National Library of Energy BETA

Sample records for nuclear decommissioning costs

  1. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  2. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  3. Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361

    SciTech Connect (OSTI)

    Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike; Daniska, Vladimir

    2013-07-01

    The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

  4. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  5. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I. )

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

  6. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  7. Fossil plant decommissioning: Tracking deferred costs in a competitive market

    SciTech Connect (OSTI)

    Ferguson, J.S.

    1995-06-15

    Widespread concern over nuclear plant decommissioning has triggered similar interest in the decommissioning of fossil-fired steam generating stations. This rising interest stems in part from the emergence of a competitive market in electric generation, which, among other things, threatens impairment of assets. Fossil decommissioning issues are not nearly as contentious as those that attend nuclear plants. Nevertheless, the magnitude of cost estimates for fossil decommissioning, when expressed as a percentage of station investment, is high enough to demand attention from accountants and regulators.

  8. Decommissioning of the Iraq former nuclear complex

    SciTech Connect (OSTI)

    Abbas, Mohammed; Helou, Tuama; Ahmead, Bushra; Al-Atia, Mousa; Al-Mubarak, Mowaffak; Danneels, Jeffrey; Cochran, John; Sorenson, Ken; Coates, Roger

    2007-07-01

    Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of the Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)

  9. Confidentiality Agreement between the Nuclear Decommissioning...

    Office of Environmental Management (EM)

    the US Department of Energy and UK Nuclear Decommissioning Authority Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and ...

  10. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

  11. Confidentiality Agreement between the Nuclear Decommissioning Authority and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US Department of Energy | Department of Energy Services » Communication & Engagement » International Programs » Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority

  12. Nuclear Decommissioning Authority of the United Kingdom NDA ...

    Open Energy Info (EERE)

    Decommissioning Authority of the United Kingdom NDA Jump to: navigation, search Name: Nuclear Decommissioning Authority of the United Kingdom (NDA) Place: Cumbria, England, United...

  13. Russian nuclear-powered submarine decommissioning

    SciTech Connect (OSTI)

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  14. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    SciTech Connect (OSTI)

    Haffner, D.R.; Villelgas, A.J.

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  15. Idaho Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho Cleanup Project (ICP) successfully closed out a $796 million nuclear facility decontamination and decommissioning project. The work was completed about $440 million under cost.

  16. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Batandjieva, B.; Warnecke, E.; Coates, R.

    2008-01-15

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  17. Recent Trends in the Adequacy of Nuclear Plant Decommissioning Funding

    SciTech Connect (OSTI)

    Williams, D. G.

    2002-02-26

    Concerned about the potential cost and sufficiency of funds to decommission the nation's nuclear power plants, the Congress asked the U.S. General Accounting Office (GAO) to assess the adequacy, as of December 31, 1997, of electric utilities'; funds to eventually decommission their plants. GAO's report (GAO/RCED-99-75) on this issue addressed three alternative assumption scenarios--baseline (most likely), optimistic, and pessimistic; and was issued in May 1999. This paper updates GAO's baseline assessment of fund adequacy in 1997, and extends the analysis through 2000. In 2000, we estimate that the present value cost to decommission the nation's nuclear plants is about $35 billion; utility fund balances are about $29 billion. Both our two measures of funding adequacy for utilities are on average not only much above ideal levels, but also overall have greatly improved since 1997. However, certain utilities still show less than ideal fund balances and annual contributions. We suggest that the range of these results among the individual utilities is a more important policy measure to assess the adequacy of decommissioning funding than is the funding adequacy for the industry as a whole.

  18. Decommissioning Cost Estimating Factors And Earned Value Integration

    SciTech Connect (OSTI)

    Sanford, P.C.; Cimmarron, E.

    2008-07-01

    The Rocky Flats 771 Project progressed from the planning stage of decommissioning a plutonium facility, through the strip-out of highly-contaminated equipment, removal of utilities and structural decontamination, and building demolition. Actual cost data was collected from the strip-out activities and compared to original estimates, allowing the development of cost by equipment groupings and types and over time. Separate data was developed from the project control earned value reporting and compared with the equipment data. The paper discusses the analysis to develop the detailed factors for the different equipment types, and the items that need to be considered during characterization of a similar facility when preparing an estimate. The factors are presented based on direct labor requirements by equipment type. The paper also includes actual support costs, and examples of fixed or one-time start-up costs. The integration of the estimate and the earned value system used for the 771 Project is also discussed. The paper covers the development of the earned value system as well as its application to a facility to be decommissioned and an existing work breakdown structure. Lessons learned are provided, including integration with scheduling and craft supervision, measurement approaches, and verification of scope completion. In summary: The work of decommissioning the Rocky Flats 771 Project process equipment was completed in 2003. Early in the planning process, we had difficulty in identifying credible data and implementing processes for estimating and controlling this work. As the project progressed, we were able to collect actual data on the costs of removing plutonium contaminated equipment from various areas over the life of this work and associate those costs with individual pieces of equipment. We also were able to develop and test out a system for measuring the earned value of a decommissioning project based on an evolving estimate. These were elements that

  19. Estimating pressurized water reactor decommissioning costs: A user`s manual for the PWR Cost Estimating Computer Program (CECP) software. Draft report for comment

    SciTech Connect (OSTI)

    Bierschbach, M.C.; Mencinsky, G.J.

    1993-10-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the US Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personnel computer, provides estimates for the cost of decommissioning PWR plant stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  20. Estimating boiling water reactor decommissioning costs. A user`s manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment

    SciTech Connect (OSTI)

    Bierschbach, M.C.

    1994-12-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  1. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  2. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  3. Estimating boiling water reactor decommissioning costs: A user`s manual for the BWR Cost Estimating Computer Program (CECP) software. Final report

    SciTech Connect (OSTI)

    Bierschbach, M.C.

    1996-06-01

    Nuclear power plant licensees are required to submit to the US Nuclear Regulatory Commission (NRC) for review their decommissioning cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning boiling water reactor (BWR) power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  4. Impact of Lack of Consistent Free Release Standards on Decommissioning Projects and Costs

    SciTech Connect (OSTI)

    Devgun, J. S.

    2002-02-26

    While the Nuclear Regulatory Commission has had specific and dose-based standards for the release of liquids and gases for a long time, there are no regulatory mechanisms in place for the release of solid bulk materials from a nuclear power plant. Even though free releases of small quantities of solid materials continue under existing guidelines from the operating plants, the regulatory void creates major difficulties for the bulk materials that result from the decommissioning of a nuclear site. Decommissioning of a commercial nuclear power plant generates large quantities of solid bulk materials such as concrete, metal, and demolition debris. Disposition of such materials has a large impact on the overall decommissioning cost. Yet, there are no clear and cost-effective alternatives for the disposal of these materials from a regulatory perspective. This paper discusses the methodologies for clearance of solid materials1, their applicability to the disposition of bulk materials, and the impact of lack of consistent free release standards on the decommissioning projects and costs.

  5. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    SciTech Connect (OSTI)

    Larsson, Arne; Lidar, Per; Bergh, Niklas; Hedin, Gunnar

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  6. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  7. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    SciTech Connect (OSTI)

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun

    2013-07-01

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactive waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)

  8. Decommissioning Handbook

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  9. Statement of Intent No. 2 between DOE and the Nuclear Decommissioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Authority | Department of Energy Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and Northern Ireland for exchange of information concerning management of radioactive waste. Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority (236.93 KB)

  10. Regulatory process for decommissioning nuclear power reactors. Final report

    SciTech Connect (OSTI)

    1998-03-01

    This report provides regulatory guidance for utilities consistent with the changes in the decommissioning rule, 10 CFR50.82 as revised in July 1996. The purpose of this report is to explain the new rule in the context of related industry experience and to provide practical guidance to licensees contemplating or implementing a shutdown. Because the regulatory process is still rapidly evolving, this report reflects only a current status of the acceptable methods and practices derived from a review of the current regulations, guidance documents and industry experience for decommissioning a nuclear power reactor. EPRI anticipates periodic updates of this document to incorporate various utility experiences with decommissioning, and also to reflect any regulatory changes. The report provides a summary of ongoing federal agency and industry activities and the regulatory requirements that are currently applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning action plan, providing industry experience and guidance for licensees considering or implementing permanent shutdown.

  11. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    SciTech Connect (OSTI)

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  12. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  13. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    SciTech Connect (OSTI)

    Saleh, Lydia Ilaiza Ryong, Kim Tae

    2015-04-29

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of this paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.

  14. Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority

    Broader source: Energy.gov [DOE]

    Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority for exchange of information concerning management of radioactive waste.

  15. Decommissioning handbook

    SciTech Connect (OSTI)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  16. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect (OSTI)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo; Kim, Juyoul; Kim, Juyub

    2013-07-01

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  17. Engineering Evaluation/Cost Analysis (EE/CA) for Decommissioning of TAN-607 Hot Shop Area

    SciTech Connect (OSTI)

    J. P. Floerke

    2007-02-05

    Test Area North (TAN) -607, the Technical Support Facility, is located at the north end of the Idaho National Laboratory (INL) Site. U.S. Department of Energy Idaho Operations Office (DOE-ID) is proposing to decommission the northern section of the TAN-607 facility, hereinafter referred to as TAN-607 Hot Shop Area, under a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action (NTCRA). Despite significant efforts by the United States (U.S.) Department of Energy (DOE) to secure new business, no future mission has been identified for the TAN-607 Hot Shop Area. Its disposition has been agreed to by the Idaho State Historical Preservation Office documented in the Memorandum of Agreement signed October 2005 and it is therefore considered a surplus facility. A key element in DOE's strategy for surplus facilities is decommissioning to the maximum extent possible to ensure risk and building footprint reduction and thereby eliminating operations and maintenance cost. In addition, the DOE's 2006 Strategic Plan is ''complete cleanup of the contaminated nuclear weapons manufacturing and testing sites across the United States. DOE is responsible for the risk reduction and cleanup of the environmental legacy of the Nation's nuclear weapons program, one of the largest, most diverse, and technically complex environmental programs in the world. The Department will successfully achieve this strategic goal by ensuring the safety of the DOE employees and U.S. citizens, acquiring the best resources to complete the complex tasks, and managing projects throughout the United States in the most efficient and effective manner.'' TAN-607 is designated as a historical Signature Property by DOE Headquarters Advisory Council on Historic Preservation and, as such, public participation is required to determine the final disposition of the facility. The decommissioning action will place the TAN-607 Hot Shop Area in a final configuration that

  18. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  19. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  20. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    SciTech Connect (OSTI)

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-02-27

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.

  1. Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex

    SciTech Connect (OSTI)

    A. B. Culp

    2006-10-01

    Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning.

  2. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  3. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    SciTech Connect (OSTI)

    Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

    1987-09-01

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs.

  4. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect (OSTI)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  5. EM Renews Information-Sharing Agreement with United Kingdom's Nuclear Decommissioning Authority

    Broader source: Energy.gov [DOE]

    PHOENIX – EM’s top official this week renewed an agreement between DOE and the U.K.’s Nuclear Decommissioning Authority (NDA) that expands the scope of their information sharing.

  6. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  7. DECOMMISSIONING OF NUCLEAR FACILITIES IN GERMANY - STATUS AT BMBF SITES

    SciTech Connect (OSTI)

    Papp, R.; Komorowski, K.

    2002-02-25

    In a period of approximately 40 years prior to 1994, the German Federal Government had spent about {approx} 15 billion to promote nuclear technology. These funds were earmarked for R&D projects as well as demonstration facilities which took up operation between 1960 and 1980. These BMBF (Federal Ministry for Research) facilities were mainly located at the sites of the federal research centers at Juelich and Karlsruhe (the research reactors AVR, FR2, FRJ-1, KNK, and MZFR, the pilot reprocessing plant WAK) but included also the pilot plants SNR-300 and THTR-300 for fast breeder and high-temperature gas-cooled reactor development, respectively, and finally the salt mine Asse which had been used for waste emplacement prior to conversion into an underground research laboratory. In the meantime, almost all of these facilities were shut down and are now in a state of decommissioning and dismantling. This is mainly due to the facts that R&D needs are satisfied or do not exist any more and that, secondly, the lack of political consensus led to the cancellation of advanced nuclear technology.

  8. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  9. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    SciTech Connect (OSTI)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-15

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample

  10. Implementing 'Continuous Improvement' in the U.S. Nuclear Regulatory Commission's Decommissioning Program

    SciTech Connect (OSTI)

    Orlando, D. A.; Buckley, J. T.; Johnson, R. L.; Gillen, D. M.

