Sample records for nuclear decommissioning costs

  1. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    SciTech Connect (OSTI)

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  2. Internationally Standardized Cost Item Definitions for Decommissioning of Nuclear Installations

    SciTech Connect (OSTI)

    Lucien Teunckens; Kurt Pflugrad; Candace Chan-Sands; Ted Lazo

    2000-06-04T23:59:59.000Z

    The European Commission (EC), the International Atomic Energy Agency (IAEA), and the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) have agreed to jointly prepare and publish a standardized list of cost items and related definitions for decommissioning projects. Such a standardized list would facilitate communication, promote uniformity, and avoid inconsistency or contradiction of results or conclusions of cost evaluations for decommissioning projects carried out for specific purposes by different groups. Additionally, a standardized structure would also be a useful tool for more effective cost management. This paper describes actual work and result thus far.

  3. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

    2013-07-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  4. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26T23:59:59.000Z

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

  5. Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361

    SciTech Connect (OSTI)

    Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada)] [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada); Daniska, Vladimir [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)] [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)

    2013-07-01T23:59:59.000Z

    The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

  6. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01T23:59:59.000Z

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

  7. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01T23:59:59.000Z

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  8. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01T23:59:59.000Z

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  9. Joint U.S./Russian Study on the Development of a Preliminary Cost Estimate of the SAFSTOR Decommissioning Alternative for the Leningrad Nuclear Power Plant Unit #1

    SciTech Connect (OSTI)

    SM Garrett

    1998-09-28T23:59:59.000Z

    The objectives of the two joint Russian/U.S. Leningrad Nuclear Power Plant (NPP) Unit #1 studies were the development of a safe, technically feasible, economically acceptable decom missioning strategy, and the preliminary cost evaluation of the developed strategy. The first study, resulting in the decommissioning strategy, was performed in 1996 and 1997. The preliminary cost estimation study, described in this report, was performed in 1997 and 1998. The decommissioning strategy study included the analyses of three basic RBM.K decommission- ing alternatives, refined for the Leningrad NPP Unit #1. The analyses included analysis of the requirements for the planning and preparation as well as the decommissioning phases.

  10. Nuclear Decommissioning Financing Act (Maine)

    Broader source: Energy.gov [DOE]

    The Nuclear Decommissioning Financing Act calls for the establishment of a tax-exempt, tax-deductible decommissioning fund by the licensee of any nuclear power generating facility to pay for the...

  11. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect (OSTI)

    Elder, H.K.

    1986-05-01T23:59:59.000Z

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  12. Confidentiality Agreement between the Nuclear Decommissioning...

    Broader source: Energy.gov (indexed) [DOE]

    Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority...

  13. Ris-R-1250(EN) Decommissioning of the Nuclear

    E-Print Network [OSTI]

    Risø-R-1250(EN) Decommissioning of the Nuclear Facilities at Risø National Laboratory Descriptions;Decommissioning of Risø's nuclear facilities. Descriptions and cost assessment. Risø-R-1250(EN) 3 Contents 1 on request from the Minister of Research and Information Technology. It describes the nuclear facilities

  14. Confidentiality Agreement between the Nuclear Decommissioning...

    Office of Environmental Management (EM)

    Services Communication & Engagement International Programs Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy...

  15. Decommissioning nuclear power plants - the wave of the future

    SciTech Connect (OSTI)

    Griggs, F.S. Jr. [Raytheon Engineers and Contractors, Cumberland City, TN (United States)

    1994-12-31T23:59:59.000Z

    The paper discusses the project controls developed in the decommissioning of a nuclear power plant. Considerations are given to the contaminated piping and equipment that have to be removed and the spent and used fuel that has to be disposed of. The storage issue is of primary concern here. The cost control aspects and the dynamics of decommissioning are discussed. The effects of decommissioning laws on the construction and engineering firms are mentioned. 5 refs.

  16. Future AI and Robotics Technology for Nuclear Plants Decommissioning

    E-Print Network [OSTI]

    Hu, Huosheng

    Future AI and Robotics Technology for Nuclear Plants Decommissioning Huosheng Hu and Liam Cragg to aid in decommissioning nuclear plants that have been used to process or store nuclear materials. Scope potential applications to nuclear plant decommissioning, namely Nanotechnology, Telepresence

  17. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    for nuclear waste disposal and decommissioning whilethe cost of decommissioning and nuclear waste disposal on

  18. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    SciTech Connect (OSTI)

    Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international government and private industry decommissioning applications. SRS offers critical services based upon the SRS experience in decommissioning and reactor entombment technology (e.g., grout formulations for varying conditions, structural and material sciences). The SRS ISD approach follows a systems engineering framework to achieve a regulatory acceptable end state based on established protocols, attains the final end state with minimal long stewardship requirements, protects industrial workers, and protects groundwater and the environment. The ISD systems engineering framework addresses key areas of the remedial process planning, technology development and deployment, and assessment to attain the ultimate goal of natural resource stewardship and protecting the public. The development and deployment of the SRS ISD approach has established a path for ISD of other large nuclear facilities in the United States and around the globe as an acceptable remedial alternative for decommissioning nuclear facilities. (authors)

  19. The Decommissioning of the Trino Nuclear Power Plant

    SciTech Connect (OSTI)

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27T23:59:59.000Z

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of BNFL decommissioning experience and knowledge to develop a strategy, methodology and cost for the decommissioning of NPPs. Over the past year, a prompt decommissioning strategy for Trino has been developed. The strategy has been based on the principles of minimizing waste products that require long term storage, maximizing 'free release' materials and utilizing existing and regulatory approved technologies.

  20. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    SciTech Connect (OSTI)

    Haffner, D.R.; Villelgas, A.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01T23:59:59.000Z

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  1. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  2. Decommissioning Cost Estimating Factors And Earned Value Integration

    SciTech Connect (OSTI)

    Sanford, P.C.; Cimmarron, E. [Englewood, CO, B. Skokan, Office of Project Management Oversight, EM-53, United States Department of Energy, Washington, DC (United States)

    2008-07-01T23:59:59.000Z

    The Rocky Flats 771 Project progressed from the planning stage of decommissioning a plutonium facility, through the strip-out of highly-contaminated equipment, removal of utilities and structural decontamination, and building demolition. Actual cost data was collected from the strip-out activities and compared to original estimates, allowing the development of cost by equipment groupings and types and over time. Separate data was developed from the project control earned value reporting and compared with the equipment data. The paper discusses the analysis to develop the detailed factors for the different equipment types, and the items that need to be considered during characterization of a similar facility when preparing an estimate. The factors are presented based on direct labor requirements by equipment type. The paper also includes actual support costs, and examples of fixed or one-time start-up costs. The integration of the estimate and the earned value system used for the 771 Project is also discussed. The paper covers the development of the earned value system as well as its application to a facility to be decommissioned and an existing work breakdown structure. Lessons learned are provided, including integration with scheduling and craft supervision, measurement approaches, and verification of scope completion. In summary: The work of decommissioning the Rocky Flats 771 Project process equipment was completed in 2003. Early in the planning process, we had difficulty in identifying credible data and implementing processes for estimating and controlling this work. As the project progressed, we were able to collect actual data on the costs of removing plutonium contaminated equipment from various areas over the life of this work and associate those costs with individual pieces of equipment. We also were able to develop and test out a system for measuring the earned value of a decommissioning project based on an evolving estimate. These were elements that would have been useful to us in our early planning process, and we would expect that they would find application elsewhere as the DOE weapons complex and some commercial nuclear facilities move towards closure. (authors)

  3. Remote machine engineering applications for nuclear facilities decommissioning

    SciTech Connect (OSTI)

    Toto, G.; Wyle, H.R.

    1983-01-01T23:59:59.000Z

    Decontamination and decommissioning of a nuclear facility require the application of techniques that protect the worker and the enviroment from radiological contamination and radiation. Remotely operated portable robotic arms, machines, and devices can be applied. The use of advanced systems should enhance the productivity, safety, and cost facets of the efforts; remote automatic tooling and systems may be used on any job where job hazard and other factors justify application. Many problems based on costs, enviromental impact, health, waste generation, and political issues may be mitigated by use of remotely operated machines. The work that man can not do or should not do will have to be done by machines.

  4. Nuclear Decommissioning and Organisational Reliability: Involving Subcontractors in Collective Action

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Page 1 Nuclear Decommissioning and Organisational Reliability: Involving Subcontractors to the decommissioning. The use of subcontractors is not new; in the nuclear industry it became widespread in the 1990s reliability is at the heart of the safety of at-risk systems. Many studies have been conducted in the nuclear

  5. Some aspects of the decommissioning of nuclear power plants

    SciTech Connect (OSTI)

    Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

    2012-03-15T23:59:59.000Z

    The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

  6. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01T23:59:59.000Z

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  7. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01T23:59:59.000Z

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  8. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    SciTech Connect (OSTI)

    Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)] [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

    2013-07-01T23:59:59.000Z

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

  9. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    SciTech Connect (OSTI)

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)] [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactive waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)

  10. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

    2008-01-15T23:59:59.000Z

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  11. Decommissioning Handbook

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  12. License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning

    SciTech Connect (OSTI)

    Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

  13. Development of decontamination techniques for decommissioning commercial nuclear power plants

    SciTech Connect (OSTI)

    Ishikura, T.; Miwa, T.; Onozawa, T.; Ohtsuka, H. [Nuclear Power Engineering Corp., Tokyo (Japan). Plant and Components Dept.; Ishigure, K. [Univ. of Tokyo (Japan). Dept. of Quantum Engineering and System Science

    1993-12-31T23:59:59.000Z

    NUPEC has been developing various techniques to safely and efficiently decommission large commercial nuclear power plants. The development work, referred to as the verification tests, has been performed since 1982. The verification tests on decontamination techniques have focused on the reduction of both occupational radiation exposure and radioactive waste volume. Experiments on various decontamination methods have been carried out. Prospects of applying efficient decontamination techniques to commercial nuclear power plant decommissioning are bright due to the experimental results.

  14. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01T23:59:59.000Z

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  15. Technology, safety and costs of decommissioning a reference low-level waste burial ground. Volume 2. Appendices. Technical report

    SciTech Connect (OSTI)

    Murphy, E.S.; Holter, G.M.

    1980-06-01T23:59:59.000Z

    Contents: Reference site details; Waste inventory details; Radiation dose methodology; Environmental surveillance and records maintenance details; Payments needed to finance decommissioning; Site/waste stabilization decommissioning activity details; Waste relocation decommissioning activity details; Cost assessment details; Radiological safety details.

  16. Application of Mobile Agents to Robust Teleoperation of Internet Robots in Nuclear Decommissioning

    E-Print Network [OSTI]

    Hu, Huosheng

    Application of Mobile Agents to Robust Teleoperation of Internet Robots in Nuclear Decommissioning, Colchester, Essex, C04 3SQ, U.K. Email: {lmcrag, hhu}@essex.ac.uk Abstract­ Nuclear decommissioning involves a substantial increase in decommissioning globally as a large number of nuclear facilities are due to reach

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01T23:59:59.000Z

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  18. Money Related Decommissioning and Funding Decision Making

    SciTech Connect (OSTI)

    Goodman, Lynne S. [Detroit Edison Company, 6400 N. Dixie Highway, Newport, Michigan 48162 (United States)

    2008-01-15T23:59:59.000Z

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds.

  19. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect (OSTI)

    Elder, H. K.

    1981-10-01T23:59:59.000Z

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Seve

  20. Myths and representations in French nuclear history: The impact on decommissioning safety

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Myths and representations in French nuclear history: The impact on decommissioning safety C. Martin. The decommissioning of many operational plants (whether because nuclear power is being withdrawn, or because plants accident at the Fukushima nuclear power plant has shown that in many countries the debate on the withdrawal

  1. Adapting Dismantling and Decommissioning Strategies to a Variety of Nuclear Fuel Cycle Facilities - 12237

    SciTech Connect (OSTI)

    Chambon, Frederic [AREVA Federal Services LLC (United States); Clement, Gilles [AREVA NC (France)

    2012-07-01T23:59:59.000Z

    AREVA has accumulated over 20 years of experience in managing and operating fuel cycle facilities Decontamination and Decommissioning (D and D) projects of many different types and a variety of scales, both as facility owner (at La Hague for example) and as prime contractor to external customers such as the French Atomic Energy Commission (at Marcoule). A specific Business Unit was created in 2008 to capitalize on this experience and to concentrate - in one division - the specific skills required to be successful and cost effective in decommissioning projects. Indeed one of the key lessons learned in the past decades is that decommissioning is a significantly different business as compared to normal operations of a nuclear facility. Almost all the functions of a project need to be viewed from a different angle, challenged and adapted consequently in order to optimize costs and schedule. Three examples follow to illustrate the point: Safety management needs to take into account the ever changing configuration of a plant under D and D (a quite new situation for the authorities). Production of waste is significantly different in term of volume, activities, conditioning and disposal path. Technology is important but technical issues are often less critical than good management and planning. Further examples and lessons learned are developed through reviewing the projects experience basis. AREVA has a long and vast experience in the cleanup and dismantling of a number of very large and complex nuclear facilities. This effort focused initially on AREVA's own plants and is expanding now to other customers. The setup of a specific Business Unit in 2008 to takeover this business allowed concentration of the skills and the lessons learned in a dedicated division so as to provide the best means to optimize safety, performance, costs and schedules. Indeed transitioning from operations to D and D of a nuclear facility is a quantum leap. The assistance from specialized teams can bring significant cost savings. (authors)

  2. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect (OSTI)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)] [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Kim, Juyoul; Kim, Juyub [FNC Technology, 46 Tabsil-ro, Giheung-gu, Yongin 446-902 (Korea, Republic of)] [FNC Technology, 46 Tabsil-ro, Giheung-gu, Yongin 446-902 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  3. Preservation and Implementation of Decommissioning Lessons Learned in the United States Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Rodriguez, Rafael L. [United States Nuclear Regulatory Commission, Office of Federal and State Materials and Environmental Management Programs, Washington, DC 20555 (United States)

    2008-01-15T23:59:59.000Z

    Over the past several years, the United States Nuclear Regulatory Commission (NRC) has actively worked to capture and preserve lessons learned from the decommissioning of nuclear facilities. More recently, NRC has involved industry groups, the Organization of Agreement States (OAS), and the Department of Energy (DOE) in the effort to develop approaches to capture, preserve and disseminate decommissioning lessons learned. This paper discusses the accomplishments of the working group, some lessons learned by the NRC in the recent past, and how NRC will incorporate these lessons learned into its regulatory framework. This should help ensure that the design and operation of current and future nuclear facilities will result in less environmental impact and more efficient decommissioning. In summary, the NRC will continue capturing today's experience in decommissioning so that future facilities can take advantage of lessons learned from today's decommissioning projects. NRC, both individually and collectively with industry groups, OAS, and DOE, is aggressively working on the preservation and implementation of decommissioning lessons learned. The joint effort has helped to ensure the lessons from the whole spectrum of decommissioning facilities (i.e., reactor, fuel cycle, and material facilities) are better understood, thus maximizing the amount of knowledge and best practices obtained from decommissioning activities. Anticipated regulatory activities at the NRC will make sure that the knowledge gained from today's decommissioning projects is preserved and implemented to benefit the nuclear facilities that will decommission in the future.

  4. Engineering Evaluation/Cost Analysis (EE/CA) for Decommissioning of TAN-607 Hot Shop Area

    SciTech Connect (OSTI)

    J. P. Floerke

    2007-02-05T23:59:59.000Z

    Test Area North (TAN) -607, the Technical Support Facility, is located at the north end of the Idaho National Laboratory (INL) Site. U.S. Department of Energy Idaho Operations Office (DOE-ID) is proposing to decommission the northern section of the TAN-607 facility, hereinafter referred to as TAN-607 Hot Shop Area, under a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action (NTCRA). Despite significant efforts by the United States (U.S.) Department of Energy (DOE) to secure new business, no future mission has been identified for the TAN-607 Hot Shop Area. Its disposition has been agreed to by the Idaho State Historical Preservation Office documented in the Memorandum of Agreement signed October 2005 and it is therefore considered a surplus facility. A key element in DOE's strategy for surplus facilities is decommissioning to the maximum extent possible to ensure risk and building footprint reduction and thereby eliminating operations and maintenance cost. In addition, the DOE's 2006 Strategic Plan is ''complete cleanup of the contaminated nuclear weapons manufacturing and testing sites across the United States. DOE is responsible for the risk reduction and cleanup of the environmental legacy of the Nation's nuclear weapons program, one of the largest, most diverse, and technically complex environmental programs in the world. The Department will successfully achieve this strategic goal by ensuring the safety of the DOE employees and U.S. citizens, acquiring the best resources to complete the complex tasks, and managing projects throughout the United States in the most efficient and effective manner.'' TAN-607 is designated as a historical Signature Property by DOE Headquarters Advisory Council on Historic Preservation and, as such, public participation is required to determine the final disposition of the facility. The decommissioning action will place the TAN-607 Hot Shop Area in a final configuration that will be protective of human health and the environment. Decommissioning the TAN-607 Hot Shop Area is consistent with the joint DOE and U.S. Environmental Protection Agency (EPA) Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation and Liability Act, which establishes the CERCLA NTCRA process as the preferred approach for decommissioning surplus DOE facilities. Under this policy, a NTCRA may be taken when DOE determines that the action will prevent, minimize, stabilize, or eliminate a risk to human health and/or the environment. When DOE determines that a CERCLA NTCRA is necessary, DOE is authorized to evaluate, select, and implement the removal action that DOE determines is most appropriate to address the potential risk posed by the release or threat of release. This action is taken in accordance with applicable authorities and in conjunction with EPA and the State of Idaho pursuant to Section 5.3 of the Federal Facility Agreement and Consent Order. In keeping with the joint policy, this engineering evaluation/cost analysis (EE/CA) was developed in accordance with CERCLA as amended by the ''Superfund Amendments and Reauthorization Act of 1986'' and in accordance with the ''National Oil and Hazardous Substances Pollution Contingency Plan.'' This EE/CA is consistent with the remedial action objectives (RAOs) of the Final Record of Decision, Test Area North, Operable Unit 1-10 and supports the overall remediation goals established through the Federal Facility Agreement and Consent Order for Waste Area Group 1. Waste Area Group 1 is located at TAN.

  5. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25T23:59:59.000Z

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  6. Decision to reorganise or reorganising decisions? A First-Hand Account of the Decommissioning of the Phnix Nuclear Power Plant

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the Decommissioning of the Phénix Nuclear Power Plant Melchior Pelleterat de Borde, MINES ParisTech, Christophe Martin prepared for decommissioning. This study, conducted between 2010 and 2012, is focused on the Phénix nuclear in the context of nuclear decommissioning. This article does not aim to present the results of the study, i

  7. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01T23:59:59.000Z

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  8. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01T23:59:59.000Z

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  9. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    SciTech Connect (OSTI)

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-02-27T23:59:59.000Z

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.

  10. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    SciTech Connect (OSTI)

    Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

    1987-09-01T23:59:59.000Z

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs.

  11. Expectations on Documented Safety Analysis for Deactivated Inactive Nuclear Facilities in a State of Long Term Surveillance & Maintenance or Decommissioning

    SciTech Connect (OSTI)

    JACKSON, M.W.

    2002-05-01T23:59:59.000Z

    DOE promulgated 10 CFR 830 ''Nuclear Safety Management'' on October 10, 2000. Section 204 of the Rule requires that contractors at DOE hazard category 1, 2, and 3 nuclear facilities develop a ''Documented Safety Analysis'' (DSA) that summarizes the work to be performed, the associated hazards, and hazard controls necessary to protect workers, the public, and the environment. Table 2 of Appendix A to the rule has been provided to ensure that DSAs are prepared in accordance with one of the available predetermined ''safe harbor'' approaches. The table presents various acceptable safe harbor DSAs for different nuclear facility operations ranging from nuclear reactors to decommissioning activities. The safe harbor permitted for decommissioning of a nuclear facility encompasses methods described in DOE-STD-1 120-98, ''Integration of Environment, Safety and Health into Facility Disposition Activities,'' and provisions in 29 CFR 1910.120 or 29 CFR 1926.65 (HAZWOPER). Additionally, an evaluation of public safety impacts and development of necessary controls is required when the facility being decommissioned contains radiological inventory or contamination exceeding the Rule's definition for low-level residual fixed radioactivity. This document discusses a cost-effective DSA approach that is based on the concepts of DOE-STD-I 120 and meets the 10 CFR 830 safe harbor requirements for both transition surveillance and maintenance as well as decommissioning. This DSA approach provides continuity for inactive Hanford nuclear facilities that will eventually transition into decommissioning. It also uses a graded approach that meets the expectations of DOE-STD-3011 and addresses HAZWOPER requirements to provide a sound basis for worker protection, particularly where intrusive work is being conducted.

  12. EM Renews Information-Sharing Agreement with United Kingdom's Nuclear Decommissioning Authority

    Broader source: Energy.gov [DOE]

    PHOENIX – EM’s top official this week renewed an agreement between DOE and the U.K.’s Nuclear Decommissioning Authority (NDA) that expands the scope of their information sharing.

  13. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  14. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    SciTech Connect (OSTI)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

    2013-07-01T23:59:59.000Z

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

  15. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

  16. Proceedings: EPRI International Decommissioning and Radioactive Waste Workshop at Dounreay

    SciTech Connect (OSTI)

    None

    2003-01-01T23:59:59.000Z

    This report presents the proceedings of an EPRI international workshop on decommissioning and radioactive waste management. EPRI initiated this continuing workshop series to aid utility personnel in assessing the technologies utilized in the decommissioning of nuclear power plants and facilities. The information presented will help individual utilities assess the benefits of the various programs, including their potential to reduce decommissioning costs.

  17. Proceedings: Decommissioning--License Termination Plans and Final Site Release Workshop

    SciTech Connect (OSTI)

    None

    2004-03-01T23:59:59.000Z

    This report presents the proceedings of an EPRI workshop dealing with the subject of decommissioning license termination and final site release. The workshop was the ninth in a series designed to aid utility personnel in assessing technologies for decommissioning nuclear power plants. It focused on specific aspects of license termination activities and final site release as they relate to nuclear plant decommissioning. The information presented will help utilities control decommissioning costs by selecting the best practices and technologies

  18. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01T23:59:59.000Z

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  19. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01T23:59:59.000Z

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  20. Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2002-01-01T23:59:59.000Z

    1.1 This standard guide defines the process for developing a strategy for dispositioning concrete from nuclear facility decommissioning. It outlines a 10-step method to evaluate disposal options for radioactively contaminated concrete. One of the steps is to complete a detailed analysis of the cost and dose to nonradiation workers (the public); the methodology and supporting data to perform this analysis are detailed in the appendices. The resulting data can be used to balance dose and cost and select the best disposal option. These data, which establish a technical basis to apply to release the concrete, can be used in several ways: (1) to show that the release meets existing release criteria, (2) to establish a basis to request release of the concrete on a case-by-case basis, (3) to develop a basis for establishing release criteria where none exists. 1.2 This standard guide is based on the “Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Sites,” (1) from ...

  1. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    SciTech Connect (OSTI)

    Murphy, E. S.; Holter, G. M.

    1980-06-01T23:59:59.000Z

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  2. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  3. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  4. Trip report: European Communities 1989 International Conference on Decommissioning of Nuclear Installations, Brussels, Belgium, October 24-27, 1989

    SciTech Connect (OSTI)

    Rankin, W.N.

    1989-01-01T23:59:59.000Z

    The European community is conducting research on the decommissioning of nuclear installations. The prime objective is to develop effective techniques to ensure the protection of man and his environment against the potential hazards of nuclear installations that have been shut down. The results of the 1979--1983 research program were presented in a conference held in Luxembourg. This program was primarily concerned with decommissioning nuclear power plants. The 1984--1988 program was extended to all types of nuclear installations. Fuel fabrication, enrichment and reprocessing plants, and research and development facilities having fulfilled their useful purposes are also awaiting decommissioning. This Program has produced numerous scientific and technical achievements. Great progress has in particular been achieved in the reduction of metal waste arising from decommissioning, due to advances in areas such as the development of aggressive decontamination procedures and of techniques for melting and recycling low-level radioactive waste metal.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  6. Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece

    SciTech Connect (OSTI)

    Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

  7. Proceedings: Decommissioning, Decontamination, ALARA, and Worker Safety Workshop

    SciTech Connect (OSTI)

    None

    2000-09-01T23:59:59.000Z

    This workshop on decontamination, ALARA, and worker safety was the sixth in a series initiated by EPRI to aid utility personnel in assessing the technologies for decommissioning nuclear power plants. The workshop focused on specific aspects of decommissioning related to the management of worker radiation exposure and safety. The information presented will help individual utilities assess benefits of programs in these areas for their projects, including their potential to reduce decommissioning costs.

  8. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    SciTech Connect (OSTI)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09T23:59:59.000Z

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  9. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    SciTech Connect (OSTI)

    Farfan, E.

    2009-09-30T23:59:59.000Z

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  10. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09T23:59:59.000Z

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  11. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect (OSTI)

    Sullivan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-09-24T23:59:59.000Z

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  13. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  15. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect (OSTI)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01T23:59:59.000Z

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  16. Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09T23:59:59.000Z

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01T23:59:59.000Z

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  18. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11T23:59:59.000Z

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

  19. Systematic Approach for Decommissioning Planning and Estimating

    SciTech Connect (OSTI)

    Dam, A. S.

    2002-02-26T23:59:59.000Z

    Nuclear facility decommissioning, satisfactorily completed at the lowest cost, relies on a systematic approach to the planning, estimating, and documenting the work. High quality information is needed to properly perform the planning and estimating. A systematic approach to collecting and maintaining the needed information is recommended using a knowledgebase system for information management. A systematic approach is also recommended to develop the decommissioning plan, cost estimate and schedule. A probabilistic project cost and schedule risk analysis is included as part of the planning process. The entire effort is performed by a experienced team of decommissioning planners, cost estimators, schedulers, and facility knowledgeable owner representatives. The plant data, work plans, cost and schedule are entered into a knowledgebase. This systematic approach has been used successfully for decommissioning planning and cost estimating for a commercial nuclear power plant. Elements of this approach have been used for numerous cost estimates and estimate reviews. The plan and estimate in the knowledgebase should be a living document, updated periodically, to support decommissioning fund provisioning, with the plan ready for use when the need arises.

  20. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    SciTech Connect (OSTI)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-02-26T23:59:59.000Z

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

  1. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  2. Designing decommissioning into new reactor designs

    SciTech Connect (OSTI)

    Devgun, J.S.; CHMM, Ph.D. [Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States)

    2007-07-01T23:59:59.000Z

    One of the lessons learned from decommissioning of existing reactors has been that decommissioning was not given much thought when these reactors were designed some three or four decades ago. Recently, the nuclear power has seen a worldwide resurgence and many new advanced reactor designs are either on the market or nearing design completion. Most of these designs are evolutionary in nature and build on the existing and proven technologies. They also incorporate many improvements and take advantage of the substantial operating experience. Nevertheless, by and large, the main factors driving the design of new reactors are the safety features, safeguards considerations, and the economic factors. With a large decommissioning experience that already exists in the nuclear industry, and with average decommissioning costs at around six hundred million dollars for each reactor in today's dollars, it is necessary that decommissioning factors also be considered as a part of the early design effort. Even though decommissioning may be sixty years down the road from the time they go on line, it is only prudent that new designs be optimized for eventual decommissioning, along with the other major considerations. (authors)

  3. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01T23:59:59.000Z

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  4. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01T23:59:59.000Z

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01T23:59:59.000Z

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  6. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  7. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  8. National Nuclear Secutffy Admlnlsbrrtlon NEVADA SITE OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    CPAF - Cost Plus Award Fee D&D - Decontamination and Decommission DEAR - Department of Energy Acquisition Regulation DNFSB - Defense Nuclear Facilities Safety Board DoD -...

  9. Update on the Cost of Nuclear Power

    E-Print Network [OSTI]

    Parsons, John E.

    2009-01-01T23:59:59.000Z

    We update the cost of nuclear power as calculated in the MIT (2003) Future of Nuclear Power study. Our main focus is on the changing cost of construction of new plants. The MIT (2003) study provided useful data on the cost ...

