities. Determinants of health and operations of the health care system will be discussed

  19. MARY LOU (NOLL) SOLE, PhD, RN, CCNS, CNL, FAAN, FCCM University of Central Florida College of Nursing

    E-Print Network [OSTI]

    Wu, Shin-Tson

    of Infection Control. *Sole, M.L. & Bennet, M. (Under Review). Have airway management practices of nurses

  20. The Joys of Nuclear Engineering

    SciTech Connect (OSTI)

    Jon Carmack

    2009-10-02T23:59:59.000Z

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  1. The Joys of Nuclear Engineering

    ScienceCinema (OSTI)

    Jon Carmack

    2010-01-08T23:59:59.000Z

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  2. Patricia Flatley Brennan, PhD, RN, FAAN Lillian S. Moehlman-Bascom Professor of Nursing and Industrial Engineering

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Patricia Flatley Brennan, PhD, RN, FAAN Lillian S. Moehlman-Bascom Professor of Nursing. With an MSN in nursing and a PhD in engineering, Brennan is uniquely qualified to address patient care MSN in nursing from the University of Pennsylvania, and her MSIE and PhD in industrial engineering

  3. Clinical Procedure Page 1 of 5 Clinical Manual -Nursing Practice Manual

    E-Print Network [OSTI]

    Oliver, Douglas L.

    ­ Department of Nursing The University of Connecticut Health Center PROTOCOL FOR: Infusion Therapy: Management infusion of irritant or vesicant agents. The status of the IV site will be documented using the Phlebitis and Infiltration Recording Scales (see Appendix A). 2. The nurse should immediately stop all infusions when

  4. Clinical Procedure Page 1 of 2 Clinical Manual -Nursing Practice Manual

    E-Print Network [OSTI]

    Oliver, Douglas L.

    ­ Department of Nursing The University of Connecticut Health Center PROTOCOL FOR: Infusion Therapy: Equipment Hospital ­ Department of Nursing The University of Connecticut Health Center PROTOCOL FOR: Infusion Therapy should coincide with administration set changes. 11. Infusion pumps and other flow control devices should

  5. Clinical Procedure Page 1 of 3 Clinical Manual -Nursing Practice Manual

    E-Print Network [OSTI]

    Oliver, Douglas L.

    ­ Department of Nursing The University of Connecticut Health Center PROTOCOL FOR: Infusion Therapy: Infection protective equipment (PPE) shall be worn during all infusion procedures that potentially expose the nurse. Appropriate hand hygiene shall be performed before and after handling any component of the entire infusion

  6. USF Graduate Catalog 20142015 680http://health.usf.edu/nocms/nursing/

    E-Print Network [OSTI]

    Meyers, Steven D.

    health care issues such as heart disease, Alzheimer's/dementia, and cancer. b. Through the CON RESTOREUSF Graduate Catalog 20142015 680http://health.usf.edu/nocms/nursing/ SECTION 20http://health.usf.edu/nocms/nursing/ Changes to Note The follow curricular changes for the College

  7. PROGRAMME SPECIFICATION POSTGRADUATE PROGRAMMES Programme name Public Health (Health Visiting, School Nursing or District

    E-Print Network [OSTI]

    Weyde, Tillman

    in public health policy making and practice development in relation to the management and delivery1 PROGRAMME SPECIFICATION ­ POSTGRADUATE PROGRAMMES KEY FACTS Programme name Public Health (Health of the Health Visitor, School Nurse or District Nurse in the new NHS is changing in response to the health

  8. HUNTER COLLEGE OF THE CITY UNIVERSITY OF NEW YORK HUNTER-BELLEVUE SCHOOL OF NURSING

    E-Print Network [OSTI]

    Qiu, Weigang

    cr. PH 756 Public Health and Health Care Policy and Management 3cr. HPM 750 Public Health ManagementHUNTER COLLEGE OF THE CITY UNIVERSITY OF NEW YORK HUNTER-BELLEVUE SCHOOL OF NURSING 425 E. 25TH ST., N.Y., N.Y. 10010 MASTERS IN COMMUNITY/PUBLIC HEALTH NURSING/URBAN PUBLIC HEALTH (MS/MPH), 57 CREDITS

  9. BETTY WENDT MAYER, Ph.D., MSN, ARNP University of Central Florida College of Nursing

    E-Print Network [OSTI]