    2006-07-01

    The United States Nuclear Regulatory Commission's (US NRC's) comprehensive decommissioning program encompasses the decommissioning of all US NRC licensed facilities, ranging from the termination of routine licenses for sealed sources, to the closure of complex materials sites and nuclear power reactor facilities. Of the approximately 200 materials licenses that are terminated each year, most are routine and require little, if any, remediation to meet the US NRC unrestricted release criteria. However, some present technical and policy challenges that require large expenditures of resources, including a few complex materials sites that have requested license termination under the restricted-use provisions of 10 CFR 20.1403. Fiscal constraints to reduce budgeted resources in the decommissioning program, as well as concerns over the time to complete the decommissioning process have led to actions to improve the program and use resources more efficiently. In addition, the US NRC's Strategic Plan requires efforts to identify and implement improvements to US NRC programs in order to improve efficiency, effectiveness, timeliness, and openness, of the US NRC's activities, while maintaining the necessary focus on safety. Decommissioning regulations, and more recently the analysis of several issues associated with implementing those regulations, also have been significant catalysts for improvements in the decommissioning program. Actions in response to these catalysts have resulted in a program focused on the management of complex sites in a comprehensive, consistent, and risk-informed manner, as opposed to the past practice of focusing on sites deemed to be problematic. This paper describes the current status of the decommissioning of US NRC-licensed nuclear facilities, including an overview of recent decommissioning project completion efforts. It provides a detailed summary of past, current, and future improvements in the US NRC decommissioning program including the

  11. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of

  12. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  13. DECOMMISSIONING OF THE NUCLEAR FACILITIES OF VKTA AT THE ROSSENDORF RESEARCH SITE

    SciTech Connect (OSTI)

    U. Helwig, W. Boessert

    2003-02-27

    VKTA decommissioned the old nuclear facilities of former GDR's (German Democratic Republic) Central Institute of Nuclear Research which was closed end of 1991. VKTA is responsible for fissile material and waste management, environmental and radiation protection and runs an accredited laboratory for environmental and radionuclide analytics. The Rossendorf research site is located east of the city of Dresden. The period from 1982 to about 1997 was mainly characterized by obtaining the necessary licenses for decommissioning and developing a new infrastructure (i.e. waste treatment facility, interim storages for fissile material and waste, clearance monitoring facility). The decommissioning work has been in progress since that time. The decommissioning projects are concentrated on three complexes: (1) the reactors and a fuel development and testing facility, (2) the radioisotope production facilities, and (3) the former liquid and solid waste storage facilities. The status of decommissioning progress and treatment of the residues will be demonstrated. Finally an outlook will be given on the future tasks of VKTA based on the ''Conception VKTA 2000 plus'', which was confirmed by the Saxonian government last year.

  14. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  15. Decommissioning Lines-of-Inquiry for Design Review of New Nuclear Facilities

    SciTech Connect (OSTI)

    Negin, C.A.; Urland, C.S.

    2008-01-15

    An independent review of the design of the Salt Waste Processing Facility (SWPF) at Savannah River included a requirement to address the ability to decommission the facility. This paper addresses the lines of inquiry (that were developed for the review and their use in future for reviews of other projects, referred to herein as 'DDLOI'. Decommissioning activities for almost any type of facility are well within the technological state-of-the-art. The major impacts for complications resulting from insufficient consideration during design of a new facility that involves radioactive processes and/or material is the cost of: a) gaining access to high radiation areas and b) dealing with high levels of contamination. For this reason, the DDLOI were developed as a way of raising the awareness of designers and design reviewers to design features that can impede or facilitate ultimate decommissioning. The intent is that this report can be used not only for review, but also by engineers in the early stages of design development when requirements are being assembled. The focus for the DDLOI is on types of facilities that contain nuclear and/or radioactive processes and materials. The level of detail is more specific than would be found in decommissioning plans prepared for regulatory purposes. In commencing this review, the author's could find no precedent for a systematic review of design for decommissioning that included results of a review. Therefore, it was decided to create a report that would provide detailed lines of inquiry along with the rationale for each. The resulting DDLOI report included 21 topical areas for design review. The DDLOI combined the authors' experience in developing baselines for facilities to be deactivated or demolished with prior publications by the U.S. Army and the International Atomic Energy Agency. These two references were found via an Internet search and were the only ones judged to be useful at a field application level. Most others

  16. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    SciTech Connect (OSTI)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  17. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    SciTech Connect (OSTI)

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  18. Session 31B - Panel: Opportunities in the UK with the Nuclear Decommissioning Authority (NDA)

    SciTech Connect (OSTI)

    Benda, Gary; Hayes, David; Gorham, Ron; Wareing, Mark; Simper, Adrian; Selby, Terry

    2006-07-01

    The NDA participated in a panel session 31B on Wednesday afternoon starting at 3:15. The NDA is a non-departmental public body, set up in April 2005 under the Energy Act 2004 to take strategic responsibility for the UK's nuclear legacy. Details of their organization and history are located on their web site at www.nda.gov.uk. Also copies of their Power Point presentations made at WM'06 are available on their web site. Their core objective is to ensure that the 20 civil public sector nuclear sites under our ownership are decommissioned and cleaned up safely, securely, cost effectively and in ways that protect the environment for this and future generations. They lead the development of a unified and coherent decommissioning strategy, working in partnership with regulators and site licensees to achieve best value, optimum impact on local communities, and the highest environmental standards. The NDA's main task is the decommissioning and clean up of civil nuclear sites. If the Government decides it is necessary, however, the Energy Act 2004 allows the NDA to take responsibility for sites currently operated by, or on behalf of, the Ministry of Defence (MoD). Resources will then be transferred from the MoD to meet the costs of clean up. The NDA made a number of presentations to allow conference delegates the opportunity to understand some of the major aspects of their work and to interact with NDA staff. These included the following topics and gave opportunity for audience discussion: - A brief presentation to update on progress by the NDA; - Outline of low level waste management and the prioritisation process; - Discussion of the competition schedule related to low level waste management and the Drigg site. The following presentations and handout were delivered in various sessions of the conference as noted below and are available on their web page including the WM'06 Plenary Session presentation by Sir Anthony Cleaver, Chairman of the NDA. During Session 31B, the

  19. U.S. Department of Energy Provides Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites

    Broader source: Energy.gov [DOE]

    Washington D.C. - The U.S. Department of Energy (DOE) today released its Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power...

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  1. Trip report: European Communities 1989 International Conference on Decommissioning of Nuclear Installations, Brussels, Belgium, October 24-27, 1989

    SciTech Connect (OSTI)

    Rankin, W.N.

    1989-01-01

    The European community is conducting research on the decommissioning of nuclear installations. The prime objective is to develop effective techniques to ensure the protection of man and his environment against the potential hazards of nuclear installations that have been shut down. The results of the 1979--1983 research program were presented in a conference held in Luxembourg. This program was primarily concerned with decommissioning nuclear power plants. The 1984--1988 program was extended to all types of nuclear installations. Fuel fabrication, enrichment and reprocessing plants, and research and development facilities having fulfilled their useful purposes are also awaiting decommissioning. This Program has produced numerous scientific and technical achievements. Great progress has in particular been achieved in the reduction of metal waste arising from decommissioning, due to advances in areas such as the development of aggressive decontamination procedures and of techniques for melting and recycling low-level radioactive waste metal.

  2. Cost savings from nuclear regulatory reform: An econometric model

    SciTech Connect (OSTI)

    Canterbery, E.R. |; Johnson, B.; Reading, D.

    1996-01-01

    The nuclear-generated power touted in the 1950s as someday being {open_quotes}too cheap to meter{close_quotes} got dismissed in the 1980s as incapable of being both safe and cost effective. Today, less than 20 percent of American`s electricity is nuclear-generated, no new plants are planned or on order, and some of the earliest units are scheduled for decommissioning within the next decade. Even so, interest in nuclear power has been revived by increasing energy demands, concerns about global warming, and the uncertainty surrounding oil resources in the Persian Gulf. As a long-term alternative to fossil fuels, atomic energy offers the important advantages of clean air and domestic availability of fuel. But these advantages will count for little unless and until the costs of nuclear power can be seen as reasonable. The authors premise is that the relevant costs are those of providing safe and environmentally clean electric energy. To the extent that increased costs have resulted from increasingly stringent regulations, they reflect the internalization of external costs. Indeed, the external costs of nuclear power (particularly safety and environmental protection) have been internalized to a greater degree than with most alternative fuel sources used by electric utilities. Nuclear construction costs are properly compared with those of alternative sources only after the latter are adjusted for environmental damage and endangerment, including, as examples, the costs of oil spills, of building double-hulled tankers, and of building off-shore offloading facilities. A shift to nuclear sources could reduce these costs whereas it would increase disposal costs for radioactive materials. The authors contend that a better understanding of nuclear plant construction costs is pivotal to a balanced evaluation of the merits of uranium relative to other fuel choices. 12 refs., 2 figs., 5 tabs.

  3. Safeguards considerations related to the decontamination and decommissioning of former nuclear weapons facilities

    SciTech Connect (OSTI)

    Crawford, D.

    1995-12-31

    In response to the post-Cold War environment and the changes in the U. S. Department of Energy defense mission, many former nuclear operations are being permanently shut down. These operations include facilities where nuclear materials production, processing, and weapons manufacturing have occurred in support of the nation`s defense industry. Since defense-related operations have ceased, many of the classification and sensitive information concerns do not exist. However, nuclear materials found at these sites are of interest to the DOE from environmental, safety and health, and materials management perspectives. Since these facilities played a role in defense activities, the nuclear materials found at these facilities are considered special nuclear materials, primarily highly enriched uranium and/or plutonium. Consequently, these materials pose significant diversion, theft, and sabotage threats, and significant nuclear security issues exist that must be addressed. This paper focuses on the nuclear materials protection issues associated with facility decommissioning and decontamination, primarily safeguards.

  4. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    SciTech Connect (OSTI)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  5. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    SciTech Connect (OSTI)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  6. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect (OSTI)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  7. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  10. Environmental Regulation of the Nuclear Industry in England and Wales in an era of Restructuring and Accelerated Decommissioning

    SciTech Connect (OSTI)

    Parker, I.W.; Weedon, C. J.

    2006-07-01

    In 2005 a large part of the UK Nuclear Industry was restructured with a new national body, the Nuclear Decommissioning Authority (NDA), being responsible for all the assets and liabilities of the nationally owned reactors and fuel cycle facilities. The former owners are now operating and in many cases decommissioning the facilities under contract to the NDA. As the body responsible for enforcing most environmental legislation in England and Wales, the Environment Agency has reviewed its regulatory approach to the Industry. This is to ensure that our responsibility to protect and enhance the environment is met whilst considering appropriately other key drivers impacting on all sectors of environmental regulation. Factors influencing this review include: - Greater public interest and concern over nuclear issues; - Greater transparency of strategies, plans and decisions in the nuclear industry; - The need to ensure that sustainable protection of the environment remains a constant feature of environmental regulation; - The need for a proportionate approach to regulation in the non-prescriptive UK legislative system; - Being effective and efficient in a period when all types of regulation are under Government and public scrutiny; - The aim of the NDA to achieve safe, secure, cost-effective, accelerated and environmentally responsible decommissioning and clean up in part by competing the management of the facilities. This has involved - Constructive liaison with the NDA both before and after its commencement to ensure we are both aware of each other's concerns; - Taking a strong influencing role at strategic and operational levels; - Putting in position arrangements for our involvement in the competitive process; - Liaison at an early stage with the industry's plans for future work; - Establishing greater clarity in our strategy and plans, notably with re-examination of the requirements of our authorisations and permits; - Establishing a new assessment resource (the

  11. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  12. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect (OSTI)

    Sullivan, T.

    2014-09-24

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  13. Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

  14. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  15. DECOMMISSIONING OF SHIELDED FACILITIES AT WINFRITH USED FOR POST IRRADIATION EXAMINATION OF NUCLEAR FUELS & OTHER ACTIVE ITEMS

    SciTech Connect (OSTI)

    Miller, K.D.; Parkinson, S.J.; Cornell, R.M.; Staples, A.T.