  10. A review of decommissioning considerations for new reactors

    SciTech Connect (OSTI)

    Devgun, J.S.Ph.D. [Manager Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States)

    2008-07-01T23:59:59.000Z

    At a time of 'nuclear renaissance' when the focus is on advanced reactor designs and construction, it is easy to overlook the decommissioning considerations because such a stage in the life of the new reactors will be some sixty years down the road. Yet, one of the lessons learned from major decommissioning projects has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Hence, the time to examine what decommissioning considerations should be taken into account is right from the design stage with regular updates of the decommissioning strategy and plans throughout the life cycle of the reactor. Designing D and D into the new reactor designs is necessary to ensure that the tail end costs of the nuclear power are manageable. Such considerations during the design stage will facilitate a more cost-effective, safe and timely decommissioning of the facility when a reactor is eventually retired. This paper examines the current regulatory and industry design guidance for the new reactors with respect to the decommissioning issues and provides a review of the design considerations that can help optimize the reactor designs for the eventual decommissioning. (authors)

  11. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

  12. Assessment of the radiological impact of a decommissioning nuclear power plant in Italy

    E-Print Network [OSTI]

    A. Petraglia; C. Sabbarese; M. De Cesare; N. De Cesare; F. Quinto; F. Terrasi; A. D'Onofrio; P. Steier; L. K. Fifield; A. M. Esposito

    2012-07-17T23:59:59.000Z

    The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

  13. Assessment of the radiological impact of a decommissioning nuclear power plant in Italy

    E-Print Network [OSTI]

    Petraglia, A; De Cesare, M; De Cesare, N; Quinto, F; Terrasi, F; D'Onofrio, A; Steier, P; Fifield, L K; Esposito, A M; 10.1051/radiopro/2012010

    2012-01-01T23:59:59.000Z

    The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

  14. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01T23:59:59.000Z

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01T23:59:59.000Z

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  16. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  17. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    scientific resources for decommissioning a nuclear facility.t) i Decommissioning Decommissioning of a nuclear facilityDecommissioning Funding: Ethics, Implementa- tion, Uncertainties. Nuclear

  18. PaR Tensile Truss for Nuclear Decontamination and Decommissioning - 12467

    SciTech Connect (OSTI)

    Doebler, Gary R. [PaR Systems Inc., 707 County Road E West, Shoreview, MN 55126 (United States)

    2012-07-01T23:59:59.000Z

    Remote robotics and manipulators are commonly used in nuclear decontamination and decommissioning (D and D) processes. D and D robots are often deployed using rigid telescoping masts in order to apply and counteract side loads. However, for very long vertical reaches (15 meters or longer) and high lift capacities, a telescopic is usually not practical due to the large cross section and weight required to make the mast stiff and resist seismic forces. For those long vertical travel applications, PaR Systems has recently developed the Tensile Truss, a rigid, hoist-driven 'structure' that employs six independent wire rope hoists to achieve long vertical reaches. Like a mast, the Tensile Truss is typically attached to a bridge-mounted trolley and is used as a platform for robotic manipulators and other remotely operated tools. For suspended, rigid deployment of D and D tools with very long vertical reaches, the Tensile Truss can be a better alternative than a telescoping mast. Masts have length limitations that can make them impractical or unworkable as lengths increase. The Tensile Truss also has the added benefits of increased safety, ease of decontamination, superior stiffness and ability to withstand excessive side loading. A Tensile Truss system is currently being considered for D and D operations and spent fuel recovery at the Fukushima Daiichi Nuclear Power Plant in Japan. This system will deploy interchangeable tools such as underwater hydraulic manipulators, hydraulic shears and crushers, grippers and fuel grapples. (authors)

  19. Decommissioning Nuclear Facilities: First lessons Learned from UP1, Marcoule, France

    SciTech Connect (OSTI)

    Chabeuf, Jean-Michel; Boya, Didier [AREVA, AREVA NC Marcoule, 30130 Bagnols sur Ceze (France); CEA, Marcoule, 30130 Bagnols sur Ceze (France)

    2008-01-15T23:59:59.000Z

    On September 30, 1997, UP1, Marcoule Fuel reprocessing facility, dissolved its last spent Fuel rod. Final shutdown and stage 1 decommissioning began immediately after, under the supervision of CODEM , a consortium composed of The French Atomic Energy Commission, COGEMA, France fuel Cycle Company and EDF, the French Electricity Utility. The goal of the decommissioning program was to achieve stage 2 decommissioning , as per IAEA standards, within a period of about 15 years. 10 years later, a significant amount of decontamination and decommissioning works has been conducted with success. The contractual structure under which the program was launched has been profoundly modified, and the capacity of The French Atomic Energy Commission (CEA) and AREVA NC to complete full decommissioning programs has been confirmed. In the present document, we propose to examine the main aspects involved in the management of such decommissioning programs, and highlight, with significant examples, the main lessons learnt. In conclusion: As of 2007, UP1 decommissioning program proves to be a success. The choice of early decommissioning, the partnership launched between the French Atomic Energy Commission as owner of the site and decommissioning fund, with AREVA NC as operator and main contractor of the decommissioning works has been a success. The French Atomic Energy commission organized a contractual framework ensuring optimal safety conditions and work completion, while AREVA NC gained a unique experience at balancing the various aspects involved in the conduction of complete decommissioning programs. Although such a framework may not be applicable to all situations and facilities, it provides a positive example of a partnership combining institutional regulations and industrial efficiency.

  20. A Strategy for Skills to meet the demands of Nuclear Decommissioning and Clean-up in the UK

    SciTech Connect (OSTI)

    Brownridge, M.; Ensor, B. [Nigel Couzens and Ian Hudson, Nuclear Decommissioning Authority, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA (United Kingdom)

    2008-07-01T23:59:59.000Z

    The NDA remit as set out within the Energy Act includes - 'to ensure the availability of skills required to deliver the overall decommissioning and nuclear clean-up mission'. The NDA approach to meeting their statutory obligation is by: - finding the best ways of re-training, re-skilling or re-deploying people in a way that encourages a more flexible workforce; - identifying and communicating the skills and workforce requirements to deliver the mission; and - developing the infrastructure and capability initiatives in line with long term needs, for example, a National Skills Academy for Nuclear, Nuclear Institute, National Graduate Scheme, and - developing locally specific provision. Firstly, NDA has set the requirement for nuclear sites to write down within the Life Time Plans (LTP), at a high level, their Site Skills Strategies; furthermore, a National Skills Working Group has been established to develop tactical cross sector solutions to support the NDA's Skills Strategy. In support of the short, medium and long term needs to meet demands of the NDA sites and the nuclear decommissioning sector, as well as being aware of the broader nuclear sector, investments have been made in infrastructure and skills programmes such as: - A National Skills Academy for Nuclear - including UK wide representation of the whole nuclear sector; - A Nuclear Institute in partnership with the University of Manchester focussing on world class research and skills in Radiation Sciences and Decommissioning Engineering; - Post Graduate sponsorship for decommissioning related projects; - A National Graduate Scheme partnership with nuclear related employers; - Vocational qualifications and Apprenticeship Schemes - Engaging 14-19 year old students to encourage the take up of Science related subjects; and - A sector wide 'Skills Passport'. In conclusion: The skills challenge has many dimensions but requires addressing due to the clear link to improved business performance and the availability of key resources in a diminishing and competitive environment. The diminishing skill base is due to reasons such as demographics and competition from other industries such as the oil industry. Getting the balance between meeting regional and national requirements will prove critical to success. The lack of clarity on the long term needs will also drive the strategy. NDA recognises that the work to date is the beginning of a long term approach and programme. We have developed a skills strategy that is consistent across all 20 sites and examples of key developments in infrastructure are in progress. Looking forward NDA will seek benchmarking opportunities and ways to make tangible links between skills and performance. (authors)

  1. In-Situ Decommissioning

    Broader source: Energy.gov [DOE]

    In-Situ Decommissioning (ISD) is the permanent entombment of a facility that contains residual radiological and/or chemical contamination.  The ISD approach is a cost-effective alternative to both...

  2. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect (OSTI)

    Not Available

    1983-04-01T23:59:59.000Z

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  3. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  4. Decommissioning at AWE

    SciTech Connect (OSTI)

    Biles, K.; Hedges, M.; Campbell, C

    2008-07-01T23:59:59.000Z

    AWE (A) has been at the heart of the UK Nuclear deterrent since it was established in the early 1950's. It is a nuclear licensed site and is governed by the United Kingdoms Nuclear Installation Inspectorate (NII). AWE plc on behalf of the Ministry of Defence (MOD) manages the AWE (A) site and all undertakings including decommissioning. Therefore under NII license condition 35 'Decommissioning', AWE plc is accountable to make and implement adequate arrangements for the decommissioning of any plant or process, which may affect safety. The majority of decommissioning projects currently being undertaken are to do with Hazard category 3, 4 or 5 facilities, systems or plant that have reached the end of their operational span and have undergone Post-Operational Clean-Out (POCO). They were either built for the production of fissile components, for supporting the early reactor fuels programmes or for processing facility waste arisings. They either contain redundant contaminated gloveboxes associated process areas, process plant or systems or a combination of all. In parallel with decommissioning project AWE (A) are undertaking investigation into new technologies to aid decommissioning projects; to remove the operative from hands on operations; to develop and implement modifications to existing process and techniques used. AWE (A) is currently going thorough a sustained phase of upgrading its facilities to enhance its scientific capability, with older facilities, systems and plant being replaced, making decommissioning a growth area. It is therefore important to the company to reduce these hazards progressively and safety over the coming years, making decommissioning an important feature of the overall legacy management aspects of AWE PLC's business. This paper outlines the current undertakings and progress of Nuclear decommissioning on the AWE (A) site. (authors)

  5. Assessment of doses and and environmental contamination from decommissioning of the

    E-Print Network [OSTI]

    Assessment of doses and and environmental contamination from decommissioning of the nuclear contamination from decommissioning of thecontamination from decommissioning of the nuclear facilities - 6 December 2002 #12;PresentationPresentation · Assessment of activity inventory in the nuclear

  6. Sorption (Kd) measurements in support of dose assessments for Zion Nuclear Station Decommissioning

    SciTech Connect (OSTI)

    Yim S. P.; Sullivan T.; Milian, L.

    2012-12-12T23:59:59.000Z

    The Zion Nuclear Power Station is being decommissioned. ZionSolutions proposes to leave much of the below grade structures in place and to fill them with “clean” concrete demolition debris from the above grade parts of the facility. This study, commissioned by ZionSolutions and conducted by the Brookhaven National Laboratory (BNL) was performed to provide site-specific data for performance assessment calculations to support the request to terminate the NRC license and allow unrestricted use of the facility. Specifically, this study measured the distribution coefficient for five radionuclides of concern using site-specific soils and groundwater. The distributions coefficient is a measure of the amount of the radionuclide that will remain sorbed to the soil or concrete that is present relative to the amount that will remain in solution. A high distribution coefficient indicates most of the radionuclide will remain on the solid material and will not be available for transport by the groundwater. The radionuclides of concern are Fe-55, Co-60, Ni-63, Sr-90, and Cs-137. Tests were performed following ASTM C1733-10, Standard Test Methods for Distribution Coefficients of Inorganic Species by the Batch Method. Sr-85 was used in the testing as an analogue for Sr-90 because it behaves similarly with respect to sorption and has a gamma emission that is easier to detect than the beta emission from Sr-90. Site-specific soils included disturbed sand (sand removed during construction and used as backfill), native sand, silt/clay and silt. In addition, concrete cores from the Unit-1 Containment Building and the Crib House were broken into particles less than 2 mm in size and tested to obtain distribution coefficients for the five nuclides.

  7. Nuclear thermal propulsion engine cost trade studies

    SciTech Connect (OSTI)

    Paschall, R.K. (Rocketdyne Division, Rockwell International Corporation, Mail Stop IB57, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

    1993-01-10T23:59:59.000Z

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp[gt]870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified.

  8. Designing Reactors to Facilitate Decommissioning

    SciTech Connect (OSTI)

    Richard H. Meservey

    2006-06-01T23:59:59.000Z

    Critics of nuclear power often cite issues with tail-end-of-the-fuel-cycle activities as reasons to oppose the building of new reactors. In fact, waste disposal and the decommissioning of large nuclear reactors have proven more challenging than anticipated. In the early days of the nuclear power industry the design and operation of various reactor systems was given a great deal of attention. Little effort, however, was expended on end-of-the-cycle activities, such as decommissioning and disposal of wastes. As early power and test reactors have been decommissioned difficulties with end-of-the-fuel-cycle activities have become evident. Even the small test reactors common at the INEEL were not designed to facilitate their eventual decontamination, decommissioning, and dismantlement. The results are that decommissioning of these facilities is expensive, time consuming, relatively hazardous, and generates large volumes of waste. This situation clearly supports critics concerns about building a new generation of power reactors.

  9. Decommissioning of DR 1 Final report

    E-Print Network [OSTI]

    and lessons learned 43 9 Clearance of materials, building and surrounding area 44 9.1 Clearance criteria 44 9Decommissioning of DR 1 Final report DD-18(EN) rev.1 Document approved by the nuclear regulatory authorities Danish Decommissioning, Roskilde January 2006 #12;Author: Kurt Lauridsen Title: Decommissioning

  10. Supercomputer decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submit Roadrunner supercomputer: Rest in pieces Decommissioning a classified computer into hardware "mulch." May 1, 2013 The Roadrunner supercomputer broke the petaflop...

  11. Decommissioning Handbook

    Broader source: Energy.gov [DOE]

    The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioing...

  12. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    SciTech Connect (OSTI)

    Rod, Kerry [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States)] [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States); Shelanskey, Steven K. [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States)] [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States); Kristofzski, John [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)] [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)

    2013-07-01T23:59:59.000Z

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes in various stages of development are planned as they include: Turbine Building Demolition, Nuclear Facilities Demolition and Excavation, Intake and Discharge Canal Remediation, Office Facility Demobilization, and Final Site Restoration. Benefits realized by transitioning to the Civil Works Projects Phase with predominant firm fixed-price/fixed unit price contracting include single civil works contractor who can coordinate concrete shaving, liner removal, structural removal, and other demolition activities; streamline financial control; reduce PG and E overhead staffing; and provide a specialized Bidder Team with experience from other similar projects. (authors)

  13. Status of the NRC Decommissioning Program

    SciTech Connect (OSTI)

    Orlando, D. A.; Camper, L.; Buckley, J.; Pogue, E.; Banovac, K.

    2003-02-24T23:59:59.000Z

    On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.

  14. Analysis of nuclear power plant construction costs

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  15. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M. [AS ALARA, Leetse tee 21, Paldiski, 76806 (Estonia); Putnik, H. [Delegation of the European Commission to Russia, Kadashevskaja nab. 14/1 119017 Moscow (Russian Federation); Nirvin, B.; Pettersson, S. [SKB, Box 5864, Stockholm, SE-102 40 (Sweden); Johnsson, B. [Studsvik RadWaste, Nykoping, SE-611 82 (Sweden)

    2006-07-01T23:59:59.000Z

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  16. International Research Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Leopando, Leonardo [Philippine Nuclear Research Institute, Quezon City (Philippines); Warnecke, Ernst [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  17. Rancho Seco--Decommissioning Update

    SciTech Connect (OSTI)

    Newey, J. M.; Ronningen, E. T.; Snyder, M. W.

    2003-02-26T23:59:59.000Z

    The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of SAFSTOR to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful completion of work, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and should be completed by the end of 2003. System removal is near completion in the Auxiliary Building with removal of the final liquid waste tanks in progress. The spent fuel has been moved to dry storage in an onsite ISFSI, with completion on August 21, 2002. The spent fuel racks are currently being removed from the pool, packaged and shipped, and then the pool will be cleaned. Also in the last year the reactor coolant pumps and primary piping were removed and shipped. Characterization and planning work for the reactor vessel and internals is also in progress with various cut-up and/or disposal options being evaluated. In the year ahead the remaining systems in the Reactor Building will be removed, packaged and sent for disposal, including the pressurizer. Work will be started on embedded and underground piping and the large outdoor tanks. Building survey and decontamination will begin. RFP's for removal of the vessel and internals and the steam generators are planned to fix the cost of those components. If the costs are consistent with current estimates the work will go forward. If they are not, hardened SAFSTOR/entombment may be considered.

  18. STATUS OF THE NRC'S DECOMMISSIONING PROGRAM

    SciTech Connect (OSTI)

    Orlando, D. A.; Camper, L. W.; Buckley, J.

    2002-02-25T23:59:59.000Z

    On July 21, 1997, the U.S. Nuclear Regulatory Commission published the final rule on Radiological Criteria for License Termination (the License Termination Rule) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program. It discusses the status of permanently shut-down commercial power reactors, complex decommissioning sites, and sites listed in the Site Decommissioning Management Plan. The paper provides the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including a Standard Review Plan for evaluating plans and information submitted by licensees to support the decommissioning of nuclear facilities and the D and D Screen software for determining the potential doses from residual radioactivity. Finally, it discusses the status of the staff's current efforts to streamline the decommissioning process.

  19. Sixteen Years of International Co-operation. The OECD/NEA Co-operative Programme on Decommissioning

    SciTech Connect (OSTI)

    Menon, S.; Valencia, L.

    2002-02-25T23:59:59.000Z

    The Co-operative Programme on Decommissioning under the administration of the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency (NEA) has recently completed sixteen years of operation. The Programme, which is essentially an information exchange programme between decommissioning projects, came into being in 1985. It has grown from an initial 10 decommissioning projects from 7 countries to 39 projects from 14 countries today. From purely information exchange to start with, the Programme has, in later years, been functioning as a voice for the collective expression of views of the implementers of nuclear decommissioning. During the first sixteen years of the operation of the Co-operative Programme, nuclear decommissioning has grown from local specialist activities within projects to a competitive commercial industry. By the dismantling and release from regulatory control of over a dozen diverse nuclear facilities, the Programme has been able to demonstrate in practice, that nuclear decommissioning can be performed safely both for the workers and the public, and that this can be done at reasonable costs in an environmentally friendly fashion. During the recent years, discussions and work within the Co-operative Programme, specially within some of the Task Groups, have had/are having effects and repercussions not just in the field of nuclear decommissioning, but can possibly affect activities and regulations in other industries. This paper describes how the Programme and its activities and procedures have evolved over the years and indicate the directions of developments in the organization and execution of decommissioning projects. Finally, it gives a brief overview of the achievements of the Cooperative Programme and visualizes future developments in the field of nuclear decommissioning.

  20. Site decommissioning management plan

    SciTech Connect (OSTI)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01T23:59:59.000Z

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  1. Interdisciplinary Institute for Innovation Estimating the costs of nuclear

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interdisciplinary Institute for Innovation Estimating the costs of nuclear power: benchmarks;1/36 Estimating the costs of nuclear power: benchmarks and uncertainties François Lévêque Introduction The debate and voters that they are being manipulated: each side is just defending its own interests and the true cost

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  3. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  4. Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana)

    Broader source: Energy.gov [DOE]

    The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as...

  5. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01T23:59:59.000Z

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  6. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect (OSTI)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25T23:59:59.000Z

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  7. Sorption (Kd) measurements on cinder block and grout in support of dose assessments for Zion Nuclear Station decommissioning

    SciTech Connect (OSTI)

    Milian L.; Sullivan T.

    2014-06-24T23:59:59.000Z

    The Zion Nuclear Power Station is being decommissioned. ZionSolutions proposes to leave much of the below grade structures in place and to fill them with a backfill to provide structural support. Backfills under consideration include “clean” concrete demolition debris from the above grade parts of the facility, a flowable grout, cinder block construction debris and sand. A previous study (Yim, 2012) examined the sorption behavior of five nuclides (Fe-55, Co-60, Ni-63, Sr-85, and Cs-137) on concrete and local soils. This study, commissioned by ZionSolutions and conducted by the Brookhaven National Laboratory (BNL) examines the sorption behavior on cinder block and grout materials. Specifically, this study measured the distribution coefficient for four radionuclides of concern using site-groundwater and cinder block from the Zion site and a flowable grout. The distributions coefficient is a measure of the amount of the radionuclide that will remain sorbed to the solid material that is present relative to the amount that will remain in solution. A high distribution coefficient indicates most of the radionuclide will remain on the solid material and will not be available for transport by the groundwater. The radionuclides examined in this set of tests were Co-60, Ni-63, Sr-85, and Cs-137. Tests were performed following ASTM C1733-10, Standard Test Methods for Distribution Coefficients of Inorganic Species by the Batch Method. Sr-85 was used in the testing as an analogue for Sr-90 because it behaves similarly with respect to sorption and has a gamma emission that is easier to detect than the beta emission from Sr-90.

  8. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    SciTech Connect (OSTI)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01T23:59:59.000Z

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires that contaminated components either be: (1) decontaminated to restricted or unrestricted release levels or (2) packaged and shipped to an authorized disposal site. This study considers unrestricted release only. The new decommissioning criteria of July 1997 are too recent for this study to include a cost analysis of the restricted release option, which is now allowed under these new criteria. The costs of decommissioning facility components are generally estimated to be in the range of $140 to $27,000, depending on the type of component, the type and amount of radioactive contamination, the remediation options chosen, and the quantity of radioactive waste generated from decommissioning operations. Estimated costs for decommissioning the example laboratories range from $130,000 to $205,000, assuming aggressive low-level waste (LLW) volume reduction. If only minimal LLW volume reduction is employed, decommissioning costs range from $150,000 to $270,000 for these laboratories. On the basis of estimated decommissioning costs for facility components, the costs of decommissioning typical non-fuel-cycle laboratory facilities are estimated to range from about $25,000 for the decommissioning of a small room containing one or two fume hoods to more than $1 million for the decommissioning of an industrial plant containing several laboratories in which radiochemicals and sealed radioactive sources are prepared. For the reference sites of this study, the basic decommissioning alternatives are: (1) site stabilization followed by long-term care and (2) removal of the waste or contaminated soil to an authorized disposal site. Cost estimates made for decommissioning three reference sites range from about $130,000 for the removal of a contaminated drain line and hold-up tank to more than $23 million for the removal of a tailings pile that contains radioactive residue from ore-processing operations in which tin slag is processed for the recovery of rare metals. Total occupational radiation doses generally range from 0.00007 person-rem to 13 person-rem for

  9. Statement of Intent No. 2 between DOE and the Nuclear Decommissioning

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site » PortsmouthWorking2011SmallWorkforceState and LocalNuclearAuthority |

  10. Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site » PortsmouthWorking2011SmallWorkforceState and LocalNuclearAuthority

  11. INTERNATIONAL DECOMMISSIONING SYMPOSIUM 2000

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01T23:59:59.000Z

    The purpose of IDS 2000 was to deliver a world-class conference on applicable global environmental issues. The objective of this conference was to publicize environmental progress of individual countries, to provide a forum for technology developer and problem-holder interaction, to facilitate environmental and technology discussions between the commercial and financial communities, and to accommodate information and education exchange between governments, industries, universities, and scientists. The scope of this project included the planning and execution of an international conference on the decommissioning of nuclear facilities, and the providing of a business forum for vendors and participants sufficient to attract service providers, technology developers, and the business and financial communities. These groups, when working together with attendees from regulatory organizations and government decision-maker groups, provide an opportunity to more effectively and efficiently expedite the decommissioning projects.

  12. Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2

    SciTech Connect (OSTI)

    Weiss, A. J. [comp.

    1988-02-01T23:59:59.000Z

    This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

  13. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect (OSTI)

    Lowry, N.

    2010-11-05T23:59:59.000Z

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

  14. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    SciTech Connect (OSTI)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)] [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Donohoue, Tom; Martin, E. Ray; Mason, John A. [ANTECH Corporation 9050 Marshall Court, Westminster, CO, 80031 (United States)] [ANTECH Corporation 9050 Marshall Court, Westminster, CO, 80031 (United States); Norton, Christopher J.; Crosby, Daniel [Environmental Alternatives, Inc., 149 Emerald Street, Suite R, Keene, NH 03431 (United States)] [Environmental Alternatives, Inc., 149 Emerald Street, Suite R, Keene, NH 03431 (United States); Nachtman, Thomas J. [InstaCote, Inc., 160 C. Lavoy Road, Erie, MI, 48133 (United States)] [InstaCote, Inc., 160 C. Lavoy Road, Erie, MI, 48133 (United States)

    2013-07-01T23:59:59.000Z

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to determine the TRU content of the boxes by assessing the activity of Am-241 (59 keV) and Pu-241 (414 keV). Using the data generated it was possible for qualified subject matter experts (SME) to assess that the gloveboxes could be consigned for disposition as LLW and not as TRU. Once this determination was assessed and accepted the gloveboxes were prepared for final disposition to the Nevada National Security Site (NNSS) - formerly the Nevada Test Site (NTS). This preparation involved fixing any remaining radioactive contamination within the gloveboxes by filling them with a foam compound, prior to transportation. Once the remaining contamination was fixed the gloveboxes were removed from the laboratory and prepared for transported by road to NNSS. This successful glovebox decontamination and decommissioning process illustrates the means by which TRU waste generation has been minimized, LLW generation has been maximized, and risk has been effectively managed. The process minimizes the volume of TRU waste and reduced the decommissioning time with significant cost savings as the result. (authors)

  15. NEW MATERIALS DEVELOPED TO MEET REGULATORY AND TECHNICAL REQUIREMENTS ASSOCIATED WITH IN-SITU DECOMMISSIONING OF NUCLEAR REACTORS AND ASSOCIATED FACILITIES

    SciTech Connect (OSTI)

    Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

    2012-01-18T23:59:59.000Z

    For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m{sup 3} (250,000 yd{sup 3}) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent industrial worker exposure to radioactive or hazardous contamination exceeding Principal Threat Source Material levels; (2) Minimize human and ecological exposure to unacceptable risk associated with radiological and hazardous constituents that are or may be present; (3) Prevent to the extent practicable the migration of radioactive or hazardous contaminants from the closed facility to the groundwater so that concentrations in groundwater do not exceed regulatory standards; (4) Eliminate or control all routes of human exposure to radiological and chemical contamination; and (5) Prevent animal intruder exposure to radioactive and hazardous contamination.

  16. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01T23:59:59.000Z

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  17. Supercomputer decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8 CareerSupercomputer decommissioning

  18. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01T23:59:59.000Z

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  19. Worldwide Overview of Lessons Learned from Decommissioning Projects

    SciTech Connect (OSTI)

    Laraia, Michele [IAEA, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    With an increasing number of radioactive facilities and reactors now reaching the end of their useful life and being taken out of service, there is a growing emphasis worldwide on the safe and efficient decommissioning of such plants. There is a wealth of experience already gained in decommissioning projects for all kinds of nuclear facilities. It is now possible to compare and discuss progress and accomplishments worldwide. In particular, rather than on the factual descriptions of projects, technologies and case histories, it is important to focus on lessons learned: in this way, the return of experience is felt to effectively contribute to progress. Key issues - inevitably based on a subjective ranking - are presented in this paper. Through the exchange of lessons learned, it is possible to achieve full awareness of the need for resources for and constraints of safe and cost-effective decommissioning. What remains now is the identification of specific, remaining issues that may hinder or delay the smooth progress of decommissioning. To this end, lessons learned provide the necessary background information; this paper tries to make extensive use of practical experience gained by the international community.

  20. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    SciTech Connect (OSTI)

    R. L. Demmer

    2011-04-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  1. NMSS handbook for decommissioning fuel cycle and materials licensees

    SciTech Connect (OSTI)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

    1997-03-01T23:59:59.000Z

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  2. cost savings | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian NuclearNational5/%2A en Office ofcontracting

  3. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    SciTech Connect (OSTI)

    Kenny, Stephen [Acting Director of Waste Management and Decommissioning Operations, AECL, Chalk River Labs, Chalk River, Ont. (Canada)

    2008-01-15T23:59:59.000Z

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred thousand hours worked, on schedule and under budget despite some significant changes throughout the decommissioning phases. The actual cost to decommission this building will come in under 9 million dollars vs. an estimated 14.5 million dollars. This paper will cover some of the unique aspects of dismantling a radioactive building that has seen pretty much every element of the periodic table pass through it with the client requirement focused on minimization of radioactive waste volumes.

  4. Use of InSpector{sup TM} 1 1000 Instrument with LaBr{sub 3} for Nuclear Criticality Safety (NCS) Applications at the Westinghouse Hematite Decommissioning Project (HDP) - 13132

    SciTech Connect (OSTI)

    Pritchard, Megan [Nuclear Safety Associates, P.O. Box 471488, Charlotte, NC 28247 (United States)] [Nuclear Safety Associates, P.O. Box 471488, Charlotte, NC 28247 (United States); Guido, Joe [System One Services, 12 Federal St. Ste. 205, Pittsburgh, PA 15212 (United States)] [System One Services, 12 Federal St. Ste. 205, Pittsburgh, PA 15212 (United States)

    2013-07-01T23:59:59.000Z

    The Westinghouse Hematite Decommissioning Project (HDP) is a former nuclear fuel cycle facility that is currently undergoing decommissioning. One aspect of the decommissioning scope is remediation of buried nuclear waste in unlined burial pits. The current Nuclear Criticality Safety program relies on application of criticality controls based on radiological setpoints from a 2 x 2 Sodium Iodide (NaI) detector. Because of the nature of the material buried (Low Enriched Uranium (LEU), depleted uranium, thorium, and radium) and the stringent threshold for application of criticality controls based on waste management (0.1 g {sup 235}U/L), a better method for {sup 235}U identification and quantification has been developed. This paper outlines the early stages of a quick, in-field nuclear material assay and {sup 235}U mass estimation process currently being deployed at HDP. Nuclear material initially classified such that NCS controls are necessary can be demonstrated not to require such controls and dispositioned as desired by project operations. Using Monte Carlo techniques and a high resolution Lanthanum Bromide (LaBr) detector with portable Multi-Channel Analyzer (MCA), a bounding {sup 235}U mass is assigned to basic geometries of nuclear material as it is excavated. The deployment of these methods and techniques has saved large amounts of time and money in the nuclear material remediation process. (authors)

  5. Cost and Performance Report Accelerated Site Technology Deployment Program

    SciTech Connect (OSTI)

    P. S. Morris

    2002-05-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Environmental Restoration Division (ERD) Industrial Sites Project Deactivation and Decommissioning (D and D) source group has limited budget and is constantly searching for new technologies to reduce programmatic costs. Partnering with the DOE Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA) reduces NNSA/NV programmatic risk and encourages accelerated deployment of potentially beneficial technologies to the Nevada Test Site (NTS).

  6. Decommissioning of U.S. uranium production facilities

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  7. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01T23:59:59.000Z

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  8. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1994-09-01T23:59:59.000Z

    On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

  9. FAMS DECOMMISSIONING END-STATE ALTERNATIVE EVALUATION

    SciTech Connect (OSTI)

    Grimm, B; Stephen Chostner, S; Brenda Green, B

    2006-05-25T23:59:59.000Z

    Nuclear Material Management (NMM) completed a comprehensive study at the request of the Department of Energy Savannah River Operations Office (DOE-SR) in 2004 (Reference 11.1). The study evaluated the feasibility of removal and/or mitigation of the Pu-238 source term in the F-Area Material Storage (FAMS) facility during on-going material storage operations. The study recommended different options to remove and/or mitigate the Pu-238 source term depending on its location within the facility. During April 2005, the Department of Energy (DOE) sent a letter of direction (LOD) to Washington Savannah River Company (WSRC) directing WSRC to implement a new program direction that would enable an accelerated shutdown and decommissioning of FAMS (Reference 11.2). Further direction in the LOD stated that effective December 1, 2006 the facility will be transitioned to begin deactivation and decommissioning (D&D) activities. To implement the LOD, Site D&D (SDD) and DOE agreed the planning end-state would be demolition of the FAMS structure to the building slab. SDD developed the D&D strategy, preliminary cost and schedule, and issued the deactivation project plan in December 2005 (Reference 11.3). Due to concerns and questions regarding the FAMS planning end-state and in support of the project's Critical Decision 1, an alternative study was performed to evaluate the various decommissioning end-states and the methods by which those end-states are achieved. This report documents the results of the alternative evaluation which was performed in a structured decision-making process as outlined in the E7 Manual, Procedure 2.15, ''Alternative Studies'' (Reference 11.4).