    Wu, Shin-Tson

    of Nursing Critical Care Extra. 102 (6), 24AA-25EE. Mayer, B. W. & Coulter, M. L. (2002). Partner abuse. L. (2002). Psychosocial aspects of partner abuse (Part II of a two-part series). American Journal of adult women (Part I of a two-part series). American Journal of Nursing, Critical Care Extra. 102 (5), 24

  10. ANNOUNCEMENT NUCLEAR ENGINEERING FACULTY POSITION

    E-Print Network [OSTI]

    Tennessee, University of

    ANNOUNCEMENT NUCLEAR ENGINEERING FACULTY POSITION The Department of Nuclear Engineering at the Assistant or Associate Professor level. These areas include, but are not limited to, nuclear system instrumentation & controls, monitoring and diagnostics, reactor dynamics, nuclear security, nuclear materials

  11. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16T23:59:59.000Z

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  12. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14T23:59:59.000Z

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  13. Nuclear Reaction Data Centers

    SciTech Connect (OSTI)

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01T23:59:59.000Z

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  14. Catalysinganenergyrevolution Nuclear Failures

    E-Print Network [OSTI]

    Laughlin, Robert B.

    extraction, fuel manufacture and management of spent fuel and waste. Currently, CEA is a large FrenchCatalysinganenergyrevolution France's Nuclear Failures The great illusion of nuclear energy greenpeace.org #12;Contents 2 Greenpeace International France's Nuclear Failures The French nuclear industry

  15. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15T23:59:59.000Z

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  16. Focus Article Nuclear winter

    E-Print Network [OSTI]

    Robock, Alan

    the climatic effects of nuclear war. Smoke from the fires started by nuclear weapons, especially the black in recorded human history. Although the number of nuclear weapons in the world has fallen from 70,000 at its and Russia could still produce nuclear winter. This theory cannot be tested in the real world. However

  17. The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions

    SciTech Connect (OSTI)

    LORENZ,JOHN C.

    2000-12-08T23:59:59.000Z

    Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.

  18. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    it would transfer nuclear technology. Washington Post. 26preferences: the export of sensitive nuclear technology.export of sensitive nuclear technology presents a kind of

  19. Dynamics of nuclear envelope and nuclear pore complex formation

    E-Print Network [OSTI]

    Anderson, Daniel J.

    2008-01-01T23:59:59.000Z

    Limited expression of nuclear pore membrane glycoprotein 210suggests cell-type specific nuclear pores in metazoans. Expand Dultz, E. (2008). Nuclear pore complex assembly through

  20. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  1. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  2. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  3. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

  5. Nuclear Safety Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

  6. NUCLEAR SCIENCE ANNUAL REPORT 1975

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Gove and A. H. Wapstra, Nuclear Data Tables 11, 127 (1972).P. Jackson, Chalk River Nuclear Laboratories Report (1975)national Conference on Nuclear Structure and Spec­ troscopy,

  7. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    the previous year. NUCLEAR TECHNOLOGY AND FUEL CYCLES China’third-generation nuclear technology and reactor design, withs own third-generation nuclear technology. Westing- house,

  8. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Nuclear Laboratories, AECL, Chalk River, Ontario, Canada.Nuclear Laboratories, AECL, Chalk River, Ontario, Canada. 1.Nuclear Laboratories, AECL, Chalk River, Ontario, Canada. 1.

  9. Reactor & Nuclear Systems Publications | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications The...

  10. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  11. Contaminant Boundary at the Faultless Underground Nuclear Test

    SciTech Connect (OSTI)

    Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

    2003-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision analysis (DDA) (Pohll and Mihevc, 2000). This new model includes the uncertainty in the three-dimensional spatial distribution of lithology and hydraulic conductivity from the 1999 model as well as the uncertainty in the other flow and transport parameters from the 2000 DDA model. Additionally, the new model focuses on a much smaller region than was included in the earlier models, that is, the subsurface within the UC-1 land withdrawal area where the 1999 model predicted radionuclide transport will occur over the next 1,000 years. The purpose of this unclassified document is to present the modifications to the CNTA groundwater flow and transport model, to present the methodology used to calculate contaminant boundaries, and to present the Safe Drinking Water Act and risk-derived contaminant boundaries for the Faultless underground nuclear test CAU.

  12. B53 Nuclear Bomb Dismantlement | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Dismantlement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  13. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    Spent Fuel Assay Using Nuclear Resonance Fluo- rescence,” Annual Meeting of the Institute of Nuclear Material Management,

  14. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    of the Institute of Nuclear Material Management, Tucson, AZ,Assay, Institute of Nuclear Materials Management 51st Annual

  15. Nuclear disarmament verification

    SciTech Connect (OSTI)

    DeVolpi, A.