    2003-02-27

    This paper describes the approaches used in the clearing, cleaning, decontamination and decommissioning of a very large suite of seven concrete shielded caves and other facilities used by UKAEA at Winfrith Technology Centre, England over a period of about 30 years for the postirradiation examination (PIE) of a wide range of nuclear fuels and other very active components. The basic construction of the facilities will first be described, setting the scene for the major challenges that 1970s' thinking posed for decommissioning engineers. The tendency then to use large and heavy items of equipment supported upon massive steel bench structures produced a series of major problems that had to be overcome. The means of solving these problems by utilization of relatively simple and inexpensive equipment will be described. Later, a further set of challenges was experienced to decontaminate the interior surfaces to allow man entries to be undertaken at acceptable dose rates. The paper will describe the types of tooling used and the range of complementary techniques that were employed to steadily reduce the dose rates down to acceptable levels. Some explanations will also be given for the creation of realistic dose budgets and the methods of recording and continuously assessing the progress against these budgets throughout the project. Some final considerations are given to the commercial approaches to be adopted throughout this major project by the decommissioning engineers. Particular emphasis will be given to the selection of equipment and techniques that are effective so that the whole process can be carried out in a cost-effective and timely manner. The paper also provides brief complementary information obtained during the decommissioning of a plutonium-contaminated facility used for a range of semi-experimental purposes in the late 1970s. The main objective here was to remove the alpha contamination in such a manner that the volume of Plutonium Contaminated Materials (P

  16. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  17. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    SciTech Connect (OSTI)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-02-26

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

  18. Nuclear processing - a simple cost equation or a complex problem?

    SciTech Connect (OSTI)

    Banfield, Z.; Banford, A.W.; Hanson, B.C.; Scully, P.J.

    2007-07-01

    BNFL has extensive experience of nuclear processing plant from concept through to decommissioning, at all stages of the fuel cycle. Nexia Solutions (formerly BNFL's R and D Division) has always supported BNFL in development of concept plant, including the development of costed plant designs for the purpose of economic evaluation and technology selection. Having undertaken such studies over a number of years, this has enabled Nexia Solutions to develop a portfolio of costed plant designs for a broad range of nuclear processes, throughputs and technologies. This work has led to an extensive understanding of the relationship of the cost of nuclear processing plant, and how this can be impacted by scale of process, and the selection of design philosophy. The relationship has been seen to be non linear and so simplistic equations do not apply, the relationship is complex due to the variety of contributory factors. This is particularly evident when considering the scale of a process, for example how step changes in design occurs with increasing scale, how the applicability of technology options can vary with scale etc... This paper will explore the contributory factor of scale to nuclear processing plant costs. (authors)

  19. Development And Implementation Of A Strategic Technical Baseline Approach For Nuclear Decommissioning And Clean Up Programmes In The UK

    SciTech Connect (OSTI)

    Brownridge, M.; Ensor, B.

    2008-07-01

    The NDA mission as set out within the Energy Act 2004 and stated in the NDA strategy is clear: - 'to deliver a world class programme of safe, cost-effective, accelerated and environmentally responsible decommissioning of the UK's civil nuclear legacy in an open and transparent manner and with due regard to the socio-economic impacts on our communities. Critical to achieving the NDA main objective and overall mission is to accelerate and deliver clean-up programmes through the application of appropriate and innovative technology. The NDA remit also requires us to secure good practice by contractors and carry out and promote research into matters relating to the decommissioning and clean up of nuclear installations and sites. NDA have defined a strategic approach for the underpinning of operational and decommissioning activities where each nuclear site is required to write within the Life Time Plans (LTP) the proposed technical baseline for those activities. This enables the robustness of the activities to be assessed, the gaps and opportunities and accompanying Research and Developments (R and D) requirements to be highlighted and investment to be targeted at key technical issues. NDA also supports the development of a commercial framework where innovation is encouraged and improvements can be demonstrated against the technical baseline. In this paper we will present NDA's overall strategic approach, the benefits already realised and highlight the areas for continued development. In conclusion: The development and implementation of a strategic approach to robustly underpin the technical components of the lifetime plans for operational and decommissioning activities on NDA sites has been extremely successful. As well as showing how mature technology assumptions are and where the key gaps and risks are it has also provided a method for highlighting opportunities to improve on that baseline. The use of a common template across all NDA LTPs has enabled direct comparison

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  1. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  2. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  3. Systematic Approach for Decommissioning Planning and Estimating

    SciTech Connect (OSTI)

    Dam, A. S.

    2002-02-26

    Nuclear facility decommissioning, satisfactorily completed at the lowest cost, relies on a systematic approach to the planning, estimating, and documenting the work. High quality information is needed to properly perform the planning and estimating. A systematic approach to collecting and maintaining the needed information is recommended using a knowledgebase system for information management. A systematic approach is also recommended to develop the decommissioning plan, cost estimate and schedule. A probabilistic project cost and schedule risk analysis is included as part of the planning process. The entire effort is performed by a experienced team of decommissioning planners, cost estimators, schedulers, and facility knowledgeable owner representatives. The plant data, work plans, cost and schedule are entered into a knowledgebase. This systematic approach has been used successfully for decommissioning planning and cost estimating for a commercial nuclear power plant. Elements of this approach have been used for numerous cost estimates and estimate reviews. The plan and estimate in the knowledgebase should be a living document, updated periodically, to support decommissioning fund provisioning, with the plan ready for use when the need arises.

  4. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  5. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of

  6. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    SciTech Connect (OSTI)

    Weigl, M. [Forschungszentrum Karlsruhe GmbH, Projekttragerforschungszentrum Karlsruhe (PTKA-WTE), Karlsruhe (Germany)

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich and Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)

  7. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    SciTech Connect (OSTI)

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  9. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  11. Decommissioning Plan RM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In a decommissioning project the disposition of waste can be a significant portion of the project costs and both the cost and logistics of waste management must be adequately ...

  12. Decontamination and decommissioning of the Shippingport Atomic Power Station - a retrospective

    SciTech Connect (OSTI)

    Usher, J.M. ); Yannitell, D.M. )

    1992-01-01

    The 72 MW Shippingport Atomic Power Station (SAPS) first achieved criticality in December 1957 and was operated thereafter for almost 25 years. During the period October 1984 to December 1989, the U.S. Department of Energy (DOE) carried out the Shippingport Decommissioning Project, marking the world's first commercial sized nuclear power plant decommissioning. The experience gained from this project established the foundation for engineering, planning, and cost estimating for future decommissioning projects.

  13. A Strategy for Skills to meet the demands of Nuclear Decommissioning and Clean-up in the UK

    SciTech Connect (OSTI)

    Brownridge, M.; Ensor, B.

    2008-07-01

    The NDA remit as set out within the Energy Act includes - 'to ensure the availability of skills required to deliver the overall decommissioning and nuclear clean-up mission'. The NDA approach to meeting their statutory obligation is by: - finding the best ways of re-training, re-skilling or re-deploying people in a way that encourages a more flexible workforce; - identifying and communicating the skills and workforce requirements to deliver the mission; and - developing the infrastructure and capability initiatives in line with long term needs, for example, a National Skills Academy for Nuclear, Nuclear Institute, National Graduate Scheme, and - developing locally specific provision. Firstly, NDA has set the requirement for nuclear sites to write down within the Life Time Plans (LTP), at a high level, their Site Skills Strategies; furthermore, a National Skills Working Group has been established to develop tactical cross sector solutions to support the NDA's Skills Strategy. In support of the short, medium and long term needs to meet demands of the NDA sites and the nuclear decommissioning sector, as well as being aware of the broader nuclear sector, investments have been made in infrastructure and skills programmes such as: - A National Skills Academy for Nuclear - including UK wide representation of the whole nuclear sector; - A Nuclear Institute in partnership with the University of Manchester focussing on world class research and skills in Radiation Sciences and Decommissioning Engineering; - Post Graduate sponsorship for decommissioning related projects; - A National Graduate Scheme partnership with nuclear related employers; - Vocational qualifications and Apprenticeship Schemes - Engaging 14-19 year old students to encourage the take up of Science related subjects; and - A sector wide 'Skills Passport'. In conclusion: The skills challenge has many dimensions but requires addressing due to the clear link to improved business performance and the availability

  14. Decommissioning Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioning Documents PDF icon Decommissioning Documents More Documents & Publications Decommissioning Benchmarking Study Final Report Decommissioning Handbook ...

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  16. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  17. In-Situ Decommissioning

    Broader source: Energy.gov [DOE]

    In-Situ Decommissioning (ISD) is the permanent entombment of a facility that contains residual radiological and/or chemical contamination.  The ISD approach is a cost-effective alternative to both...

  18. Levelized Costs for Nuclear, Gas and Coal for Electricity, under...

    Office of Scientific and Technical Information (OSTI)

    Conference: Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Citation Details In-Document Search Title: Levelized Costs for Nuclear, Gas and ...

  19. Sorption (Kd) measurements in support of dose assessments for Zion Nuclear Station Decommissioning

    SciTech Connect (OSTI)

    Yim S. P.; Sullivan T.; Milian, L.

    2012-12-12

    The Zion Nuclear Power Station is being decommissioned. ZionSolutions proposes to leave much of the below grade structures in place and to fill them with “clean” concrete demolition debris from the above grade parts of the facility. This study, commissioned by ZionSolutions and conducted by the Brookhaven National Laboratory (BNL) was performed to provide site-specific data for performance assessment calculations to support the request to terminate the NRC license and allow unrestricted use of the facility. Specifically, this study measured the distribution coefficient for five radionuclides of concern using site-specific soils and groundwater. The distributions coefficient is a measure of the amount of the radionuclide that will remain sorbed to the soil or concrete that is present relative to the amount that will remain in solution. A high distribution coefficient indicates most of the radionuclide will remain on the solid material and will not be available for transport by the groundwater. The radionuclides of concern are Fe-55, Co-60, Ni-63, Sr-90, and Cs-137. Tests were performed following ASTM C1733-10, Standard Test Methods for Distribution Coefficients of Inorganic Species by the Batch Method. Sr-85 was used in the testing as an analogue for Sr-90 because it behaves similarly with respect to sorption and has a gamma emission that is easier to detect than the beta emission from Sr-90. Site-specific soils included disturbed sand (sand removed during construction and used as backfill), native sand, silt/clay and silt. In addition, concrete cores from the Unit-1 Containment Building and the Crib House were broken into particles less than 2 mm in size and tested to obtain distribution coefficients for the five nuclides.

  20. Role of the statistician in the decommissioning of the New Brunswick Laboratory and other nuclear facilities

    SciTech Connect (OSTI)

    Gilbert, R.O.

    1980-12-01

    This report examines what the statistician can contribute to decommissioning operations, with particular emphasis on the New Brunswick Laboratory (NBL) currently scheduled for decommissioning beginning in FY81. In the opinion of the author, a professional statistician should be a full member of the planning team directing decommissioning operations at the New Brunswick Laboratory. This opinion is based in part on the familiarity with the valuable contributions made by statisticians toward the cleanup of transuranics in soil on the Enewetak Atoll. More generally, however, the professional statistician can help plan the decommissioning effort to help ensure that representative data are obtained, analyzed and, interpreted in appropriate ways so that RA decisions can be made with the required confidence. The statistician's contributions at the NBL could include providing guidance on the number and location of samples and in-situ measurements, analyzing and interpreting these data, designing a data management and documentation system, interfacing with the certification contractor's statistician, and assisting in writing documentation and final reports. In all cases, the statistician should work closely with the professional health physicist and others on the planning team in a closely coordinated effort of planning and data analysis.

  1. cost savings | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    cost savings NNSA's Nevada Field Office Transfers Two Armored Vehicles to FBI LAS VEGAS - The National Nuclear Security Administration's (NNSA) Nevada Field Office recently transferred two Advanced Concept Armored Vehicles (ACAVs) to The Department of Justice's local FBI office in Nevada. The transfer created $474,000 in savings to the government as the NFO security force no... Savannah River Site hosts regional Lean Alliance event Companies from around the Central Savannah River Area had the

  2. Supercomputer decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All Issues submit Roadrunner supercomputer: Rest in pieces Decommissioning a classified ... critical information by removing their memory and repurposing the rest of the equipment. ...

  3. Decommissioning Handbook

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioing...

  4. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  5. Status of the NRC Decommissioning Program

    SciTech Connect (OSTI)

    Orlando, D. A.; Camper, L.; Buckley, J.; Pogue, E.; Banovac, K.

    2003-02-24

    On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.