  10. TA-2 Water Boiler Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Durbin, M.E. (ed.); Montoya, G.M.

    1991-06-01T23:59:59.000Z

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  11. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect (OSTI)

    Nelson, Jerel G.; Kruzic, Michael [WorleyParsons, Mississauga, ON, L4W 4H2 (United States)] [WorleyParsons, Mississauga, ON, L4W 4H2 (United States); Castillo, Carlos [WorleyParsons, Las Vegas, NV 89128 (United States)] [WorleyParsons, Las Vegas, NV 89128 (United States); Pavey, Todd [WorleyParsons, Idaho Falls, ID 83402 (United States)] [WorleyParsons, Idaho Falls, ID 83402 (United States); Alexan, Tamer [WorleyParsons, Burnaby, BC, V5C 6S7 (United States)] [WorleyParsons, Burnaby, BC, V5C 6S7 (United States); Bainbridge, Ian [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)] [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)

    2013-07-01T23:59:59.000Z

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  12. RESULTS OF IONSIV® IE-95 STUDIES FOR THE REMOVAL OF RADIOACTIVE CESIUM FROM K-EAST BASIN SPENT NUCLEAR FUEL POOL DURING DECOMMISSIONING ACTIVITIES

    SciTech Connect (OSTI)

    DUNCAN JB; BURKE SP

    2008-07-07T23:59:59.000Z

    This report delineates the results obtained from laboratory testing of IONISIV{reg_sign} IE-95 to determine the efficacy of the zeolite for the removal of radioactive cesium from the KE Basin water prior to transport to the Effluent Treatment Facility, as described in RPP-PLAN-36158, IONSIV{reg_sign} IE-95 Studies for the removal of Radioactive Cesium from KE Basin Spent Nuclear Fuel Pool during Decommissioning Activities. The spent nuclear fuel was removed from KE Basin and the remaining sludge was layered with a grout mixture consisting of 26% Lehigh Type I/II portland cement and 74% Boral Mohave type F fly ash with a water-to-cement ratio of 0.43. The first grout pour was added to the basin floor to a depth of approximately 14 in. covering an area of 12,000 square feet. A grout layer was also added to the sludge containers located in the attached Weasel and Technical View pits.

  13. Sellafield Decommissioning Programme - Update and Lessons Learned

    SciTech Connect (OSTI)

    Lutwyche, P. R.; Challinor, S. F.

    2003-02-24T23:59:59.000Z

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

  14. Characterization of the Nuclear Barge Sturgis

    SciTech Connect (OSTI)

    Honerlah, H. B.; Hearty, B. P.

    2002-02-27T23:59:59.000Z

    The Department of the Army is authorized to build and operate nuclear reactors for defense purposes under Paragraph 91b of the Atomic Energy Act of 1954 (1). As part of the Army Reactor Program, the United States Army Corps of Engineers (Corps) is responsible for nuclear reactor engineering and design, reactor construction, and decommissioning design and implementation (2). The Corps is currently focused on ensuring the safety and security of the Army's three deactivated power reactors and planning for their final decommissioning. To support decommissioning cost projections, the Corps is gathering information on the residual radiological and chemical hazards associated with each reactor, starting with the MH-1A reactor on the Sturgis Barge (3). Because the Sturgis Barge is moored in the James River Reserve Fleet, there were unique challenges that had to be overcome during the characterization survey and others that will become a concern when final decommissioning is to be per formed.

  15. Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station

    SciTech Connect (OSTI)

    Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Kondo, Yoshikazu; Noguchi, Yoshikazu [PESCO Co.Ltd. (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

  16. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect (OSTI)

    Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)] [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)

    2013-07-01T23:59:59.000Z

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  17. Decommissioning Benchmarking Study Final Report

    Broader source: Energy.gov [DOE]

    DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

  18. EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of the range of reasonable alternatives to decommission and/or maintain long-term stewardship at WNYNSC. The alternatives analyzed in the EIS...

  19. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E. [U.S. Environmental Protection Agency, Washington D.C. (United States); Snipes, R.L. [Oak Ridge National Laboratory, TN (United States); Guskov, V.; Makarchuk, T. [Special Mechanical Engineering Design Bureau (KBSM), St. Petersburg (Russian Federation)

    2007-07-01T23:59:59.000Z

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuel from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped to 'Mayak' for reprocessing. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. DOD Office of Cooperative Threat Reduction (CTR), and the DOE's ORNL, along with the Norwegian Defense Research Establishment, worked closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved integrated management system for interim storage of military SNF in Russia. The initial Project activities included: (1) development of a prototype dual-purpose, metal-concrete 40-ton cask for both the transport and interim storage of RF SNF, and (2) development of the first transshipment/interim storage facility for these casks in Murmansk. The U.S. has continued support to the project by assisting the RF with the development of the first mobile system that provides internal conditioning for the TUK-108/1 casks to allow them to be stored for longer than the current licensing period of two years. Development of the prototype TUK-108/1 cask was completed in December 2000 under the Arctic Military Environmental Cooperation (AMEC) Program. This was the first metal-concrete cask developed, licensed, and produced in the RF for both the transportation and storage of SNF from decommissioned submarines. These casks are currently being serially produced in NW Russia and 108 casks have been produced to date. Russia is using these casks for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East in conformance with the Strategic Arms Reduction Treaty (START II). The design, construction, and commissioning of the first transshipment/interim storage facility in the RF was completed and ready for full operation in September 2003. Because of the RF government reorganization and changing regulations for spent fuel storage facilities, the storage facility at Murmansk was not fully licensed for operation until December 2005. The RF has reported that the facility is now fully operational. The TUK-108/1 SNF transport and storage casks were designed

  20. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    SciTech Connect (OSTI)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N. [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom)] [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom); Creed, Richard; Pancake, Daniel [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)] [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

    2013-07-01T23:59:59.000Z

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 ? steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple radionuclides may be selected by the operator and will be identified if present. In scanning operation the unit scans a designated region and superimposes over a video image the distribution of measured radioactivity. For the total scanned area or object RadSearch determines the total activity of operator selected radionuclides present and the gamma dose-rate measured at the detector head. Results of hold-up measurements made in a nuclear facility are presented, as are test measurements of point sources distributed arbitrarily on surfaces. These latter results are compared with the results of benchmarked MCNP Monte Carlo calculations. The use of the device for hold-up and decommissioning measurements is validated. (authors)

  1. Standard Guide for Radiation Protection Program for Decommissioning Operations

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1987-01-01T23:59:59.000Z

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  2. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Salazar, M.; Elder, J.

    1992-08-01T23:59:59.000Z

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program.

  3. Maintaining Quality in a Decommissioning Environment

    SciTech Connect (OSTI)

    Attas, Michael [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba, R0E 1L0 (Canada)

    2008-01-15T23:59:59.000Z

    The decommissioning of AECL's Whiteshell Laboratories is Canada's largest nuclear decommissioning project to date. This research laboratory has operated for forty years since it was set up in 1963 in eastern Manitoba as the Whiteshell Nuclear Research Establishment, complete with 60 MW(Th) test reactor, hot cells, particle accelerators, and multiple large-scale research programs. Returning the site to almost complete green state will require several decades of steady work in combination with periods of storage-with-surveillance. In this paper our approach to maintaining quality during the long decommissioning period is explained. In this context, 'quality' includes both regulatory aspects (compliance with required standards) and business aspects (meeting the customers' needs and exceeding their expectations). Both aspects are discussed, including examples and lessons learned. The five years of development and implementation of a quality assurance program for decommissioning the WL site have led to a number of lessons learned. Many of these are also relevant to other decommissioning projects, in Canada and elsewhere: - Early discussions with the regulator can save time and effort later in the process; - An iterative process in developing documentation allows for steady improvements and input throughout the process; - Consistent 2-way communication with staff regarding the benefits of a quality program assists greatly in adoption of the philosophy and procedures; - Top-level management must lead in promoting quality; - Field trials of procedures ('beta testing') ensures they are easy to use as well as useful. Success in decommissioning the Whiteshell Laboratories depends on the successful implementation of a rigorous quality program. This will help to ensure both safety and efficiency of all activities on site, from planning through execution and reporting. The many aspects of maintaining this program will continue to occupy quality practitioners in AECL, reaping steady benefits to AECL and to its customers, the people of Canada.

  4. DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES

    SciTech Connect (OSTI)

    Weaver, Patrick; Henderson, Glenn; Erickson, Peter; Garber, David

    2003-02-27T23:59:59.000Z

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department of Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.

  5. Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived.

  6. Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074

    SciTech Connect (OSTI)

    Wilcox, Brian; Mellor, Russ; Michaluk, Craig [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba (Canada)

    2013-07-01T23:59:59.000Z

    Whiteshell Laboratories (WL) is a nuclear research site in Canada that was commissioned in 1964 by Atomic Energy of Canada Limited. It covers a total area of approximately 4,375 hectares (10,800 acres) and includes the main campus site, the Waste Management Area (WMA) and outer areas of land identified as not used for or impacted by nuclear development or operations. The WL site employed up to 1100 staff. Site activities included the successful operation of a 60 MW organic liquid-cooled research reactor from 1965 to 1985, and various research programs including reactor safety research, small reactor development, fuel development, biophysics and radiation applications, as well as work under the Canadian Nuclear Fuel Waste Management Program. In 1997, AECL made a business decision to discontinue research programs and operations at WL, and obtained government concurrence in 1998. The Nuclear Legacy Liabilities Program (NLLP) was established in 2006 by the Canadian Government to remediate nuclear legacy liabilities in a safe and cost effective manner, including the WL site. The NLLP is being implemented by AECL under the governance of a Natural Resources Canada (NRCan)/AECL Joint Oversight Committee (JOC). Significant progress has since been made, and the WL site currently holds the only Canadian Nuclear Safety Commission (CNSC) nuclear research site decommissioning license in Canada. The current decommissioning license is in place until the end of 2018. The present schedule planned for main campus decommissioning is 30 years (to 2037), followed by institutional control of the WMA until a National plan is implemented for the long-term management of nuclear waste. There is an impetus to advance work and complete decommissioning sooner. To accomplish this, AECL has added significant resources, reorganized and moved to a projectized environment. This presentation outlines changes made to the organization, the tools implemented to foster projectization, and the benefits and positive impacts on schedule and delivery. A revised organizational structure was implemented in two phases, starting 2011 April 1, to align WL staff with the common goal of decommissioning the site through the direction of the WL Decommissioning Project General Manager. On 2011 September 1, the second phase of the reorganization was implemented and WL Decommissioning staff was organized under five Divisions: Programs and Regulatory Compliance, General Site Services, Decommissioning Strategic Planning, Nuclear Facilities and Project Delivery. A new Mission, Vision and Objectives were developed for the project, and several productivity enhancements are being implemented. These include the use of an integrated and fully re-sourced Site Wide Schedule that is updated and reviewed at Plan-of-the-Week meetings, improved work distribution throughout the year, eliminating scheduling 'push' mentality, project scoreboards, work planning implementation, lean practices and various process improvement initiatives. A revised Strategic Plan is under development that reflects the improved project delivery capabilities. As a result of these initiatives, and a culture change towards a projectized approach, the decommissioning schedule will be advanced by approximately 10 years. (authors)

  7. Proceedings of the 2007 ANS Topical Meeting on Decommissioning, Decontamination, and Reutilization - DD and R 2007

    SciTech Connect (OSTI)

    NONE

    2008-01-15T23:59:59.000Z

    The American Nuclear Society (ANS) Topical Meeting on Decommissioning, Decontamination, and Reutilization (DD and R 2007), 'Capturing Decommissioning Lessons Learned', is sponsored by the ANS Decommissioning, Decontamination and Reutilization; Environmental Sciences; and Fuel Cycle and Waste Management Divisions. This meeting provides a forum for an international exchange of technical knowledge and project management experience gained from the ongoing process of decommissioning nuclear facilities. Of particular note is the number of projects that are approaching completion. This document gathers 113 presentations given at this meeting.

  8. Ris-R-1291(EN) Revised Cost Estimate for the

    E-Print Network [OSTI]

    -R-1250(EN) "Decommissioning of the Nuclear Facilities at Risø National Laboratory" Edited by Kurt 3 in the report Risø-R-1250(EN) "Decommission- ing of the Nuclear Facilities at Risø National), a decommissioning project is carried out at three levels: Initial, On- going and Final. For a given nuclear

  9. Decommissioning Plan of the Musashi Reactor and Its Progress

    SciTech Connect (OSTI)

    Tanzawa, Tomio [Atomic Energy Research Laboratory, Musashi Institute of Technology, Ozenji 971, Asao-ku, Kawasaki, 215-0013 (Japan)

    2008-01-15T23:59:59.000Z

    The Musashi Reactor is a TRIGA-II, tank-type research reactor, as shown in Table 1. The reactor had been operated at maximum thermal power level of 100 kW since first critical, January 30, 1963. Reactor operation was shut down due to small leakage of water from the reactor tank on December 21,1989. After shutdown, investigation of the causes, making plan of repair and discussions on restart or decommissioning had been done. Finally, decision of decommissioning was made in May, 2003. The initial plan of the decommissioning was submitted to the competent authority in January, 2004. Now, the reactor is under decommissioning. The plan of decommissioning and its progress are described. In conclusion: considering the status of undertaking plan of the waste disposal facility for the low level radioactive waste from research reactors, the phased decommissioning was selected for the Musashi Reactor. First phase of the decommissioning activities including the actions of permanent shutdown and delivering the spent nuclear fuels to US DOE was completed.

  10. Example G Cost of construction of nuclear power plants Description of data

    E-Print Network [OSTI]

    Reid, Nancy

    1 Example G Cost of construction of nuclear power plants Description of data Table G.1 gives reactor (LWR) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6

  11. Example G Cost of construction of nuclear power plants Description of data

    E-Print Network [OSTI]

    Reid, Nancy

    Example G Cost of construction of nuclear power plants Description of data Table G.1 gives data) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6 lines

  12. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed [Uranium and Reactive Metals Centre of Expertise Lead, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Uranium and Reactive Metals Centre of Expertise Lead, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Connor, Donna [Technical Capability Manager, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Technical Capability Manager, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Keighley, Debbie [Head of Profession, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Head of Profession, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  13. ASSESSMENT OF SMALL AND MODULAR REACTOR NUCLEAR FUEL COST 

    E-Print Network [OSTI]

    Pannier, Christopher 1992-

    2012-05-03T23:59:59.000Z

    The nuclear energy industry is experiencing a renaissance of new reactor design and construction in Asia, North America, and Europe. The new Generation III designs are some of the largest ever built, featuring improved efficiency, construction...

  14. Application of Robotics in Decommissioning and Decontamination - 12536

    SciTech Connect (OSTI)

    Banford, Anthony; Kuo, Jeffrey A. [National Nuclear Laboratory, Risley, Warrington (United Kingdom); Bowen, R.A. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Szilagyi, Andrew; Kirk, Paula [U.S. Department of Energy, Washington, D.C. (United States)

    2012-07-01T23:59:59.000Z

    Decommissioning and dismantling of nuclear facilities is a significant challenge worldwide and one which is growing in size as more plants reach the end of their operational lives. The strategy chosen for individual projects varies from the hands-on approach with significant manual intervention using traditional demolition equipment at one extreme to bespoke highly engineered robotic solutions at the other. The degree of manual intervention is limited by the hazards and risks involved, and in some plants are unacceptable. Robotic remote engineering is often viewed as more expensive and less reliable than manual approaches, with significant lead times and capital expenditure. However, advances in robotics and automation in other industries offer potential benefits for future decommissioning activities, with the high probability of reducing worker exposure and other safety risks as well as reducing the schedule and costs required to complete these activities. Some nuclear decommissioning tasks and facility environments are so hazardous that they can only be accomplished by exclusive use of robotic and remote intervention. Less hazardous tasks can be accomplished by manual intervention and the use of PPE. However, PPE greatly decreases worker productivity and still exposes the worker to both risk and dose making remote operation preferable to achieve ALARP. Before remote operations can be widely accepted and deployed, there are some economic and technological challenges that must be addressed. These challenges will require long term investment commitments in order for technology to be: - Specifically developed for nuclear applications; - At a sufficient TRL for practical deployment; - Readily available as a COTS. Tremendous opportunities exist to reduce cost and schedule and improve safety in D and D activities through the use of robotic and/or tele-operated systems. - Increasing the level of remote intervention reduces the risk and dose to an operator. Better environmental information identifies hazards, which can be assessed, managed and mitigated. - Tele-autonomous control in a congested unstructured environment is more reliable compared to a human operator. Advances in Human Machine Interfaces contribute to reliability and task optimization. Use of standardized dexterous manipulators and COTS, including standardized communication protocols reduces project time scales. - The technologies identified, if developed to a sufficient TRL would all contribute to cost reductions. Additionally, optimizing a project's position on a Remote Intervention Scale, a Bespoke Equipment Scale and a Tele-autonomy Scale would provide cost reductions from the start of a project. Of the technologies identified, tele-autonomy is arguably the most significant, because this would provide a fundamental positive change for robotic control in the nuclear industry. The challenge for technology developers is to develop versatile robotic technology that can be economically deployed to a wide range of future D and D projects and industrial sectors. The challenge for facility owners and project managers is to partner with the developers to provide accurate systems requirements and an open and receptive environment for testing and deployment. To facilitate this development and deployment effort, the NNL and DOE have initiated discussions to explore a collaborative R and D program that would accelerate development and support the optimum utilization of resources. (authors)

  15. EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

  16. Decommissioning Implementation Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-02T23:59:59.000Z

    The Department of Energy (DOE) faces an enormous task in the disposition of the nation's excess facilities. Many of these facilities are large and complex and contain potentially hazardous substances. As DOE facilities complete mission operations and are declared excess, they pass into a transition phase which ultimately prepares them for disposition. The disposition phase of a facility's life-cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  17. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    SciTech Connect (OSTI)

    Zakaria, Norasalwa, E-mail: norasalwa@nuclearmalaysia.gov.my; Mustafa, Muhammad Khairul Ariff, E-mail: norasalwa@nuclearmalaysia.gov.my; Anuar, Abul Adli, E-mail: norasalwa@nuclearmalaysia.gov.my; Idris, Hairul Nizam, E-mail: norasalwa@nuclearmalaysia.gov.my; Ba'an, Rohyiza, E-mail: norasalwa@nuclearmalaysia.gov.my [Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

    2014-02-12T23:59:59.000Z

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  18. Draft principles, policy, and acceptance criteria for decommissioning of U.S. Department of Energy contaminated surplus facilities and summary of international decommissioning programs

    SciTech Connect (OSTI)

    Singh, B.K. [Argonne National Lab., IL (United States); [USDOE Office of Nuclear Safety Policy and Standards, Washington, DC (United States). Systems Analysis and Standards Div.; Gillette, J.; Jackson, J. [Argonne National Lab., IL (United States)

    1994-12-01T23:59:59.000Z

    Decommissioning activities enable the DOE to reuse all or part of a facility for future activities and reduce hazards to the general public and any future work force. The DOE Office of Environment, Health and Safety has prepared this document, which consists of decommissioning principles and acceptance criteria, in an attempt to establish a policy that is in agreement with the NRC policy. The purpose of this document is to assist individuals involved with decommissioning activities in determining their specific responsibilities as identified in Draft DOE Order 5820.DDD, ``Decommissioning of US Department of Energy Contaminated Surplus Facilities`` (Appendix A). This document is not intended to provide specific decommissioning methodology. The policies and principles of several international decommissioning programs are also summarized. These programs are from the IAEA, the NRC, and several foreign countries expecting to decommission nuclear facilities. They are included here to demonstrate the different policies that are to be followed throughout the world and to allow the reader to become familiar with the state of the art for environment, safety, and health (ES and H) aspects of nuclear decommissioning.

  19. Recordkeeping in the decommissioning process

    SciTech Connect (OSTI)

    Boing, L. E.

    2000-02-29T23:59:59.000Z

    In the US, there are two sets of key decommissioning records clearly identified -- those that are essential for planning the D and D of a facility and then those that are the result of the decommissioning process itself. In some cases, the regulatory authorities require and in others advise the licensees of the records that may be useful or which are required to be kept from the decommissioning. In the remainder of the paper, the author attempts to highlight some important aspects of decommissioning recordkeeping.

  20. Item No. 3 process facilities cost estimates and schedules for facilities capability assurance program nuclear facilities modernization - FY 1989 line item, authorization No. D79

    SciTech Connect (OSTI)

    NONE

    1989-07-01T23:59:59.000Z

    Data is presented concerning cost estimates and schedules for process facilities and nuclear facilities modernization.

  1. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    SciTech Connect (OSTI)

    Reid, RL

    2003-09-18T23:59:59.000Z

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

  2. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D. [Institute for the Environment, University of North Carolina, Chapel Hill (United States); Yim, M.S. [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  3. Plan for decommissioning the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Spampinato, P.T.; Walton, G.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Commander, J.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-12-31T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D&D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D&D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D&D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D&D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

  4. Plan for decommissioning the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Spampinato, P.T.; Walton, G.R. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Commander, J.C. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1993-01-01T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

  5. A Plutonium Finishing Plant Model for the Cercla Removal Action and Decommissioning Construction Final Report

    SciTech Connect (OSTI)

    Hopkins, A. [Fluor Hanford, Inc, Richland, WA (United States)

    2008-07-01T23:59:59.000Z

    The joint policy between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) for decommissioning buildings at DOE facilities documents an agreement between the agencies to perform decommissioning activities including demolition under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The use of removal actions for decommissioning integrates EPA oversight authority, DOE lead agency responsibility, and state authority for decommissioning activities. Once removal actions have been performed under CERCLA, a construction completion report is required to document the completion of the required action. Additionally, a decommissioning report is required under DOE guidance. No direct guidance was found for documenting completion of decommissioning activities and preparing a final report that satisfies the CERCLA requirements and the DOE requirements for decommissioning. Additional guidance was needed for the documentation of construction completion under CERCLA for D and D projects undertaken under the joint policy that addresses the requirements of both agencies. A model for the construction completion report was developed to document construction completion for CERCLA D and D activities performed under the joint EPA/DOE policy at the Plutonium Finishing Plant (PFP). The model documentation report developed at PFP integrates the DOE requirements for establishing decommissioning end-points, documenting end-point completion and preparing a final decommissioning report with the CERCLA requirements to document completion of the action identified in the Action Memorandum (AM). The model includes the required information on health and safety, data management, cost and schedule and end-points completion. (authors)

  6. Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  7. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

    2002-11-30T23:59:59.000Z

    OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  8. Underground nuclear energy complexes - technical and economic advantages

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

    2010-01-01T23:59:59.000Z

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  9. Nuclear Engineering and Design 236 (2006) 16411647 Basic factors to forecast maintenance cost and failure processes for

    E-Print Network [OSTI]

    Popova, Elmira

    2006-01-01T23:59:59.000Z

    . The importance of equipment reliability and prediction in the commercial nuclear power plant is presented along a Bayesian model for the failure rate of the equipment, which is input to the cost forecasting model Texas Project Nuclear Operating Company (STPNOC): failure times, repair costs, equipment downtime

  10. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  11. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13T23:59:59.000Z

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment including the dome was removed, a concrete cover was to be placed over the remaining footprint and the groundwater monitored for an indefinite period to ensure compliance with environmental regulations.

  12. Handbook for quick cost estimates. A method for developing quick approximate estimates of costs for generic actions for nuclear power plants

    SciTech Connect (OSTI)

    Ball, J.R.

    1986-04-01T23:59:59.000Z

    This document is a supplement to a ''Handbook for Cost Estimating'' (NUREG/CR-3971) and provides specific guidance for developing ''quick'' approximate estimates of the cost of implementing generic regulatory requirements for nuclear power plants. A method is presented for relating the known construction costs for new nuclear power plants (as contained in the Energy Economic Data Base) to the cost of performing similar work, on a back-fit basis, at existing plants. Cost factors are presented to account for variations in such important cost areas as construction labor productivity, engineering and quality assurance, replacement energy, reworking of existing features, and regional variations in the cost of materials and labor. Other cost categories addressed in this handbook include those for changes in plant operating personnel and plant documents, licensee costs, NRC costs, and costs for other government agencies. Data sheets, worksheets, and appropriate cost algorithms are included to guide the user through preparation of rough estimates. A sample estimate is prepared using the method and the estimating tools provided.

  13. Windscale pile reactors - Decommissioning progress on a fifty year legacy

    SciTech Connect (OSTI)

    Sexton, Richard J. [CH2M HILL International Nuclear Services, United Kingdom Atomic Energy Authority - UKAEA (United Kingdom)

    2007-07-01T23:59:59.000Z

    The decommissioning of the Windscale Pile 1 reactor, fifty years after the 1957 fire, is one of the most technically challenging decommissioning projects in the UK, if not the world. This paper presents a summary of the 1957 Windscale Pile 1 accident, its unique challenges and a new technical approach developed to safely and efficiently decommission the two Windscale Pile Reactors. The reactors will be decommissioned using a top down approach that employs an array of light weight, carbon fiber, high payload robotic arms to remove the damaged fuel, the graphite core, activated metals and concrete. This relatively conventional decommissioning approach has been made possible by a recently completed technical assessment of reactor core fire and criticality risk which concluded that these types of events are not credible if relatively simple controls are applied. This paper presents an overview of the design, manufacture and testing of equipment to remove the estimated 15 tons of fire damaged fuel and isotopes from the Pile 1 reactor. The paper also discusses recently conducted characterization activities which have allowed for a refined waste estimate and conditioning strategy. These data and an innovative approach have resulted in a significant reduction in the estimated project cost and schedule. (authors)

  14. Report on the Savannah River Site aluminum-based spent nuclear fuel alternatives cost study

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Initial estimates of costs for the interim management and disposal of aluminum-based spent nuclear fuel (SNF) were developed during preparation of the Environmental Impact Statement (EIS) on the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The Task Team evaluated multiple alternatives, assessing programmatic, technical, and schedule risks, and generated life-cycle cost projections for each alternative. The eight technology alternatives evaluated were: direct co-disposal; melt and dilute; reprocessing; press and dilute; glass material oxidation dissolution system (GMODS); electrometallurgical treatment; dissolve and vitrify; and plasma arc. In followup to the Business Plan that was developed to look at SNF dry storage, WSRC prepared an addendum to the cost study. This addendum estimated the costs for the modification and use of an existing (105L) reactor facility versus a greenfield approach for new facilities (for the Direct Co-Disposal and Melt and Dilute alternatives). WSRC assessed the impacts of a delay in reprocessing due to the potential reservation of H-Canyon for other missions (i.e., down blending HEU for commercial use or the conversion of plutonium to either MOX fuel or an immobilized repository disposal form). This report presents the relevant results from these WSRC cost studies, consistent with the most recent project policy, technology implementation, canyon utilization, and inventory assumptions. As this is a summary report, detailed information on the technical alternatives or the cost assumptions raised in each of the above-mentioned cost studies is not provided. A comparison table that briefly describes the bases used for the WSRC analyses is included as Appendix A.

  15. Securing the Sustainability of Global Medical Nuclear Supply Chains Through Economic Cost Recovery, Risk Management, and Optimization

    E-Print Network [OSTI]

    Nagurney, Anna

    , Radioactive decay 1 #12;1. Introduction Each day, 41,000 nuclear medical procedures are performedSecuring the Sustainability of Global Medical Nuclear Supply Chains Through Economic Cost Recovery of the complex operations of medical nuclear supply chains in the case of the radioisotope molybdenum

  16. Is Entombment an Acceptable Option for Decommissioning? An International Perspective - 13488

    SciTech Connect (OSTI)

    Belencan, Helen [US Department of Energy (United States)] [US Department of Energy (United States); Nys, Vincent [Federal Agency for Nuclear Control (Belgium)] [Federal Agency for Nuclear Control (Belgium); Guskov, Andrey [Scientific and Engineering Centre on Safety in Nuclear Energy (United States)] [Scientific and Engineering Centre on Safety in Nuclear Energy (United States); Francois, Patrice [Institut de radioprotection et de surete nucleaire (France)] [Institut de radioprotection et de surete nucleaire (France); Watson, Bruce [US Nuclear Regulatory Commission (United States)] [US Nuclear Regulatory Commission (United States); Ljubenov, Vladan [International Atomic Energy Agency (Austria)] [International Atomic Energy Agency (Austria)

    2013-07-01T23:59:59.000Z

    Selection of a decommissioning strategy is one of the key steps in the preparation for decommissioning of nuclear facilities and other facilities using radioactive material. Approaches being implemented or considered by Member States include immediate dismantling, deferred dismantling and entombment. Other options or slight modifications of these strategies are also possible. Entombment has been identified in the current International Atomic Energy Agency (IAEA) Safety Standards as one of the three basic decommissioning strategies and has been defined as a decommissioning strategy by which radioactive contaminants are encased in a structurally long lived material until radioactivity decays to a level permitting the unrestricted release of the facility, or release with restrictions imposed by the regulatory body. Although all three strategies have been considered, in principle, applicable to all facilities, their application to some facilities may not be appropriate owing to political concerns, safety or environmental requirements, technical considerations, local conditions or financial considerations. The IAEA is currently revising the decommissioning Safety Standards and one of the issues widely discussed has been the applicability of entombment in the context of decommissioning and its general objective to enable removal of regulatory control from the decommissioned facility. The IAEA recently established a consultancy to collect and discuss experience and lessons learned from entombment projects, to identify regulatory requirements and expectations for applying entombment as a decommissioning option strategy, in compliance with the internationally agreed standards. (authors)

  17. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    SciTech Connect (OSTI)

    Timothy Shaw; Vaugh Whisker

    2004-02-28T23:59:59.000Z

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

  18. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01T23:59:59.000Z

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  19. Uranium enrichment decontamination and decommissioning fund

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    One of the most challenging issues facing the Department of Energy`s Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge.

  20. Nuclear Instruments and Methods in Physics Research A 425 (1999) 480--487 A decommissioned LHC model magnet as an axion telescope

    E-Print Network [OSTI]

    Collar, Juan I.

    Laboratorio de Fisica Nuclear y Atlas Energias, Faculdad de Ciencias, Universidad de Zaragoza, E50009 Zaragoza LHC bending magnet can be utilized as a macroscopic coherent solar axion-to-photon converter.V. All rights reserved. PACS: 41.85.Lc; 85.25.Ly; 14.80.-j; 14.80.Mz; 92.60.Vb; 95 Keywords: Solar axions

  1. Surveillance and Maintenance Plan for the ORNL Decontamination and Decommissioning Program FY 1993--2002

    SciTech Connect (OSTI)

    Ford, M.K.; Holder, L. Jr.