    1993-12-31T23:59:59.000Z

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

  16. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Schively, Dixon P. (Richland, WA)

    1985-01-01T23:59:59.000Z

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  17. Triangle Universities Nuclear Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  18. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15T23:59:59.000Z

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  19. NUCLEAR PLANT AND CONTROL

    E-Print Network [OSTI]

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety method SOFTWARE SAFETY ANALYSIS OF DIGITAL PROTECTION SYSTEM REQUIREMENTS USING A QUALITATIVE FORMAL

  20. Hegemony and nuclear proliferation

    E-Print Network [OSTI]

    Miller, Nicholas L. (Nicholas LeSuer)

    2014-01-01T23:59:59.000Z

    Contrary to longstanding of predictions of nuclear tipping points, the number of states interested in nuclear weapons has sharply declined in recent decades. In contrast to existing explanations, this dissertation argues ...

  1. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  2. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

  3. Nuclear Nonproliferation Programs | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initiatives Nonproliferation Technology Nonproliferation Systems Safeguards and Security Technology International Safeguards Nuclear Material Detection and Characterization For...

  4. Nuclear Multifragmentation Critical Exponents

    E-Print Network [OSTI]

    Wolfgang Bauer; William Friedman

    1994-11-14T23:59:59.000Z

    We show that the critical exponents of nuclear multi-fragmentation have not been determined conclusively yet.

  5. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National Nuclear Data Center - 1952* High Flux Beam Reactor - 1964 Technical Support for NRC - 1974

  6. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

  7. Nuclear fact book

    SciTech Connect (OSTI)

    Hill, O.F.; Platt, A.M.; Robinson, J.V.

    1983-05-01T23:59:59.000Z

    This reference provides significant highlights and summary facts in the following areas: general energy; nuclear energy; nuclear fuel cycle; uranium supply and enrichment; nuclear reactors; spent fuel and advanced repacking concepts; reprocessing; high-level waste; gaseous waste; transuranic waste; low-level waste; remedial action; transportation; disposal; radiation information; environment; legislation; socio-political aspects; conversion factors; and a glossary. (GHT)

  8. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Demazière, Christophe

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazière

  9. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

  10. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  11. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  12. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and...

  13. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    the potential of nuclear power to combat global warming havecompetitive today, and for nuclear power to succeed, it must

  14. UCHC Competency Checklist: ORIENTATION Position Title: Registered Nurse, JDH Employee Name: Unit: Adult Ambulatory Infusion Center

    E-Print Network [OSTI]

    Oliver, Douglas L.

    : Adult Ambulatory Infusion Center Cluster Area: Adult Ambulatory Infusion Center Initials Signature Position Title: Registered Nurse, JDH Employee Name: Unit: Adult Ambulatory Infusion Center Cluster Area: Adult Ambulatory Infusion Center Initials Signature Initials Signature Initials Signature Revised 08

  15. The effects of 24 hour reality orientation nursing staff training on two groups of elderly residents

    E-Print Network [OSTI]

    Cardiff, Donna Kaye

    1980-01-01T23:59:59.000Z

    APPENDIX E: Four Scales Used for the Neasures of Resident Orientation, Staf f Attitudes toward the Elderly, a Staff Job Satis- faction and Nursing Staff Instruction and Code Porno . . . . . . . . . . . . 85 APPENDIX F: The Observer Rating Form 96...

  16. THE UNIVERSITY OF TENNESSEE HEALTH SCIENCE CENTER (UTHSC) 2014 NURSING PRE-MATRICULATION PROGRAM APPLICATION

    E-Print Network [OSTI]

    Cui, Yan

    1 THE UNIVERSITY OF TENNESSEE HEALTH SCIENCE CENTER (UTHSC) 2014 NURSING PRE-MATRICULATION PROGRAM: _________________________________________________________________________________ CITIZENSHIP: Are you a U.S. Citizen, non-citizen national, or foreign national who possesses a visa permitting

  17. Nursing home characteristics associated with methicillin-resistant Staphylococcus aureus (MRSA) Burden and Transmission

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    homes as reservoirs of MRSA: myth or reality? J Am Med DirStaphylococcus aureus (MRSA) in nursing homes for olderStudy into Acquisition of MRSA and Associated Risk Factors

  18. The University of Texas at Arlington College of Nursing Equivalency Chart for: South Plains College

    E-Print Network [OSTI]