  6. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    SciTech Connect (OSTI)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  7. DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS

    SciTech Connect (OSTI)

    Bollinger, J; William Austin, W; Larry Koffman, L

    2007-09-17

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

  8. International Research Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  9. PACCOM: A nuclear waste packaging facility cost model: Draft technical report

    SciTech Connect (OSTI)

    Dippold, D.G.; Tzemos, S.; Smith, D.J.

    1985-05-01

    PACCOM is a computerized, parametric model used to estimate the capital, operating, and decommissioning costs of a variety of nuclear waste packaging facility configurations. The model is based upon a modular waste packaging facility concept from which functional components of the overall facility have been identified and their design and costs related to various parameters such as waste type, waste throughput, and the number of operational shifts employed. The model may be used to either estimate the cost of a particular waste packaging facility configuration or to explore the cost tradeoff between plant capital and labor. That is, one may use the model to search for the particular facility sizes and associated cost which when coupled with a particular number of shifts, and thus staffing level, leads to the lowest overall total cost. The functional components which the model considers include hot cells and their supporting facilities, transportation, cask handling facilities, transuranic waste handling facilities, and administrative facilities such as warehouses, security buildings, maintenance buildings, etc. The cost of each of these functional components is related either directly or indirectly to the various independent design parameters. Staffing by shift is reported into direct and indirect support labor. These staffing levels are in turn related to the waste type, waste throughput, etc. 2 refs., 11 figs., 3 tabs.

  10. Site decommissioning management plan

    SciTech Connect (OSTI)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  11. Supercomputer decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputer decommissioning Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Roadrunner supercomputer: Rest in pieces Decommissioning a classified computer into hardware "mulch." May 1, 2013 The Roadrunner supercomputer broke the petaflop barrier The Roadrunner supercomputer broke the petaflop barrier. Contact Editor Linda Anderman Email Community Programs Office Kurt

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  13. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  14. STATUS OF THE NRC'S DECOMMISSIONING PROGRAM

    SciTech Connect (OSTI)

    Orlando, D. A.; Camper, L. W.; Buckley, J.

    2002-02-25

    On July 21, 1997, the U.S. Nuclear Regulatory Commission published the final rule on Radiological Criteria for License Termination (the License Termination Rule) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program. It discusses the status of permanently shut-down commercial power reactors, complex decommissioning sites, and sites listed in the Site Decommissioning Management Plan. The paper provides the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including a Standard Review Plan for evaluating plans and information submitted by licensees to support the decommissioning of nuclear facilities and the D and D Screen software for determining the potential doses from residual radioactivity. Finally, it discusses the status of the staff's current efforts to streamline the decommissioning process.

  15. Sixteen Years of International Co-operation. The OECD/NEA Co-operative Programme on Decommissioning

    SciTech Connect (OSTI)

    Menon, S.; Valencia, L.

    2002-02-25

    The Co-operative Programme on Decommissioning under the administration of the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency (NEA) has recently completed sixteen years of operation. The Programme, which is essentially an information exchange programme between decommissioning projects, came into being in 1985. It has grown from an initial 10 decommissioning projects from 7 countries to 39 projects from 14 countries today. From purely information exchange to start with, the Programme has, in later years, been functioning as a voice for the collective expression of views of the implementers of nuclear decommissioning. During the first sixteen years of the operation of the Co-operative Programme, nuclear decommissioning has grown from local specialist activities within projects to a competitive commercial industry. By the dismantling and release from regulatory control of over a dozen diverse nuclear facilities, the Programme has been able to demonstrate in practice, that nuclear decommissioning can be performed safely both for the workers and the public, and that this can be done at reasonable costs in an environmentally friendly fashion. During the recent years, discussions and work within the Co-operative Programme, specially within some of the Task Groups, have had/are having effects and repercussions not just in the field of nuclear decommissioning, but can possibly affect activities and regulations in other industries. This paper describes how the Programme and its activities and procedures have evolved over the years and indicate the directions of developments in the organization and execution of decommissioning projects. Finally, it gives a brief overview of the achievements of the Cooperative Programme and visualizes future developments in the field of nuclear decommissioning.

  16. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect (OSTI)

    Kubic, Jr., William L.

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  17. Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority

    Office of Environmental Management (EM)

    Congressional Nuclear Cleanup Caucus Sue Cange Acting Manager Oak Ridge Office of Environmental Management Leo Sain President and Project Manager URS | CH2M Oak Ridge LLC DOE Oak Ridge Office Environmental Management Program Oak Ridge, Tennessee 2 ETTP ORNL Y-12 * More than 700,000 citizens reside or work within a 30-mile radius of the Oak Ridge Reservation * High levels of rainfall coupled with shallow groundwater carry contaminants to local waterways Oak Ridge has a Unique Cleanup Challenge

  18. Sorption (Kd) measurements on cinder block and grout in support of dose assessments for Zion Nuclear Station decommissioning

    SciTech Connect (OSTI)

    Milian L.; Sullivan T.

    2014-06-24

    The Zion Nuclear Power Station is being decommissioned. ZionSolutions proposes to leave much of the below grade structures in place and to fill them with a backfill to provide structural support. Backfills under consideration include clean concrete demolition debris from the above grade parts of the facility, a flowable grout, cinder block construction debris and sand. A previous study (Yim, 2012) examined the sorption behavior of five nuclides (Fe-55, Co-60, Ni-63, Sr-85, and Cs-137) on concrete and local soils. This study, commissioned by ZionSolutions and conducted by the Brookhaven National Laboratory (BNL) examines the sorption behavior on cinder block and grout materials. Specifically, this study measured the distribution coefficient for four radionuclides of concern using site-groundwater and cinder block from the Zion site and a flowable grout. The distributions coefficient is a measure of the amount of the radionuclide that will remain sorbed to the solid material that is present relative to the amount that will remain in solution. A high distribution coefficient indicates most of the radionuclide will remain on the solid material and will not be available for transport by the groundwater. The radionuclides examined in this set of tests were Co-60, Ni-63, Sr-85, and Cs-137. Tests were performed following ASTM C1733-10, Standard Test Methods for Distribution Coefficients of Inorganic Species by the Batch Method. Sr-85 was used in the testing as an analogue for Sr-90 because it behaves similarly with respect to sorption and has a gamma emission that is easier to detect than the beta emission from Sr-90.

  19. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  20. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the {prime}978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  1. Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2

    SciTech Connect (OSTI)

    Weiss, A. J.

    1988-02-01

    This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

  2. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect (OSTI)

    Lowry, N.

    2010-11-05

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste

  3. NEW MATERIALS DEVELOPED TO MEET REGULATORY AND TECHNICAL REQUIREMENTS ASSOCIATED WITH IN-SITU DECOMMISSIONING OF NUCLEAR REACTORS AND ASSOCIATED FACILITIES

    SciTech Connect (OSTI)

    Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

    2012-01-18

    For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m{sup 3} (250,000 yd{sup 3}) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent industrial worker

  4. Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security

  5. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  6. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  7. BONUS, Puerto Rico, Decommissioned Reactor Site Fact Sheet

    Office of Legacy Management (LM)

    information about the Defense Decontamination and Decommissioning Program Boiling Nuclear Superheater (BONUS) reactor located northwest of Rincn, Puerto Rico. The site is...

  8. NMSS handbook for decommissioning fuel cycle and materials licensees

    SciTech Connect (OSTI)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  9. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    SciTech Connect (OSTI)

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  10. Use of InSpector{sup TM} 1 1000 Instrument with LaBr{sub 3} for Nuclear Criticality Safety (NCS) Applications at the Westinghouse Hematite Decommissioning Project (HDP) - 13132

    SciTech Connect (OSTI)

    Pritchard, Megan; Guido, Joe

    2013-07-01

    The Westinghouse Hematite Decommissioning Project (HDP) is a former nuclear fuel cycle facility that is currently undergoing decommissioning. One aspect of the decommissioning scope is remediation of buried nuclear waste in unlined burial pits. The current Nuclear Criticality Safety program relies on application of criticality controls based on radiological setpoints from a 2 x 2 Sodium Iodide (NaI) detector. Because of the nature of the material buried (Low Enriched Uranium (LEU), depleted uranium, thorium, and radium) and the stringent threshold for application of criticality controls based on waste management (0.1 g {sup 235}U/L), a better method for {sup 235}U identification and quantification has been developed. This paper outlines the early stages of a quick, in-field nuclear material assay and {sup 235}U mass estimation process currently being deployed at HDP. Nuclear material initially classified such that NCS controls are necessary can be demonstrated not to require such controls and dispositioned as desired by project operations. Using Monte Carlo techniques and a high resolution Lanthanum Bromide (LaBr) detector with portable Multi-Channel Analyzer (MCA), a bounding {sup 235}U mass is assigned to basic geometries of nuclear material as it is excavated. The deployment of these methods and techniques has saved large amounts of time and money in the nuclear material remediation process. (authors)

  11. FAMS DECOMMISSIONING END-STATE ALTERNATIVE EVALUATION

    SciTech Connect (OSTI)

    Grimm, B; Stephen Chostner, S; Brenda Green, B

    2006-05-25

    Nuclear Material Management (NMM) completed a comprehensive study at the request of the Department of Energy Savannah River Operations Office (DOE-SR) in 2004 (Reference 11.1). The study evaluated the feasibility of removal and/or mitigation of the Pu-238 source term in the F-Area Material Storage (FAMS) facility during on-going material storage operations. The study recommended different options to remove and/or mitigate the Pu-238 source term depending on its location within the facility. During April 2005, the Department of Energy (DOE) sent a letter of direction (LOD) to Washington Savannah River Company (WSRC) directing WSRC to implement a new program direction that would enable an accelerated shutdown and decommissioning of FAMS (Reference 11.2). Further direction in the LOD stated that effective December 1, 2006 the facility will be transitioned to begin deactivation and decommissioning (D&D) activities. To implement the LOD, Site D&D (SDD) and DOE agreed the planning end-state would be demolition of the FAMS structure to the building slab. SDD developed the D&D strategy, preliminary cost and schedule, and issued the deactivation project plan in December 2005 (Reference 11.3). Due to concerns and questions regarding the FAMS planning end-state and in support of the project's Critical Decision 1, an alternative study was performed to evaluate the various decommissioning end-states and the methods by which those end-states are achieved. This report documents the results of the alternative evaluation which was performed in a structured decision-making process as outlined in the E7 Manual, Procedure 2.15, ''Alternative Studies'' (Reference 11.4).

  12. Decommissioning Plan RM

    Broader source: Energy.gov [DOE]

    The Decommissioning Plan Review (DPR) Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the decommissioning plan prior to approval of the associated CD.

  13. TA-2 Water Boiler Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  14. Deactivation, Decontamination and Decommissioning Project Summaries

    SciTech Connect (OSTI)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  15. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  16. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.

    1994-09-01

    On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

  17. RESULTS OF IONSIV® IE-95 STUDIES FOR THE REMOVAL OF RADIOACTIVE CESIUM FROM K-EAST BASIN SPENT NUCLEAR FUEL POOL DURING DECOMMISSIONING ACTIVITIES

    SciTech Connect (OSTI)

    DUNCAN JB; BURKE SP

    2008-07-07

    This report delineates the results obtained from laboratory testing of IONISIV{reg_sign} IE-95 to determine the efficacy of the zeolite for the removal of radioactive cesium from the KE Basin water prior to transport to the Effluent Treatment Facility, as described in RPP-PLAN-36158, IONSIV{reg_sign} IE-95 Studies for the removal of Radioactive Cesium from KE Basin Spent Nuclear Fuel Pool during Decommissioning Activities. The spent nuclear fuel was removed from KE Basin and the remaining sludge was layered with a grout mixture consisting of 26% Lehigh Type I/II portland cement and 74% Boral Mohave type F fly ash with a water-to-cement ratio of 0.43. The first grout pour was added to the basin floor to a depth of approximately 14 in. covering an area of 12,000 square feet. A grout layer was also added to the sludge containers located in the attached Weasel and Technical View pits.

  18. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect (OSTI)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos; Pavey, Todd; Alexan, Tamer; Bainbridge, Ian

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  19. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Guskov, V.; Makarchuk, T.

    2007-07-01

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuel from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped to

  20. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect (OSTI)

    Devgun, Jas S.

    2013-07-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  1. Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station

    SciTech Connect (OSTI)

    Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro; Kondo, Yoshikazu; Noguchi, Yoshikazu

    2013-07-01

    For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

  2. Portsmouth Decontamination & Decommissioning

    Broader source: Energy.gov [DOE]

    The Decontamination & Decommissioning (D&D) Program at the Portsmouth Site addresses potential future demolition and disposal of approximately 415 facilities (including buildings, utilities...