    1992-07-01T23:59:59.000Z

    The Decontamination and Decommissioning (D D) Program at the Oak Ridge National Laboratory (ORNL) is part of the Department of Energy (DOE) Environmental Restoration D D program. The purpose and objectivesof this program include: (1) surveillance and maintenance (S M) of facilities awaiting decommissioning; (2) planning for the orderly decommissioning of these facilities; and (3) implementation of a program to accomplish facility disposition in a safe, cost-effective, and timely manner. Participating D D contractors are required to prepare formal plans that document the S M programs established for each site. This report has been prepared to provide this documentation for those facilities included in the ORNL D D Program.

  2. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect (OSTI)

    Serrato, M. G.

    2013-09-27T23:59:59.000Z

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  3. Decommissioning experience: One-piece removal and transport of a LWR pressure vessel and internals

    SciTech Connect (OSTI)

    Closs, J.W. [Northern States Power Co., Minneapolis, MN (United States)

    1993-12-31T23:59:59.000Z

    After a brief historical perspective, this document describes several key events which took place during the decommissioning of a commercial nuclear power plant. The scope of decommissioning work included: (a) the reactor building, the reactor vessel and the contents of the reactor building; (b) the fuel handling building and its contents; (c) the fuel transfer vault between the reactor building and the fuel handling building.

  4. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    SciTech Connect (OSTI)

    Jackson, P.K.; Freemerman, R.L. [Bechtel National, Inc., Oak Ridge, TN (United States)

    1989-11-01T23:59:59.000Z

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as the Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.

  5. Handbook for cost estimating. A method for developing estimates of costs for generic actions for nuclear power plants

    SciTech Connect (OSTI)

    Ball, J.R.; Cohen, S.; Ziegler, E.Z.

    1984-10-01T23:59:59.000Z

    This document provides overall guidance to assist the NRC in preparing the types of cost estimates required by the Regulatory Analysis Guidelines and to assist in the assignment of priorities in resolving generic safety issues. The Handbook presents an overall cost model that allows the cost analyst to develop a chronological series of activities needed to implement a specific regulatory requirement throughout all applicable commercial LWR power plants and to identify the significant cost elements for each activity. References to available cost data are provided along with rules of thumb and cost factors to assist in evaluating each cost element. A suitable code-of-accounts data base is presented to assist in organizing and aggregating costs. Rudimentary cost analysis methods are described to allow the analyst to produce a constant-dollar, lifetime cost for the requirement. A step-by-step example cost estimate is included to demonstrate the overall use of the Handbook.

  6. EM Develops Database for Efficient Solutions to Nuclear Cleanup...

    Broader source: Energy.gov (indexed) [DOE]

    illustrate the benefits of the database. EM also shared the database with the UK's Nuclear Decommissioning Authority and the Canadian Nuclear Laboratories to identify remote...

  7. Non-nuclear submarine tankers could cost-effectively move Arctic oil and gas

    SciTech Connect (OSTI)

    Kumm, W.H.

    1984-03-05T23:59:59.000Z

    Before the advent of nuclear propulsion for U.S. Navy submarines, fuel cells were considered to be the next logical step forward from battery powered submarines which required recharging. But with the launching of the USS Nautilus (SSN-571) in 1954, the development of fuel-cell propulsion was sidelined by the naval community. Nearly 30 years later fuel-cell propulsion on board submarines is actually more cost-effective than the use of nuclear propulsion. In the Artic Ocean, the use of the submarine tanker has long been considered commercially appropriate because of the presence of the polar ice cap, which inhibits surface ship transport. The technical difficulty and high operating cost of Arctic icebreaking tankers are strong arguments in favor of the cheaper, more efficient submarine tanker. Transiting under the polar ice cap, the submarine tanker is not an ''Arctic'' system, but merely a submerged system. It is a system usable in any ocean around the globe where sufficient depth exists (about 65% of the global surface). Ice breakers are another story; their design only makes them useful for transit through heavy sea ice in coastal environments. Used anywhere else, such as in the open ocean or at the Arctic ice cap, they are not a cost-effective means of transport. Arctic sea ice conditions require the Arctic peculiar icebreaking tanker system to do the job the hard way-on the surface. But on the other hand, Arctic sea ice conditions are neatly set aside by the submarine tanker, which does it the energy-efficient, elegant way submerged. The submarine tanker is less expensive to build, far less expensive to operate, and does not need to be nuclear propelled.

  8. Collimated in-situ gamma spectrometry: A new method for fast clearance measurements of large areas or buildings structures of nuclear facilities under decommissioning

    SciTech Connect (OSTI)

    Hummel, L.; Guglhoer, P. [TUV Bavaria, Munich (Germany)

    1996-06-01T23:59:59.000Z

    Basing on a 40% p-type HPGe-detector with a shielding of approximately 50 g CM-2 for disturbing radiation from the side, the prototype of a collimated in-situ gamma spectrometer was developed, constructed, and calibrated, the collimator was optimized concerning mass (portability) and sharp transition between {open_quotes}field of view{close_quotes} and the area which should be faded out. Because of the complicated calibration procedure, two complete independent methods were used to reach high reliability. The device is completely battery operated and able to measure the activity on vertical and horizontal areas by averaging over at least 0.4 m{sup 2} up to more than 10 m{sup 2}. The equipment was used in nuclear power plants, fuel fabrication facilities, and fuel reprocessing plants in Germany and France to check mass- or surface-specific activities on outdoor grounds and inside the buildings in restricted areas. Cross-checks by complete scrabbled and analyzed surface contaminated concrete, which was measured before with the prototype, show an agreement better than 30%. Compared with traditional Methods, the conclusions that can be drawn from in-situ measurements are more representative than drawing and analyzing samples. Unlike measuring with contamination monitors, in-situ gamma spectrometry is nuclide specific and integrating over nuclides migrated into the surface.

  9. Mobile worksystems for decontamination and decommissioning operations. Final report

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

  10. Reactor Decommissioning - Balancing Remote and Manual Activities - 12159

    SciTech Connect (OSTI)

    Cole, Matt [S.A. Technology (United States)

    2012-07-01T23:59:59.000Z

    Nuclear reactors come in a wide variety of styles, size, and ages. However, during decommissioned one issue they all share is the balancing of remotely and manually activities. For the majority of tasks there is a desire to use manual methods because remote working can be slower, more expensive, and less reliable. However, because of the unique hazards of nuclear reactors some level of remote activity will be necessary to provide adequate safety to workers and properly managed and designed it does not need to be difficult nor expensive. The balance of remote versus manual work can also affect the amount and types of waste that is generated. S.A.Technology (SAT) has worked on a number of reactor decommissioning projects over the last two decades and has a range of experience with projects using remote methods to those relying primarily on manual activities. This has created a set of lessons learned and best practices on how to balance the need for remote handling and manual operations. Finding a balance between remote and manual operations on reactor decommissioning can be difficult but by following certain broad guidelines it is possible to have a very successfully decommissioning. It is important to have an integrated team that includes remote handling experts and that this team plans the work using characterization efforts that are efficient and realistic. The equipment need to be simple, robust and flexible and supported by an on-site team committed to adapting to day-to-day challenges. Also, the waste strategy needs to incorporate the challenges of remote activities in its planning. (authors)

  11. Decommissioning abandoned roads to protect fish

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decommissioning-abandoned-roads-to-protect-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

  12. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Environmental Management (EM)

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  13. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    SciTech Connect (OSTI)

    Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States); Laraia, Michele [private consultant, formerly from IAEA, Kolonitzgasse 10/2, 1030, Vienna (Austria); Pescatore, Claudio [OECD, Nuclear Energy Agency, Issy-les-Moulineaux, Paris (France); Dinner, Paul [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria)

    2012-07-01T23:59:59.000Z

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-li

  14. Policy on Decommissioning of Department of Energy Facilities...

    Broader source: Energy.gov (indexed) [DOE]

    Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Policy on Decommissioning of...

  15. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

  16. An Application of a State of the Art 3D-CAD-Modeling and Simulation System for the Decommissioning of Nuclear Capital Equipment in Respect of German Prototype Spent Fuel Reprocessing Plant Karlsruhe

    SciTech Connect (OSTI)

    Schulz, M.; Boese, U.; Doering, K.

    2002-02-25T23:59:59.000Z

    Siempelkamp Nukleartechnik GmbH is engaged in the optimization of decommissioning processes for several years. With respect of the complexity of the projects, the time frame and the budget it is necessary to find more effective ways to handle those tasks in the near future. The decommissioning and dismantling will be achieved in six steps taking into account that some processing equipment can be dismantled before and the rest only after the High Active Liquid Waste Concentrate (HAWC) has been vitrified approximately by mid of 2005. After the successful beginning of the remote dismantling of the main process cells from March 2000, the next remote dismantling project at the WAK was initiated April 2000.

  17. FLUOR HANFORD DECOMMISSIONING UPDATE

    SciTech Connect (OSTI)

    GERBER MS

    2008-04-21T23:59:59.000Z

    Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield workers to a safe level from the residual radioactivity. Workers then continued preparations for demolishing the structure. Currently, they are isolating utilities, removing asbestos, draining oils, and removing other items not allowed to be disposed in Hanford's Environmental Restoration Disposal Facility (ERDF). The basin's superstructure will be demolished using a heavy industrial excavator equipped with a shear. This portion of the work is expected to be completed in September, with removal of the basin substructure to follow in 2009. D&D of the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream.

  18. Solution of resource allocation problem for identification of cost-effective measures to reduce nuclear proliferation risks

    SciTech Connect (OSTI)

    Andrianov, A.; Kuptsov, I. [Obninsk Institute for Nuclear Power Engineering, Studgorodok 1, Obninsk, Kaluga region 249030 (Russian Federation)

    2013-07-01T23:59:59.000Z

    This report presents a methodology of selection of cost-effective measures to reduce nuclear proliferation risks. The methodology relies on a graded security model used in practice in different applications. The method is based on the controlled finite Markov chain approach set in combination with discrete dynamic programming and MCDM (Multi Criteria Decision Making) techniques that enables the expert to select the cost-effective measures to reduce nuclear proliferation risks depending on availability of resources. The analysis performed with different number of possible measures confirms the conclusions that the implementation of extra-large costs may not produce the required effect, and the increase in resources above a certain level does not appear sensitive. Diversification in improving the effectiveness of other measures seems more rational and efficient for the whole system than the unlimited improvement of the effectiveness of only one measure.

  19. EIS-0259: Disposal of Decommissioned, Defueled Cruiser, Ohio Class and Los Angeles Class Naval Reactor Plants, Hanford Site, Richland (adopted from Navy)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the alternate ways for disposing of decommissioned, defieled reactor compliments from U.S. Navy nuclear-powered cruisers, (Bainbridge, Truxtun, Long Beach, California Class and Virginia Class) and Los Angeles Class, and Ohio Class submarines.

  20. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Nuclear Power Reactors PROTECTION AGAINST SABOTAGE Protection Against Industrial Sabotage I1C-4 Decominarion and Decommissioning

  1. FY 2000 Deactivation and Decommissioning Focus Area Annual Report

    SciTech Connect (OSTI)

    None

    2001-03-01T23:59:59.000Z

    This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

  2. LIST OF DECOMMISSIONING LESSONS-LEARNED IN SUPPORT OF THE DEVELOPMENT OF A STANDARD REVIEW PLAN FOR NEW REACTOR LICENSING

    E-Print Network [OSTI]

    Memorandum To; David B. Matthews; Elmo E. Collins

    2006-01-01T23:59:59.000Z

    Staff in the Division of New Reactor Licensing (DNRL) requested assistance from the Division of Waste Management and Environmental Protection (DWMEP) in the development of a standard review plan (SRP) for the licensing of new reactor facilities. Specifically, DNRL staff requested a list of high-level decommissioning lessons-learned that new applicants for a reactor license should address in order to minimize, to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize, to the extent practicable, the generation of radioactive waste. DWMEP staff met with your staff several times to discuss and clarify the requested input. This requested information is provided in Enclosure 1. I would like to bring to your attention other sources of decommissioning lessons-learned. The list of lessons-learned provided in Enclosure 1 is a subset of a much larger set of decommissioning lessons-learned. DWMEP developed the list in Enclosure 1 by reviewing the lessons-learned described in other documents (Enclosure 2) and selecting those it felt were most significant, based on DWMEP decommissioning experience. Additionally, the Electric Power Research Institute (EPRI) has developed decommissioning lessons-learned. DWMEP has not reviewed those lessons-learned because they are considered proprietary information by EPRI. DWMEP staff also developed a comprehensive bibliography of documents containing decommissioning lessons-learned. The bibliography is posted on the Nuclear Regulatory Commission’s public website. CONTACT: Rafael L. Rodriguez, NMSS/DWMEP

  3. Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-21T23:59:59.000Z

    The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  4. Office of Environmental Management uranium enrichment decontamination and decommissioning fund financial statements. September 30, 1994 and 1993

    SciTech Connect (OSTI)

    Marwick, P.

    1994-12-15T23:59:59.000Z

    The Energy Policy Act of 1992 (Act) transferred the uranium enrichment enterprise to the United States Enrichment Corporation as of July 1, 1993. However, the Act requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio (diffusion facilities). The Act established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; Pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and Reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  5. Joint electric power alternatives study. Appendix G. Joint parallel nuclear alternatives study for Russia. Final report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Joint Parallel Nuclear Alternatives Study for Russia (JPNAS) is a parallel study to the Joint Electric Power Alternatives Study (JEPAS). The JPNAS assessed the costs of enhancing the safety level of Russian nuclear power plants (NPPs), decommissioning of RBMK-1000 and first generation VVER-440 units, completion of NPP construction, NPP repowering into fossil fuel plants, and construction of new generation NPPs. In the framework of the JEPAS, the JPNAS provides data on the nuclear sector which is needed to formulate an integrated resources plan and schedule for investments for the development of Russia`s power sector.

  6. Mobile workstation for decontamination and decommissioning operations

    SciTech Connect (OSTI)

    Whittaker, W.L.; Osborn, J.F.; Thompson, B.R. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Robotics Inst.

    1993-10-01T23:59:59.000Z

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

  7. Arrangement between the Office for Nuclear Regulation of Great...

    Office of Environmental Management (EM)

    Atomic Energy Community Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the US Department of...

  8. Office of Nuclear Safety and Environmental Assessments | Department...

    Office of Environmental Management (EM)

    examine implementation of safety management programs during phases of the life cycle of a nuclear facility including operation, deactivation, decontamination, decommissioning and...

  9. Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    S. L. Reno

    2006-10-26T23:59:59.000Z

    This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

  10. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)] [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01T23:59:59.000Z

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method of breaching the pipe while maintaining containment to remove residual liquids, - Crimp and shear - remote crimping, cutting and handling of pipe using the excavator - Pipe jacking - a way of removing pipes avoiding excavations and causing minimal disturbance and disruption. The details of the decommissioning trial design, the techniques employed, their application and effectiveness are discussed and evaluated here in. (authors)

  11. Ris-R-1318(EN) Nuclear Safety Research

    E-Print Network [OSTI]

    . Risø Decommissioning has the task of preparing for the decommissioning of Risø's nuclear facilitiesRisø-R-1318(EN) Nuclear Safety Research Department Annual Report 2001 Edited by B. Majborn, A This report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department

  12. Surveillance and Maintenance Plan for the ORNL Decontamination and Decommissioning Program FY 1993--2002

    SciTech Connect (OSTI)

    Ford, M.K.; Holder, L. Jr.

    1992-07-01T23:59:59.000Z

    The Decontamination and Decommissioning (D&D) Program at the Oak Ridge National Laboratory (ORNL) is part of the Department of Energy (DOE) Environmental Restoration D&D program. The purpose and objectivesof this program include: (1) surveillance and maintenance (S&M) of facilities awaiting decommissioning; (2) planning for the orderly decommissioning of these facilities; and (3) implementation of a program to accomplish facility disposition in a safe, cost-effective, and timely manner. Participating D&D contractors are required to prepare formal plans that document the S&M programs established for each site. This report has been prepared to provide this documentation for those facilities included in the ORNL D&D Program.

  13. Technology needs for decommissioning and decontamination

    SciTech Connect (OSTI)

    Bundy, R.D.; Kennerly, J.M.

    1993-12-01T23:59:59.000Z

    This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

  14. Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report

    SciTech Connect (OSTI)

    Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N.; Hess, C.

    2002-11-26T23:59:59.000Z

    OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups.

  15. Incremental costs and optimization of in-core fuel management of nuclear power plants

    E-Print Network [OSTI]

    Watt, Hing Yan

    1973-01-01T23:59:59.000Z

    This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

  16. Cost analysis for potential modifications to enhance the ability of a nuclear plant to endure station blackout

    SciTech Connect (OSTI)

    Clark, R.A.; Riordon, B.J.; Thomas, W.R.; Watlington, B.E.

    1984-07-01T23:59:59.000Z

    Cost estimates were required to serve as partial bases for decisions on four potential nuclear reactor facility modifications being considered in the resolution of US1 A-44, Station Blackout. The modifications constituting the four Subtasks in this report are: increasing battery capacity; adding an AC-independent charging pump for reactor coolant seal injection; increasing condensate storage tank capacity; and increasing compressed air supply for instrument air. Science and Engineering Associates, Inc., established the engineering requirements for the facility modifications; MATHTECH, Inc., supported the effort by estimating costs related to those modifications. The cost estimates contained in this report include those for the following: engineering and design; equipment, material, and structures; installation; and present worth of the annual operation and maintenance over the remaining useful life of the reactor. In addition to providing engineering requirements for the four modifications, SEA, Inc., evaluated the potential for synergistic solutions.

  17. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    SciTech Connect (OSTI)

    Poderis, Reed J. [NSTec] [NSTec; King, Rebecca A. [NSTec] [NSTec

    2013-09-30T23:59:59.000Z

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400

  18. Author's personal copy Cost analysis of the US spent nuclear fuel reprocessing facility

    E-Print Network [OSTI]

    Deinert, Mark

    production in the United States and concerns over global warming and energy independence have rekindled calls also suggests that a nuclear power production fee would be a way for the US government to recover Elsevier B.V. All rights reserved. 1. Introduction Nuclear power accounts for 20% of the electricity

  19. Commercial Decommissioning at DOE's Rocky Flats

    SciTech Connect (OSTI)

    Freiboth, C.; Sandlin, N.; Schubert, A.; Hansen, S.

    2002-02-25T23:59:59.000Z

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rocky Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.

  20. Uranium enrichment decontamination and decommissioning fund, 1995 report

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This report describes strategies for the decontamination and decommissioning of gaseous diffusion plants. Progress in remedial action activities are discussed.

  1. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03T23:59:59.000Z

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  2. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05T23:59:59.000Z

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

  3. Mound's decommissioning experience, tooling, and techniques

    SciTech Connect (OSTI)

    Combs, A.B.; Davis, W.P.; Elswick, T.C.; Garner, J.M.; Geichman, J.R.

    1982-01-01T23:59:59.000Z

    Monsanto Research Corporation (MRC), which operates Mound for the Department of Energy (DOE), has been decommissioning radioactively contaminated facilities since 1949. We are currently decommissioning three plutonium-238 contaminated facilities (approximately 50,000 ft/sup 2/) that contained 1100 linear ft of gloveboxes; 900 linear ft of conveyor housing; 2650 linear ft of dual underground liquid waste lines; and associated contaminated piping, services, equipment, structures, and soil. As of June 1982, over 29,000 Ci of plutonium-238 have been removed in waste and scrap residues. As a result of the current and previous decommissioning projects, valuable experience has been gained in tooling and techniques. Special techniques have been developed in planning, exposure control, contamination control, equipment removal, structural decontamination, and waste packaging.

  4. Report to Congress on Plan for Interim Storage of Spent Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors More Documents & Publications Information Request, "THE REPORT TO THE PRESIDENT...

  5. Project specific selection of decommissioning techniques

    SciTech Connect (OSTI)

    Christ, B.G.; Wehner, E.L. [NUKEM GmbH, Alzenau (Germany). Nuclear Technology Div.

    1993-12-31T23:59:59.000Z

    Three decommissioning projects with quite different contamination characteristics were terminated with the requested result of freely released rooms for dismantled buildings under supervision of the responsible authorities. The examples show that control areas with different kinds of contamination and different equipment can be decommissioned with reasonable effort. The specific selection of decontamination methods and measurement techniques optimizes the performance of the project and lowers the amount of primary and secondary active waste. The careful planning of radiation protection measures ensures the safe work within the foreseen time schedule.

  6. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474

    SciTech Connect (OSTI)

    Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

    2012-07-01T23:59:59.000Z

    The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

  7. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  8. University of Virginia Reactor Facility Decommissioning Results

    SciTech Connect (OSTI)

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24T23:59:59.000Z

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  9. BGRR and HFBR Decommissioning Chuck Armitage

    E-Print Network [OSTI]

    Homes, Christopher C.

    Operated 1950 ­ 1968 Decommissioning actions completed: · Fuel removed (1972) · Primary air cooling fans in the pile ­ the majority of the activity produces low energy beta radiation #12;7 Remote Graphite Removal Equipment #12;8 Remote Manipulator for Graphite Removal #12;9 Contamination Control Enclosure (CCE) #12

  10. DOE Awards New York Decommissioning Services Contract

    Broader source: Energy.gov [DOE]

    West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP).

  11. Third Party Nuclear Liability: The Case of a Supplier in the United Kingdom

    E-Print Network [OSTI]

    Thomas, Anthony; Heffron, Raphael J.

    2012-02-27T23:59:59.000Z

    The law surrounding third party nuclear liability is important to all parties in the nuclear supply chain whether they are providing decommissioning services, project management expertise or a new reactor. This paper examines third party nuclear...

  12. Cost-Sensitive Classification Methods for the Detection of Smuggled Nuclear Material in Cargo Containers 

    E-Print Network [OSTI]

    Webster, Jennifer B

    2013-07-09T23:59:59.000Z

    a decision based on a subjective level of cost/risk of classifying objects incorrectly. This study investigates the translation of the human decision process into a mathematical problem in the context of a border security problem: How does one find...

  13. Nuclear Fuel Recycling - the Value of the Separated Transuranics and the Levelized Cost of Electricity

    E-Print Network [OSTI]

    Parsons, John E.

    We analyze the levelized cost of electricity (LCOE) for three different fuel cycles: a Once-Through Cycle, in which the spent fuel is sent for disposal after one use in a reactor, a Twice-Through Cycle, in which the spent ...

  14. Decommissioning Project of Bohunice A1 NPP

    SciTech Connect (OSTI)

    Stubna, M.; Pekar, A.; Moravek, J.; Spirko, M.

    2002-02-26T23:59:59.000Z

    The first (pilot) nuclear power plant A1 in the Slovak Republic, situated on Jaslovske Bohunice site (60 km from Bratislava) with the capacity of 143 MWel, was commissioned in 1972 and was running with interruptions till 1977. A KS 150 reactor (HWGCR) with natural uranium as fuel, D2O as moderator and gaseous CO2 as coolant was installed in the A1 plant. Outlet steam from primary reactor coolant system with the temperature of 410 C was led to 6 modules of steam generators and from there to turbine generators. Refueling was carried out on-line at plant full power. The first serious incident associated with refueling occurred in 1976 when a locking mechanism at a fuel assembly failed. The core was not damaged during that incident and following a reconstruction of the damaged technology channel, the plant continued in operation. However, serious problems were occurring with the integrity of steam generators (CO2 gas on primary side, water and steam on secondary side) when the plant had to be shut down frequently due to failures and subsequent repairs. The second serious accident occurred in 1977 when a fuel assembly was overheated with a subsequent release of D2O into gas cooling circuit due to a human failure in the course of replacement of a fuel assembly. Subsequent rapid increase in humidity of the primary system resulted in damages of fuel elements in the core and the primary system was contaminated by fission products. In-reactor structures had been damaged, too. Activity had penetrated also into certain parts of the secondary system via leaking steam generators. Radiation situation in the course of both events on the plant site and around it had been below the level of limits specified. Based on a technical and economical justification of the demanding character of equipment repairs for the restoration of plant operation, and also due to a decision made not to continue with further construction of gas cooled reactors in Czechoslovakia, a decision was made in 1977 to terminate plant operation. The decision on the A1 plant decommissioning was issued in 1979.

  15. Management of Decommissioning on a Multi-Facility Site

    SciTech Connect (OSTI)

    Laraia, Michele; McIntyre, Peter; Visagie, Abrie [IAEA, Vienna and NECSA (South Africa)

    2008-01-15T23:59:59.000Z

    The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the management of decommissioning. These issues can be exacerbated where some facilities are entering the decommissioning phase while others are still operational or even new facilities are being built. Multi-facility sites are not uncommon worldwide but perhaps insufficient attention has been paid to optimizing the overall site decommissioning in the context of the entire life cycle of facilities. Decommissioning management arrangements need to be established taking a view across the whole site. A site-wide decommissioning management system is required. This should include a project evaluation and approval process and specific arrangements to manage identified interfaces and interdependencies. A group should be created to manage decommissioning across the site, ensuring adequate and consistent practices in accordance with the management system. Decommissioning management should be aimed at the entire life cycle of facilities. In the case of multi facility sites, the process becomes more complex and decommissioning management arrangements need to be established with a view to the whole site. A site decommissioning management system, a group that is responsible for decommissioning on site, a site project evaluation and approval process and specific arrangements to manage the identified interfaces are key areas of a site decommissioning management structure that need to be addressed to ensure adequate and consistent decommissioning practices. A decommissioning strategy based on single facilities in a sequential manner is deemed inadequate.

  16. advanced decommissioning costing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Market ESL-KT-13-12-28 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Investor Confidence Project... Actionable Data...

  17. The Belgoprocess Strategy Relating to the Management of Materials from Decommissioning

    SciTech Connect (OSTI)

    Teunckens, L.; Lewandowski, P.; Walthery, R.; Ooms. B.

    2003-02-27T23:59:59.000Z

    Belgium started its nuclear program quite early. The first installations were constructed in the fifties, and presently, more than 55 % of the Belgian electricity production is provided by nuclear power plants. After 30 years of nuclear experience, Belgium started decommissioning of nuclear facilities in the eighties with two main projects: the BR3-PWR plant and the Eurochemic reprocessing plant. The BR3-decommissioning project is carried out at the Belgian Nuclear Research Centre, while the decommissioning of the former Eurochemic reprocessing plant is managed and operated by Belgoprocess n.v., which is also operating the centralized waste treatment facilities and the interim storage for Belgian radioactive waste. Some fundamental principles have to be considered for the management of materials resulting from the decommissioning of nuclear installations, equipment and/or components, mainly based on the guidelines of the ''IAEA-Safety Fundamentals. The Principles of Radioactive Waste Management. Safety Series No. 111-F, IAEA, Vienna, 1995'' with respect to radioactive waste management. Two of the fundamental principles indicated in this document are specifically dealing with the strategy for the management of materials from decommissioning, ''Generation of radioactive waste shall be kept to the minimum practicable'' (seventh principle), and ''Radioactive waste shall be managed in such a way that it will not impose undue burdens on future generations'' (fifth principle). Based on these fundamental principles, Belgoprocess has made a straightforward choice for a strategy with minimization of the amount of materials to be managed as radioactive waste. This objective is obtained through the use of advanced decontamination techniques and the unconditional release of decontaminated materials. Unconditionally released materials are recycled, such as i.e., metal materials that are removed to conventional melting facilities, or are removed to conventional industrial disposal sites if they have no remaining value. In order to achieve these objectives, Belgoprocess uses techniques and equipment that enable the high degrees of decontamination to be obtained, while based on commercially available technology. As an example, for concrete surfaces, where the contamination has not penetrated deeply, significant improvement in operation efficiency was achieved when developing dry hand held and automated floor and wall shaving systems as an alternative for scabbling. As it was also shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, an industrial automated dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. Moreover, a specific facility was developed and operations started for taking representative samples and monitoring concrete material in view of the final demolition and unconditional release of remaining structures of buildings after completing all dismantling and decontamination work.

  18. Implementation of DOE/NFDI D&D Cost Estimating Tool (POWERtool) for Initiative Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Austin, W. E.; WSRC; Baker, S. B. III, Cutshall, C. M.; Crouse, J. L.

    2003-02-26T23:59:59.000Z

    The Savannah River Site (SRS) has embarked on an aggressive D&D program to reduce the footprint of excess facilities. Key to the success of this effort is the preparation of accurate cost estimates for decommissioning. SRS traditionally uses ''top-down'' rough order-of-magnitude (ROM) estimating for decommissioning cost estimates. A second cost estimating method (POWERtool) using a ''bottoms-up'' approach has been applied to many of the SRS excess facilities in the T and D-area. This paper describes the use of both estimating methods and compares the estimated costs to actual costs of 5 facilities that were decommissioned in 2002.

  19. Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate

    SciTech Connect (OSTI)

    Warren, R.N.

    1998-09-29T23:59:59.000Z

    In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

  20. Cost-Sensitive Classification Methods for the Detection of Smuggled Nuclear Material in Cargo Containers

    E-Print Network [OSTI]

    Webster, Jennifer B

    2013-07-09T23:59:59.000Z

    of the container, much like the radiation portal monitors currently in place [24]. For a localized source placed in the center of the cargo container, the near- est detector will be approximately 4 ft away and radiation may have to pass through a significant... with the cargo. This introduces a significant statistical variation to our measurement data, as will be shown in Ch. VI. 4 I.1.3 Current Detection Methods There are several detection systems currently in use to detect nuclear material ? fixed radiation portal...

  1. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    SciTech Connect (OSTI)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28T23:59:59.000Z

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

  2. Department of Energy Nuclear Safety Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-08T23:59:59.000Z

    It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

  3. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  4. Challenges with Final Status Surveys at a Large Decommissioning Site - 13417

    SciTech Connect (OSTI)

    Downey, Heath; Collopy, Peter; Shephard, Eugene; Walter, Nelson [AMEC, 511 Congress Street, Portland, ME 04112 (United States)] [AMEC, 511 Congress Street, Portland, ME 04112 (United States); Conant, John [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

    2013-07-01T23:59:59.000Z

    As part of decommissioning a former nuclear fuel manufacturing site, one of the crucial final steps is to conduct Final Status Surveys (FSS) in order to demonstrate compliance with the release criteria. At this decommissioning site, the area for FSS was about 100 hectares (248 acres) and included varying terrain, wooded areas, ponds, excavations, buildings and a brook. The challenges in performing the FSS included determining location, identifying FSS units, logging gamma walkover survey data, determining sample locations, managing water in excavations, and diverting water in the brook. The approaches taken to overcome these challenges will be presented in the paper. The paper will present and discuss lessons learned that will aid others in the FSS process. (authors)

  5. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect (OSTI)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  6. P2 integration into conduct of decommissioning

    SciTech Connect (OSTI)

    Boing, L.E.; Lindley, R.