    Huang, Haiying

    Course Name SPC Course Number SPC Course Name BIOL 2457 Human Anatomy and Physiology I BIOL 2401 Anatomy only if both courses were taken at SPC. If both courses were not taken at SPC contact a UTA nursing

  19. Nuclear spirals in galaxies

    E-Print Network [OSTI]

    Witold Maciejewski

    2006-11-08T23:59:59.000Z

    Recent high-resolution observations indicate that nuclear spirals are often present in the innermost few hundred parsecs of disc galaxies. My models show that nuclear spirals form naturally as a gas response to non-axisymmetry in the gravitational potential. Some nuclear spirals take the form of spiral shocks, resulting in streaming motions in the gas, and in inflow comparable to the accretion rates needed to power local Active Galactic Nuclei. Recently streaming motions of amplitude expected from the models have been observed in nuclear spirals, confirming the role of nuclear spirals in feeding of the central massive black holes.

  20. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28T23:59:59.000Z

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  1. The Exposure Rate Conversion Factor for Nuclear Fallout

    SciTech Connect (OSTI)

    Spriggs, G D

    2009-02-11T23:59:59.000Z

    Nuclear fallout is comprised of approximately 2000 radionuclides. About 1000 of these radionuclides are either primary fission products or activated fission products that are created during the burn process. The exposure rate one meter above the surface produced by this complex mixture of radionuclides varies rapidly with time since many of the radionuclides are short-lived and decay numerous times before reaching a stable isotope. As a result, the mixture of radionuclides changes rapidly with time. Using a new code developed at the Lawrence Livermore National Laboratory, the mixture of radionuclides at any given point in time can be calculated. The code also calculates the exposure rate conversion factor (ECF) for all 3864 individual isotopes contained in its database based on the total gamma energy released per decay. Based on the combination of isotope mixture and individual ECFs, the time-dependent variation of the composite exposure rate conversion factor for nuclear fallout can be easily calculated. As example of this new capability, a simple test case corresponding to a 10 kt, uranium-plutonium fuel has been calculated. The results for the time-dependent, composite ECF for this test case are shown in Figure 1. For comparison, we also calculated the composite exposure rate conversion factor using the conversion factors found in Federal Guidance Report No.12 (FGR-12) published by ORNL, which contains the conversion factors for approximately 1000 isotopes. As can be noted from Figure 1, the two functions agree reasonably well at times greater than about 30 minutes. However, they do not agree at early times since FGR-12 does not include all of the short-lived isotopes that are produced in nuclear fallout. It should also be noted that the composite ECF at one hour is 19.7 R/hr per Ci/m{sup 2}. This corresponds to 3148 R/hr per 1 kt per square mile, which agrees reasonably well with the value of 3000 R/hr per 1 kt per square mile as quoted by Glasstone. We have also tabulated the top 50 contributors to the exposure rate at various points in time following a detonation. These major contributors are given in Table 1.

  2. Diversity of methicillin-resistant staphylococcus aureus strains isolated from residents of 26 nursing homes in orange county, california

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    Staphylococ- cus aureus (MRSA) in the institutionalizedStaphylococcus aureus (MRSA) burden and transmission. BMCStaphylococcus aureus (MRSA) in nursing homes in a major UK

  3. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01T23:59:59.000Z

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  4. Coherent Nuclear Radiation

    E-Print Network [OSTI]

    V. I. Yukalov; E. P. Yukalova

    2004-06-22T23:59:59.000Z

    The main part of this review is devoted to the comprehensive description of coherent radiation by nuclear spins. The theory of nuclear spin superradiance is developed and the experimental observations of this phenomenon are considered. The intriguing problem of how coherence develops from initially incoherent quantum fluctuations is analysed. All main types of coherent radiation by nuclear spins are discussed, which are: free nuclear induction, collective induction, maser generation, pure superradiance, triggered superradiance, pulsing superradiance, punctuated superradiance, and induced emission. The influence of electron-nuclear hyperfine interactions and the role of magnetic anisotropy are studied. Conditions for realizing spin superradiance by magnetic molecules are investigated. The possibility of nuclear matter lasing, accompanied by pion or dibaryon radiation, is briefly touched.

  5. Instrumentation for Nuclear Applications

    SciTech Connect (OSTI)

    NONE

    1998-09-18T23:59:59.000Z

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards.

  6. Nuclear Science References Database

    E-Print Network [OSTI]

    B. Pritychenko; E. B?ták; B. Singh; J. Totans

    2014-07-08T23:59:59.000Z

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

  7. INDEPENDENT PARTICLE ASPECTS OF NUCLEAR DYNAMICS

    E-Print Network [OSTI]

    Robel, M.C.