  3. Selecting the optimum decommissioning strategy for UKAEA`s redundant reactors

    SciTech Connect (OSTI)

    Wratten, T.J.; Nelson, R.L.

    1995-12-31

    The United Kingdom Atomic Energy Authority has built and operated a wide range of radioactive facilities since the late 1940s for the development of weapons, reactor systems, radioisotopes, fuel and reprocessing technology. Most of these plants are now closed and a major task for UKAEA Government Division (UKAEA-GD) is to manage their decommissioning safely and at minimum cost to the UK taxpayer. Safety and economic considerations generally require that some decommissioning work is undertaken immediately after closure, and for this work to be completed as quickly as possible. For a reactor, this normally involves the removal of irradiated fuel and coolant and the reduction of the radioactive inventory by removal of non-fixed items of plant and equipment. Beyond this, there are a large number of possible options for the timing and scope of decommissioning work. This paper describes how a methodology has been developed which uses option studies to establish the minimum discounted cost strategy for the decommissioning of major facilities, using as examples the wide range of reactors which form part of UKAEA-GD`s list of nuclear liabilities.

  4. EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of the range of reasonable alternatives to decommission and/or maintain long-term stewardship at WNYNSC. The alternatives analyzed in the EIS...

  5. Decommissioning Benchmarking Study Final Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

  6. Characterization of the Nuclear Barge Sturgis

    SciTech Connect (OSTI)

    Honerlah, H. B.; Hearty, B. P.

    2002-02-27

    The Department of the Army is authorized to build and operate nuclear reactors for defense purposes under Paragraph 91b of the Atomic Energy Act of 1954 (1). As part of the Army Reactor Program, the United States Army Corps of Engineers (Corps) is responsible for nuclear reactor engineering and design, reactor construction, and decommissioning design and implementation (2). The Corps is currently focused on ensuring the safety and security of the Army's three deactivated power reactors and planning for their final decommissioning. To support decommissioning cost projections, the Corps is gathering information on the residual radiological and chemical hazards associated with each reactor, starting with the MH-1A reactor on the Sturgis Barge (3). Because the Sturgis Barge is moored in the James River Reserve Fleet, there were unique challenges that had to be overcome during the characterization survey and others that will become a concern when final decommissioning is to be per formed.

  7. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  8. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    SciTech Connect (OSTI)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N.; Creed, Richard; Pancake, Daniel

    2013-07-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple

  9. Report to Congress on Plan for Interim Storage of Spent Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors PDF icon Report to Congress on Plan ...

  10. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments

    SciTech Connect (OSTI)

    Doerge, D. H.; Haffner, D. R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  11. Public comment re Convention on Supplementary Compensation on Nuclear Damage Contingent Cost Allocation

    Broader source: Energy.gov [DOE]

    Comments by the Nuclear Energy Institute (NEI) on Convention on Supplementary Compensation on Nuclear Damage Contingent Cost Allocation; Section 934 of the Energy Independence and Security Act of 2007

  12. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  13. Hallam, Nebraska, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    Fact Sheet D&D D&D Hallam, Nebraska, Decommissioned Reactor Site This fact sheet provides information about the Hallam, Nebraska, Decommissioned Reactor Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Defense Decontamination and Decommissioning (D&D) Program. Location of the Hallam Decommissioned Reactor Site Description and History The Hallam decommissioned reactor site is in southeastern Nebraska, approximately 19 miles south of

  14. Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An

    Reports and Publications (EIA)

    1995-01-01

    This report provides an analysis of nuclear power plant operating costs. The Energy Information Administration published three reports on this subject during the period 1988-1995.

  15. Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation, Section 934

    Broader source: Energy.gov [DOE]

    LES comments in response to Notice of Inquiry on Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation, Section 934

  16. Decontamination, decommissioning, and vendor advertorial issue, 2006

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  17. An analysis of nuclear power plant operating costs: A 1995 update

    SciTech Connect (OSTI)

    1995-04-21

    Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

  18. U.S. Department of Energy 2012 Annual Inspection - Piqua, OH, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    Piqua, OH, Decommissioned Reactor Site May 2012 Page 1 2012 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site Summary The former Piqua Nuclear Power Facility (PNPF), a decommissioned nuclear power demonstration facility, was inspected on April 10, 2012. The site, located on the east bank of the Great Miami River in Piqua, Ohio, is in good physical condition. There is no requirement for a follow-up inspection. The former PNPF consists of a reactor

  19. Portsmouth Decommissioning and Decontamination Project Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination Project Director's Final Findings and Order...

  20. STANDARD OPERATING PROTOCOLS FOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Foss, D. L.; Stevens, J. L.; Gerdeman, F. W.

    2002-02-25

    Decommissioning projects at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites are conducted under project-specific decision documents, which involve extensive preparation time, public comment periods, and regulatory approvals. Often, the decision documents must be initiated at least one year before commencing the decommissioning project, and they are expensive and time consuming to prepare. The Rocky Flats Environmental Technology Site (RFETS) is a former nuclear weapons production plant at which hazardous substances and wastes were released or disposed during operations. As a result of the releases, RFETS was placed on the National Priorities List in 1989, and is conducting cleanup activities under a federal facilities compliance agreement. Working closely with interested stakeholders and state and federal regulatory agencies, RFETS has developed and implemented an improved process for obtaining the approvals. The key to streamlining the approval process has been the development of sitewide decision documents called Rocky Flats Cleanup Agreement Standard Operating Protocols or ''RSOPs.'' RSOPs have broad applicability, and could be used instead of project-specific documents. Although no two decommissioning projects are exactly the same and they may vary widely in contamination and other hazards, the basic steps taken for cleanup are usually similar. Because of this, using RSOPs is more efficient than preparing a separate project-specific decision documents for each cleanup action. Over the Rocky Flats cleanup life cycle, using RSOPs has the potential to: (1) Save over 5 million dollars and 6 months on the site closure schedule; (2) Eliminate preparing one hundred and twenty project-specific decision documents; and (3) Eliminate writing seventy-five closure description documents for hazardous waste unit closure and corrective actions.

  1. Decommissioning of the secondary containment of the steam generating heavy water reactor at UKAEA-Winfrith

    SciTech Connect (OSTI)

    Miller, Keith; Cornell, Rowland; Parkinson, Steve; McIntyre, Kevin; Staples, Andy

    2007-07-01

    Available in abstract form only. Full text of publication follows: The Winfrith SGHWR was a prototype nuclear power plant operated for 23 years by the United Kingdom Atomic Energy Authority (UKAEA) until 1990 when it was shut down permanently. The current Stage 1 decommissioning contract is part of a multi-stage strategy. It involves the removal of all the ancillary plant and equipment in the secondary containment and non-containment areas ahead of a series of contracts for the decommissioning of the primary containment, the reactor core and demolition of the building and all remaining facilities. As an outcome of a competitive tending process, the Stage 1 decommissioning contract was awarded to NUKEM with operations commencing in April 2005. The decommissioning processes involved with these plant items will be described with some emphasis of the establishment of multiple work-fronts for the production, recovery, treatment and disposal of mainly tritium-contaminated waste arising from its contact with the direct cycle reactor coolant. The means of size reduction of a variety of large, heavy and complex items of plant made from a range of materials will also be described with some emphasis on the control of fumes during hot cutting operations and establishing effective containments within a larger secondary containment structure. Disposal of these wastes in a timely and cost-effective manner is a major challenge facing the decommissioning team and has required the development of a highly efficient means of packing the resultant materials into mainly one-third height ISO containers for disposal as LLW. Details of the quantities of LLW and exempt wastes handled during this process will be given with a commentary about the difficulty in segregating these two waste streams efficiently. (authors)

  2. Decommissioning Under CERCLA Information Sheet

    Broader source: Energy.gov [DOE]

    This Question and Answer (Q&A) Sheet discusses the use of removal authority in the conduct of decommissioning activities, consistent with the Policy on Decommissioning of Department of Energy...

  3. Shippingport Station Decommissioning Project

    SciTech Connect (OSTI)

    McKernan, M.L.

    1989-12-22

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station's responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project.

  4. Freedom of Information Act - Costs | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) - Costs The FOIA generally requires that requesters pay fees for processing their requests. If costs associated with the processing of a FOIA request are $15.00 or less, no fees are charged. Each FOIA request is reviewed for the purpose of placing a requester in one of four fee categories described below. Commercial use requesters: Responsible for all direct costs; i.e. search for responsive documents, review of documents located for responsiveness; 16% administrative

  5. Decontamination and decommissioning of Shippingport commercial reactor

    SciTech Connect (OSTI)

    Schreiber, J.

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  6. Business risks to utilities as new nuclear power costs escalate

    SciTech Connect (OSTI)

    Severance, Craig A.

    2009-05-15

    A nuclear power megaproject carries with it severe business risks. Despite attempts to shift these risks to taxpayers and ratepayers, ultimately there are no guarantees for utility shareholders. Utility management needs to keep some core principles in mind. (author)

  7. Decommissioning Plan of the Musashi Reactor and Its Progress

    SciTech Connect (OSTI)

    Tanzawa, Tomio

    2008-01-15

    The Musashi Reactor is a TRIGA-II, tank-type research reactor, as shown in Table 1. The reactor had been operated at maximum thermal power level of 100 kW since first critical, January 30, 1963. Reactor operation was shut down due to small leakage of water from the reactor tank on December 21,1989. After shutdown, investigation of the causes, making plan of repair and discussions on restart or decommissioning had been done. Finally, decision of decommissioning was made in May, 2003. The initial plan of the decommissioning was submitted to the competent authority in January, 2004. Now, the reactor is under decommissioning. The plan of decommissioning and its progress are described. In conclusion: considering the status of undertaking plan of the waste disposal facility for the low level radioactive waste from research reactors, the phased decommissioning was selected for the Musashi Reactor. First phase of the decommissioning activities including the actions of permanent shutdown and delivering the spent nuclear fuels to US DOE was completed.

  8. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect (OSTI)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  9. New Material has Potential to Cut Costs and Make Nuclear Fuel Recycling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleaner: Computer modeling helps pinpoint best material out of a hundred thousand options | Department of Energy New Material has Potential to Cut Costs and Make Nuclear Fuel Recycling Cleaner: Computer modeling helps pinpoint best material out of a hundred thousand options New Material has Potential to Cut Costs and Make Nuclear Fuel Recycling Cleaner: Computer modeling helps pinpoint best material out of a hundred thousand options June 13, 2016 - 10:46am Addthis News release from Pacific

  10. Decommissioning of the secondary containment of the steam generating heavy water reactor at UKAEA Winfrith

    SciTech Connect (OSTI)

    Miller, K.D.; Cornell, R.M.; Parkinson, S.J.; McIntyre, K.; Staples, A.

    2007-07-01

    The Winfrith SGHWR was a prototype nuclear power plant operated for 23 years by the United Kingdom Atomic Energy Authority (UKAEA) until 1990 when it was shut down permanently. The current Stage 1 decommissioning contract is part of a multi-stage strategy. It involves the removal of all the ancillary plant and equipment in the secondary containment and non-containment areas ahead of a series of contracts for the decommissioning of the primary containment, the reactor core and demolition of the building and ail remaining facilities. As an outcome of a competitive tending process, the Stage 1 decommissioning contract was awarded to NUKEM with operations commencing in April 2005. The decommissioning processes involved with these plant items will be described with some emphasis of the establishment of multiple work-fronts for the production, recovery, treatment and disposal of mainly tritium-contaminated waste arising from its contact with the direct cycle reactor coolant. The means of size reduction of a variety of large, heavy and complex items of plant made from a range of materials will also be described with some emphasis on the control of fumes during hot cutting operations and establishing effective containments within a larger secondary containment structure. Disposal of these wastes in a timely and cost-effective manner is a major challenge facing the decommissioning team and has required the development of a highly efficient means of packing the resultant materials into mainly one-third height IS0 containers for disposal as LLW. Details of the quantities of LLW and exempt wastes handled during this process will be given with a commentary about the difficulty in segregating these two waste streams efficiently. The paper sets out to demonstrate the considerable progress that has been made with these challenging decommissioning operations at the SGHWR plant and to highlight some of the techniques and processes that have contributed to the overall success of the

  11. Development of a Remote Monitoring Sensor Network for In-Situ Decommissioned Structures

    Office of Environmental Management (EM)

    10-01666, Revision 0 Key Words: in situ decommissioning sensor remote monitoring end state Retention: Permanent DEVELOPMENT OF A REMOTE MONITORING SENSOR NETWORK FOR IN SITU DECOMMISSIONED STRUCTURES Panel Report November 2010 Savannah River National Laboratory Savannah River Nuclear Solutions Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470 Development of a Remote Monitoring Sensor Network Page 2 of 34 for In Situ Decommissioned Structures

  12. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed; Connor, Donna; Keighley, Debbie

    2013-07-01

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  13. Performance and review of safety assessment for decommissioning

    SciTech Connect (OSTI)

    Percival, K.; Thierfeldt, S.; Joubert, A.; Kaulard, J.; Manson, P.; Ferch, R.; Batandjieva, B.