    1997-08-01T23:59:59.000Z

    Over the last five years, the D and D Program at the ANL-East site has completed decommissioning of three facilities. Currently, decommissioning of two facilities continues at the site with completion of the JANUS Reactor scheduled for September 1997 and completion of the CP-5 Reactor scheduled for late in CY 1999. In the course of this work, certain waste minimization pollution prevention (WMin/P2) activities have been integrated into all these projects. In most cases, the P2 aspects were key components of the operations that made the best use of available project resources to complete the work safely, within the budget and on or ahead of schedule. This paper will highlight those WMin/P2 activities found most suitable for these D and D operations. Activities covered will include: re-use of lead bricks from a research reactor for shielding material at an accelerator facility, re-use of a reactor out building structure by the on-site plant services group, and several other smaller scope activities which have also helped heighten WMin/P2 awareness in decommissioning.

  7. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect (OSTI)

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K. [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Karen M. [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

  8. DOE Policy on Decommissioning DOE Facilities Under CERCLA

    Broader source: Energy.gov [DOE]

    In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the...

  9. Ecological Issues Related to Decommissioning of California's Offshore Production Platforms

    E-Print Network [OSTI]

    Carr, Mark H.

    Ecological Issues Related to Decommissioning of California's Offshore Production Platforms Report................................................................................................................ 8 II.A. Review of California platforms............................................................................. 8 II.A.i Geography of California platforms

  10. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  11. E-Print Network 3.0 - areva decommissioning strategy Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: fish migration (USFS 2002). Decommissioning roads can include a number of restoration strategies... Effects of Road Decommissioning on Stream Habitat...

  12. Incorporation of pollution prevention and waste minimization practices during the decommissioning of Building 310 at Argonne National Laboratory-East

    SciTech Connect (OSTI)

    Mezaraups, J. [Argonne National Lab., IL (United States); Krstich, M.A. [Environmental Management Solutions, Cincinnati, OH (United States); Yerace, P.J. [Dept. of Energy, Cincinnati, OH (United States). Fernald Field Office; Gresalfi, M.J. [Lockheed Martin, Germantown, MD (United States)

    1997-10-01T23:59:59.000Z

    The decommissioning of radiologically contaminated buildings at Department of Energy (DOE) sites provides a major opportunity to include pollution prevention and waste minimization (P2/WMin) practices to minimize waste using authorized release opportunities, and recycle and reuse (R2) activities on a complex-wide basis. The ``P2/WMin Users Guide for Decommissioning Projects`` (a.k.a. Users Guide or Guide) will be used to incorporate P2/WMin practices into the decommissioning and dismantlement (D and D) of Building 310 retention tanks at Argonne National Laboratory-East (ANL-E). The Building 310 service floor retention-tank facility contains ten isolated retention tanks that served to store excess radioactive liquids generated during process operations. The building consists of three rooms containing three tanks each and a larger room containing one tank. Due to a concern that the deteriorating facility could expose personnel working in the vicinity to radioactive contamination, a decision was made to decommission the building. The Users Guide, a document prepared under the auspices of the Office of Pollution Prevention (EM-77), details a step-by-step approach for incorporating P2/WMin options into a project`s documentation and subsequent decommissioning activities. It is a compilation of lessons learned and strategic P2/WMin initiatives from across the DOE complex. The benefits derived from using P2/WMin initiatives for the D and D of Building 310 include an accelerated decommissioning schedule, reduction in health risk, and the elimination of six release sites from the DOE EM-40 list. The benefits derived from implementation of P2/WMin initiatives into this project include cost savings, reduction in long-term liability, and deployment of technologies without impacting scope or schedule for the project.

  13. Nuclear criticality safety in D and D operations: a Los Alamos experience

    SciTech Connect (OSTI)

    Schlesser, J.A.

    1996-12-31T23:59:59.000Z

    Decommissioning operations at the Los Alamos National Laboratory require the interaction of several disciplines so that the effort to D&D radiological facilities can proceed unencumbered, on schedule, and within budget. Although playing a minor role, the Laboratory`s Nuclear Criticality Safety Group has provided criticality safety guidance to one such D&D team efficiently and cost-effectively. During the first major D&D effort at Los Alamos, a total of about 6 kilograms of uranium [U(93)] was recovered from a facility thought to contain only tens of grams.

  14. BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822

    E-Print Network [OSTI]

    Miall, Chris

    BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822 Research and education in nuclear engineering, waste management and decommissioning holds the key to sustainable energy production on an ambitious programme of commissioning nuclear energy, creating opportunities for graduates from plant design

  15. DEVELOPMENT OF PERSONAL PROTECTIVE EQUIPMENT FOR DECONTAMINATION AND DECOMMISSIONING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01T23:59:59.000Z

    The purpose of this one-year investigation is to perform a technology integration/search, thereby ensuring that the safest and most cost-effective options are developed and subsequently used during the deactivation and decommissioning (D&D) of U.S. Department of Energy Environmental Management (DOE-EM) sites. Issues of worker health and safety are the main concern, followed by cost. Two lines of action were explored: innovative Personal Cooling Systems (PCS) and Personal Monitoring Equipment (PME). PME refers to sensors affixed to the worker that warn of an approaching heat stress condition, thereby preventing it. Three types of cooling systems were investigated: Pre-Chilled or Forced-Air System (PCFA), Umbilical Fluid-Chilled System (UFCS), and Passive Vest System (PVS). Of these, the UFCS leads the way. The PVS or Gel pack vest lagged due to a limited cooling duration. And the PCFA or chilled liquid air supply was cumbersome and required an expensive and complex recharge system. The UFCS in the form of the Personal Ice Cooling System (PICS) performed exceptionally. The technology uses a chilled liquid circulating undergarment and a Personal Protective Equipment (PPE) external pump and ice reservoir. The system is moderately expensive, but the recharge is low-tech and inexpensive enough to offset the cost. There are commercially available PME that can be augmented to meet the DOE's heat stress alleviation need. The technology is costly, in excess of $4,000 per unit. Workers easily ignore the alarm. The benefit to health & safety is indirect so can be overlooked. A PCS is a more justifiable expenditure.

  16. Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141

    SciTech Connect (OSTI)

    Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Michal, V. [IAEA, Wagramer Strasse 5, P.O.Box 100, A-1400 Vienna (Austria); Vargovcik, L. [ZTS VVU Kosice, Inc., Juzna Trieda 95, 041 24 Kosice (Slovakia)

    2012-07-01T23:59:59.000Z

    The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of manipulator, their operation and control systems as well as tools of manipulators. Precise planning of decontamination and dismantling tasks is necessary for its successful performance by remotely controlled manipulator. The example of the heavy water evaporator demonstrates typical procedure for decommissioning of contaminated technological equipment by remotely controlled manipulators - planning of decommissioning tasks, preparatory tasks, modification of applied tools and design of specific supporting constructions for manipulator and finally decontamination and dismantling themselves. Due to the particularly demanding conditions in highly contaminated A1 NPP, a team of experts with special know-how in the field of decommissioning has grown up, and unique technological equipment enabling effective and safe work in environment with a high radiation level has been developed. (authors)

  17. Decommissioning and Closure of the Morsleben Deep Geological Repository - The Final Step

    SciTech Connect (OSTI)

    Ripkens, M.; Biurrun, E.

    2002-02-26T23:59:59.000Z

    In Germany, a deep geologic repository for low and intermediate-level waste has been in operation since 1971. This repository, which is located in the territory of former Eastern Germany, became a Federal Facility in the wake of German reunification in 1990. Since then, waste from all of Germany was disposed of until a stop ordered by BfS in 1998. The site is now in the process of being decommissioned and later closed down. This process includes updating the concept for guaranteeing appropriate waste isolation for as long as the waste remains a hazard. During the licensing procedure being currently conducted, in line with German requirements for repository sites, the site operator must provide convincing proof of the facility's long-term safety. Thereafter, implementation of the decommissioning and closure concept will follow. It is estimated that the licensing procedure will take until the year 2006. The decommissioning and closure process itself will require about 10 years. Reliable costs estimates are not yet available. This paper briefly covers the history of the Morsleben radioactive waste repository and provides a draft update on the status of the licensing procedure.

  18. Environmental Impact Assessment (EIA) Process of V1 NPP Decommissioning

    SciTech Connect (OSTI)

    Matejovic, Igor [DECOM A.S., Jana Bottu, 2. SK-91701 Trnava (Slovakia); Polak, Vincent [STM POWER, a.s., Jana Bottu 2, 917 01 Trnava (Slovakia)

    2007-07-01T23:59:59.000Z

    Through the adoption of Governmental Resolution No. 801/99 the Slovak Republic undertook a commitment to shutdown units 1 and 2 of Jaslovske Bohunice V 1 NPP (WWER 230 reactor type) in 2006 and 2008 respectively. Therefore the more intensive preparation of a decommissioning documentation has been commenced. Namely, the VI NPP Conceptual Decommissioning Plan and subsequently the Environmental Impact Assessment Report of VI NPP Decommissioning were developed. Thus, the standard environmental impact assessment process was performed and the most suitable alternative of V1 NPP decommissioning was selected as a basis for development of further decommissioning documents. The status and main results of the environmental impact assessment process and EIA report are discussed in more detail in this paper. (authors)

  19. The French nuclear power plant reactor building containment contributions of prestressing and concrete performances in reliability improvements and cost savings

    SciTech Connect (OSTI)

    Rouelle, P.; Roy, F. [Electricite de France, Paris (France). Engineering and Construction Div.

    1998-12-31T23:59:59.000Z

    The Electricite de France`s N4 CHOOZ B nuclear power plant, two units of the world`s largest PWR model (1450 Mwe each), has earned the Electric Power International`s 1997 Powerplant Award. This lead NPP for EDF`s N4 series has been improved notably in terms of civil works. The presentation will focus on the Reactor Building`s inner containment wall which is one of the main civil structures on a technical and safety point of view. In order to take into account the necessary evolution of the concrete technical specification such as compressive strength low creep and shrinkage, the HSC/HPC has been used on the last N4 Civaux 2 NPP. As a result of the use of this type of professional concrete, the containment withstands an higher internal pressure related to severe accident and ensures higher level of leak-tightness, thus improving the overall safety of the NPP. On that occasion, a new type of prestressing has been tested locally through 55 C 15 S tendons using a new C 1500 FE Jack. These updated civil works techniques shall allow EDF to ensure a Reactor Containment lifespan for more than 50 years. The gains in terms of reliability and cost saving of these improved techniques will be developed hereafter.

  20. The independent verification process in decommissioning, decontamination, and reutilization activities - description, benefits, and lessons learned

    SciTech Connect (OSTI)

    Egidi, P.V.

    1997-06-01T23:59:59.000Z

    Oak Ridge National Laboratory Environmental Technology Section has been performing Independent Verification (IV) activities for U.S. DOE sites since 1986. DOE has successfully used IV in the Uranium Mill Tailings Remedial Action Program, Decontamination and Decommissioning projects, and Formerly Utilized Sites Remedial Action Projects/Surplus Facilities Management Program. Projects that have undergone IV range from small residential properties to large, industrial sites. The IV process provides a third-party review conducted by an independent organization. The purpose is to verify accuracy and completeness of contractor field measurements and final documentation, evaluate the credibility of procedures, and independently assess post-cleanup conditions versus decommissioning project plans and release criteria. Document reviews of plans, dose models, procedures, and reports are some IV activities undertaken. Independent measurements are also collected during field visits to confirm the contractor`s findings. Corrective actions for discrepancies are suggested if necessary. Finally, archival and reporting of the final site environmental conditions for project closeout and certification are completed. The IV contractor reports to DOE headquarters and acts as a quality assurance feedback mechanism. An IV also provides additional assurance that projects are planned, carried out, and documented properly. Decommissioning projects benefit from the IV process by: (1) cost and time savings from early identification of potential problems, (2) assurance that cleanup meets regulatory guidelines, and (3) technical reviews and consultation with experts in field instrumentation, sampling strategy, etc. Some lessons learned from the IV process include avoiding: (1) improper survey techniques, (2) reporting data in units not comparable with guideline values, (3) premature release of surfaces, (4) poor decommissioning project planning, (5) misapplication of release guidelines. 20 refs.

  1. Nuclear Power in France Beyond the Myth

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .fissilematerials.org). In 2006-2007 he was part of a consultant consortium that assessed nuclear decommissioning and wasteNuclear Power in France Beyond the Myth By Mycle Schneider International Consultant on Energy and Nuclear Policy Commissioned by the Greens-EFA Group in the European Parliament V5 #12;Note: The present

  2. Characterization Methodology for Decommissioning Low and Intermediate Level Fissile Nuclide Contaminated Buried Soils and Process Piping Using Photon Counting

    E-Print Network [OSTI]

    Pritchard, Megan L

    2014-05-03T23:59:59.000Z

    Tellurium CFR Code of Federal Regulations Ci Curie cm Centimeter cpm Counts per Minute CZT Cadmium Zinc Telluride D&D Decontamination and Decommissioning DU Depleted Uranium EAF European Activation File ENDF Evaluated Nuclear Data... an abundance of depleted uranium ( ? 0.96 wt. % 235U in UO2), thorium, and radium. These nuclides emit gammas and produce high count rates in a windowed NaI. Detection of these nuclides is pertinent for waste management and radiological exposure purposes...

  3. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    SciTech Connect (OSTI)

    Ivan R. Thomas

    2010-07-01T23:59:59.000Z

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentation within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge based upon the separations process, plant layout, and operating history. The use of engineering estimates, in lieu of approved measurement methods, was justified by the estimated small quantity of holdup remaining, the infeasibility of measuring the holdup in a highly radioactive background, and the perceived hazards to personnel. The alternate approach to quantifying and terminating safeguards on process holdup was approved by deviation.

  4. Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities

    SciTech Connect (OSTI)

    Erickson, T.A.

    1998-11-01T23:59:59.000Z

    The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

  5. Assessment of strippable coatings for decontamination and decommissioning

    SciTech Connect (OSTI)

    Ebadian, M.A.

    1998-01-01T23:59:59.000Z

    Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described.

  6. DECOMMISSIONING OF A CAESIUM-137 SEALED SOURCE PRODUCTION FACILITY

    SciTech Connect (OSTI)

    Murray, A.; Abbott, H.

    2003-02-27T23:59:59.000Z

    Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.

  7. Lessons learned from decommissioning projects at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Salazar, M.

    1995-09-01T23:59:59.000Z

    This paper describes lessons learned over the last 20 years from 12 decommissioning projects at Los Alamos National Laboratory. These lessons relate both to overall program management and to management of specific projects during the planning and operations phases. The issues include waste management; the National Environmental Policy Act (NEPA); the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); contracting; public involvement; client/customer interface; and funding. Key elements of our approach are to be proactive; follow the observation method; perform field activities concurrently; develop strategies to keep reportable incidents from delaying work; seek and use programs, methods, etc., in existence to shorten learning curves; network to help develop solutions; and avoid overstudying and overcharacterizing. This approach results in preliminary plans that require very little revision before implementation, reasonable costs and schedules, early acquisition of permits and NEPA documents, preliminary characterization reports, and contracting documents. Our track record is good -- the last four projects (uranium and plutonium-processing facility and three research reactors) have been on budget and on schedule.

  8. Action Memorandum for Decommissioning of TAN-607 Hot Shop Area

    SciTech Connect (OSTI)

    M. A. Pinzel

    2007-05-01T23:59:59.000Z

    The Department of Energy is documenting the selection of an alternative for the TAN-607 Hot Shop Area using a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA). The scope of the removal action is limited to TAN-607 Hot Shop Area. An engineering evaluation/cost analysis (EE/CA) has assisted the Department of Energy Idaho Operations Office in identifuomg the most effective method for performing the decommissioning of this structure whose mission has ended. TAN-607 Hot Shop Area is located at Test Area North Technical Support Facility within the Idaho National Laboratory Site. The selected alternative consists of demolishing the TAN-607 aboveground structures and components, removing belowground noninert components (e.g. wood products), and removing the radiologically contaminated debris that does not meet remedial action objectives (RAOs), as defined in the Record of Decision Amendment for the V-Tanks and Explanation of Significant Differences for the PM-2A Tanks at Test Area North, Operable Unit 1-10.

  9. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    SciTech Connect (OSTI)

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01T23:59:59.000Z

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  10. Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    -2007 Mycle Schneider was part of a consultants' consortium that assessed nuclear decommissioning and wasteMycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux@orange.fr Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries

  11. Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Kluth, T.; Quade, U.; Lederbrink, F. W.

    2003-02-26T23:59:59.000Z

    Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

  12. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01T23:59:59.000Z

    As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been expanded by FIU-HCET to evaluate a technology integration--shot blasting technology and an ultrasonic rangefinder, which are decontamination and sensor technology, respectively.

  13. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    1981), Power Plant Cost Escalation: Coal, Capital Costs,1981), Power Plant Cost Escalation: Nuclear Coal, Capital

  14. DOE-EM'S In-Situ Decommissioning Strategy

    SciTech Connect (OSTI)

    Negin, C.A.; Urland, C.S. [Chuck, Project Enhancement Corporation, Germantown, MD (United States); Szilagyi, A.P. [Andy, U.S. Department of Energy, Germantown, MD (United States)

    2008-07-01T23:59:59.000Z

    This paper addressed the current status of decommissioning projects within the Department of Energy (DOE) that have an end state of permanent entombment, referred to as in-situ decommissioning (ISD). The substance of a Department of Energy, Office of Environmental Management (DOE-EM) review of ISD and the development of a strategy are summarized. The strategy first recognizes ISD as a viable decommissioning end state; secondly addresses the integration of this approach within the external and internal regulatory regimes; subsequently identifies tools that need developing; and finally presents guidance for implementation. The overall conclusion is that ISD is a viable mode of decommissioning that can be conducted within the existing structure of rules and regulations. (author)

  15. INL - NNL an International Technology Collaboration Case Study - Advanced Fogging Technologies for Decommissioning - 13463

    SciTech Connect (OSTI)

    Banford, Anthony; Edwards, Jeremy [National Nuclear Laboratory, 5th Floor Chadwick House, Birchwood Park, Warrington WA3 6AE(United Kingdom)] [National Nuclear Laboratory, 5th Floor Chadwick House, Birchwood Park, Warrington WA3 6AE(United Kingdom); Demmer, Rick; Rankin, Richard [Idaho National Laboratory, Idaho Falls, ID 83401(United States)] [Idaho National Laboratory, Idaho Falls, ID 83401(United States); Hastings, Jeremy [National Nuclear Laboratory, Central Laboratory Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [National Nuclear Laboratory, Central Laboratory Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    International collaboration and partnerships have become a reality as markets continue to globalize. This is the case in nuclear sector where over recent years partnerships commonly form to bid for capital projects internationally in the increasingly contractorized world and international consortia regularly bid and lead Management and Operations (M and O) / Parent Body Organization (PBO) site management contracts. International collaboration can also benefit research and technology development. The Idaho National Laboratory (INL) and the UK National Nuclear Laboratory (NNL) are internationally recognized organizations delivering leading science and technology development programmes both nationally and internationally. The Laboratories are actively collaborating in several areas with benefits to both the laboratories and their customers. Recent collaborations have focused on fuel cycle separations, systems engineering supporting waste management and decommissioning, the use of misting for decontamination and in-situ waste characterisation. This paper focuses on a case study illustrating how integration of two technologies developed on different sides of the Atlantic are being integrated through international collaboration to address real decommissioning challenges using fogging technology. (authors)

  16. Confidentiality Agreement between the Nuclear Decommissioning Authority and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs theFebruary 24,ofOctober|Confidential

  17. Nuclear Decommissioning Authority of the United Kingdom NDA | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNovaNMRE |NuInformation

  18. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10T23:59:59.000Z

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  19. Technical recommendations in the design and operation of a plutonium fuel fabrication facility to facilitate decontamination and decommissioning

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    Sequoyah Fuels Corporation (formerly Kerr-McGee Nuclear Corporation) is in the process of decontaminating and decommissioning the Cimarron Plutonium Facility. This facility was designed to produce mixed oxide (Pu-U)O{sub 2} fuel using the co-precipitation process. This report is intended to address three topics: (1) identify problem areas which were revealed during the first phase of the decontamination and decommissioning (D&D) effort which could have been minimized by use of different design criteria; (2) provide recommendations which would have minimized Pu hold-up or made non-destructive assay (NDA) for inventory more accurate and less difficult; and (3) identify the limitations of the current NDA equipment being used at the Cimarron Plutonium Facility. The major problem areas uncovered to date and possible resolutions are identified.

  20. An overview of U.S. decommissioning experience -- A basic introduction

    SciTech Connect (OSTI)

    Boing, L.E.

    1998-03-09T23:59:59.000Z

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

  1. A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP

    SciTech Connect (OSTI)

    Milchikov, A.; Hund, G.; Davidko, M.

    1999-10-20T23:59:59.000Z

    The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

  2. Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316

    SciTech Connect (OSTI)

    Field, D.; Mizen, K. [Nuvia Limited (United Kingdom)] [Nuvia Limited (United Kingdom)

    2013-07-01T23:59:59.000Z

    The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been used to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The Northern Dimension Environmental Partnership (NDEP) approved an internationally funded project to identify and prioritise nuclear and environmental hazards in NW Russia. Within this project the Lepse was recognised as being one of the highest nuclear hazards in NW Russia. Removal of SNF, SRW and LRW from Lepse requires innovative design and development of bespoke equipment. The main drivers of the NDEP Donors are first to safely transport Lepse in 2012 from her current berth close to the local population in Murmansk to the nominated dismantling shipyard, and secondly to raise Lepse from the water in 2013 onto the slip-way at the dismantling shipyard. A description is provided of the approach and progress towards preparing the Lepse for the removal of SFAs and other radioactive waste, to decontaminate and then dismantle the vessel under international donor funding. (authors)

  3. Parametric study of the total system life cycle cost of an alternate nuclear waste management strategy using deep boreholes

    E-Print Network [OSTI]

    Moulton, Taylor Allen

    2008-01-01T23:59:59.000Z

    The Department of Energy recently submitted a license application for the Yucca Mountain repository to the Nuclear Regulatory Commission, yet even the most optimistic timetable projects that the repository will not now ...

  4. Minimizing the Cost of Innovative Nuclear Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor Park

    E-Print Network [OSTI]

    Cardin, Michel-Alexandre; Steer, Steven J.; Nuttall, William J.; Parks, Geoffrey T.; Gonçalves, Leonardo V.N.; de Neufville, Richard

    Presented is a methodology to analyze the expected Levelised Cost Of Electricity (LCOE) in the face of technology uncertainty for Accelerator-Driven Subcritical Reactors (ADSRs). It shows that flexibility in the design and deployment strategy...

  5. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 4, AUGUST 2000 An Inter-comparison of Three Spectral-Deconvolution Algorithms

    E-Print Network [OSTI]

    He, Zhong

    in the assay of waste materials generated in the decommissioning of nuclear installations in which one wouldIEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 4, AUGUST 2000 An Inter-comparison of Three

  6. Ris-R-1019(EN) Nuclear Safety Research

    E-Print Network [OSTI]

    .2 Severe accidents 7 2.3 Decommissioning of research reactors 9 2.4 Nuclear information 10 3 RadiationRisø-R-1019(EN) Nuclear Safety Research and Facilities Department Annual Report 1997 Edited by B of the work of the Nuclear Safety Research and Facilities Department in 1997. The department´s research

  7. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    SciTech Connect (OSTI)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Shibahara, Yuji [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); University of Fukui, Fukui-shi, Fukui, 910-8507 (Japan); Morimoto, Yasuyuki; Tokuyasu, Takashi; Takahashi, Nobuo; Tanaka, Yoshio; Sugitsue, Noritake [Japan Atomic Energy Agency, Kagamino-cho, Tomata-gun, Okayama, 708-0698 (Japan)

    2012-07-01T23:59:59.000Z

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management data such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were considered. Establishment of the calculation formula for dismantling of each kind of equipment makes it possible to evaluate manpower for dismantling the whole facility. However, it is not easy to prepare calculation formula for all kinds of equipment that exist in the facility. Therefore, a simpler evaluation method was considered to calculate manpower based on facility characteristics. The results showed promise for evaluating dismantling manpower with respect to each chemical process. For dismantling of contaminated equipment, a GH has been used for protection of the spread of contamination. The use of a GH increases manpower for installation and removal of GH etc. Moreover, structural materials of the GH such as plastic sheets, adhesive tape become a burnable secondary waste. To create an effective dismantling plan, it is necessary to carefully consider use of a GH preliminarily. Thus, an evaluation method of project management data such as manpower and secondary waste generation was considered. The results showed promise for evaluating project management data of GH by using established calculation formula. (authors)

  8. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    SciTech Connect (OSTI)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04T23:59:59.000Z

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and approximately 3,900 cubic yards (2,989 cubic meters) of structural concrete which will be placed over about an eighteen month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  9. 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology

    E-Print Network [OSTI]

    of operating NPP; · NPP decommissioning and waste treatment; · Novel reactor concepts and Nuclear Fuel CycleISTCISTC 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology 13th CERNISTC SAC Seminar New Perspectives of High Energy Physics 01

  10. Decontamination and decommissioning of the Kerr-McGee Cimarron Plutonium Fuel Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This final report is a summary of the events that completes the decontamination and decommissioning of the Cimarron Corporation`s Mixed Oxides Fuel Plant (formally Sequoyah Fuels Corporation and formerly Kerr-McGee Nuclear Corporation - all three wholly owned subsidiaries of the Kerr-McGee Corporation). Included are details dealing with tooling and procedures for performing the unique tasks of disassembly decontamination and/or disposal. That material which could not be economically decontaminated was volume reduced by disassembly and/or compacted for disposal. The contaminated waste cleaning solutions were processed through filtration and ion exchange for release or solidified with cement for L.S.A. waste disposal. The L.S.A. waste was compacted, and stabilized as required in drums for burial in an approved burial facility. T.R.U. waste packaging and shipping was completed by the end of July 1987. This material was shipped to the Hanford, Washington site for disposal. The personnel protection and monitoring measures and procedures are discussed along with the results of exposure data of operating personnel. The shipping containers for both T.R.U. and L.S.A. waste are described. The results of the decommissioning operations are reported in six reports. The personnel protection and monitoring measures and procedures are contained and discussed along with the results of exposure data of operating personnel in this final report.

  11. Summary of comments received from workshops on radiological criteria for decommissioning

    SciTech Connect (OSTI)

    Caplin, J.; Page, G.; Smith, D.; Wiblin, C. [Advanced Systems Technology, Inc., Atlanta, GA (United States)

    1994-01-01T23:59:59.000Z

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for site cleanup and decommissioning of NRC-licensed facilities. Open public meetings were held during 1993 in Chicago, IL, San Francisco, CA, Boston, MA, Dallas, TX, Philadelphia, PA, Atlanta, GA, and Washington, DC. Interested parties were invited to provide input on the rulemaking issues before the NRC staff develops a draft proposed rule. This report summarizes 3,635 comments categorized from transcripts of the seven workshops and 1,677 comments from 100 NRC docketed letters from individuals and organizations. No analysis or response to the comments is included. The comments reflect a broad spectrum of viewpoints on the issues related to radiological criteria for site cleanup and decommissioning. The NRC also held public meetings on the scope of the Generic Environmental Impact Statement (GEIS) during July 1993. The GEIS meetings were held in Washington, DC., San Francisco, CA, Oklahoma City, OK, and Cleveland, OH. Related comments from these meetings were reviewed and comments which differed substantially from those from the workshops are also summarized in the body of the report. A summary of the comments from the GEIS scoping meetings is included as an Appendix.

  12. Comments received on proposed rule on radiological criteria for decommissioning and related documents

    SciTech Connect (OSTI)

    Page, G.; Caplin, J.; Smith, D. [and others

    1996-03-01T23:59:59.000Z

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. As a part of this action, the Commission published in the Federal Register (59 FR 43200), on August 22, 1994, a proposed rule on radiological criteria for decommissioning, soliciting comments both on the rule as proposed and on certain specific items as identified in its supplementary statement of considerations. A draft Generic Environmental Impact Statement (GEIS) in support of the rule, also published in August 1994 as NUREG-1496, along with its Appendix A (NUREG-1501), were also made available for comment. A staff working draft on regulatory guidance (NUREG-1500)was also made available. This report summarizes the 1,309 comments on the proposed rule and supplementary items and the 311 comments on the GEIS as excerpted from 101 docketed letters received associated in the Federal/Register notice. Comments from two NRC/Agreement-States meetings are also summarized.

  13. Summary of comments received on staff draft proposed rule on radiological criteria for decommissioning

    SciTech Connect (OSTI)

    Caplin, J.; Page, G.; Smith, D.; Wiblin, C. [Advanced Systems Technology, Inc., Rockville, MD (United States)

    1994-08-01T23:59:59.000Z

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC licensed facilities. The NRC obtained comments on the scope, issues, and approaches through a series of workshops (57 FR 58727), Generic Environmental Impact Statement (GEIS) scoping meetings (58 FR 33570), a dedicated electronic bulletin board system (58 FR 37760), and written submissions. A summary of workshop and scope-meeting comments was published as NUREG/CR-6156. On February 2, 1994, the Commission published in the Federal Register (59 FR 4868) a notice that the NRC staff had prepared a ``staff draft`` proposed rule on radiological criteria for decommissioning. Copies of the staff draft were distributed to the Agreement States, participants in the earlier meetings, and other interested parties for comment. This report summarizes the comments identified from the 96 docketed letters received on the staff draft. No analysis or response is included in this report. The comments reflect a broad spectrum of viewpoints. Two subjects on which the commenters were in general agreement were (1) that the enhanced participatory rulemaking should proceed, and (2) that the forthcoming GEIS and guidance documents are needed for better understanding of the draft rule.

  14. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  15. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect (OSTI)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01T23:59:59.000Z

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  16. ADVANTAGES, DISADVANTAGES, AND LESSONS LEARNED FROM MULTI-REACTOR DECOMMISSIONING PROJECTS

    SciTech Connect (OSTI)

    Morton, M.R.; Nielson, R.R.; Trevino, R.A.

    2003-02-27T23:59:59.000Z

    This paper discusses the Reactor Interim Safe Storage (ISS) Project within the decommissioning projects at the Hanford Site and reviews the lessons learned from performing four large reactor decommissioning projects sequentially. The advantages and disadvantages of this multi-reactor decommissioning project are highlighted.