    2011-01-01T23:59:59.000Z

    situations: nuclear vibrations, fission, collisions, theformulae to nuclear vibrations, fission, collisions, thenuclear phenomena: nuclear vibrations, fission, collisions,

  8. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05T23:59:59.000Z

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  11. Assessing the nuclear age

    SciTech Connect (OSTI)

    Ackland, L.; McGuire, S.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons and arms control. Topics considered include historical aspects, the arms race, nuclear power, flaws in the non-proliferation treaty, North-South issues, East-West confrontation, Soviet decision making with regard to national defense, US and Soviet perspectives on national security, ballistic missile defense (''Star Wars''), political aspects, nuclear winter, stockpiles, US foreign policy, and military strategy.

  12. Nuclear Spectra from Skyrmions

    SciTech Connect (OSTI)

    Manton, N. S. [DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2009-08-26T23:59:59.000Z

    The structures of Skyrmions, especially for baryon numbers 4, 8 and 12, are reviewed. The quantized Skyrmion states are compared with nuclear spectra.

  13. Nuclear Physics from QCD

    E-Print Network [OSTI]

    U. van Kolck

    2008-12-20T23:59:59.000Z

    Effective field theories provide a bridge between QCD and nuclear physics. I discuss light nuclei from this perspective, emphasizing the role of fine-tuning.

  14. Tag: nuclear deterrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    class"field-item even" property"content:encoded">

    The National Nuclear Security Administration has completed a major capital improvement project that has...

  15. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06T23:59:59.000Z

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  16. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UserResearcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns...

  17. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  18. Nuclear power attitude trends

    SciTech Connect (OSTI)

    Nealey, S.M.

    1981-11-01T23:59:59.000Z

    The increasing vulnerability of nuclear power to political pressures fueled by public concerns, particularly about nuclear plant safety and radioactive waste disposal, has become obvious. Since Eisenhower's Atoms-for-Peace program, utility and government plans have centered on expansion of nuclear power generating capability. While supporters have outnumbered opponents of nuclear power expansion for many years, in the wake of the Three Mile Island (TMI) accident the margin of support has narrowed. The purpose of this paper is to report and put in perspective these long-term attitude trends.

  19. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  20. Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25T23:59:59.000Z

    To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

  1. National Nuclear Security Administration

    Broader source: Energy.gov (indexed) [DOE]

    and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area...

  2. Nuclear | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclearNuclear Nuclear An error

  3. National Nuclear Science Week 2012 - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Know Nuclear National Nuclear Science Week January 23 - 27, 2012 Fostering a deeper public understanding Logos for: National Nuclear Science Week, Nuclear Workforce Initiative,...

  4. SCHOOL OF NURSING SUMMARY: UNLV CAREER OUTCOMES 2007 -2008 Summary of the Career Outcomes Survey conducted by Career Services staff after graduation

    E-Print Network [OSTI]

    Hemmers, Oliver

    SCHOOL OF NURSING SUMMARY: UNLV CAREER OUTCOMES 2007 - 2008 Summary of the Career Outcomes Survey over last year. Many Nursing students obtain positions through clinical experiences in this high demand

  5. Nuclear Reactions and Reactor Safety

    E-Print Network [OSTI]

    Onuchic, José

    Nuclear Reactions and Reactor Safety DO NOT LICK We haven't entirely nailed down what element nuclear chain reaction, 1938 #12;Nuclear Chain Reactions Do nuclear chain reactions lead to runaway explosions? or ? -Controlled nuclear chain reactions possible: control energy release/sec -> More

  6. Nuclear fuel cycle information workshop

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

  7. NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398

    E-Print Network [OSTI]

    Pázsit, Imre

    annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

  8. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    W. Bertozzi and R.J. Ledoux, “Nuclear resonance ?uorescenceUrakawa, “Compton ring for nuclear waste management,” Nucl.and B.J. Quiter, “Using Nuclear Resonance Fluorscence for

  9. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    204. Bhatia, Shyam. 1988. Nuclear rivals in the Middle East.of the merits of selective nuclear proliferation. Journal ofThe Case for a Ukranian nuclear deterrent. Foreign Affairs.