    2007-07-01

    Available in abstract form only. Full text of publication follows: Safety assessment is required by national and international safety standards to be performed for all stages of life cycle of facilities that are using radioactive material. It is required to be performed by operators and reviewed by regulators in support of a decommissioning plan for every facility before decommissioning commences. With the growing amount of decommissioning activities world-wide, the need for assistance to Member States in development and review of such assessments was highlighted in the Berlin Conference in 2002 and reflected in the International Action Plan on Decommissioning of Nuclear Facilities, approved by the International Atomic Energy Agency (IAEA) Board of Governors in 2004. In order to respond to this need, the IAEA initiated an international project on Evaluation and Demonstration of Safety during Decommissioning of Nuclear Facilities (DeSa Project) in the same year. More than fifty experts from over thirty Member States have been working over the last three years on (i) the establishment of a harmonized safety assessment methodology for decommissioning; (ii) development of recommendations for a regulatory approach and procedure for review of such assessments; (iii) development of recommendations on the application of the graded approach to development and review of safety assessments; and (iv) application of the methodology, the regulatory review procedure and graded approach recommendations to three test cases - safety assessment for decommissioning of a nuclear power plant (NPP), a research reactor and a nuclear laboratory. This paper presents the current status of the DeSa project work, the consensus achieved, the main preliminary outcomes and lessons learned. The project results are envisaged to be presented and discussed at the 4. Joint DeSa meeting in October 2007 in Vienna, where the scope and objectives of a follow- up project will be also discussed. (authors)

  14. Decommissioning Implementation Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-02

    The Department of Energy (DOE) faces an enormous task in the disposition of the nation's excess facilities. Many of these facilities are large and complex and contain potentially hazardous substances. As DOE facilities complete mission operations and are declared excess, they pass into a transition phase which ultimately prepares them for disposition. The disposition phase of a facility's life-cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  15. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  16. Recordkeeping in the decommissioning process

    SciTech Connect (OSTI)

    Boing, L. E.

    2000-02-29

    In the US, there are two sets of key decommissioning records clearly identified -- those that are essential for planning the D and D of a facility and then those that are the result of the decommissioning process itself. In some cases, the regulatory authorities require and in others advise the licensees of the records that may be useful or which are required to be kept from the decommissioning. In the remainder of the paper, the author attempts to highlight some important aspects of decommissioning recordkeeping.

  17. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    SciTech Connect (OSTI)

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan; Lim, ChaeYoung

    2004-07-01

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. The total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)

  18. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    SciTech Connect (OSTI)

    Zakaria, Norasalwa Mustafa, Muhammad Khairul Ariff Anuar, Abul Adli Idris, Hairul Nizam Ba'an, Rohyiza

    2014-02-12

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  19. Innovation in Nuclear Technology for the Least Product Price and Cost

    SciTech Connect (OSTI)

    Duffey, Romney

    2003-09-01

    In energy markets, costs dominate for all new technology introductions (pressure valves, gas turbines, reactors) both now and far into the future. Technology improves, and costs are reduced as markets are penetrated with the trend following a learning/experience curve (MCE) based on classic economic forces. The curve followed is governed by development costs and market targets, and nuclear systems follow such a curve in order to compete with other technologies and projected future cost for alternate energy initiatives. Funding impacts directly on market penetration and on the ''learning rate.'' The CANDU/AECL development path (experience curve) is a chosen balance between evolution and revolution for a competitive advantage.

  20. Draft principles, policy, and acceptance criteria for decommissioning of U.S. Department of Energy contaminated surplus facilities and summary of international decommissioning programs

    SciTech Connect (OSTI)

    Singh, B.K.; Gillette, J.; Jackson, J.

    1994-12-01

    Decommissioning activities enable the DOE to reuse all or part of a facility for future activities and reduce hazards to the general public and any future work force. The DOE Office of Environment, Health and Safety has prepared this document, which consists of decommissioning principles and acceptance criteria, in an attempt to establish a policy that is in agreement with the NRC policy. The purpose of this document is to assist individuals involved with decommissioning activities in determining their specific responsibilities as identified in Draft DOE Order 5820.DDD, ``Decommissioning of US Department of Energy Contaminated Surplus Facilities`` (Appendix A). This document is not intended to provide specific decommissioning methodology. The policies and principles of several international decommissioning programs are also summarized. These programs are from the IAEA, the NRC, and several foreign countries expecting to decommission nuclear facilities. They are included here to demonstrate the different policies that are to be followed throughout the world and to allow the reader to become familiar with the state of the art for environment, safety, and health (ES and H) aspects of nuclear decommissioning.

  1. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    SciTech Connect (OSTI)

    Gavor, J.; Stary, O.; Vasicek, J.

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  2. EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

  3. Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems

    SciTech Connect (OSTI)

    Bollinger, James S.; Koffman, Larry D.; Austin, William E.

    2008-01-15

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design

  4. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  5. Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  6. A Plutonium Finishing Plant Model for the Cercla Removal Action and Decommissioning Construction Final Report

    SciTech Connect (OSTI)

    Hopkins, A. [Fluor Hanford, Inc, Richland, WA (United States)

    2008-07-01

    The joint policy between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) for decommissioning buildings at DOE facilities documents an agreement between the agencies to perform decommissioning activities including demolition under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The use of removal actions for decommissioning integrates EPA oversight authority, DOE lead agency responsibility, and state authority for decommissioning activities. Once removal actions have been performed under CERCLA, a construction completion report is required to document the completion of the required action. Additionally, a decommissioning report is required under DOE guidance. No direct guidance was found for documenting completion of decommissioning activities and preparing a final report that satisfies the CERCLA requirements and the DOE requirements for decommissioning. Additional guidance was needed for the documentation of construction completion under CERCLA for D and D projects undertaken under the joint policy that addresses the requirements of both agencies. A model for the construction completion report was developed to document construction completion for CERCLA D and D activities performed under the joint EPA/DOE policy at the Plutonium Finishing Plant (PFP). The model documentation report developed at PFP integrates the DOE requirements for establishing decommissioning end-points, documenting end-point completion and preparing a final decommissioning report with the CERCLA requirements to document completion of the action identified in the Action Memorandum (AM). The model includes the required information on health and safety, data management, cost and schedule and end-points completion. (authors)

  7. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  8. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  9. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant

    SciTech Connect (OSTI)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-07-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m{sup 2}, concrete volume 12,500 m{sup 3}, and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building is divided into three parts - each part is isolated from the others. In the middle of 2008, after the removal of the NDA-IPAN/GEA installation, the eastern part will be demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS approach will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing

  10. Handbook for quick cost estimates. A method for developing quick approximate estimates of costs for generic actions for nuclear power plants

    SciTech Connect (OSTI)

    Ball, J.R.

    1986-04-01

    This document is a supplement to a ''Handbook for Cost Estimating'' (NUREG/CR-3971) and provides specific guidance for developing ''quick'' approximate estimates of the cost of implementing generic regulatory requirements for nuclear power plants. A method is presented for relating the known construction costs for new nuclear power plants (as contained in the Energy Economic Data Base) to the cost of performing similar work, on a back-fit basis, at existing plants. Cost factors are presented to account for variations in such important cost areas as construction labor productivity, engineering and quality assurance, replacement energy, reworking of existing features, and regional variations in the cost of materials and labor. Other cost categories addressed in this handbook include those for changes in plant operating personnel and plant documents, licensee costs, NRC costs, and costs for other government agencies. Data sheets, worksheets, and appropriate cost algorithms are included to guide the user through preparation of rough estimates. A sample estimate is prepared using the method and the estimating tools provided.

  11. Costs and impacts of transporting nuclear waste to candidate repository sites

    SciTech Connect (OSTI)

    McSweeney, T.I.; Peterson, R.W.; Gupta, R.

    1983-12-31

    In this paper, a status report on the current estimated costs and impacts of transporting high-level nuclear wastes to candidate disposal sites is given. Impacts in this analysis are measured in terms of risk to public health and safety. Since it is difficult to project the status of the nuclear industry to the time of repository operation - 20 to 50 years in the future - particular emphasis in the paper is placed on the evaluation of uncertainties. The first part of this paper briefly describes the characteristics of the waste that must be transported to a high-level waste disposal site. This discussion is followed by a section describing the characteristics of the waste transport system. Subsequent sections describe the costs and risk assessments of waste transport. Finally, in a concluding section, the effect of the uncertainties in the definition of the waste disposal system on cost and risk levels is evaluated. This last section also provides some perspectives on the magnitude of the cost and risk levels relative to other comparable costs and risks generally encountered. 13 references, 2 figures, 16 tables.

  12. Lessons learnt from Ignalina NPP decommissioning project

    SciTech Connect (OSTI)

    NAISSE, Jean-Claude

    2007-07-01

    The Ignalina Nuclear Power Plant (INPP) is located in Lithuania, 130 km north of Vilnius, and consists of two 1500 MWe RBMK type units, commissioned respectively in December 1983 and August 1987. On the 1. of May 2004, the Republic of Lithuania became a member of the European Union. With the protocol on the Ignalina Nuclear Power in Lithuania which is annexed to the Accession Treaty, the Contracting Parties have agreed: - On Lithuanian side, to commit closure of unit 1 of INPP before 2005 and of Unit 2 by 31 December 2009; - On European Union side, to provide adequate additional Community assistance to the efforts of Lithuania to decommission INPP. The paper is divided in two parts. The first part describes how, starting from this agreement, the project was launched and organized, what is its present status and which activities are planned to reach the final ambitious objective of a green field. To give a global picture, the content of the different projects that were defined and the licensing process will also be presented. In the second part, the paper will focus on the lessons learnt. It will explain the difficulties encountered to define the decommissioning strategy, considering both immediate or differed dismantling options and why the first option was finally selected. The paper will mention other challenges and problems that the different actors of the project faced and how they were managed and solved. The paper will be written by representatives of the Ignalina NPP and of the Project Management Unit. (author)

  13. Decommissioning of the BR3 reactor: status and perspectives

    SciTech Connect (OSTI)

    Noynaert, L.; Verstraeten, I.