  17. The National Nuclear Laboratory's Approach to Processing Mixed Wastes and Residues - 13080

    SciTech Connect (OSTI)

    Greenwood, Howard; Docrat, Tahera; Allinson, Sarah J.; Coppersthwaite, Duncan P.; Sultan, Ruqayyah; May, Sarah [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)] [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)

    2013-07-01T23:59:59.000Z

    The National Nuclear Laboratory (NNL) treats a wide variety of materials produced as by-products of the nuclear fuel cycle, mostly from uranium purification and fuel manufacture but also including materials from uranium enrichment and from the decommissioning of obsolete plants. In the context of this paper, treatment is defined as recovery of uranium or other activity from residues, the recycle of uranium to the fuel cycle or preparation for long term storage and the final disposal or discharge to the environment of the remainder of the material. NNL's systematic but flexible approach to residue assessment and treatment is described in this paper. The approach typically comprises up to five main phases. The benefits of a systematic approach to waste and residue assessments and processing are described in this paper with examples used to illustrate each phase of work. Benefits include early identification of processing routes or processing issues and the avoidance of investment in inappropriate and costly plant or processes. (authors)

  18. Decommissioning of surplus facilities at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Stout, D.S.

    1995-03-01T23:59:59.000Z

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ``observational approach,`` in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses.

  19. Nuclear Regulatory Commission issuances

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

  20. 3-D Model for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

  1. Summary of comments received at workshop on use of a Site Specific Advisory Board (SSAB) to facilitate public participation in decommissioning cases

    SciTech Connect (OSTI)

    Caplin, J.; Padge, G.; Smith, D.; Wiblin, C. [Advanced Systems Technology, Inc., Rockville, MD (United States)

    1995-06-01T23:59:59.000Z

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. As part of this rulemaking, On August 20, 1994 the NRC published a proposed rule for public comment. Paragraph 20.1406(b) of the proposed rule would require that the licensee convene a Site Specific Advisory Board (SSAB) if the licensee proposed release of the site for restricted use after decommissioning. To encourage comment the NRC held a workshop on the subject of $SABs on December 6, 7, and 8, 1994. This report summarizes the 567 comments categorized from the transcript of the workshop. The commenters at the workshop generally supported public participation in decommissioning cases. Many participants favored promulgating requirements in the NRC`s rules. Some industry participants favored relying on voluntary exchanges between the public and the licensees. Many participants indicated that a SSAB or something functionally equivalent is needed in controversial decommissioning cases, but that some lesser undertaking can achieve meaningful public participation in other cases. No analysis or response to the comments is included in this report.

  2. Annual summary report on the Decontamination and Decommissioning Program at the Oak Ridge Y-12 Plant for the period ending September 30, 1992. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The Y-12 Decontamination and Decommissioning (D&D) Program provides for the ultimate disposition of plant process buildings and their supporting facilities. The overall objective is to enable the Y-12 Plant to meet applicable environmental regulations and Department of Energy (DOE) orders to protect human health and the environment from contaminated facilities through decommissioning activities. This objective is met by providing for the surveillance and maintenance (S&M) of accepted standby or shutdown facilities awaiting decommissioning; planning for decommissioning of these facilities; and implementing a program to accomplish the safe, cost-effective, and orderly disposition of contaminated facilities. The Y-12 D&D Program was organized during FY 1992 to encompass the needs of surplus facilities at the Y-12 Plant. The need existed for a program which would include Weapons Program facilities as well as other facilities used by several programs within the Y-12 Plant. Building 9201-4 (Alpha 4) is the only facility that is formally in the D&D Program. Funding for the work completed in FY 1992 was shared by the Environmental Restoration and Waste Management Program (EW-20) and Weapons Operations (GB-92). This report summarizes the FY 1992 D&D activities associated with Building 9201-4. A section is provided for each task; the tasks include surveillance, routine and special maintenance, safety, and D&D planning.

  3. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    SciTech Connect (OSTI)

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L. [Department of Radiology, University of Iowa, Iowa City IA 52242 (United States); Department of Physics, University of Iowa, Iowa City IA 52242 (United States); Department of Radiology, University of Iowa, Iowa City IA 52242 (United States)

    2012-12-19T23:59:59.000Z

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  4. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  5. Nuclear Regulatory Commission issuances, January 1997. Volume 45, Number 1

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This book contains issuances of the Atomic Safety and Licensing Board, Nuclear Regulatory Commission and Director`s Decision for January 1997. The issuances concern Sequoyah Fuels Corporation and General Atomics Gore, Oklahoma Site decontamination and decommissioning funding; Louisiana Energy Services, Claiborne Enrichment Center denies appeal to review emergency planning; General Public Utilities Nuclear Corporation, Oyster Creek Nuclear Generating station, challenges to technical specifications concerning spent fuel pool; and Consumers Power Company, Palisades Nuclear Plant dry cask storage of spent nuclear fuel.

  6. www.abdn.ac.uk/aie Decommissioning Special

    E-Print Network [OSTI]

    Levi, Ran

    ONTENTS 3/5 Cutting edge technology 6/7 Decommissioning ­ a legal overview 8/9 The man with two hats 10 Wire Cutting Systems, which act a bit like band saws but with a diamond coated wire, are vulnerable to jamming due to compression between the cut faces. Hydraulic Shears as seen in some of the footage from

  7. Packaging, Transportation, and Disposal Logistics for Large Radioactively Contaminated Reactor Decommissioning Components

    SciTech Connect (OSTI)

    Lewis, Mark S. [EnergySolutions: 140 Stoneridge Drive, Columbia, SC 29210 (United States)

    2008-01-15T23:59:59.000Z

    The packaging, transportation and disposal of large, retired reactor components from operating or decommissioning nuclear plants pose unique challenges from a technical as well as regulatory compliance standpoint. In addition to the routine considerations associated with any radioactive waste disposition activity, such as characterization, ALARA, and manifesting, the technical challenges for large radioactively contaminated components, such as access, segmentation, removal, packaging, rigging, lifting, mode of transportation, conveyance compatibility, and load securing require significant planning and execution. In addition, the current regulatory framework, domestically in Titles 49 and 10 and internationally in TS-R-1, does not lend itself to the transport of these large radioactively contaminated components, such as reactor vessels, steam generators, reactor pressure vessel heads, and pressurizers, without application for a special permit or arrangement. This paper addresses the methods of overcoming the technical and regulatory challenges. The challenges and disposition decisions do differ during decommissioning versus component replacement during an outage at an operating plant. During decommissioning, there is less concern about critical path for restart and more concern about volume reduction and waste minimization. Segmentation on-site is an available option during decommissioning, since labor and equipment will be readily available and decontamination activities are routine. The reactor building removal path is also of less concern and there are more rigging/lifting options available. Radionuclide assessment is necessary for transportation and disposal characterization. Characterization will dictate the packaging methodology, transportation mode, need for intermediate processing, and the disposal location or availability. Characterization will also assist in determining if the large component can be transported in full compliance with the transportation and disposal regulations and criteria or if special authorizations must be granted to transport and/or dispose. The U.S. DOT routinely issues special permits for large components where compliance with regulatory or acceptance criteria is impractical or impossible to meet. Transportation and disposal safety must be maintained even under special permits or authorizations. For example, if transported un-packaged, performance analysis must still be performed to assess the ability of the large component's outer steel shell to contain the internal radioactive contamination under normal transportation conditions and possibly incidence normal to transportation. The dimensions and weight of a large component must be considered when determining the possible modes of transportation (rail, water, or highway). At some locations, rail and/or barge access is unavailable. Many locations that once had an active rail spur to deliver new construction materials and components have let the spur deteriorate to the point that repair and upgrade of the spur is no longer economically feasible. Barge slips that have not been used since new plant construction require significant repair and/or dredging. Short on-site haul routes must be assessed for surface and subsurface conditions, as well as longer off-site routes. Off-site routes require clearance approvals from the regulatory authorities or, in the case of rail transport, the rail lines. Significant engineering planning and analysis must be performed during the pre-mobilization. In conclusion, the packaging, transportation, and disposal of large, oversized radioactively contaminated components removed during plant decommissioning is complex. However, over the last 15 years, a 100 or more components have been safely and compliantly packaged and transported for processing and/or disposal.

  8. Environmental Impacts, Health and Safety Impacts, and Financial Costs of the Front End of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider; John S. Collins; Roderick G. Eggert; Brett Jordan; Bethany L. Smith; Timothy M. Ault; Alan G. Croff; Steven L. Krahn; William G. Halsey; Mark Sutton; Clay E. Easterly; Ryan P. Manger; C. Wilson McGinn; Stephen E. Fisher; Brent W. Dixon; Latif Yacout

    2013-07-01T23:59:59.000Z

    FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rolling up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.

  9. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  10. Leading Edge Nuclear Biology: What's Been Most Surprising?

    E-Print Network [OSTI]

    Pikaard, Craig

    Leading Edge Voices Nuclear Biology: What's Been Most Surprising? Restricting Genomic Partners Job with inappropriate elements. So, a major question in the field of nuclear organization is how do cells ensure have demonstrated that thousands of regulatory regions undergo activation or decommissioning even

  11. NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    McDonald, Kirk

    NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

  12. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01T23:59:59.000Z

    capacity and operating efficiency of nuclear plants [31,operating efficiency of nuclear plants in the past decades.cost of the fuel Nuclear Plant Capacity Factor Nuclear

  13. Portsmouth Decommissioning and Decontamination Project Director's Final

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmount for IndividualEnergyFindings and Order |

  14. Accelerated Decontamination and Decommissioning at the Hanford Site

    SciTech Connect (OSTI)

    Hughes, M.C.; Douglas, L.M.; Marske, S.G.

    1994-01-01T23:59:59.000Z

    The Hanford Site has over 100 facilities that have been declared surplus and are scheduled to be decommissioned. In addition to these surplus facilities, there is a significant number of facilities that are currently being shut down, deactivated, and transferred to the Decontamination and Decommissioning (D&D) program. In the last year, Westinghouse Hanford Company and the US Department of Energy, Richland Operations Office, have developed and implemented an initiative to accelerate the D&D work at the Hanford Site. The strategy associated with accelerated D&D is to reduce the number of surplus facilities, eliminate potential safety hazards, demonstrate meaningful cleanup progress, and recycle materials for other uses. This initiative has been extremely successful and has resulted in the safe demolition of 13 facilities in fiscal year (FY) 1993. In addition, four facilities have been completed in FY 1994 and demolition of several other facilities is currently underway.

  15. Carbon-14 Bioassay for Decommissioning of Hanford Reactors

    SciTech Connect (OSTI)

    Carbaugh, Eugene H.; Watson, David J.

    2012-05-01T23:59:59.000Z

    The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.

  16. Decommissioning a 60-m-tall exhaust stack

    SciTech Connect (OSTI)

    Louie, R.L.; Speer, D.R. (Westinghouse Hanford Co., Richland, WA (USA))

    1989-08-01T23:59:59.000Z

    The decommissioning of the Strontium Semiworks Complex, located in the 200 East Area of the Hanford Site, is nearing completion. This facility operated as a pilot plant from 1949 to 1967 to develop fuel reprocessing technology and a method for separating strontium from high-level liquid wastes. Contamination of the facility from these operations was extensive. One of the major activities completed was the decommissioning of the plant exhaust stack. Demolition of the stack was accomplished using explosives. This required decontamination of the stack interior to minimize the release of airborne contamination. Radiation levels in the stack prior to cleaning ranged from 2.5 to 90 mGy/h as measured along the stack centerline. Decontamination was accomplished by sandblasting, using equipment specially designed and fabricated to allow the work to be performed remotely.

  17. Nordisk kernesikkerhedsforskning Norrnar kjarnryggisrannsknir

    E-Print Network [OSTI]

    NKS-165 ISBN 978-87-7893-230-3 Cost Calculations for Decommissioning and Dismantling of Nuclear of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning an 80 % level of confidence. Key words decommissioning, cost calculations, nuclear, research facilities

  18. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    SciTech Connect (OSTI)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30T23:59:59.000Z

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private sector, universities or other agencies are expected to have greater expertise will be accomplished through an open, competitive solicitation process. Several areas will require joint efforts from the two classes of resources.

  19. Annual summary report of the Decontamination and Decommissioning Surveillance and Maintenance Program at Oak Ridge National Laboratory for period ending September 30, 1993. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Decontamination and Decommissioning (D&D) Program has continued to provide surveillance and maintenance (S&M) support for 34 surplus facilities. The objectives are to (1) ensure adequate containment of residual radioactive materials remaining in the facilities, (2) provide safety and security controls to minimize the potential hazards to on-site personnel and the general public, and (3) manage the facilities in the most cost-effective manner while awaiting decommissioning. This support has included work in three principal areas: (1) S&M planning, (2) routine S&M, and (3) special projects designed to correct serious facility deficiencies beyond the scope of routine maintenance.

  20. Annual summary report of the Decontamination and Decommissioning surveillance and maintenance program at Oak Ridge National Laboratory for period ending September 30, 1992. Environmental Restoration Program

    SciTech Connect (OSTI)

    Ford, M.K.; Holder, L. Jr.

    1992-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Decontamination and Decommissioning (D&D) Program is part of the Department of Energy (DOE) Environmental Restoration D&D Program and has continued to provide surveillance and maintenance (S&M) support for 34 surplus facilities. The objectives are (1) to ensure adequate containment of residual radioactive materials remaining in the facilities, (2) to provide safety and security controls to minimize the potential hazards to on-site personnel and to the general public, and (3) to manage the facilities in the most cost-effective manner while awaiting decommissioning. This support has included work in three principal areas: (1) S&M planning, (2) routine S&M, and (3) special projects designed to correct serious facility deficiencies beyond the scope of routine maintenance.

  1. Annual summary report of the Decontamination and Decommissioning surveillance and maintenance program at Oak Ridge National Laboratory for period ending September 30, 1992

    SciTech Connect (OSTI)

    Ford, M.K.; Holder, L. Jr.

    1992-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Decontamination and Decommissioning (D D) Program is part of the Department of Energy (DOE) Environmental Restoration D D Program and has continued to provide surveillance and maintenance (S M) support for 34 surplus facilities. The objectives are (1) to ensure adequate containment of residual radioactive materials remaining in the facilities, (2) to provide safety and security controls to minimize the potential hazards to on-site personnel and to the general public, and (3) to manage the facilities in the most cost-effective manner while awaiting decommissioning. This support has included work in three principal areas: (1) S M planning, (2) routine S M, and (3) special projects designed to correct serious facility deficiencies beyond the scope of routine maintenance.

  2. HANFORD DECOMMISSIONING UPDATE 09/2007

    SciTech Connect (OSTI)

    GERBER, M.S.

    2007-08-20T23:59:59.000Z

    Fluor Hanford's K Basins Closure (KBC) Project tallied three major accomplishments at the U.S. Department of Energy's (DOE's) Hanford Site in Southeastern Washington State this past summer. The Project finished emptying the aging K East Basin of both sludge and the last pieces of scrap spent nuclear fuel. It also Completed vacuuming the bulk of the sludge in the K West Basin into underwater containers. The 54-year-old concrete basins once held more than four million pounds of spent nuclear fuel and sit less than 400 yards from the Columbia River. Each basin holds more than a million gallons of radioactive water. In 2004, Fluor finished removing all the spent nuclear fuel from the K Basins. Nearly 50 cubic meters of sludge remained--a combination of dirt, sand, small pieces of corroded uranium fuel and fuel cladding, corrosion products from racks and canisters, ion-exchange resin beads, polychlorinated biphenyls, and fission products that had formed during the decades that the spent nuclear fuel was stored underwater. Capturing the sludge into underwater containers in the K East Basin took more than two years, and vacuuming the much smaller volume of sludge into containers in the K West Basin required seven months. Workers stood on grating above the basin water and vacuumed the sludge through long, heavy hoses. The work was complicated by murky water and contaminated solid waste (debris). Pumping was paused several times to safely remove and package debris that totaled more than 370 tons. In October 2006, Fluor Hanford workers began pumping the sludge captured in the K East Basin containers out through a specially designed pipeline to underwater containers in the K West Basin, about a half mile away. They used a heavy but flexible, double-walled ''hose-in-hose'' system. Pumping work progressed slowly at first, but ramped up in spring 2007 and was completed on May 31. Just a week before sludge transfers finished, the KBC Project removed the last few small pieces of irradiated fuel (about 19 pounds) found as the last remnants of sludge were vacuumed up. The fuel was loaded into a cask that sat underwater. The cask was hoisted out of the water, decontaminated, and transported to the K West Basin, where it is now being stored underwater until it can be dried and taken to storage in central Hanford. Removing the sludge and fuel from the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream. Fluor's priority at the K East Basin quickly turned to final preparations for demolishing the structure. Final activities to sort debris are progressing, along with plans to de-water the basin and turn it to rubble in the next two years. At the K West Basin, after the bulk sludge was removed July 3, workers began preparing to load out the last of the ''found'' nuclear fuel and to complete final pass sludge collection this coming year.

  3. A summary of lessons learned at the Shippingport Station Decommissioning Project (SSDP)

    SciTech Connect (OSTI)

    Crimi, F.P.; Mullee, G.R.

    1987-10-01T23:59:59.000Z

    This paper describes the lessons learned from a management perspective during decommissioning. The lessons learned are presented in a chronological sequence during the life of the project up to the present time. The careful analysis of the lessons learned and the implementation of corresponding actions have contributed toward improving the effectiveness of decommissioning as time progresses. The lessons learned should be helpful in planning future decommissioning projects.

  4. Decontamination and decommissioning surveillance and maintenance report for FY 1991

    SciTech Connect (OSTI)

    Gunter, David B.; Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01T23:59:59.000Z

    The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  5. FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure

    E-Print Network [OSTI]

    SP·215-18 FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure by M. Demers. A for the storage of the moderately contaminated nuclear reactor. The enforcement of more rigorous environmental. 1. HISTORY 1.1 Decommissioning of the Reactor The Gentilly-I nuclear power plant, located

  6. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Harford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  7. Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor

    SciTech Connect (OSTI)

    Sarah Roberts

    2006-10-18T23:59:59.000Z

    Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

  8. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  9. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  10. Site Characterization Plan for decontamination and decommissioning of Buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Buildings 3506, the Waste Evaporator Facility, and 3515, the Fission Product Pilot Plant, at Oak Ridge National Laboratory (ORNL), are scheduled for decontamination and decommissioning (D&D). This Site Characterization Plan (SCP) presents the strategy and techniques to be used to characterize Buildings 3506/3515 for the purpose of planning D&D activities. The elements of the site characterization for Buildings 3506/3515 are planning and preparation, field investigation, and characterization reporting. Other level of effort activities will include management and oversight, project controls, meetings, and progress reporting. The objective of the site characterization is to determine the nature and extent of radioactive and hazardous materials and other industrial hazards in and around the buildings. This information will be used in subsequent planning to develop a detailed approach for final decommissioning of the facilities: (1) to evaluate decommissioning alternatives and design the most cost-effective D&D approach; (2) to determine the level and type of protection necessary for D&D workers; and (3) to estimate the types and volumes of wastes generated during D&D activities. The current D&D characterization scope includes the entire building, including the foundation and equipment or materials within the building. To estimate potential worker exposure from the soil during D&D, some subfoundation soil sample collection is planned. Buildings 3506/3515 are located in the ORNL main plant area, to the west and east, respectively, of the South Tank Farm. Building 3506 was built in 1949 to house a liquid waste evaporator and was subsequently used for an incinerator experiment. Partial D&D was done prior to abandonment, and most equipment has been removed. Building 3515 was built in 1948 to house fission product separation equipment. In about 1960, all entrances were sealed with concrete block and mortar. Building 3515 is expected to be highly contaminated.

  11. Lessons learned from commercial experience with nuclear plant decontamination to safe storage

    SciTech Connect (OSTI)

    Fischer, S.R.; Partain, W.L.; Sype, T.

    1995-12-31T23:59:59.000Z

    The Department of Energy (DOE) has successfully performed decontamination and decommissioning (D&D) on many production reactors it. DOE now has the challenge of performing D&D on a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe-storage status before conducting D&D-for perhaps as much as 20 yr. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons learned study of commercial experience with safe storage and transition to D&D. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this paper are directly applicable to transitioning the DOE Weapons Complex.

  12. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

  13. Implementation of 10 CFR 20.1406 Through Life Cycle Planning for Decommissioning

    SciTech Connect (OSTI)

    O'Donnell, E.; Ott, W.R. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2008-07-01T23:59:59.000Z

    This paper summarizes a regulatory guide that the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, is currently developing for use in implementing Title 10, Section 20.1406, of the Code of Federal Regulations (10 CFR 20.1406), 'Minimization of Contamination'. The intent of the regulation is to diminish the occurrence and severity of 'legacy sites' by taking measures to reduce and control contamination and facilitate eventual decommissioning. The thrust of the regulatory guide is to encourage applicants to use technically sound engineering judgment and a practical risk-informed approach to achieve the objectives of 10 CFR 20.1406. In particular, such an approach should consider the materials and processes involved (e.g., solids, liquids, gases), and focus on (1) the relative significance of potential contamination, (2) areas that are most susceptible to leaks, and (3) the appropriate level of consideration that should be incorporated in facility design and operational procedures to prevent and control contamination. (authors)

  14. A survey of commercially available manipulators, end-effectors, and delivery systems for reactor decommissioning activities

    SciTech Connect (OSTI)

    Henley, D.R. [Argonne National Lab., IL (United States); Litka, T.J. [Advanced Consulting Group, Chicago, IL (United States)

    1996-05-01T23:59:59.000Z

    Numerous nuclear facilities owned by the U.S. Department of Energy (DOE) are under consideration for decommissioning. Currently, there are no standardized, automated, remote systems designed to dismantle and thereby reduce the size of activated reactor components and vessels so that they can be packaged and shipped to disposal sites. Existing dismantling systems usually consist of customized, facility-specific tooling that has been developed to dismantle a specific reactor system. Such systems have a number of drawbacks. Generally, current systems cannot be disassembled, moved, and reused. Developing and deploying the tooling for current systems is expensive and time-consuming. In addition, the amount of manual work is significant because long-handled tools must be used; as a result, personnel are exposed to excessive radiation. A standardized, automated, remote system is therefore needed to deliver the tooling necessary to dismantle nuclear facilities at different locations. Because this system would be reusable, it would produce less waste. The system would also save money because of its universal design, and it would be more reliable than current systems.

  15. Operating Costs Estimates Cost Indices

    E-Print Network [OSTI]

    Boisvert, Jeff

    to update costs of specific equipment, raw material or labor or CAPEX and OPEX of entire plants Cost Indices

  16. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    SciTech Connect (OSTI)

    Weigl, M. [Karlsruhe Institute of Technology, Projekttraeger Karlsruhe (PTKA-WTE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-01T23:59:59.000Z

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible. The successful completion of two big D and D projects (HDR and KKN), which reached green field conditions, are showing quite the contrary. Moreover, research on D and D technologies offers the possibility to educate students on a field of nuclear technology, which will be very important in the future. In these days D and D companies are seeking for a lot of young engineers and this will not change in the coming years. (authors)

  17. Erosion at Decommissioned Road-Stream Crossings: Case Studies from Three

    E-Print Network [OSTI]

    Standiford, Richard B.

    the dominant process and incorporate any lessons learned into future projects. Sites were also intentionally53 Erosion at Decommissioned Road-Stream Crossings: Case Studies from Three Northern California-treatment erosion was observed for 41 decommissioned road stream crossings in three northern California watersheds

  18. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  19. Decommissioning Small Research and Training Reactors; Experience on Three Recent University Projects - 12455

    SciTech Connect (OSTI)

    Gilmore, Thomas [LVI Services Inc. (United States); DeWitt, Corey; Miller, Dustin; Colborn, Kurt [Enercon Services, Inc. (United States)

    2012-07-01T23:59:59.000Z

    Decommissioning small reactors within the confines of an active University environment presents unique challenges. These range from the radiological protection of the nearby University population and grounds, to the logistical challenges of working in limited space without benefit of the established controlled, protected, and vital areas common to commercial facilities. These challenges, and others, are discussed in brief project histories of three recent (calendar year 2011) decommissioning activities at three University training and research reactors. These facilities include three separate Universities in three states. The work at each of the facilities addresses multiple phases of the decommissioning process, from initial characterization and pre-decommissioning waste removal, to core component removal and safe storage, through to complete structural dismantlement and site release. The results of the efforts at each University are presented, along with the challenges that were either anticipated or discovered during the decommissioning efforts, and results and lessons learned from each of the projects. (authors)

  20. Decontamination and decommissioning of a fuel reprocessing pilot plant

    SciTech Connect (OSTI)

    Heine, W.F.; Speer, D.R.

    1988-01-01T23:59:59.000Z

    SYNOPSIS The strontium Semiworks Pilot Fuel Reprocessing Plant at the Hanford Site in Washington State was decommissioned by a combination of dismantlement and entombment. The facility contained 9600 Ci of Sr-90 and 10 Ci of plutonium. Process cells were entombed in place. The above-grade portion of one cell with 1.5-m- (5-ft-) thick walls and ceilings was demolished by means of expanding grout. A contaminated stack was remotely sandblasted and felled by explosives. The entombed structures were covered with a 4.6-m- (15-ft-) thick engineered earthen barrier. 5 figs., 2 tabs.

  1. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30T23:59:59.000Z

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  2. Decommissioning of the high flux beam reactor at Brookhaven Lab

    SciTech Connect (OSTI)

    Hu, J.P. [National Synchrotron Light Source, Brookhaven Laboratory, Upton, NY 11973 (United States); Reciniello, R.N. [Radiological Control Div., Brookhaven Laboratory, Upton, NY 11973 (United States); Holden, N.E. [National Nuclear Data Center, Brookhaven Laboratory, Upton, NY 11973 (United States)

    2011-07-01T23:59:59.000Z

    The high-flux beam reactor (HFBR) at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on Oct. 31, 1965. It operated at a power level of 40 megawatts. An equipment upgrade in 1982 allowed operations at 60 megawatts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 megawatts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of groundwater from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost three years for safety and environmental reviews. In November 1999 the United States Dept. of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel, is presently under 24/7 surveillance for safety. Detailed dosimetry performed for the HFBR decommissioning during 1996-2009 is described in the paper. (authors)

  3. Resource book: Decommissioning of contaminated facilities at Hanford

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

  4. Lessons Learned in Decommissioning of NPP A-1 After Accident

    SciTech Connect (OSTI)

    Prazska, M.; Rezbarik, J.; Majersky, D.; Sekely, S.; Solcanyi, S.

    2002-02-25T23:59:59.000Z

    Decommissioning of the NPP A-1 in Jaslovske Bohunice is encountered with great variation of the problems connected primarily with the high radiation fields and the high activity of the contaminated materials. Decontamination of the contaminated objects and the thorough radiological protection of decontamination workers are therefore the tasks of top priority. The successful realization of these jobs is based on the experience, good working practice and the utilization of all proven methods together with the newly developed ones. Since 1996, AllDeco Ltd. has applied the decontamination methods and processes in a wide scale in the decommissioning and dismantling of the NPP A-1 in the cooperation with SE-VYZ Inc. The monitoring of the radiation situation and the investigation of the type and character of the radioactive waste were first steps in the decontamination of all objects. For this works, remote controlled mechanical manipulators and remote controlled electrical carriage equipped with instruments recording the levels of dose rates and with telemetric data transmission system were used. The recorded data were used for the modeling and 3D visualization of the radiation fields and for following planning and preparation of the decontamination projects or ''working programs'' based on the ALARA principle. The minimization of the radioactive waste was also taken into consideration. A lot of time and energy was spent on the preparation and training of the staff including non-active trials of planned procedures. The gained experience was evaluated and lessons learned were given in the final reports.

  5. Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal

    SciTech Connect (OSTI)

    B. C. Culp

    2007-05-01T23:59:59.000Z

    Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel.

  6. Idaho Site Closes Out Decontamination and Decommissioning Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown...

  7. Nordisk kernesikkerhedsforskning Norrnar kjarnryggisrannsknir

    E-Print Network [OSTI]

    NKS-146 ISBN 87-7893-209-2 Cost Calculations for Decommissioning and Dismantling of Nuclear Research, Norway Klaus Iversen Danish Decommissioning, Denmark Staffan Lindskog Swedish Nuclear Power Inspectorate for decommissioning of a nuclear facility as similar to those of any other plant. However, the presence

  8. Phenix Power Plant Decommissioning Project. Treatment of the Primary Cold Trap

    SciTech Connect (OSTI)

    Deluge, M. [CEA /Marcoule DDCO/SDSP BP 17171 302078 Bagnols Sur Ceze (France)

    2008-01-15T23:59:59.000Z

    Phenix is a sodium-cooled fast neutron reactor located at the CEA's Rhone Valley Center where it was commissioned in 1974. It has an electric power rating of 250 MW and is operated jointly by the CEA and EDF. Its primary role today is to investigate the transmutation of long-lived radioactive waste into shorter-lived wasteform. Its final shutdown is scheduled for the beginning of 2009. In this context the Phenix Power Plant Decommissioning Project was initiated in 2003. It covers the definitive cessation of plant operation and the dismantling (D and D) operations together with the final shutdown preparatory phase. The final shutdown phase includes the operations authorized within the standard operating methodological framework. The dismantling phase also comprises treatment of sodium-bearing waste and dismantling of the nuclear facilities (reactor block, shielded cells, etc.). Treatment of the Phenix primary cold trap is scheduled to begin in 2016. The analysis program includes the following steps: - Accurately determine the contamination in the trap by carrying out gamma spectrometry measurement campaigns from 2007 to 2013 (the remaining difficulty will be to accurately determine the distribution of the contamination). - Validate the safety studies for the ELA facility. This work is currently in progress; ELA will be commissioned following inactive qualification testing. - Proceed with cutting tests on the knit mesh filter, which are scheduled to begin in 2008.

  9. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect (OSTI)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01T23:59:59.000Z

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  10. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL/98-060 (RF)

    E-Print Network [OSTI]

    Keil, Eberhard

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL/98-060 (RF) A Recirculating Electron Accelerator will become available after the decommissioning of LEP. The major design features and subjects of further developments are discussed. Geneva, Switzerland October 9, 1998 #12;1 INTRODUCTION The European nuclear physics

  11. TWRS privatization: Phase I monitoring well engineering study and decommissioning plan

    SciTech Connect (OSTI)

    Williams, B.A.

