National Library of Energy BETA

Sample records for nuclear damage csc

  1. Japanese Ratify Convention on Supplementary Compensation for Nuclear Damage (CSC)

    Broader source: Energy.gov [DOE]

    "The Japanese ratification of the Convention on Supplementary Compensation for Nuclear Damage (CSC) marks an important milestone towards creating a global nuclear liability regime that will assure prompt and meaningful compensation in the event of a nuclear accident and will facilitate international cooperation on nuclear projects such as ongoing clean-up work at the Fukushima site."

  2. A Statement from U.S. Secretary of Energy Ernest Moniz on India Joining the Convention on Supplementary Compensation for Nuclear Damage (CSC)

    Broader source: Energy.gov [DOE]

    “India’s membership in the Convention on Supplementary Compensation for Nuclear Damage (CSC) is a crucial step toward facilitating the growth of safe, civilian nuclear energy in the world’s second...

  3. CSC Draft Information Collection Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Information Collection Form CSC Draft Information Collection Form CSC Draft Information Collection Form (119.4 KB) More Documents & Publications Convention on Supplementary Compensation Rulemaking Briefing, DOE's Official Use Only Program - June 2014 Public comment re Convention on Supplementary Compensation on Nuclear Damage Contingent Cost Allocation

  4. SuppCompensationNuclearDamage_ExtensionComments.PDF | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuppCompensationNuclearDamage_ExtensionComments.PDF SuppCompensationNuclearDamage_ExtensionComments.PDF (131.46 KB) More Documents & Publications CSC_Extension.PDF Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation Notice of extension of public comment period for reply comments.

  5. Template:CSC-Nav | Open Energy Information

    Open Energy Info (EERE)

    Template Edit History Template:CSC-Nav Jump to: navigation, search Geothermal Case Study Challenge Geothermal CSC About Judging Schedule Areas How To Sign Up Connect Retrieved from...

  6. Property:CSC-Status | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Property Name CSC-Status Property Type String Description Geothermal Case Study Challenge (CSC) sign-up status Allows Values Available;Completed;Selected Pages...

  7. Property:CSC-Priority | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Property Name CSC-Priority Property Type String Description Geothermal Case Study Challenge (CSC) area completion priority Allows Values Priority Area;Completed...

  8. CSC/NREL Interns | Open Energy Information

    Open Energy Info (EERE)

    CSCNREL Interns < CSC Jump to: navigation, search Geothermal Case Study Challenge Geothermal CSC About Judging Schedule Areas How To Sign Up Connect NREL Interns Team Info School:...

  9. CSC Public Meeting Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Meeting Agenda CSC Public Meeting Agenda PDF icon CSC Public Meeting Agenda More Documents & Publications 2012 Peer Review Overview Agenda FINALAPRILSEABAGENDA.pdf Spectrum ...

  10. NC CSC Open Science Conference

    Broader source: Energy.gov [DOE]

    This three-day conference will bring the regional climate research community (North Central region universities, DOI agencies, and other research institutions) and stakeholders, including local, federal, and tribal resource managers and leaders, to foster productive engagement, interactions, and involvement with the North Central Climate Science Center (NC CSC). The conference will strive to identify emerging research issues and topics.

  11. Property:CSC-Participant | Open Energy Information

    Open Energy Info (EERE)

    Hartig + W Waunita Hot Springs Geothermal Area + Kamran Jahan Bakhsh,Travis Cole Brown + Retrieved from "http:en.openei.orgwindex.php?titleProperty:CSC-Participant&oldi...

  12. 2014 CSC | OpenEI Community

    Open Energy Info (EERE)

    CSC Home 2014 Geothermal Case Study Challenge Description: Narrative and Data Templates for 2014 Student Geothermal Case Study Challenge. Narrative and Data Templates for 2014...

  13. Property:CSC-University | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "CSC-University" Showing 5 pages using this property. L Lightning Dock Geothermal Area + University of North Dakota + M Magic Reservoir...

  14. Widget:TwitterFeed-CSC | Open Energy Information

    Open Energy Info (EERE)

    TwitterFeed-CSC Jump to: navigation, search Twitter feed related to Geothermal Case Study Challenge Widget:TwitterFeed-CSC Retrieved from "http:en.openei.orgw...

  15. CSC/UND Team 1 | Open Energy Information

    Open Energy Info (EERE)

    CSCUND Team 1 < CSC Jump to: navigation, search Geothermal Case Study Challenge Geothermal CSC About Judging Schedule Areas How To Sign Up Connect Team 1 Team Info School:...