    2007-07-01

    The BR3 plant at Mol in Belgium built at the end of the fifties was the first PWR plant built outside the USA. The reactor had a small net power output (10 MWe) but comprised all the loops and features of a commercial PWR plant. The BR3 plant was operated with the main objective of testing advanced PWR fuels under irradiation conditions similar to those encountered in large commercial PWR plants. The reactor was started in 1962 and shut down in 1987 after 25 years of continuous operation. Since 1989, SCK.CEN is decommissioning the BR3 PWR research reactor. The dismantling of the metallic components including reactor pressure vessel and internals is completed and extensively reported in the literature. The dismantling of auxiliary components and the decontamination of parts of the infrastructure are now going on. The decommissioning progress is continuously monitored and costs and strategy are regularly reassessed. The first part of the paper describes the main results and lessons learned from the reassessment exercises performed in 1994, 1999, 2004 and 2007. Impacts of changes in legal framework on the decommissioning costs will be addressed. These changes concern e.g. licensing aspects, clearance levels, waste management... The middle part of the paper discusses the management of activated and/or contaminated concrete. The costing exercise performed in 1995 highlighted that the management of activated and contaminated concrete is the second main cost item after the dismantling of the reactor pressure vessel and internals. Different possible solutions were studied. These are evacuation as radioactive waste with or without supercompaction, recycling this 'radioactive' grout or concrete for conditioning of radioactive waste e.g. conditioning of metallic waste. The paper will give the results of the cost-benefit analysis made to select the solution retained. The last part of the paper will discuss the end goal of the decommissioning of the BR3. In the final

  14. Is Entombment an Acceptable Option for Decommissioning? An International Perspective - 13488

    SciTech Connect (OSTI)

    Belencan, Helen; Nys, Vincent; Guskov, Andrey; Francois, Patrice; Watson, Bruce; Ljubenov, Vladan

    2013-07-01

    Selection of a decommissioning strategy is one of the key steps in the preparation for decommissioning of nuclear facilities and other facilities using radioactive material. Approaches being implemented or considered by Member States include immediate dismantling, deferred dismantling and entombment. Other options or slight modifications of these strategies are also possible. Entombment has been identified in the current International Atomic Energy Agency (IAEA) Safety Standards as one of the three basic decommissioning strategies and has been defined as a decommissioning strategy by which radioactive contaminants are encased in a structurally long lived material until radioactivity decays to a level permitting the unrestricted release of the facility, or release with restrictions imposed by the regulatory body. Although all three strategies have been considered, in principle, applicable to all facilities, their application to some facilities may not be appropriate owing to political concerns, safety or environmental requirements, technical considerations, local conditions or financial considerations. The IAEA is currently revising the decommissioning Safety Standards and one of the issues widely discussed has been the applicability of entombment in the context of decommissioning and its general objective to enable removal of regulatory control from the decommissioned facility. The IAEA recently established a consultancy to collect and discuss experience and lessons learned from entombment projects, to identify regulatory requirements and expectations for applying entombment as a decommissioning option strategy, in compliance with the internationally agreed standards. (authors)

  15. Underground nuclear energy complexes - technical and economic advantages

    SciTech Connect (OSTI)

    Myers, Carl W; Kunze, Jay F; Giraud, Kellen M; Mahar, James M

    2010-01-01

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  16. Handbook for cost estimating. A method for developing estimates of costs for generic actions for nuclear power plants

    SciTech Connect (OSTI)

    Ball, J.R.; Cohen, S.; Ziegler, E.Z.

    1984-10-01

    This document provides overall guidance to assist the NRC in preparing the types of cost estimates required by the Regulatory Analysis Guidelines and to assist in the assignment of priorities in resolving generic safety issues. The Handbook presents an overall cost model that allows the cost analyst to develop a chronological series of activities needed to implement a specific regulatory requirement throughout all applicable commercial LWR power plants and to identify the significant cost elements for each activity. References to available cost data are provided along with rules of thumb and cost factors to assist in evaluating each cost element. A suitable code-of-accounts data base is presented to assist in organizing and aggregating costs. Rudimentary cost analysis methods are described to allow the analyst to produce a constant-dollar, lifetime cost for the requirement. A step-by-step example cost estimate is included to demonstrate the overall use of the Handbook.

  17. Assessment and comparison of waste management costs for nuclear and fossil energy sources

    SciTech Connect (OSTI)

    Long, F.G.; Zaccai, H.; Ward, R.D.; McNicholas, P.; Albers, R.W.

    1993-12-31

    This paper presents the key results of an assessment of waste management costs undertaken by a group of international experts on behalf of the IAEA, Vienna. The objective of this work is to provide an assessment and comparison of the impact of waste management on the cost of electricity production from nuclear and other energy sources. The study focuses on the cost of managing wastes arising from the production of electricity from a PWR, with and without reprocessing, a coal-fueled conventional steam cycle, and a gas-fueled combined cycle; using data available in the open literature. This study has only assessed the impact of those waste management costs which are typically internalized by an electric utility and passed on as part of the price charged to customers. The data utilized in the study is typically in range form, reflecting worldwide experience with such factors as technology, regulatory requirements and economic parameters. To the extent that estimates can be identified in the literature the study has attempted to include costs associated with waste management from all stages of the fuel cycles. This paper also includes a discussion of future developments which may influence the results of this work including the effect of technology advances and changes in regulatory requirements.

  18. Rocky Flats Closure Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P.C.; Skokan, B.

    2007-07-01

    The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

  19. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect (OSTI)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  20. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    SciTech Connect (OSTI)

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as the Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.

  1. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  2. Non-nuclear submarine tankers could cost-effectively move Arctic oil and gas

    SciTech Connect (OSTI)

    Kumm, W.H.

    1984-03-05

    Before the advent of nuclear propulsion for U.S. Navy submarines, fuel cells were considered to be the next logical step forward from battery powered submarines which required recharging. But with the launching of the USS Nautilus (SSN-571) in 1954, the development of fuel-cell propulsion was sidelined by the naval community. Nearly 30 years later fuel-cell propulsion on board submarines is actually more cost-effective than the use of nuclear propulsion. In the Artic Ocean, the use of the submarine tanker has long been considered commercially appropriate because of the presence of the polar ice cap, which inhibits surface ship transport. The technical difficulty and high operating cost of Arctic icebreaking tankers are strong arguments in favor of the cheaper, more efficient submarine tanker. Transiting under the polar ice cap, the submarine tanker is not an ''Arctic'' system, but merely a submerged system. It is a system usable in any ocean around the globe where sufficient depth exists (about 65% of the global surface). Ice breakers are another story; their design only makes them useful for transit through heavy sea ice in coastal environments. Used anywhere else, such as in the open ocean or at the Arctic ice cap, they are not a cost-effective means of transport. Arctic sea ice conditions require the Arctic peculiar icebreaking tanker system to do the job the hard way-on the surface. But on the other hand, Arctic sea ice conditions are neatly set aside by the submarine tanker, which does it the energy-efficient, elegant way submerged. The submarine tanker is less expensive to build, far less expensive to operate, and does not need to be nuclear propelled.

  3. Consequence modeling for nuclear weapons probabilistic cost/benefit analyses of safety retrofits

    SciTech Connect (OSTI)

    Harvey, T.F.; Peters, L.; Serduke, F.J.D.; Hall, C.; Stephens, D.R.

    1998-01-01

    The consequence models used in former studies of costs and benefits of enhanced safety retrofits are considered for (1) fuel fires; (2) non-nuclear detonations; and, (3) unintended nuclear detonations. Estimates of consequences were made using a representative accident location, i.e., an assumed mixed suburban-rural site. We have explicitly quantified land- use impacts and human-health effects (e.g. , prompt fatalities, prompt injuries, latent cancer fatalities, low- levels of radiation exposure, and clean-up areas). Uncertainty in the wind direction is quantified and used in a Monte Carlo calculation to estimate a range of results for a fuel fire with uncertain respirable amounts of released Pu. We define a nuclear source term and discuss damage levels of concern. Ranges of damages are estimated by quantifying health impacts and property damages. We discuss our dispersal and prompt effects models in some detail. The models used to loft the Pu and fission products and their particle sizes are emphasized.

  4. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    SciTech Connect (OSTI)

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects.

  5. A Proposed Cost-Benefit Analysis Approach for Evaluating DOE Nuclear Facility Design Options

    Broader source: Energy.gov [DOE]

    Presenter: Dr. Kamiar Jamali, Senior Technical Advisor to the Chief of Defense Nuclear Safety, National Nuclear Security Administration, Office of Nuclear Safety NA-SH

  6. Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioned Reactors | Department of Energy Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors (229.88 KB) More Documents & Publications Information Request, "THE REPORT TO THE PRESIDENT AND THE CONGRESS BY THE SECRETARY OF ENERGY ON THE

  7. Issues in UK cleanup and decommissioning; a strategic R and D programme

    SciTech Connect (OSTI)

    Tinsley, T.P.; Ashley, V.B.; Morgan, H.G.; Fairhall, G.A.

    2008-07-01

    Nexia Solutions is contracted to manage and carry out research on behalf of the Nuclear Decommissioning Authority (NDA). This paper will describe the nuclear research ongoing and how it fits in with the UK cleanup and decommissioning strategy. The aim of the strategic R and D programme is to assist the NDA in maintaining a technical portfolio which will:- - identify and address challenges and clean-up problems that do not have an existing solution; - resolve potential inconsistencies between sites in the technical bases for certain strategic decisions and their implementation; - maintain options while developing strategy (emerging risks); - save costs by developing multi-site solutions; - provide technology, skills and facilities on the timescale required. The strategy for the R and D programme has been developed from a top-level approach by understanding the challenges which need to be addressed and prioritising these according to the objectives of the programme. The programme has demonstrated that a technical portfolio comprising six areas, each containing a number of key themes, is appropriate to address the technical challenges which the NDA faces and aligns with the NDA's technical issues register. An important aspect of the R and D programme is that it should create opportunities for undertaking the NDA mission more effectively. This arises from the emphasis given in those technical programmes which define the challenge more precisely and thus provide a platform from which to produce innovative solutions. The paper will present an overview of the strategic R and D programme along with the key technical programme areas. Examples will be provided of the technical work ongoing, and the results obtained so far. (author)

  8. Improved cost-benefit techniques in the US Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Cronin, F.J.; Nesse, R.J.; Vaeth, M.; Wusterbarth, A.R.; Currie, J.W.

    1983-06-01

    The major objective of this report is to help the US Nuclear Regulatory Commission (NRC) in its regulatory mission, particularly with respect to improving the use of cost-benefit analysis and the economic evaluation of resources within the NRC. The objectives of this effort are: (1) to identify current and future NRC requirements (e.g., licensing) for valuing nonmarket goods; (2) to identify, highlight, and present the relevant efforts of selected federal agencies, some with over two decades of experience in valuing nonmarket goods, in this area; and (3) to review methods for valuing nonmarket impacts and to provide estimats of their magnitudes. Recently proposed legislation may result in a requirement for not only more sophisticated valuation analyses, but more extensive applications of these techniques to issues of concern to the NRC. This paper is intended to provide the NRC with information to more efficiently meet such requirements.

  9. Portsmouth Decontamination and Decommissioning Record of Decision |

    Energy Savers [EERE]

    Department of Energy Decontamination and Decommissioning Record of Decision Portsmouth Decontamination and Decommissioning Record of Decision The Ohio Environmental Protection Agency (Ohio EPA) and the U.S. Department of Energy (DOE) have agreed upon a plan to demolish the large process buildings and other facilities undergoing decontamination and decommissioning (D&D) at the Portsmouth Gaseous Diffusion Plant. The Record of Decision (ROD) for the Process Buildings and Complex Facilities

  10. Deactivation and Decommissioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Deactivation and Decommissioning Deactivation and Decommissioning TA-21-286 being demolished TA-21-286 being demolished The EM-LA Deactivation and Decommissioning (D&D) Team is dedicated to demolishing, deactivating and disposing material from historical buildings at Los Alamos National Laboratory. Current workscope is focused on Technical Area 21 (TA-21), one of the early sites of the Manhattan Project and Cold War-era work conducted at LANL. TA-21 was the location of the

  11. Probabilistic cost-benefit analysis of enhanced safety features for strategic nuclear weapons at a representative location

    SciTech Connect (OSTI)

    Stephens, D.R.; Hall, C.H.; Holman, G.S.; Graham, K.F.; Harvey, T.F.; Serduke, F.J.D.

    1993-10-01

    We carried out a demonstration analysis of the value of developing and implementing enhanced safety features for nuclear weapons in the US stockpile. We modified an approach that the Nuclear Regulatory Commission (NRC) developed in response to a congressional directive that NRC assess the ``value-impact`` of regulatory actions for commercial nuclear power plants. Because improving weapon safety shares some basic objectives with NRC regulations, i.e., protecting public health and safety from the effects of accidents involving radioactive materials, we believe the NRC approach to be appropriate for evaluating weapons-safety cost-benefit issues. Impact analysis includes not only direct costs associated with retrofitting the weapon system, but also the expected costs (or economic risks) that are avoided by the action, i.e., the benefits.

  12. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  13. Decommissioning abandoned roads to protect fish

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decommissioning-abandoned-roads-to-protect-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

  14. The effect of availability improvement of a nuclear power plant on the cost of generating electricity

    SciTech Connect (OSTI)

    Nejat, S.M.R.

    1980-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant as a result of improving the availabilitty of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel-series system having components with failure and repair rates distributed exponentially. The method has been applied to different subsystems, systems, and the seconary loop as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal spare part allocation in order to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. It has been shown that the optimum spare parts allocation and the budget level which gives optimum availability, do not necessarily give minimum electricity cost. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utilty will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously.

  15. Mobile worksystems for decontamination and decommissioning operations. Final report

    SciTech Connect (OSTI)

    1997-02-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

  16. Management of Decommissioning on a Multi-Facility Site (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Management of Decommissioning on a Multi-Facility Site Citation Details In-Document Search Title: Management of Decommissioning on a Multi-Facility Site The management ...