    1996-09-11T23:59:59.000Z

    This engineering study evaluates all well owners and users, the status or intended use of each well, regulatory programs, and any future well needs or special purpose use for wells within the TWRS Privatization Phase I demonstration area. Based on the evaluation, the study recommends retaining 11 of the 21 total wells within the demonstration area and decommissioning four wells prior to construction activities per the Well Decommissioning Plan (WHC-SD-EN-AP-161, Rev. 0, Appendix I). Six wells were previously decommissioned.

  12. CPP-603 Chloride Removal System Decontamination and Decommissioning. Final report

    SciTech Connect (OSTI)

    Moser, C.L.

    1993-02-01T23:59:59.000Z

    The CPP-603 (annex) Chloride Removal System (CRS) Decontamination and Decommissioning (D&D) Project is described in this report. The CRS was used for removing Chloride ions and other contaminants that were suspended in the waters of the underwater fuel storage basins in the CPP-603 Fuel Receiving and Storage Facility (FRSF) from 1975 to 1981. The Environmental Checklist and related documents, facility characterization, decision analysis`, and D&D plans` were prepared in 1991. Physical D&D activities were begun in mid summer of 1992 and were completed by the end of November 1992. All process equipment and electrical equipment were removed from the annex following accepted asbestos and radiological contamination removal practices. The D&D activities were performed in a manner such that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) occurred.

  13. Sensor Network Demonstration for In Situ Decommissioning - 13332

    SciTech Connect (OSTI)

    Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

    2013-07-01T23:59:59.000Z

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

  14. Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01T23:59:59.000Z

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

  15. Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT)

    Broader source: Energy.gov [DOE]

    The Deactivation and Decommissioning Knowledge Management Information Tool (D&D KM-IT) serves as a centralized repository providing a common interface for all D&D related activities.

  16. The First Decommissioning of a Fusion Reactor Fueled by Deuterium-Tritium

    SciTech Connect (OSTI)

    Charles A. Gentile; Erik Perry; Keith Rule; Michael Williams; Robert Parsells; Michael Viola; James Chrzanowski

    2003-10-28T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) at the Plasma Physics Laboratory of Princeton University (PPPL) was the first fusion reactor fueled by a mixture of deuterium and tritium (D-T) to be decommissioned in the world. The decommissioning was performed over a period of three years and was completed safely, on schedule, and under budget. Provided is an overview of the project and detail of various factors which led to the success of the project. Discussion will cover management of the project, engineering planning before the project started and during the field work as it was being performed, training of workers in the field, the novel adaptation of tools from other industry, and the development of an innovative process for the use of diamond wire to segment the activated/contaminated vacuum vessel. The success of the TFTR decommissioning provides a viable model for the decommissioning of D-T burning fusion devices in the future.

  17. EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's...

  18. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  19. Dynamic Long-Term Modelling of Generation Capacity Investment and Capacity Margins

    E-Print Network [OSTI]

    Eager, Dan; Hobbs, Benjamin; Bialek, Janusz

    2012-04-25T23:59:59.000Z

    ). Total interest accumulated during construction is given by TIACx = ICx ? cxpx. Finally, DCx is the present worth of the decommissioning cost. Only nuclear projects have considerable decommissioning costs (estimated at 12% of px4); in the case of other... plant types the decommissioning liabilities are assumed to be offset by the salvage value of the assets [22]. Nuclear decommissioning is assumed to take 150 years and the equivalent incidence of capital outlay matrix contains 0.05 for the first 10...

  20. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    SciTech Connect (OSTI)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28T23:59:59.000Z

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  1. Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part A, Decontamination and Decommissioning

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This report documents activities of decontamination and decommissioning at ORNL. Topics discussed include general problems, waste types, containment, robotics automation and decontamination processes.

  2. INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-12-15T23:59:59.000Z

    5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

  3. LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-10-22T23:59:59.000Z

    5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

  4. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  5. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  6. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  7. UK contractors' experience of management of tritium during decommissioning projects

    SciTech Connect (OSTI)

    Green, Tommy; Stevens, Keith; Heaney, John [NUKEM Ltd., Kelburn Court, Daten Park, Birchwood, Warrington, WA3 6TW (United Kingdom); Murray, Alan [Tetronics Limited, 1 Ram Court. Wicklesham Farm, Faringdon. Oxfordshire SN7 7PN (United Kingdom); Warwick, Phil; Croudace, Ian [GAU-Radioalytical, National Oceanography Centre (United Kingdom)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: This paper provides an account of the tritium management experience of a UK decommissioning and remediation contracting organisation (NUKEM Limited), supported by a specialist radio-analysis organisation (GAU-Radioanalytical). This experience was gained during the execution of projects which involved the characterisation and remediation of facilities which had previously been used for tritium work and were contaminated with tritium. The emphasis of the paper is on the characterisation (sampling and analysis) of tritium. An account is given of the development of a methodology to improve the accuracy of tritium characterisation. The improved methodology evolved from recognition of the need to minimise tritium losses during sampling, storage, transport and preparation for analysis. These improvements were achieved in a variety of ways, including use of cold and dry sampling techniques in preference to hot or wet ones and freezing relevant samples during storage and transport. The major benefit was an improvement in the accuracy and reliability of the analyses results, essential for proper categorisation, sentencing and future management of tritiated waste. (authors)

  8. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    SciTech Connect (OSTI)

    Notz, K.J.

    1988-01-01T23:59:59.000Z

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  9. Contracting with reading costs and renegotiation costs

    E-Print Network [OSTI]

    Brennan, James R.

    2007-01-01T23:59:59.000Z

    Reading Costs, Competition, and ContractReading Costs . . . . . . . . . . . . . . . . C. EquilibriumUnconscionability A?ect Reading Costs . . . . . . . . . .

  10. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect (OSTI)

    CHARBONEAU, S.L.

    2006-02-01T23:59:59.000Z

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

  11. Decommissioning of a mixed oxide fuel fabrication plant at Winfrith Technolgy Centre

    SciTech Connect (OSTI)

    Pengelly, M.G.A. [AEA Technology, Dorchester (United Kingdom)

    1994-01-01T23:59:59.000Z

    The Alpha Materials Laboratory (Building A52) at Winfrith contained a mixed oxide fuel fabrication plant which had a capability of producing 10 te/yr of pelleted/compacted fuel and was in operation from 1962 until 1980, when the requirement for this type of fuel in the UK diminished, and the plant became surplus to requirements. A program to develop decommissioning techniques for plutonium plants was started in 1983, addressing the following aspects of alpha plant decommissioning: (1) Re-usable containment systems, (2) Strippable coating technology, (3) Mobile air filtration plant, (4) Size reduction primarily using cold cutting, (5) techniques, (6) Waste packing, and (7) Alpha plant decommissioning methodology. The technology developed has been used to safely and efficiently decommission radioactive plant and equipment including Pu contaminated glove boxes. (63 glove boxes to date) The technology has been widely adopted in the United Kingdom and elsewhere. This paper outlines the general strategies adopted and techniques used for glove box decommissioning in building A52.

  12. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    SciTech Connect (OSTI)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28T23:59:59.000Z

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

  13. Interdisciplinary Institute for Innovation Nuclear reactors' construction

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interdisciplinary Institute for Innovation Nuclear reactors' construction costs: The role of lead@mines-paristech.fr hal-00956292,version1-6Mar2014 #12;hal-00956292,version1-6Mar2014 #12;Nuclear reactors' construction reactor construction costs in France and the United States. Studying the cost of nuclear power has often

  14. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    SciTech Connect (OSTI)

    Smith, Anthony A. [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)] [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)

    2013-07-01T23:59:59.000Z

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] it is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)

  15. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  16. Decommissioning and PIE of the MEGAPIE spallation target

    SciTech Connect (OSTI)

    Latge, C.; Henry, J. [CEA-Cadarache, DEN-DTN, 13108 Saint-Paul-les-Durance (France); Wohlmuther, M.; Dai, Y.; Gavillet, D.; Hammer, B.; Heinitz, S.; Neuhausen, J.; Schumann, D.; Thomsen, K.; Tuerler, A.; Wagner, W. [PSI, Villigen (Switzerland); Gessi, A. [ENEA, Brasimone (Italy); Guertin, A. [CNRS, Subatech, Nantes (France); Konstantinovic, M. [SCK-CEN, Mol (Belgium); Lindau, R. [KIT, Karlsruhe (Germany); Maloy, S. [DOE-LANL, Los Alamos (United States); Saito, S. [JAEA, Tokai (Japan)

    2013-07-01T23:59:59.000Z

    A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly. The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by ?-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from ?-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and ?-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.

  17. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J. [and others

    1995-01-01T23:59:59.000Z

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  18. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  19. Valuing the greenhouse gas emissions from nuclear power: A critical survey Benjamin K. Sovacool

    E-Print Network [OSTI]

    Laughlin, Robert B.

    of the nuclear fuel cycle before explaining the methodology of the survey and exploring the variance of lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning at the University of Chicago, Enrico Fermi inserted about 50 ton of uranium oxide into 400 carefully constructed

  20. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining% accuracy. ­ 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive ­ Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships · Capital Costs (or

  1. ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE

    E-Print Network [OSTI]

    ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE KLAMATH BASIN HYDROELECTRIC to remove the dams and buy replacement power than the earlier analysis had indicated. The Klamath Project, and steelhead trout on the West Coast of the United States. PacifiCorp's 169-megawatt Klamath Hydroelectric

  2. EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

  3. Tritium Reduction and Control in the Vacuum Vessel During TFTR Outage and Decommissioning *

    E-Print Network [OSTI]

    Tritium Reduction and Control in the Vacuum Vessel During TFTR Outage and Decommissioning * W of the torus, a three tier system was developed for the outage in order to reduce and control the free tritium. The first phase of the program to reduce the free tritium consisted of direct flowthrough of room air

  4. Tritium Reduction and Control in the Vacuum Vessel During TFTR Outage and Decommissioning*

    E-Print Network [OSTI]

    Tritium Reduction and Control in the Vacuum Vessel During TFTR Outage and Decommissioning* W, a three tier system was developed for the outage in order to reduce and control the free tritium. The first phase of the program to reduce the free tritium consisted of direct flowthrough of room air

  5. Dose reduction through robotics and automation of nuclear weapons dismantlement and storage procedures at the Department of Energy's Pantex Plant

    E-Print Network [OSTI]

    Thompson, David Andrew

    1996-01-01T23:59:59.000Z

    of Energy' s P antex Plant near Amarillo, Texas. Upon disassembly of nuclear weapons, the plutonium and highly enriched uranium pits are placed in specially designed storage containers and temporarily stored in heavily secured ammunition magazines. Pits... in the stockpile; ~ Disassembly of nuclear weapons no longer required in military stockpiles; and ~ Interim storage of plutonium pits from dismantled weapons. ~ Waste management and decontamination and decommissioning activities. ~ Assembling nuclear explosive...

  6. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-02-27T23:59:59.000Z

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D&D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the building. The derived concentration guidelines, combined with the tritium removal system that was developed for this project, provided a significant timesaving for decontamination as well as an overall cost savings for waste disposal.

  7. Trends in Gulf Coast Power Supply, Demand, and Costs

    E-Print Network [OSTI]

    Posey, L. G., Jr.

    1980-01-01T23:59:59.000Z

    During the 1980s, both the cost and availability of industrial electric power will become critical to corporations contemplating expansions and new sites along the Gulf Coast. Fuel costs have grown rapidly, and the shift to coal and nuclear power...

  8. Use of MCNP for characterization of reactor vessel internals waste from decommissioned nuclear reactors

    SciTech Connect (OSTI)

    Love, E.F.; Pauley, K.A.; Reid, B.D.

    1995-09-01T23:59:59.000Z

    This study describes the use of the Monte Carlo Neutron-Photon (MCNP) code for determining activation levels of irradiated reactor vessel internals hardware. The purpose of the analysis is to produce data for the Department of Energy`s Greater-Than-Class C Low-Level Radioactive Waste Program. An MCNP model was developed to analyze the Yankee Rowe reactor facility. The model incorporates reactor geometry, material compositions, and operating history data acquired from Yankee Atomic Electric Company. In addition to the base activation analysis, parametric studies were performed to determine the sensitivity of activation to specific parameters. A component sampling plan was also developed to validate the model results, although the plan was not implemented. The calculations for the Yankee Rowe reactor predict that only the core baffle and the core support plates will be activated to levels above the Class C limits. The parametric calculations show, however, that the large uncertainties in the material compositions could cause errors in the estimates that could also increase the estimated activation level of the core barrel to above the Class C limits. Extrapolation of the results to other reactor facilities indicates that in addition to the baffle and support plates, core barrels may also be activated to above Class C limits; however the classification will depend on the specific operating conditions of the reactor and the specific material compositions of the metal, as well as the use of allowable concentration averaging practices in packaging and classifying the waste.

  9. Deactivation and decommissioning environmental strategy for the Plutonium Finishing Plant (PFP) Complex Hanford Nuclear Reservation

    SciTech Connect (OSTI)

    HOPKINS, A.M.

    2003-02-01T23:59:59.000Z

    The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during Plutonium Finishing Plant (PFP) stabilization, deactivation, and eventual dismantlement.

  10. Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.Attachment FY2011-40(10 CFR PartsOil,Energy

  11. Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthernofDepartmentReport6

  12. Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftwareStarAnnualFinancial and Contracting

  13. Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftwareStarAnnualFinancial and Contracting

  14. DETERMINING THE EFFECTS OF RADIATION ON AGING CONCRETE STRUCTURES OF NUCLEAR REACTORS

    SciTech Connect (OSTI)

    Serrato, M.

    2010-01-29T23:59:59.000Z

    The U.S. Department of Energy Office of Environmental Management (DOE-EM) is responsible for the Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex. Some of these facilities will be completely dismantled, while others will be partially dismantled and the remaining structure will be stabilized with cementitious fill materials. The latter is a process known as In-Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing facility conditions, and operational history. System information and material properties are need for aged nuclear facilities. This literature review investigated the properties of aged concrete structures affected by radiation. In particular, this review addresses the Savannah River Site (SRS) isotope production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels of radiation exposure. Loss of composite compressive strength was the most common effect of radiation induced damage documented at nuclear power plants.

  15. Costing of Joining Methods -Arc Welding Costs

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Costing of Joining Methods - Arc Welding Costs ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 #12;OverviewOverview · Cost components · Estimation of costsEstimation of costs · Examples ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 2 #12;Cost

  16. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main classes of capital costs: 1. Depreciable Investment: · Investment allocated

  17. DECOMMISSIONING CHALLENGES AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    SciTech Connect (OSTI)

    Dorr, K. A.; Hoover, J.

    2002-02-25T23:59:59.000Z

    This paper presents a discussion of the demolition of the Building 788 cluster at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The Building 788 Cluster was a Resource Conservation and Recovery Act (RCRA) permitted storage facilities and ancillary structures. Topics covered include the methods employed for Project Planning, Regulatory Compliance, Waste Management, Hazard Identification, Radiological Controls, Risk Management, Field Implementation, and Cost Schedule control, and Lessons Learned and Project Closeout.

  18. Decommissioning of U.S. Department of Energy surplus facilities under the Comprehensive Environmental Response, Compensation, and Liability Act

    SciTech Connect (OSTI)

    Warren, S. [Dept. of Energy, Germantown, MD (United States); Dorries, J. [Booz, Allen and Hamilton Inc., Germantown, MD (United States)

    1996-08-01T23:59:59.000Z

    The US Department of Energy (DOE) has identified more than 850 contaminated surplus facilities that require decommissioning through the environmental restoration program. This paper discusses the regulatory framework for decommissioning these facilities, specifically the framework established by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLA jurisdiction covers releases of hazardous substances to the environment, substantial threats of such releases, and responses to these situations. DOE has determined that the use of CERCLA removal action authority is the appropriate means of responding to releases or threats of releases from contaminated surplus facilities under the jurisdiction, custody, or control of the Department. This paper focuses on the policy and process for decommissioning contaminated surplus facilities. Not all surplus facilities to be decommissioned will fall under CERCLA jurisdiction. In all instances, however, the same basic process will still be followed and a graded approach will be applied, consistent with DOE orders.

  19. Investing in International Information Exchange Activities to Improve the Safety, Cost Effectiveness and Schedule of Cleanup - 13281

    SciTech Connect (OSTI)

    Seed, Ian; James, Paula [Cogentus Consulting (United States)] [Cogentus Consulting (United States); Mathieson, John [NDA United Kingdom (United Kingdom)] [NDA United Kingdom (United Kingdom); Judd, Laurie [NuVision Engineering, Inc. (United States)] [NuVision Engineering, Inc. (United States); Elmetti-Ramirez, Rosa; Han, Ana [US DOE (United States)] [US DOE (United States)

    2013-07-01T23:59:59.000Z

    With decreasing budgets and increasing pressure on completing cleanup missions as quickly, safely and cost-effectively as possible, there is significant benefit to be gained from collaboration and joint efforts between organizations facing similar issues. With this in mind, the US Department of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) have formally agreed to share information on lessons learned on the development and application of new technologies and approaches to improve the safety, cost effectiveness and schedule of the cleanup legacy wastes. To facilitate information exchange a range of tools and methodologies were established. These included tacit knowledge exchange through facilitated meetings, conference calls and Site visits as well as explicit knowledge exchange through document sharing and newsletters. A DOE web-based portal has been established to capture these exchanges and add to them via discussion boards. The information exchange is operating at the Government-to-Government strategic level as well as at the Site Contractor level to address both technical and managerial topic areas. This effort has resulted in opening a dialogue and building working relationships. In some areas joint programs of work have been initiated thus saving resource and enabling the parties to leverage off one another activities. The potential benefits of high quality information exchange are significant, ranging from cost avoidance through identification of an approach to a problem that has been proven elsewhere to cost sharing and joint development of a new technology to address a common problem. The benefits in outcomes significantly outweigh the costs of the process. The applicability of the tools and methods along with the lessons learned regarding some key issues is of use to any organization that wants to improve value for money. In the waste management marketplace, there are a multitude of challenges being addressed by multiple organizations and the effective pooling and exchange of knowledge and experience can only be of benefit to all participants to help complete the cleanup mission more quickly and more cost effectively. This paper examines in detail the tools and processes used to promote information exchange and the progress made to date. It also discusses the challenges and issues involved and proposes recommendations to others who are involved in similar activities. (authors)

  20. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  1. Nuclear Science & Engineering

    E-Print Network [OSTI]

    .90 76 Nuclear 19.9 1.68 25 Natural Gas 17.7 5.87 91 Hydroelectricity 6.6 Petroleum 3.0 5.39 88 Non Nuclear Science & Engineering Natural Gas Source: Sproule Associates Ltd. Generating costs are high. Gas shutdown: · Pickering 1 (515 MW(e), PHWR, Canada) reconnected 26 Sep 05 Final shutdowns: 3 reactors, Sweden

  2. The decontamination, decommissioning, and demolition of loss-of-fluid test reactor at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Floerke, J.P.; Borschel, Th.F.; Rhodes, L.K. [CH2M-WG Idaho, Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    In October 2006, CH2M-WG Idaho completed the decontamination, decommissioning and demolition of the Loss-of-Fluid Test (LOFT) facility. The 30-year-old research reactor, located at the Idaho National Laboratory site, posed significant challenges involving regulations governing the demolition of a historical facility, as well as worker safety issues associated with the removal of the reactor's domed structure. The LOFT facility was located at the west end of Test Area North (TAN), built in the 1950's to support the government's aircraft nuclear propulsion program. When President Kennedy cancelled the nuclear propulsion program in 1961, TAN began to host various other activities. The LOFT reactor became part of the new mission. The LOFT facility, constructed between 1965 and 1975, was a scaled-down version of a commercial pressurized water reactor. Its design allowed engineers, scientists, and operators to create or re-create loss-of-fluid accidents (reactor fuel meltdowns) under controlled conditions. The LOFT dome provided containment for a relatively small, mobile test reactor that was moved into and out of the facility on a railroad car. The dome was roughly 21 meters (70 feet) in diameter and 30 meters (98 feet) in height. The Nuclear Regulatory Commission received the results from the accident tests and incorporated the data into commercial reactor operating codes. The facility conducted 38 experiments, including several small loss-of-coolant experiments designed to simulate events such as the accident that occurred at Three Mile Island in Pennsylvania, before the LOFT facility was closed. Through formal survey and research, the LOFT facility was determined to be a DOE Signature Property, as defined by the 'INEEL Cultural Resource Management Plan', and thus eligible for inclusion in the National Register of Historic Places. Decontamination and decommissioning (D and D) of the facility constituted an adverse effect on the historic property that required resolution through the contractor (CH2M-WG Idaho), the U.S. Department of Energy, the Idaho State Historic Preservation Office (SHPO), and the Advisory Council on Historic Preservation. The project team identified multiple hazards that would result if conventional techniques were used to demolish the dome. The physical structure of the vessel containment facility reached 30 meters (98 feet) above grade, presenting significant worker safety hazards created by hoisting and rigging activities. The dome also included a polar crane, 19 meters (62 feet) above grade, that posed similar hazards to workers. The need to work on significantly elevated surfaces, and the thickness of the dome walls - 30 millimeters (1-3/16 inches) of carbon steel - would prove difficult with traditional arc plasma cutting tools. The dome's proximity to operating facilities with equipment sensitive to vibration added to the demolition challenges. To address cultural resource issues, the project team engaged all parties in negotiations and in mapping a path foreword. Open and frequent communication resulted in a Memorandum of Agreement, with stipulations that mitigated the adverse affects of the intended demolition action. The unique mitigating actions resulted in a favorable agreement being signed and issued. To mitigate hazards posed by the height of the facility, the project team had to abandon traditional D and D techniques and employ other methods to complete demolition safely. A different approach and a change in demolition sequence resulted in the safe and efficient removal of the one-of-a-kind containment facility. The approach reduced the use of aerial lifts, aboveground size reduction, and dangerous hoisting and rigging activities that could pose significant hazards to workers. (authors)

  3. The Creation of a French Basic Nuclear Installation - Description of the Regulatory Process - 13293

    SciTech Connect (OSTI)

    Mahe, Carole [CEA Marcoule - BP17171 - 30207 Bagnols-Sur-Ceze (France)] [CEA Marcoule - BP17171 - 30207 Bagnols-Sur-Ceze (France); Leroy, Christine [CEA Cadarache - 13108 Saint Paul-Lez-Durance (France)] [CEA Cadarache - 13108 Saint Paul-Lez-Durance (France)

    2013-07-01T23:59:59.000Z

    CEA is a French government-funded technological research organization. It has to build a medium-level waste interim storage facility because the geological repository will not be available until 2025. This interim storage facility, called DIADEM, has to be available in 2017. These wastes are coming from the research facilities for spent fuel reprocessing and the dismantling of the most radioactive parts of nuclear facilities. The CEA handles the waste management by inventorying the needs and updating them regularly. The conception of the facility is mainly based on this inventory. It provides quantity and characteristics of wastes and it gives the production schedule until 2035. Beyond mass and volume, main characteristics of these radioactive wastes are chemical nature, radioisotopes, radioactivity, radiation dose, the heat emitted, corrosive or explosive gas production, etc. These characteristics provide information to study the repository safety. DIADEM mainly consists of a concrete cell, isolated from the outside, wherein stainless steel welded containers are stored, stacked in a vertical position in the racks. DIADEM is scheduled to store three types of 8 mm-thick, stainless steel cylindrical containers with an outside diameter 498 mm and height from 620 to 2120 mm. DIADEM will be a basic nuclear installation (INB in French) because of overall activity of radioactive substances stored. The creation of a French basic nuclear installation is subject to authorization according to the French law No. 2006-686 of 13 June 2006 on Transparency and Security in the Nuclear Field. The authorization takes into account the technical and financial capacities of the licensee which must allow him to conduct his project in compliance with these interests, especially to cover the costs of decommissioning the installation and conduct remediation work, and to monitor and maintain its location site or, for radioactive waste disposal installations, to cover the definitive shut-down, maintenance and surveillance expenditure. The authorization is issued by a decree adopted upon advice of the French Nuclear Safety Authority and after a public enquiry. In accordance with Decree No. 2007-1557 of November 2, 2007, the application is filed with the ministries responsible for nuclear safety and the Nuclear Safety Authority. It consists of twelve files and four records information. The favorable opinion of the Nuclear Safety Authority on the folder is required to start the public inquiry. Once the public inquiry is completed, the building permit is issued by the prefect. (authors)

  4. Cost Sharing What is Cost Sharing?

    E-Print Network [OSTI]

    Tsien, Roger Y.

    sharing using various data fields (bin, fund, PI, index, etc.) x Create a Bin Generate a bin where cost;3 Cost Sharing Steps Search for & Create a Bin Search Results Display Select AWARD Type the correct data1 Cost Sharing What is Cost Sharing? x Cost sharing is a commitment to use university resources

  5. Drift Natural Convection and Seepage at the Yucca Mountain Repository

    E-Print Network [OSTI]

    Halecky, Nicholaus Eugene

    2010-01-01T23:59:59.000Z

    material from nuclear weapons decommissioning, byproductsnuclear fuel, defense waste from weapons decommissioning,

  6. Cost and Performance Report for the ASTD Reuse of Concrete Within DOE from D&D Projects

    SciTech Connect (OSTI)

    Kamboj, S.; Arnish, J.; Chen, S. Y.; Phillips, Ann Marie; Meservey, Richard Harlan; Tripp, Julia Lynn

    2000-09-01T23:59:59.000Z

    This cost and performance report describes the Accelerated Site Technology Deployment project that developed the Protocol for Development of Authorized Release Limits for Concrete at U.S. DOE Sites, which identifies the steps for obtaining approval to reuse concrete from Deactivation and Decommissioning of facilities. This protocol compares the risk and cost of various disposition paths for the concrete and follows the authorized release approach described in the DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material. This approach provides for the development of authorized release limits through a series of prescribed steps before approval for release is granted. A case study was also completed on a previously decommissioned facility.

  7. An overview of plutonium-238 decontamination and decommissioning (D and D) projects at Mound

    SciTech Connect (OSTI)

    Bond, W.H.; Davis, W.P.; Draper, D.G.; Geichman, J.R.; Harris, J.C.; Jaeger, R.R.; Sohn, R.L.

    1987-01-01T23:59:59.000Z

    Mound is currently decontaminating for restricted reuse and/or decommissioning for conditional release four major plutonium-238 contaminated facilities that contained 1700 linear feet of gloveboxes and associated equipment and services. Several thousand linear feet of external underground piping, associated tanks, and contaminated soil are being removed. Two of the facilities contain ongoing operations and will be reused for both radioactive and nonradioactive programs. Two others will be completely demolished and the land area will become available for future DOE building sites. An overview of the successful techniques and equipment used in the decontamination and decommissioning of individual pieces of equipment, gloveboxes, services, laboratories, sections of buildings, entire buildings, and external underground piping, tanks, and soil in a highly populated residential area is described and pictorially presented.

  8. Getting the most D and D ''know how'' before starting to plan your decommissioning project.

    SciTech Connect (OSTI)

    Boing, L. E.

    1999-06-23T23:59:59.000Z

    Over the last 20 years, the Decommissioning Program of the ANL-East Site has successfully decommissioned numerous facilities including: three research reactors (a 100 MW BWR, a smaller 250 kW biological irradiation reactor and a 10 kW research reactor), a critical assembly, a suite of 61 plutonium gloveboxes in 9 laboratories, a fuels fabrication facility and several non-reactor (waste management and operations) facilities. In addition, extensive decontamination work was performed on 5 hot cells formerly used in a joint ANL/US Navy R&D program. Currently the D&D of the CP-5 research reactor is underway as is planning for several other future D&D projects. The CP-5 facility was also used as a test bed for the evaluation of select evolving D&D technologies to ascertain their value for use in future D&D projects.

  9. Decommissioning and Demolition of a Redundant UK Research Facility at AWE Aldermaston - 12453

    SciTech Connect (OSTI)

    Pritchard, Paul [Atomic Weapons Establishment, Aldermaston (United Kingdom)

    2012-07-01T23:59:59.000Z

    The redundant two-storey brick built research facility on the AWE Site at Aldermaston, UK is in the closing stages of decommissioning and demolition. The facility was used for a variety of purposes up to 1995 predominately involving the use of alpha-emitting isotopes. The two main areas of alpha-based contamination have been decommissioned with the removal of hot -boxes and fume cupboards on the ground floor and HEPA filter units and ventilation equipment on the first floor. Many of these activities were undertaken using both airline fed suits, (supplied via a free standing mobile unit), and full face respirators. Asbestos materials were located and cleared from the first floor by specialist contractor. All sections of active drain running from the building to the site active effluent disposal system were removed early in the program using established techniques with specialist monitoring equipment used to provide confidence in the data required for disposal of the decommissioning debris. In particular a dedicated High Resolution Gamma Spectrometer (radioactive materials scanning unit) was utilized to categorise waste drums and wrapped packages. The building has been decommissioned and the monitoring and sampling of the structure was completed in November 2011 - the results demonstrating that the building was clear of contamination in accordance with UK clearance and exemption requirements. The demolition plan was developed and implemented in December with site excavation of foundations and site clearance currently ongoing in preparation for final site backfill activities and project close. A number of useful lessons have been learnt during the operations and are set out at the rear of the main text. (authors)

  10. Nevada Test Site Decontamination and Decommissioning Program History, Regulatory Framework, and Lessons Learned

    SciTech Connect (OSTI)

    Michael R. Kruzic, Bechtel Nevada; Patrick S. Morris, Bechtel Nevada; Jerel G. Nelson, Polestar Applied Technology, Inc.

    2005-08-07T23:59:59.000Z

    Decontamination and Decommissioning (D&D) of radiologically and/or chemically contaminated facilities at the Nevada Test Site (NTS) are the responsibility of the Environmental Restoration (ER) Project. Facilities identified for D&D are listed in the Federal Facilities Agreement and Consent Order (FFACO) and closed under the Resource Conservation and Recovery Act process. This paper discusses the NTS D&D program, including facilities history, D&D regulatory framework, and valuable lessons learned.

  11. Lessons Learned Following the Successful Decommissioning of a Reaction Vessel Containing Lime Sludge and Technetium-99

    SciTech Connect (OSTI)

    Dawson, P. M.; Watson, D. D.; Hylko, J. M.