  10. Academic NurseFALL 2011 The JournAL oF CoLumbiA universiTy sChooL oF nursing And iTs ALumni Information

    E-Print Network [OSTI]

    Salzman, Daniel

    Tools for Self-Management 14 Bringing Mobile Technology to Ghanaian Midwives 12 Gregorio Luperon High the Information Technology and Nursing #12;Fall 2011 academic Nurse Columbia university lee c. Bollinger President for Self-Management 9 Wireless Informatics for Safe and Evidence-based (WISE) APN Care 11 National Center

  11. International Nuclear Safeguards | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | National Nuclear

  12. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Office of Environmental Management (EM)

    Information Agreement Between the U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, and the U.S. Department of Energy, Office of Environment,...

  13. Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory...

    Office of Legacy Management (LM)

    111989 Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia. Pennsylvania 19406 Dear Mr. Kinneman: -;' .-. 'W...

  14. Western Interstate Nuclear Compact State Nuclear Policy (Multiple States)

    Broader source: Energy.gov [DOE]

    Legislation authorizes states' entrance into the Western Interstate Nuclear Compact, which aims to undertake the cooperation of participating states in deriving the optimum benefit from nuclear and...

  15. (U) Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-23T23:59:59.000Z

    Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  16. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  17. Nuclear physics and cosmology

    SciTech Connect (OSTI)

    Coc, Alain [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, F-91405 Orsay Campus (France)

    2014-05-09T23:59:59.000Z

    There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.

  18. Nuclear Science & Engineering

    E-Print Network [OSTI]

    .90 76 Nuclear 19.9 1.68 25 Natural Gas 17.7 5.87 91 Hydroelectricity 6.6 Petroleum 3.0 5.39 88 Non Nuclear Science & Engineering Natural Gas Source: Sproule Associates Ltd. Generating costs are high. Gas shutdown: · Pickering 1 (515 MW(e), PHWR, Canada) reconnected 26 Sep 05 Final shutdowns: 3 reactors, Sweden

  19. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    Brief 2013-9 January 2013 China’s Nuclear Industry Aftera significant impact on the future of China’s nuclear power.the importance of safety as China builds more nuclear power

  20. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Letters 24, 1507 (1970); Nuclear Data B4, 663 (1970). 5. R.S. Hager and E. C. Seltzer, Nuclear Data A4, 1 (1968). 6. H.J. Nijgh, and R. Van Lieshout, Nuclear Spectroscopy Tables (

  1. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on “Nuclear Responsibility” on theof the Alliance for Nuclear Responsibility. The information

  2. THz Dynamic Nuclear Polarization NMR

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The ...

  3. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29T23:59:59.000Z

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  4. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    2013-9 January 2013 China’s Nuclear Industry After FukushimaMarch 2011 Fukushima nuclear accident has had a significanton the future of China’s nuclear power. First, it highlights

  5. UCI Program in Nursing Science PhD Admission Statement of Purpose Guidelines: please answer each of the following questions.

    E-Print Network [OSTI]

    Loudon, Catherine

    UCI Program in Nursing Science PhD Admission Statement of Purpose Guidelines: please answer each of the following questions. 1. Why are you pursing a PhD in Nursing Science? 2. What qualifications do you have to make you ready for PhD study? 3. What do you envision doing that will allow you to make a significant

  6. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    SciTech Connect (OSTI)

    Duane P. Moser; Ken Czerwinski; Charles E. Russell; Mavrik Zavarin

    2010-07-13T23:59:59.000Z

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this programâ??s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  7. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    SciTech Connect (OSTI)

    Duane P. Moser, Jim Bruckner, Jen Fisher, Ken Czerwinski, Charles E. Russell, and Mavrik Zavarin

    2010-09-01T23:59:59.000Z

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  8. Impacts of a nominal nuclear electromagnetic pulse on electric power systems

    SciTech Connect (OSTI)

    Kruse, V.J.; Nickel, D.L.; Bonk, J.J.; Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (USA))

    1991-04-01T23:59:59.000Z

    A high-altitude nuclear detonation several hundred kilometers above the central United States will subject much of the nation to an electromagnetic pulse (EMP) consisting of intense steep-front short- duration transient electromagnetic fields followed by a geomagnetic disturbance with a duration of tens of seconds. Since 1983, the Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more EMP events on the nation's electric energy supply. A nominal EMP environmental suitable for assessing geographically large systems has been used to provide an indication of EMP impacts on electric power systems. It was found that a single high-altitude burst, which significantly disturbs the geomagnetic field, could cause significant load and generation loss, but permanent damage would be isolated. Multiple bursts would increase the disturbance. Nevertheless, based on the effects of a nominal EMP environment, a long-term blackout is not expected since major components such as power transformers are not likely to be damaged. 60 refs., 10 figs., 8 tabs.