  17. FLUOR HANFORD DECOMMISSIONING UPDATE

    SciTech Connect (OSTI)

    GERBER MS

    2008-04-21

    Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield

  18. A Low-Cost, Real-Time Network for Radiological Monitoring Around Nuclear Facilities

    SciTech Connect (OSTI)

    Bertoldo, N A

    2004-08-13

    A low-cost, real-time radiological sensor network for emergency response has been developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the site perimeter to continuously monitor radiological conditions as part of LLNL's comprehensive environment/safety/health protection program. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors transmit measurement data back to a central command center (CCC) computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio- and computer- based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. This system provides a low-cost real-time radiation monitoring solution that is easily converted to incorporate both a hard-wired interior perimeter with strategically positioned wireless secondary and tertiary concentric remote locations. These wireless stations would be configured with solar voltaic panels that provide current to recharge batteries and power the sensors and radio transceivers. These platforms would supply data transmission at a range of up to 95 km from a single transceiver location. As necessary, using radio transceivers in repeater mode can extend the transmission range. The RTRAM network as it is presently configured at LLNL has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions. With the proposed

  19. Solution of resource allocation problem for identification of cost-effective measures to reduce nuclear proliferation risks

    SciTech Connect (OSTI)

    Andrianov, A.; Kuptsov, I.

    2013-07-01

    This report presents a methodology of selection of cost-effective measures to reduce nuclear proliferation risks. The methodology relies on a graded security model used in practice in different applications. The method is based on the controlled finite Markov chain approach set in combination with discrete dynamic programming and MCDM (Multi Criteria Decision Making) techniques that enables the expert to select the cost-effective measures to reduce nuclear proliferation risks depending on availability of resources. The analysis performed with different number of possible measures confirms the conclusions that the implementation of extra-large costs may not produce the required effect, and the increase in resources above a certain level does not appear sensitive. Diversification in improving the effectiveness of other measures seems more rational and efficient for the whole system than the unlimited improvement of the effectiveness of only one measure.

  20. FY 2000 Deactivation and Decommissioning Focus Area Annual Report

    SciTech Connect (OSTI)

    2001-03-01

    This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

  1. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities Standard Review Plan Volume 4 - Nuclear Safety Basis Program Review During Facility Decommissioning and Environmental Restoration February 2015 i Standard Review Plan Volume 4 Nuclear Safety Basis Program Review during Facility Decommissioning and Environmental Restoration Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February

  2. EIS-0259: Disposal of Decommissioned, Defueled Cruiser, Ohio Class and Los Angeles Class Naval Reactor Plants, Hanford Site, Richland (adopted from Navy)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the alternate ways for disposing of decommissioned, defieled reactor compliments from U.S. Navy nuclear-powered cruisers, (Bainbridge, Truxtun, Long Beach, California Class and Virginia Class) and Los Angeles Class, and Ohio Class submarines.

  3. Mobile workstation for decontamination and decommissioning operations

    SciTech Connect (OSTI)

    Whittaker, W.L.; Osborn, J.F.; Thompson, B.R.

    1993-10-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

  4. Public Comment re Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation

    Broader source: Energy.gov [DOE]

    Comments by International Group on Nuclear Liability (CIGNL), in response to U.S. Department of Energy Notice of Inquiry on Convention on Supplementary Compensation for Nuclear Damage Contingent...

  5. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method

  6. In-Situ Decommissioning: A Strategy for Environmental Management |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning (ISD) is an effective decommissioning practice offering a safe and environmentally-favorable alternative to completely demolishing a facility and transporting its debris elsewhere for disposal. Regulatory approval to decommission a facility through ISD is authorized primarily by the Environmental Protection Agency under

  7. Technology Requirements for In-Situ Decommissioning Workshop Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Technology Requirements for In-Situ Decommissioning Workshop Report Technology Requirements for In-Situ Decommissioning Workshop Report In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, EM is developing guidance for the implementation of ISD of

  8. Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An innovative idea for cleaning up sodium in a decommissioned nuclear reactor at EM’s Idaho site grew from a carpool discussion.

  9. Wind energy`s declining costs

    SciTech Connect (OSTI)

    Gipe, P.

    1995-11-01

    Wind energy is competitive with traditional energy sources for the first time since European windmills graced the landscapes of the Old World. This article explores the current economics of wind power. Topics discussed include the following: standardizing cost of energy reporting and the cost of wind energy; wind power plant price; maintenance costs; effect of installed cost on the cost of energy; future costs; decommissioning; modularity; social or environmental costs; cost of capital; bidding and price.

  10. Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    1996-02-21

    The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  11. Office of Environmental Management uranium enrichment decontamination and decommissioning fund financial statements. September 30, 1994 and 1993

    SciTech Connect (OSTI)

    Marwick, P.

    1994-12-15

    The Energy Policy Act of 1992 (Act) transferred the uranium enrichment enterprise to the United States Enrichment Corporation as of July 1, 1993. However, the Act requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio (diffusion facilities). The Act established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; Pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and Reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  12. Two Approaches to Reactor Decommissioning: 10 CFR Part 50 License Termination and License Amendment, Lessons Learned from the Regulatory Perspective

    SciTech Connect (OSTI)

    Watson, B.A.; Buckley, J.T.; Craig, C.M.

    2006-07-01

    Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in decommissioning planning, conduct of decommissioning operations, volumes of low- level radioactive waste disposed, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated their 10 CFR Part 50 license. Maine Yankee elected to obtain a general license under 10 CFR Part 50 for the ISFSI and reduce the physical site footprint to the ISFSI through a series of license amendments. While the NRC regulations are flexible and allow different approaches to ISFSI licensing there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, public input resulted in the licensee entering into an agreement with a concerned citizen group and resulted in State legislation that significantly lowered the dose limit below the NRC radiological criteria of 25 mrem (0.25 mSv) per year (yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs

  13. Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    S. L. Reno

    2006-10-26

    This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

  14. Decontamination and decommissioning of building 889 at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Dorr, K.A.; Hickman, M.E.; Henderson, B.J.; Sexton, R.J.

    1997-09-01

    At the Rocky Flats site, the building 889 decommissioning project was the first large-scale decommissioning project of a radiologically contaminated facility at Rocky Flats. The scope consisted of removal of all equipment and utility systems from the interior of the building, decontamination of interior building surfaces, and the demolition of the facility to ground level. Details of the project management plan, including schedule, engineering, cost, characterization methodologies, decontamination techniques, radiological control requirements, and demolition methods, are provided in this article. 1 fig., 3 tabs.

  15. Guides: Design/Engineering for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    To ensure development of appropriate levels of engineering detail, DOE-EM’s Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for  tailoring a D...

  16. Power Burst Facility (PBF) Reactor Reactor Decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Click here to view Click here to view Reactor Decommissioning Click on an image to enlarge A crane removes the reactor vessel from the Power Burst Facility (top), then places it ...

  17. Technology needs for decommissioning and decontamination

    SciTech Connect (OSTI)

    Bundy, R.D.; Kennerly, J.M.

    1993-12-01

    This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

  18. Estimating demolition cost of plutonium buildings for dummies

    SciTech Connect (OSTI)

    Tower, S.E.

    2000-07-01

    The primary purpose of the Rocky Flats Field Office of the US Department of Energy is to decommission the entire plant. In an effort to improve the basis and the accuracy of the future decommissioning cost, Rocky Flats has developed a powerful but easy-to-use tool to determine budget cost estimates to characterize, decontaminate, and demolish all its buildings. The parametric cost-estimating tool is called the Facilities Disposition Cost Model (FDCM).

  19. New Material has Potential to Cut Costs and Make Nuclear Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    RICHLAND, Wash. - Researchers are investigating a new material that might help in nuclear fuel recycling and waste reduction by capturing certain gases released during reprocessing...

  20. Decommissioning strategy options for MR reactor at the Kurchatov Institute, Moscow

    SciTech Connect (OSTI)

    Cross, M.T.; Harman, N.F.; Charles, D.; Harper, A.; Bylkin, B.K.; Gorlinsky, Yu.E.; Kolyadin, V.I.; Kutkov, V.A.; Pavlenko, V.I.; Sivintsev, Yu.V.; Lobach, Yu.N.

    2007-07-01

    The principal decommissioning goal for the nuclear installations of the Kurchatov Institute is the removal of spent fuel, reactor facilities and radioactive waste from the Institute's site. As the result of decommissioning, the buildings, constructions and areas should be cleaned to residual contamination levels acceptable to the stakeholders. These levels are determined in view of possible options for the rehabilitation of the Institute's areas under conditions of compliance with acting legislation for safety provisions for staff, population noting the proximity of the site to the local urban environment. Research reactor MR was commissioned in 1963 for reactor materials testing and finally shutdown in 1993. The reactor power with the experimental loops was 50 MW,. Several features were identified for the development of a decommissioning strategy for this reactor, namely: the strategy should consider many factors in a broad approach with international, inter-industry and long-term perspectives; the current situation for decommissioning is uncertain and must account for the views of a variety of stakeholders on possible final conditions and further use of the site and the route to achieve these; and a lack of sufficiency in the national legislation base for execution of the work and the possible options for its completion. On the basis of worldwide experience, the strategy for decommissioning of reactor MR was determined as follows: - determination of the options for the final rehabilitation of the Institute's areas; - determination of the stakeholders and their priority concerns; - determination of the strategy options for achievement of the final status; - determination of the main factors influencing the selection of the decommissioning strategy; - selection of the most acceptable strategies on the basis of a multi-attribute analysis; - determination of the main stages and principles of implementation of the selected strategy; and - development of the

  1. The Status of NRC Decommissioning Guidance on Intentional Soil Mixing

    SciTech Connect (OSTI)

    Watson, B.A.

    2007-07-01

    In 1997, the U.S. Nuclear Regulatory Commission (NRC) published the License Termination Rule (LTR) as Subpart E of 10 CFR Part 20, which established the license termination criteria for unrestricted use and the controls for restricted use. By 2003, the NRC staff's experience with the LTR revealed some important implementation issues impacting the decommissioning of sites, and these were addressed to the Commission (SECY-03-0069). In 2004, the staff provided the Commission with its analysis of a ninth issue, intentional soil mixing (SECY-04-0035). The Commission approved the staff's recommendations, with comments. In the draft revision of Supplement 1 to NUREG-1757, 'Consolidated Decommissioning Guidance', the staff endorsed the current practice of allowing intentional soil mixing to meet the waste acceptance criteria of offsite disposal facilities and the limited use of this practice to demonstrate compliance with the LTR criteria. The staff recommended including a provision that the staff would consider intentional mixing on a case-by-case basis, provided that the resulting contaminated area footprint is not increased and clean soil from outside the footprint is not mixed with contaminated soil to lower the concentrations. In addition, the staff would consider only those rare cases in which the mixing of clean soil is the only viable option for achieving the dose levels of the LTR. In 2005, the staff issued draft Supplement 1 to NUREG-1757 for public comment. The staff evaluated the public comments, including those from a number of States, and revised the guidance. The staff subsequently summarized the public comments on the draft guidance for the Commission (SECY-06-0143) in early 2006. This paper will discuss the public comments related to intentional mixing, the Commission's comments in its staff requirements memorandum, and the revision to the guidance in NUREG-1757 incorporating the current NRC decommissioning policy for intentional soil mixing. (authors)

  2. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    SciTech Connect (OSTI)

    Devgun, Jas S.; Laraia, Michele; Dinner, Paul

    2012-07-01

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new

  3. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    SciTech Connect (OSTI)

    Poderis, Reed J.; King, Rebecca A.

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  4. Role of decommissioning plan and its progress for the PUSPATI...

    Office of Scientific and Technical Information (OSTI)

    Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor Citation Details In-Document Search Title: Role of decommissioning plan and its progress for the PUSPATI ...

  5. Uranium enrichment decontamination and decommissioning fund, 1995 report

    SciTech Connect (OSTI)

    1996-11-01

    This report describes strategies for the decontamination and decommissioning of gaseous diffusion plants. Progress in remedial action activities are discussed.

  6. Decontamination & Decommissioning/ Facilities Engineering (D&D/FE)

    Broader source: Energy.gov [DOE]

    As the DOE complex sites prepare for closure, a large number of buildings and facilities must be deactivated and decommissioned.

  7. West Valley Demonstration Project Phase I Decommissioning - Facility...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project ...

  8. Shippingport Station Decommissioning Project. Final project report

    SciTech Connect (OSTI)

    McKernan, M.L.

    1989-12-22

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station`s responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project.

  9. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  10. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).