    2002-02-25T23:59:59.000Z

    This paper documents how WESKEM, LLC utilized available source term information, integrated safety management, and associated project controls to safely decommission a reaction vessel and repackage sludge containing various Resource Conservation and Recovery Act constituents and technetium-99 (Tc-99). The decommissioning activities were segmented into five separate stages, allowing the project team to control work related decisions based on their knowledge, experience, expertise, and field observations. The information and experience gained from each previous stage and rehearsals contributed to modifying subsequent entries, further emphasizing the importance of developing hold points and incorporating lessons learned. The hold points and lessons learned, such as performing detailed personal protective equipment (PPE) inspections during sizing and repackaging operations, and using foam-type piping insulation to prevent workers from cutting or puncturing their PPE on sharp edge s or small shards generated during sizing operations, minimized direct contact with the Tc-99. To prevent the spread of contamination, the decommissioning activities were performed inside a containment enclosure connected to negative air machines. After performing over 235 individual entries totaling over 285 project hours, only one first aid was recorded during this five-stage project.

  12. Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program

    SciTech Connect (OSTI)

    Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01T23:59:59.000Z

    The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  13. Environmental assessment for decontaminating and decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Department of Energy has prepared an environmental assessment on the proposed decontamination and decommissioning of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania. Based on the environmental assessment, which is available to the public on request, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, 42 USC 4321 et seq. Therefore, no environmental impact statement is required. The proposed action is to decontaminate and decommission the Westinghouse Advanced Reactors Division fuel fabrication facilities (the Plutonium Laboratory - Building 7, and the Advanced Fuels Laboratory - Building 8). Decontamination and decommissioning of the facilities would require removal of all process equipment, the associated service lines, and decontamination of the interior surfaces of the buildings so that the empty buildings could be released for unrestricted use. Radioactive waste generated during these activities would be transported in licensed containers by truck for disposal at the Department's facility at Hanford, Washington. Useable non-radioactive materials would be sold as excess material, and non-radioactive waste would be disposed of by burial as sanitary landfill at an approved site.

  14. THE ECONOMICS OF NUCLEAR REACTORS: RENAISSANCE OR RELAPSE?

    E-Print Network [OSTI]

    Laughlin, Robert B.

    THE ECONOMICS OF NUCLEAR REACTORS: RENAISSANCE OR RELAPSE? MARK COOPER SENIOR FELLOW FOR ECONOMIC Findings Approach Hope and Hype vs. Reality in Nuclear Reactor Costs The Economic Cost of Low Carbon. INTRODUCTION 10 A. The Troubling History of Nuclear Reactor Costs B. Purpose and Outline II. THE STRUCTURE

  15. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect (OSTI)

    Patterson, M.W.

    1994-10-01T23:59:59.000Z

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  16. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    of the dike. Decommissioning of Nuclear Power Plantsin Spain is decommissioning the coun- try's nuclear powertotal decommissioning (Level 3) of all the Spanish nuclear

  17. Employee Replacement Costs

    E-Print Network [OSTI]

    Dube, Arindrajit; Freeman, Eric; Reich, Michael

    2010-01-01T23:59:59.000Z

    Samuel Schenker, “The Costs of Hir- u ing Skilled Workers”,Employee Replacement Costs Arindrajit Dube, Eric Freeman andof employee replacement costs, using a panel survey of

  18. Employee Replacement Costs

    E-Print Network [OSTI]

    Dube, Arindrajit; Freeman, Eric; Reich, Michael

    2010-01-01T23:59:59.000Z

    Employee Replacement Costs Arindrajit Dube, Eric Freeman andproperties of employee replacement costs, using a panel2008. We establish that replacement costs are sub- stantial

  19. Review: Nuclear Power Is Not the Answer by Helen Caldicott

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2007-01-01T23:59:59.000Z

    Review: Nuclear Power Is Not the Answer By Helen CaldicottPakistan. Helen Caldicott. Nuclear Power Is Not the Answer.about the true costs of nuclear power, the health effects of

  20. Securing the Sustainability of Global Medical Nuclear Supply Chains

    E-Print Network [OSTI]

    Nagurney, Anna

    Securing the Sustainability of Global Medical Nuclear Supply Chains Through Economic Cost Recovery University of Massachusetts Amherst Securing the Sustainability of Medical Nuclear Supply Chains #12 of Massachusetts Amherst Securing the Sustainability of Medical Nuclear Supply Chains #12;This presentation

  1. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect (OSTI)

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01T23:59:59.000Z

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  2. Interdisciplinary Institute for Innovation Revisiting the cost escalation

    E-Print Network [OSTI]

    Boyer, Edmond

    Interdisciplinary Institute for Innovation Revisiting the cost escalation curse of nuclear power is that the decentralized and heterogeneous way in which the nuclear fleet grew and the stricter safety rules, Grubler (2010) argued that due to this centralized institutional setting, the nuclear fleet in France grew

  3. What History Can Teach Us about the Future Costs

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Viewpointt What History Can Teach Us about the Future Costs of U.S. NUCLEAR POWER Past experience suggests that high-cost surprises should be included in the planning process. NATHAN E. HULTMAN GEORGETOWN total cost, and incur financial risks no greater than those for other energy technologies. In this ar

  4. Utility Scale Solar PV Cost Steven SimmonsSteven Simmons

    E-Print Network [OSTI]

    Nuclear Generating Station. 4 #12;6/19/2013 3 EVEN MORE SUNNY HEADLINES New solar panels glisten6/19/2013 1 Utility Scale Solar PV Cost Steven SimmonsSteven Simmons Northwest Power Cost Forecast 5. Levelized Costs 1 SOLAR POWER SYSTEM HAS BRIGHT FUTURE 1. Modest environmental impacts

  5. Electricity Plant Cost Uncertainties (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Construction costs for new power plants have increased at an extraordinary rate over the past several years. One study, published in mid-2008, reported that construction costs had more than doubled since 2000, with most of the increase occurring since 2005. Construction costs have increased for plants of all types, including coal, nuclear, natural gas, and wind.

  6. CHALLENGES IN SOURCE TERM MODELING OF DECONTAMINATION AND DECOMMISSIONING WASTES.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.

    2006-08-01T23:59:59.000Z

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models needed for risk assessment.

  7. Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining

    SciTech Connect (OSTI)

    J. A. (Bart) Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman

    2005-09-01T23:59:59.000Z

    The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.

  8. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    M.E. Lumia; C.A. Gentile

    2002-01-18T23:59:59.000Z

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  9. Safety-Related Activities of the IAEA for Radioactive Waste, Decommissioning and Remediation - 13473

    SciTech Connect (OSTI)

    Hahn, Pil-Soo; Vesterlind, Magnus [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria)] [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria)

    2013-07-01T23:59:59.000Z

    To fulfil its mandate and serve the needs of its Member States, the IAEA is engaged in a wide range of safety-related activities pertaining to radioactive waste management, decommissioning and remediation. One of the statutory obligations of the IAEA is to establish safety standards and to provide for the application of these standards. The present paper describes recent developments in regard to the IAEA's waste safety standards, and some of the ways the IAEA makes provision for their application. The safety standards and supporting safety demonstration projects seek to establish international consensus on methodologies and approaches for dealing with particular subject areas, for example, safety assessment for radioactive waste disposal. (authors)

  10. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    E-Print Network [OSTI]

    Lumia, M E

    2002-01-01T23:59:59.000Z

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  11. FROM CONCEPT TO REALITY, IN-SITU DECOMMISSIONING OF THE P AND R REACTORS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Musall, J.; Blankenship, J.; Griffin, W.

    2012-01-09T23:59:59.000Z

    SRS recently completed an approximately three year effort to decommission two SRS reactors: P-Reactor (Building 105-P) and R-Reactor (Building 105-R). Completed in December 2011, the concurrent decommissionings marked the completion of two relatively complex and difficult facility disposition projects at the SRS. Buildings 105-P and 105-R began operating as production reactors in the early 1950s with the mission of producing weapons material (e.g., tritium and plutonium-239). The 'P' Reactor and was shutdown in 1991 while the 'R' Reactor and was shutdown in 1964. In the intervening period between shutdown and deactivation & decommissioning (D&D), Buildings 105-P and 105-R saw limited use (e.g., storage of excess heavy water and depleted uranium oxide). For Building 105-P, deactivation was initiated in April 2007 and was essentially complete by June 2010. For Building 105-R, deactivation was initiated in August 2008 and was essentially complete by September 2010. For both buildings, the primary objective of deactivation was to remove/mitigate hazards associated with the remaining hazardous materials, and thus prepare the buildings for in-situ decommissioning. Deactivation removed the following hazardous materials to the extent practical: combustibles/flammables, residual heavy water, acids, friable asbestos (as needed to protect workers performing deactivation and decommissioning), miscellaneous chemicals, lead/brass components, Freon(reg sign), oils, mercury/PCB containing components, mold and some radiologically-contaminated equipment. In addition to the removal of hazardous materials, deactivation included the removal of hazardous energy, exterior metallic components (representing an immediate fall hazard), and historical artifacts along with the evaporation of water from the two Disassembly Basins. Finally, so as to facilitate occupancy during the subsequent in-situ decommissioning, deactivation implemented repairs to the buildings and provided temporary power.

  12. Groundwater Monitoring and Control Before Decommissioning of the Research Reactor VVR-S from Magurele-Bucharest

    SciTech Connect (OSTI)

    Dragusin, Mitica [National Institute of Physics and Nuclear Engineering-Horia Hulubei - IFIN-HH, Bucharest-Magurele, Romania, POBox MG-6, 077125, Ilfov (Romania)

    2008-01-15T23:59:59.000Z

    The research reactor type VVR-S (tank type, water is cooler, moderator and reflector, thermal power- 2 MW, thermal energy- 9. 52 GW d) was put into service in July 1957 and, in December 1997 was shout down. In 2002, Romanian Government decided to put the research reactor in the permanent shut-down in order to start the decommissioning. This nuclear facility was used in nuclear research and radioisotope production for 40 years, without events, incidents or accidents. Within the same site, in the immediate vicinity of the research reactor, there are many other nuclear facilities: Radioactive Waste Treatment Plant, Tandem Van der Graaf heavy ions accelerator, Cyclotron, Industrial Irradiator, Radioisotope Production Center. The objectives of this work were dedicated on the water underground analyses described in the following context: - presentation of the approaches in planning the number of drillings, vertical soil profiles (characteristics, analyses, direction of the flow of underground water, uncertainties in measurements); - presentation of the instrumentation used in analyses of water, soil and vegetation samples - analyses and final conclusions on results of the measurements; - comparison of the results of measurements on underground water from drillings with the measurements results on samples from the town and the system of drinking water - supplied from the second level of underground water. According to the analysis, in general, no values higher than the Minimum Detectable Activity were detected in water samples (MDA) for Pb{sup 212}, Bi{sup 214}, Pb{sup 214}, Ac{sup 228}, but situated under values foreseen in drinking water. Distribution of Uranium As results of the Uranium determination, values higher than 0,004 mg/l (4 ppb) were detected, values that represent the average contents in the underground water. The higher values, 2-3 times higher than background, were detected in the water from the drillings F15, F12, F5, F13, drillings located between RWTP (Radioactive Waste Treatment Plant) - the 300 m{sup 3} tanks and the Spent Filters Storage (SFS). At south of this area, on the leaking direction of the underground water layer, in the drillings F1, F2, F3, F18 and at east, in F6, F7, the natural Uranium values are within the background for the underground-water. Distribution of Radon For the Radon determination with RAD 7 equipment, water samples were taken from the same piezo-metrical drilling, 2 or 4 times during of six months period, and then, the average contents were calculated, which varied between 0,35 - 2,1 Bq/l. The values higher than 1,1 -1,2 Bq/l were detected in the water taken from the drillings located in the northern part (F10, F11) and in the eastern part (F6, F8) of the Institute fences (around of the radioactive waste storage facilities). The concentrations of 0,3 - 0,5 Bq/l are in the underground-water layer 'intercepted' by the piezo-metrical drillings (F1, F2, F3) located near the Nuclear Reactor. Concentration of heavy metals: 0.04-0.08 mg/l Pb in F5, F14, F7, F8 exceeding MCA-Maximum Admissible Concentration (0.01 mg/l) for Pb, and for Zn in F5, F7, F8, F14 are 0.2-0.5 mg/l situated under MCA , and 0.18 mg/l in F18, in accordance with tendency of decreasing of concentration of contaminants. After 50 years of deploying nuclear activities on the site the underground water quality is in very good condition. Taking into consideration the direction of the underground water flow, it results that, only in the area of underground pipe, around of the research reactor and radioactive waste treatment plant, the quality of water is influenced, and remediation actions are not necessary. Based on measurements executed in F18, the water quality is the same with any other part of the region. During the decommissioning of the Research Reactor, the samples from 18 drillings will be analysed monthly, and the contents of the heavy metals, Pb and Zn, will be monitored carefully, together with all the factors: air, soil, vegetation, subsoil, water surface and underground water. A great attention will be paid t

  13. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05T23:59:59.000Z

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  14. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  15. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  16. Just in Time DSA-The Hanford Nuclear Safety Basis Strategy

    SciTech Connect (OSTI)

    Olinger, S. J.; Buhl, A. R.

    2002-02-26T23:59:59.000Z

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  17. Spent Nuclear Fuel Dry Transfer System Cold Demonstration Project Final Report

    SciTech Connect (OSTI)

    Christensen, Max R; McKinnon, M. A.

    1999-12-01T23:59:59.000Z

    The spent nuclear fuel dry transfer system (DTS) provides an interface between large and small casks and between storage-only and transportation casks. It permits decommissioning of reactor pools after shutdown and allows the use of large storage-only casks for temporary onsite storage of spent nuclear fuel irrespective of reactor or fuel handling limitations at a reactor site. A cold demonstration of the DTS prototype was initiated in August 1996 at the Idaho National Engineering and Environmental Laboratory (INEEL). The major components demonstrated included the fuel assembly handling subsystem, the shield plug/lid handling subsystem, the cask interface subsystem, the demonstration control subsystem, a support frame, and a closed circuit television and lighting system. The demonstration included a complete series of DTS operations from source cask receipt and opening through fuel transfer and closure of the receiving cask. The demonstration included both normal operations and recovery from off-normal events. It was designed to challenge the system to determine whether there were any activities that could be made to jeopardize the activities of another function or its safety. All known interlocks were challenged. The equipment ran smoothly and functioned as designed. A few "bugs" were corrected. Prior to completion of the demonstration testing, a number of DTS prototype systems were modified to apply lessons learned to date. Additional testing was performed to validate the modifications. In general, all the equipment worked exceptionally well. The demonstration also helped confirm cost estimates that had been made at several points in the development of the system.

  18. Engineered Infills for Concrete K.A. Snyder (Editor)

    E-Print Network [OSTI]

    Bentz, Dale P.

    .............................................................................. 12 2.2.1Nuclear Facility Decommissioning and Closures

  19. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  20. Dry Cask Storage Experience for a One-of-a-Kind Decommissioning Project

    SciTech Connect (OSTI)

    Lehnert, Robert [Energy Solutions, Spent Fuel Division, Inc: 2105 S. Bascom Ave., Suite 160, Campbell, California 95008 (United States); Trubilowicz, William [Operating Solutions of Michigan, Inc: 9039 Norton Road, Charlevoix, Michigan 49720 (United States)

    2008-01-15T23:59:59.000Z

    The Big Rock Point Restoration Project faced many unique challenges in preparation to remove all of the spent fuel from the fuel pool where it had been stored for almost thirty years to facilitate decommissioning and dismantling the entire plant. Being the first site to use a new cask system to place the fuel into dry cask storage canisters to be stored at the Independent Spent Fuel Storage Installation (ISFSI) on the Big Rock site was among the challenges. Providing the ability for cask handling operations after the spent fuel pool had been dismantled provided another challenge. The purpose of this paper is to discuss the challenges that the Big Rock team faced in completing this task on a schedule that met the goals of the Restoration Project. In conclusion, the unique features of the Big Rock plant and fuel, coupled with the goals and objectives of the Big Rock decommissioning and site restoration project posed considerable challenges that were successfully overcome by the Big Rock team. The Big Rock spent fuel was successfully moved to dry cask storage in a stand-alone ISFSI awaiting DOE to remove it from the site, and the plant structures, including the spent fuel pool, have been successfully demolished and removed from the site. The site with the exception of the ISFSI has been fully restored and was released by the NRC for unrestricted use on January 08, 2007.

  1. Interface agreement for the management of 308 Building Spent Nuclear Fuel. Revision 1

    SciTech Connect (OSTI)

    Danko, A.D.

    1995-12-22T23:59:59.000Z

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. Specifically, the mission of the SNF Project on the Hanford Site is to ``provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it for final disposition.`` The current mission of the Fuel Fabrication Facilities Transition Project (FFFTP) is to transition the 308 Building for turn over to the Environmental Restoration Contractor for decontamination and decommissioning.

  2. Sharing Supermodular Costs

    E-Print Network [OSTI]

    2010-06-23T23:59:59.000Z

    For a particular class of supermodular cost cooperative games that arises from a scheduling ... the costs collectively incurred by a group of cooperating agents.

  3. Operations Cost Allocation Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms...

  4. EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

  5. Characterization Methodology for Decommissioning Low and Intermediate Level Fissile Nuclide Contaminated Buried Soils and Process Piping Using Photon Counting 

    E-Print Network [OSTI]

    Pritchard, Megan L

    2014-05-03T23:59:59.000Z

    Photon GEANT4 GEometry ANd Tracking Monte Carlo Code GWD Giga-Watt Days HDP Hematite Decommissioning Project HEU Highly Enriched Uranium IAEA International Atomic Energy Agency ILW Intermediate Level Waste ISOCs In-Situ Object... Field Measured LaBr Overlay on MCNP Spectra for HEU ................................. 44 3 Code System and Software Summary .................................................................. 52 4 Dimensions of the Canberra Industries Model IPROL-1...

  6. Competitive economics of nuclear power

    SciTech Connect (OSTI)

    Hellman, R.

    1981-03-02T23:59:59.000Z

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

  7. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    SciTech Connect (OSTI)

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-03-01T23:59:59.000Z

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.

  8. FY 1997 cost savings report

    SciTech Connect (OSTI)

    Sellards, J.B.

    1998-06-01T23:59:59.000Z

    With the end of the cold war, funding for the Environmental Management program increased rapidly as nuclear weapons production facilities were shut down, cleanup responsibilities increased, and facilities were transferred to the cleanup program. As funding for the Environmental Management (EM) program began to level off in response to Administration and Congressional efforts to balance the Federal budget, the program redoubled its efforts to increase efficiency and get more productivity out of every dollar. Cost savings and enhanced performance are an integral pair of Hanford Site operations. FY1997 was the third year of a cost savings program that was initially defined in FY 1995. The definitions and process remained virtually the same as those used in FY 1996.

  9. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  10. Systems Engineering Cost Estimation

    E-Print Network [OSTI]

    Bryson, Joanna J.

    on project, human capital impact. 7 How to estimate Cost? Difficult to know what we are building early on1 Systems Engineering Lecture 3 Cost Estimation Dr. Joanna Bryson Dr. Leon Watts University of Bath: Contrast approaches for estimating software project cost, and identify the main sources of cost

  11. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  12. Hidden Costs of Energy Chris Field

    E-Print Network [OSTI]

    Kammen, Daniel M.

    #12;What are the real costs of energy? · Unpriced components · Production · Distribution · Consumption2 fertilization #12;Electricity #12;#12;Injuries #12;#12;#12;#12;Other electricity · Nuclear · Wind in Africa · Regression analysis: T & P vs conflict ­ 100 deaths in a year, at least one government ­Range

  13. A Cost Effective, Integrated and Smart Radioactive Safeguard System

    E-Print Network [OSTI]

    Singh, Harneet

    2012-02-14T23:59:59.000Z

    Photographic Experts Group LED Light Emitting Diode MC&A Material Cost & Acoounting MDI Multiple Document Interface MJPEG Motion JPEG MMS Microsoft Media Services MPEG Motion Pictures Expert Group NDA Non-Destructive Analysis NSSPI Nuclear Security...

  14. Nuclear power plant construction activity, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-24T23:59:59.000Z

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

  15. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J. (ed.)

    1985-01-01T23:59:59.000Z

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  16. OOTW COST TOOLS

    SciTech Connect (OSTI)

    HARTLEY, D.S.III; PACKARD, S.L.

    1998-09-01T23:59:59.000Z

    This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

  17. Final Technical Report; NUCLEAR ENGINEERING RECRUITMENT EFFORT

    SciTech Connect (OSTI)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-07-02T23:59:59.000Z

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: OBJECTIVE 1: INCREASE AWARENESS AND INTEREST OF NUCLEAR ENGINEERING; OBJECTIVE 2: INSTRUCT TEACHERS ON NUCLEAR TOPICS; OBJECTIVE 3: NUCLEAR EDUCATION PROGRAMS WEB-SITE; OBJECTIVE 4: SUPPORT TO UNIVERSITY/INDUSTRY MATCHING GRANTS AND REACTOR SHARING; OBJECTIVE 5: PILOT PROJECT; OBJECTIVE 6: NUCLEAR ENGINEERING ENROLLMENT SURVEY AT UNIVERSITIES

  18. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Elec Del Cali: Del Investment Cost Delivery Cost OperatingCost Feedstock Cost Investment Cost Delivery Cost Operatingcosts Annualized investment cost, 1000$/yr Total annualized

  19. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19T23:59:59.000Z

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D D. Additional details on specific technologies and applications to D D will be made available on request.

  20. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19T23:59:59.000Z

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D&D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D&D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D&D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D&D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D&D. Additional details on specific technologies and applications to D&D will be made available on request.

  1. Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor

    SciTech Connect (OSTI)

    Abramenkova, G.; Klavins, M. [Faculty of Geographical and Earth Sciences, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586 (Latvia); Abramenkovs, A. [Ministry of Environment, Hazardous Wastes Management State Agency, 31 Miera Street, Salaspils, LV-2169 (Latvia)

    2008-01-15T23:59:59.000Z

    The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification temperature up to 83 deg. C. Experimental data shows, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas. Significant reduction of viscosity is an important factor, which facilitates the fulfillment all gaps and cavities with the mortar during conditioning of solid radioactive wastes in containers. On the other hand, increase water ratio from 0.45 up to 0.65 decreases mechanical stability of water-cement samples from 23 N/mm{sup 2} to the 12 N/mm{sup 2}. It means that water-cement bulk stability significantly decreases with increasing of water content. Technologically is important to increase the tritiated water content in container with cemented radioactive wastes. It gives a possibility to increase the fulfillment of container with radioactive materials. On the other hand, additional water significantly reduces bulk stability of containers with cemented radioactive wastes, which can result in disintegration of radioactive wastes packages in repository during 300 years. Taking into account the experimental results, it is not recommended to exceed the water/cement ratio more than 0.60. Tritium and Cs{sup 137} leakage tests show, that radionuclides release curves has a complicate structure. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium release in water phase. This is unpleasant factor, which significantly decreases the safety of disposed radioactive wastes. Despite the positive impact on solidification temperature drop, the addition of fly ash to the cement-water mortar is not recommended in case of cementation of radionuclides in concrete containers. In conclusion: The cementation processes of solid radioactive wastes in concrete containers were investigated. The influence of additives on cementation processes was studied. It was shown, that the increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar

  2. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    SciTech Connect (OSTI)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01T23:59:59.000Z

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  3. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    SciTech Connect (OSTI)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01T23:59:59.000Z

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  4. Environmental Cost Analysis System (ECAS) Status and Compliance Requirements for EM Consolidated Business Center Contracts - 13204

    SciTech Connect (OSTI)

    Sanford, P.C. [Consultant, 11221 E. Cimmarron Dr., Englewood, CO 80111 (United States)] [Consultant, 11221 E. Cimmarron Dr., Englewood, CO 80111 (United States); Moe, M.A. [EMCBC Office of Cost Estimating and Analysis, United States Department of Energy, 250 E. 5th Street, Suite 500, Cincinnati, OH 45202 (United States)] [EMCBC Office of Cost Estimating and Analysis, United States Department of Energy, 250 E. 5th Street, Suite 500, Cincinnati, OH 45202 (United States); Hombach, W.G. [Team Analysis, Inc., 2 Cardinal Park Drive, Suite 105A, Leesburg, VA 20175 (United States)] [Team Analysis, Inc., 2 Cardinal Park Drive, Suite 105A, Leesburg, VA 20175 (United States); Urdangaray, R. [Project Performance Corporation, 1760 Old Meadow Road, McLean, VA 22102 (United States)] [Project Performance Corporation, 1760 Old Meadow Road, McLean, VA 22102 (United States)

    2013-07-01T23:59:59.000Z

    The Department of Energy (DOE) Office of Environmental Management (EM) has developed a web-accessible database to collect actual cost data from completed EM projects to support cost estimating and analysis. This Environmental Cost Analysis System (ECAS) database was initially deployed in early 2009 containing the cost and parametric data from 77 decommissioning, restoration, and waste management projects completed under the Rocky Flats Closure Project. In subsequent years we have added many more projects to ECAS and now have a total of 280 projects from 8 major DOE sites. This data is now accessible to DOE users through a web-based reporting tool that allows users to tailor report outputs to meet their specific needs. We are using it as a principal resource supporting the EM Consolidated Business Center (EMCBC) and the EM Applied Cost Engineering (ACE) team cost estimating and analysis efforts across the country. The database has received Government Accountability Office review as supporting its recommended improvements in DOE's cost estimating process, as well as review from the DOE Office of Acquisition and Project Management (APM). Moving forward, the EMCBC has developed a Special Contract Requirement clause or 'H-Clause' to be included in all current and future EMCBC procurements identifying the process that contractors will follow to provide DOE their historical project data in a format compatible with ECAS. Changes to DOE O 413.3B implementation are also in progress to capture historical costs as part of the Critical Decision project closeout process. (authors)

  5. Nuclear Regulatory Commission issuances. Volume 44, Number 3

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report includes issuances received during September 1996. After reviewing in detail each of the claims made in this informal proceeding the presiding officer sustained the staff of the USNRC in its determination that the applicant did not pass the written portion of his examination to become a licensed operator of a nuclear power plant. In the proceeding concerning citizen group challenges to the decommissioning plan for the Rowe Yankee power station, the licensing board grants licensee Yankee Atomic Electric Company`s motion for summary disposition.

  6. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

  7. Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 2: High level radioactive waste and spent fuel management

    SciTech Connect (OSTI)

    Ahlstroem, P.E.; Chapman, C.C.; Kohout, R.; Marek, J. [eds.

    1993-12-31T23:59:59.000Z

    This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Volume 2 contains 109 papers divided into the following sections: recent developments in environmental remediation technologies; decommissioning of nuclear power reactors; environmental restoration site characterization and monitoring; decontamination and decommissioning of other nuclear facilities; prediction of contaminant migration and related doses; treatment of wastes from decontamination and decommissioning operations; management of complex environmental cleanup projects; experiences in actual cleanup actions; decontamination and decommissioning demolition technologies; remediation of obsolete sites from uranium mining and milling; ecological impacts from radioactive environmental contamination; national environmental management regulations--issues and assessments; significant issues and strategies in environmental management; acceptance criteria for very low-level radioactive wastes; processes for public involvement in environmental activities and decisions; recent experiences in public participation activities; established and emerging environmental management organizations; and economic considerations in environmental management. Individual papers have been processed separately for inclusion in the appropriate data bases.

  8. ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS, AND THE FEDERAL GOVERNMENT - 11052

    SciTech Connect (OSTI)

    Bergren, C.; Flora, M.; Belencan, H.

    2010-11-17T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical Separation Facilities (canyons).

  9. ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS AND THE FEDERAL GOVERNMENT

    SciTech Connect (OSTI)

    Bergren, C

    2009-01-16T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical processing canyons.

  10. Electric Power Costs in Texas in 1985 and 1990

    E-Print Network [OSTI]

    Gordon, J. B.; White, D. M.

    1979-01-01T23:59:59.000Z

    since utilities in Texas will be using a mix of fuels. This paper analyzes the cost of generating electricity from nuclear power, out-of-state coal, in-state lignite, fuel oil, natural gas, geothermal, and solar power. These costs are then used...

  11. Development of a Bayesian Network to monitor the probability of nuclear proliferation

    E-Print Network [OSTI]

    Holcombe, Robert (Robert Joseph)

    2008-01-01T23:59:59.000Z

    Nuclear Proliferation is a complex problem that has plagued national security strategists since the advent of the first nuclear weapons. As the cost to produce nuclear weapons has continued to decline and the availability ...

  12. Decision-support tool for assessing future nuclear reactor generation portfolios.

    E-Print Network [OSTI]

    Oosterlee, Cornelis W. "Kees"

    Decision-support tool for assessing future nuclear reactor generation portfolios. Shashi Jain, where especially capital costs are known to be highly uncertain. Differ- ent nuclear reactor types uncertainties in the cost elements of a nuclear power plant, to provide an optimal portfolio of nuclear reactors

  13. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  14. About Cost Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the university, fee-for-service contracts, as well as establishing CAMD as a cost center. We know that our users are reluctant to see CAMD become a cost center, however...

  15. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01T23:59:59.000Z

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  16. Radioactivity pollution and protection of underground waters within the location of nuclear power plants in Jaslovske Bohunice

    SciTech Connect (OSTI)

    Plsko, J.; Kostolansky, M. [EKOSUR, Trnava (Slovakia); Polak, R. [HYDROPOL, Bratislava (Slovakia)

    1993-12-31T23:59:59.000Z

    As a result of research conducted at the Nuclear Power Plant (NPP) A-1 in connection with the decommissioning of the A-1 reactor, tritium contamination has been found in the ground water. A program has been undertaken for the monitoring and protection of underground waters, both onsite and offsite. The paper describes the present level of knowledge on the actual hydrogeological and radiological status of the area.

  17. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    SciTech Connect (OSTI)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01T23:59:59.000Z

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  18. Optimal Shielding for Minimum Materials Cost of Mass

    SciTech Connect (OSTI)

    Woolley, Robert D. [PPPL

    2014-08-01T23:59:59.000Z

    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  19. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  20. A tennis ball size quantity of nuclear fuel commonly

    E-Print Network [OSTI]

    Kemner, Ken

    technologies can reduce the cost and duration of storing and managing nuclear waste significantly, whileA tennis ball size quantity of nuclear fuel commonly used in commercial nuclear plants can power, to generate the same 250 MWe of power. #12;Reducing the threat of nuclear weapon proliferation Argonne