  9. Impacts of a nominal nuclear electromagnetic pulse on electric power systems; A probabilistic approach

    SciTech Connect (OSTI)

    Kruse, V.J.; Nickel, D.L.; Taylor, E.R. Jr. (ABB Power Systems Inc., Pittsburgh, PA (US)); Barnes, P.R. (Oak Ridge National Lab., TN (United States))

    1991-07-01T23:59:59.000Z

    This paper reports on a high-altitude nuclear detonation several hundred kilometers above the central United States that will subject much of the nation to an electromagnetic pulse (EMP) consisting of intense steep-front short-duration transient electromagnetic fields followed by a geomagnetic disturbance with a duration of tens of seconds. Since 1983, the Department of energy has been actively pursuing a research program to assess the potential impacts of one or more EMP events on the nation's electric energy supply. A nominal EMP environment suitable for assessing geographically large systems has been used to provide an indication of EMP impacts on electric power systems. It was found that a single high-altitude burst, which significantly disturbs the geomagnetic field, could cause significant load and generation loss, but permanent damage would be isolated. Multiple bursts would increase the disturbance. Nevertheless, based on the effects of a nominal EMP environment, a long term blackout is not expected since major components such as power transformers are not likely to be damaged.

  10. World nuclear outlook 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-29T23:59:59.000Z

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  11. World nuclear outlook 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  12. US nuclear weapons policy

    SciTech Connect (OSTI)

    May, M.

    1990-12-05T23:59:59.000Z

    We are closing chapter one'' of the nuclear age. Whatever happens to the Soviet Union and to Europe, some of the major determinants of nuclear policy will not be what they have been for the last forty-five years. Part of the task for US nuclear weapons policy is to adapt its nuclear forces and the oganizations managing them to the present, highly uncertain, but not urgently competitive situation between the US and the Soviet Union. Containment is no longer the appropriate watchword. Stabilization in the face of uncertainty, a more complicated and politically less readily communicable goal, may come closer. A second and more difficult part of the task is to deal with what may be the greatest potential source of danger to come out of the end of the cold war: the breakup of some of the cooperative institutions that managed the nuclear threat and were created by the cold war. These cooperative institutions, principally the North Atlantic Treaty Organization (NATO), the Warsaw Pact, the US-Japan alliance, were not created specifically to manage the nuclear threat, but manage it they did. A third task for nuclear weapons policy is that of dealing with nuclear proliferation under modern conditions when the technologies needed to field effective nuclear weapons systems and their command and control apparatus are ever more widely available, and the leverage over some potential proliferators, which stemmed from superpower military support, is likely to be on the wane. This paper will make some suggestions regarding these tasks, bearing in mind that the unsettled nature of that part of the world most likely to become involved in nuclear weapons decisions today must make any suggestions tentative and the allowance for surprise more than usually important.

  13. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  14. Pollux | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pollux | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  15. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  16. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  17. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  18. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  1. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  2. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  3. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  4. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  5. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  7. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  8. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  9. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  10. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  11. Evaluated Nuclear Data

    SciTech Connect (OSTI)

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01T23:59:59.000Z

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  12. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  13. Nuclear Renaissance Requires Nuclear Enlightenment W J Nuttall

    E-Print Network [OSTI]

    Aickelin, Uwe

    Nuclear Renaissance Requires Nuclear Enlightenment W J Nuttall Judge Business School, Cambridge University, Trumpington Street Cambridge, CB2 1AG UK Abstract Nuclear energy was developed by technocratic as a result of global anthropogenic climate change, nuclear power might actually represent a means to preserve

  14. NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842

    E-Print Network [OSTI]

    Demazière, Christophe

    annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G evenly distrib- uted throughout the core of a commercial nuclear reactor. The novelty

  15. Nuclear Regulatory Commission issuances

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

  16. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19T23:59:59.000Z

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  17. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  18. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  19. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    SciTech Connect (OSTI)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  20. Technical papers presented at the Defense Nuclear Agency Global Effects Review. Held at Moffett Field, California on 25-27 February 1986. Volume 1. Technical report, 25 February-12 May 1986

    SciTech Connect (OSTI)

    Not Available

    1986-05-15T23:59:59.000Z

    Contents include: urban area analysis and smoke production; a critical examination of methods of estimating the spatial distribution and magnitudes of urban fuel loadings; estimates of total combustible material in NATO and Warsaw pact countries; smoke emission and properties; source-term research program at Sandia National Laboratories; measurements of the radiative properties of smoke emissions from vegetative fuels: relationship of this data to desired information on the properties of urban smoke emissions; wildland fires and nuclear-winters: selected reconstructions of historic large fires; progress in developing the smoke source term for nuclear winter studies: major uncertainties; supermicron wind suspended particles and firestorm plume coagulation; high-reliability fire-start mechanism; collision-formation kinetics and optical properties of sub-micrometer, post-detonation aerosols; radiative properties of dust for input to dust source terms for models of the global effects of a nuclear exchange; micro-analytical techniques for characterizing the optical properties of soil aerosols; overview of DNA's nuclear dust re-analysis program.