  16. CSC NOPR Notice of Extension | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOPR Notice of Extension CSC NOPR Notice of Extension CSC FR CommPerExtension (194.43 KB) More Documents & Publications CIGNL CSC NOPR Extension Request 2-23-15 NOPR NEI CIGNL Questions - DOE CSC Workshop 2-10-15

  17. Convention on Supplementary Compensation for Nuclear Damage Contingent...

    Office of Environmental Management (EM)

    Section 934 Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation, Section 934 LES comments in response to Notice of Inquiry on Convention on...

  18. Convention on Supplementary Compensation for Nuclear Damage Contingent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Energy Independence and Security Act of 2007. PDF icon FR CSC NOPR More Documents & Publications Convention on Supplementary Compensation Rulemaking NOPR Fluor NOPR Exelon...

  19. CSC/UND Team 3 | Open Energy Information

    Open Energy Info (EERE)

    CSCUND Team 3 < CSC Jump to: navigation, search Geothermal Case Study Challenge Geothermal CSC About Judging Schedule Areas How To Sign Up Connect UND Team 3 Team Info School:...

  20. CSC/WWU 2014b | Open Energy Information

    Open Energy Info (EERE)

    CSCWWU 2014b < CSC Jump to: navigation, search Geothermal Case Study Challenge Geothermal CSC About Judging Schedule Areas How To Sign Up Connect WWU 2014b Team Info School:...

  1. CSC/UND Team 2 | Open Energy Information

    Open Energy Info (EERE)

    CSCUND Team 2 < CSC Jump to: navigation, search Geothermal Case Study Challenge Geothermal CSC About Judging Schedule Areas How To Sign Up Connect UND Team 2 Team Info School:...

  2. CSC/WWU 2014 a | Open Energy Information

    Open Energy Info (EERE)

    CSCWWU 2014 a < CSC Jump to: navigation, search Geothermal Case Study Challenge Geothermal CSC About Judging Schedule Areas How To Sign Up Connect WWU 2014 a Team Info School:...

  3. CSC Notice of Public Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Public Meeting CSC Notice of Public Meeting CSC NOPR_PubMtg (199.84 KB) More Documents & Publications CSC NOPR Notice of Extension Notice of Public Workshop on Information Collection Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  4. CSC Transcript of Information Session | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript of Information Session CSC Transcript of Information Session CSC Transcript of Information Session (2.04 MB) More Documents & Publications CSC Notice of Public Meeting Convention on Supplementary Compensation Rulemaking Enforcement Notice of Intent to Investigate, Computer Sciences Corporation

  5. Microsoft Word - CSC Scorecard.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fee Determination Posting Requirements Office of Environmental Management Attachment 2 Award Fee Determination Scorecard Contractor: Computer Sciences Corporation (CSC) Contract: Occupational Health Services Contract Number: DE-AC06-04RL14383 Award Period: 10/01/2011 to 09/30/2012 Basis of Evaluation: Performance and Evaluation Plan (PEMP) for Period FY 2012 Award Fee Available: $916,130.00 Award Fee Earned: $824,517.00 (90%) Award Fee Area Adjectival Ratings: Performance Incentive Allocated

  6. CSC Workshop Transcript 02-20-2105 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Transcript 02-20-2105 CSC Workshop Transcript 02-20-2105 CSC Workshop Transcript 02-20-2105 (687.86 KB) More Documents & Publications EA-1971: FERC Notice of Intent to Prepare an Environmental Assessment EIS-0501: Notice of Intent Testimony

  7. CIGNL Statement DOE CSC Workshop 2-15 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement DOE CSC Workshop 2-15 CIGNL Statement DOE CSC Workshop 2-15 CIGNL Statement DOE CSC Workshop 2-15 (86.84 KB) More Documents & Publications CIGNL CSC NOPR Extension Request 2-23-15 CIGNL Questions - DOE CSC Workshop 2-10

  8. Convention on Supplementary Compensation for Nuclear Damage Contingent Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Allocation | Department of Energy The U.S. Department of Energy (DOE or the Department) has issued proposed regulations under section 934 of the Energy Independence and Security Act of 2007. FR CSC NOPR (324.93 KB) More Documents & Publications Convention on Supplementary Compensation Rulemaking NOPR Fluor NOPR Exelon

  9. Supplement Analysis Regarding Remote-Handled Transuranic Waste Identified in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final EIS (January 2006)

    Office of Environmental Management (EM)

    SuppCompensationNuclearDamage_ExtensionComments.PDF SuppCompensationNuclearDamage_ExtensionComments.PDF (131.46 KB) More Documents & Publications CSC_Extension.PDF Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation Notice of extension of public comment period for reply comments.