  1. Nuclear Emergency Search Team

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20T23:59:59.000Z

    To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

  2. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    60 Vermont Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347...

  3. Pioneering the nuclear age

    SciTech Connect (OSTI)

    Seaborg, G.T.

    1988-09-01T23:59:59.000Z

    This paper reviews the historical aspects of nuclear physics. The scientific aspects of the early transuranium elements are discussed and arms control measures are reviewed. 11 refs., 14 figs. (LSP)

  4. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26T23:59:59.000Z

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  5. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07T23:59:59.000Z

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

  6. Relativistic Nuclear Collisions

    E-Print Network [OSTI]

    Reinhard Stock

    2009-07-29T23:59:59.000Z

    A comprehensive introduction is given to the field of relativistic nuclear collisions, and the phase diagram of strongly interacting matter. The content of this complex of reviews is shown.

  7. JPRS report, nuclear developments

    SciTech Connect (OSTI)

    NONE

    1991-03-28T23:59:59.000Z

    This report contains articles concerning the nuclear developments of the following countries: (1) China; (2) Japan, North Korea, South Korea; (3) Bulgaria; (4) Argentina, Brazil, Honduras; (5) India, Iran, Pakistan, Syria; (6) Soviet Union; and (7) France, Germany, Turkey.

  8. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01T23:59:59.000Z

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  9. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28T23:59:59.000Z

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  10. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Michael F. Simpson; Jack D. Law

    2010-02-01T23:59:59.000Z

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  11. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration FY 2011 - FY 2015 Budget Outlook Managing the NNSA 4.0% Science, Technology & Engineering 14.5% Stockpile Support 17.9% Preventing the Spread of...

  12. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

  13. PDFs for nuclear targets

    E-Print Network [OSTI]

    Karol Kovarik

    2010-06-25T23:59:59.000Z

    Understanding nuclear effects in parton distribution functions (PDF) is an essential component needed to determine the strange and anti-strange quark contributions in the proton. In addition Nuclear Parton Distribution Functions (NPDF) are critically important for any collider experiment with nuclei (e.g. RHIC, ALICE). Here two next-to-leading order chi^2-analyses of NPDF are presented. The first uses neutral current charged-lepton Deeply Inelastic Scattering (DIS) and Drell-Yan data for several nuclear targets and the second uses neutrino-nucleon DIS data. We compare the nuclear corrections factors (F_2^Fe/F_2^D) for the charged-lepton data with other results from the literature. In particular, we compare and contrast fits based upon the charged-lepton DIS data with those using neutrino-nucleon DIS data.

  14. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E. [Los Alamos National Laboratory

    2012-08-14T23:59:59.000Z

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  15. Western Nuclear Science Alliance

    SciTech Connect (OSTI)

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07T23:59:59.000Z

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  16. Nuclear Science Center - 4 

    E-Print Network [OSTI]

    Unknown

    2009-01-01T23:59:59.000Z

    How does the American public assess risk when it comes to national security issues? This paper addresses this question by analyzing variation in citizen probability assessments of the terrorism risk of nuclear power plants. Drawing on the literature...

  17. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  18. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH · Quality Assurance · Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  19. Reactor- Nuclear Science Center 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    A COMPARISON OF NUCLEAR REACTOR CONTROL ROOM DISPLAY PANELS A Thesis by FRANCES RENAE BOWERS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988... Major Subject: Industrial Engineering A COMPARISON OF NUCLEAR REACTOR CONTROL ROOM DISPLAY PANELS A Thesis by FRANCES RENAE BOWERS Approved as to style and content by: Rod er . oppa (Cha' of 'ttee) R. Quinn Brackett (Member) rome . Co gleton...

  20. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01T23:59:59.000Z

    10-01096) Journal of Nuclear Technology, in Press. [46] G.W.Library for Nuclear Science and Technology,” Nuclear Datacalculations,” Nuclear Data for Science and Technology