    SUPPLEMENT NOVEMBER 2015 DOE/EIS-0463-S1 U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY WASHINGTON, DC DRAFT NORTHERN PASS TRANSMISSION LINE

  10. 2012 Hanford Climate Survey Report - CSC/HOHS Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSC/HOHS Report Prepared by EurekaFacts LLC 1 Table of Contents Introduction.................................................................................................................................................... 2 Safety Culture and Climate Focus Areas and Factors .................................................................................. 3 Interpreting the Survey Results Presented in this Report ............................................................................. 4

  11. CIGNL CSC NOPR Extension Request 2-23-15 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSC NOPR Extension Request 2-23-15 CIGNL CSC NOPR Extension Request 2-23-15 CIGNLCSCNOPRExtensionRequest 2-23-15 (93.1 KB) More Documents & Publications CIGNL Statement DOE CSC Workshop 2-15 NOPR CIGNL CIGNL Questions - DOE CSC Workshop 2-10-15

  12. CIGNL Questions - DOE CSC Workshop 2-10-15 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Questions - DOE CSC Workshop 2-10-15 CIGNL Questions - DOE CSC Workshop 2-10-15 CIGNLQuestions-DOECSCWorkshop 2-10-15 (121.72 KB) More Documents & Publications CIGNL Statement DOE CSC Workshop 2-15 CIGNL CSC NOPR Extension Request 2-23

  13. Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation, Section 934

    Broader source: Energy.gov [DOE]

    LES comments in response to Notice of Inquiry on Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation, Section 934

  14. Public Comment re NOI on Convention on Supplementary Compensation for Nuclear Damage

    Broader source: Energy.gov [DOE]

    ENERGYSOLUTIONS' Comment in Response to Notice of Inquiry, Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation -75 FR 43945

  15. Public Comment re Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation

    Broader source: Energy.gov [DOE]

    Comments by International Group on Nuclear Liability (CIGNL), in response to U.S. Department of Energy Notice of Inquiry on Convention on Supplementary Compensation for Nuclear Damage Contingent...

  16. United States and France Sign Joint Statement on Civil Liability for Nuclear Damage

    Broader source: Energy.gov [DOE]

    The United States and France today issued the Joint Statement on Civil Liability for Nuclear Damage that sets forth the common views of the United States and France on civil nuclear liability

  17. Public comment re Convention on Supplementary Compensation on Nuclear Damage Contingent Cost Allocation

    Broader source: Energy.gov [DOE]

    Comments by the Nuclear Energy Institute (NEI) on Convention on Supplementary Compensation on Nuclear Damage Contingent Cost Allocation; Section 934 of the Energy Independence and Security Act of 2007

  18. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation Details In-Document Search Title: A New ATLAS Muon CSC Readout System with System on...

  19. Pulverized coal injection operation on CSC No. 3 blast furnace

    SciTech Connect (OSTI)

    Chan, C.M.; Hsu, C.H.

    1996-12-31

    The pulverized coal injection system was introduced for the first time in No. 1 and No. 2 blast furnace at China Steel Corporation (CSC) in 1988. Currently the coal injection rate for both blast furnaces has steadily risen to 70--89 kg/thm (designed value). No 3 blast furnace (with an inner volume of 3400 m3) was also equipped with a PCI system of Armco type and started coal injection on November 17, 1993. During the early period, some problems such as injection lance blocking, lance-tip melting down, flexible hose wear, grind mill tripping occasionally interrupted the stable operation of blast furnace. After a series of efforts offered on equipment improvement and operation adjustment, the PC rate currently reaches to 90--110 kg/thm and furnace stable operation is still being maintained with productivity more than 2.20.

  20. Early Damage Mechanisms in Nuclear Grade Graphite under Irradiation

    SciTech Connect (OSTI)

    Eapen, Dr. Jacob [North Carolina State University] [North Carolina State University; Krishna, Dr Ram [North Carolina State University] [North Carolina State University; Burchell, Timothy D [ORNL] [ORNL; Murty, Prof K.L. [North Carolina State University] [North Carolina State University

    2014-01-01

    Using Raman and X-ray photoelectron spectroscopy,we delineate the bond and defect structures in nuclear block graphite (NBG-18) under neutron and ion irradiation. The strengthening of the defect (D) peak in the Raman spectra under irradiation is attributed to an increase in the topological, sp2-hybridized defects. Using transmission electron microscopy, we provide evidence for prismatic dislocations as well as a number of basal dislocations dissociating into Shockley partials. The non-vanishing D peak in the Raman spectra, together with a generous number of dislocations, even at low irradiation doses, indicates a dislocation-mediated amorphization process in graphite.

  1. B&W Request for extension of DOE CSC Rule Comment Period 02 24...

    Broader source: Energy.gov (indexed) [DOE]

    B&W Request for extension of DOE CSC Rule Comment Period 02242015 (378.88 KB) More Documents & Publications Voluntary Protection Program Onsite Review, Y-12 National Security ...

  2. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    Conference: A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation ... Sponsoring Org: US DOE Office of Science (DOE SC);High Energy ...

  3. CSC large panel R&D summary for the SSC GEM muon subsystem

    SciTech Connect (OSTI)

    Pratuch, S.M.; Clements, J.W.; Spellman, G.P.

    1994-05-01

    The GEM Detector uses 1,128 Cathode Strip Chamber (CSC) muon detectors requiring a total of approximately 10,000 precision panels in the CSC assemblies. These panels must be fabricated to extreme tolerances in order to meet the physics requirement. A fabrication technique used to produce two large panels, nominally 1 by 3 meters, is described and the resulting panel precision is reported.

  4. Damaged Spent Nuclear Fuel at U.S. DOE Facilities Experience and Lessons Learned

    SciTech Connect (OSTI)

    Brett W. Carlsen; Eric Woolstenhulme; Roger McCormack

    2005-11-01

    From a handling perspective, any spent nuclear fuel (SNF) that has lost its original technical and functional design capabilities with regard to handling and confinement can be considered as damaged. Some SNF was damaged as a result of experimental activities and destructive examinations; incidents during packaging, handling, and transportation; or degradation that has occurred during storage. Some SNF was mechanically destroyed to protect proprietary SNF designs. Examples of damage to the SNF include failed cladding, failed fuel meat, sectioned test specimens, partially reprocessed SNFs, over-heated elements, dismantled assemblies, and assemblies with lifting fixtures removed. In spite of the challenges involved with handling and storage of damaged SNF, the SNF has been safely handled and stored for many years at DOE storage facilities. This report summarizes a variety of challenges encountered at DOE facilities during interim storage and handling operations along with strategies and solutions that are planned or were implemented to ameliorate those challenges. A discussion of proposed paths forward for moving damaged and nondamaged SNF from interim storage to final disposition in the geologic repository is also presented.

  5. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; Jin, Ke; Crespillo, Miguel L.; Wang, Xuelin; Weber, William J.

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, themore » velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.« less

  6. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    SciTech Connect (OSTI)

    Wang, Zujun Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-07-15

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 ?m CMOS technology. The flux of neutron beams was about 1.33 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 10{sup 11}, 5 10{sup 11}, and 1 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  7. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    SciTech Connect (OSTI)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  8. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOE Patents [OSTI]

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  9. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOE Patents [OSTI]

    Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  10. Microsoft Word - SF-#387446-v1-CvD_-_Comments_on_DOE_CSC_Cost_Allocation.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2015 Ms. Sophia Angelini Attorney-Advisor Office of the General Counsel for Civilian Nuclear Programs, GC-72 U.S. Department of Energy 1000 Independence Avenue, SW Room 6A-167 Washington, DC 20585 Section934Rulemaking@Hq.Doe.gov VIA ELECTRONIC MAIL Subject: ConverDyn Comments on "Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation; Notice of Proposed Rulemaking." - 79 Fed. Reg. 75076 (Dec. 17, 2014) Dear Ms. Angelini: ConverDyn appreciates the

  11. A Statement from U.S. Secretary of Energy Ernest Moniz on India...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japanese Ratify Convention on Supplementary Compensation for Nuclear Damage (CSC) United States and France Sign Joint Statement on Civil Liability for Nuclear Damage The United ...

  12. Determination of possible damage/degradation of the Sandia National Laboratories Personal Nuclear Accident Dosimeter (PNAD).

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Ward, Dann C.

    2008-05-01

    This report describes the results of an inspection performed on the existing stock of SNL Personal Nuclear Accident Dosimeters (PNADs). The current stock is approximately 20 years old, and has not been examined since their initial acceptance. A small random sample of PNADs were opened (a destructive process) and the contents visually examined. Sample contents were not degraded and indicate that the existing stock of SNL PNADs is acceptable for continued use.

  13. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; et al

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less

  14. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Claus, R.; /SLAC

    2015-10-27

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less

  15. A new ATLAS muon CSC readout system with system on chip technology...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY electronic detector readout concepts (gas, liquid); modular electronics; data acquisition concepts Word Cloud ...

  16. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  17. Radiation Damage/Materials Modification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation damage materials modification Radiation Damage/Materials Modification High-energy ion irradiation is an important tool for studying radiation damage effects Materials in a nuclear reactor are exposed to extreme temperature and radiation conditions that degrade their physical properties to the point of failure. For example, alpha-decay in nuclear fuels results in dislocation damage to and accumulation of helium and fission gasses in the material. Similarly, neutrons interacting with

  18. Earthquake damage to underground facilities (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    The potential seismic risk for an underground nuclear waste repository will be one of the ... Damage from documented nuclear events was also included in the study where applicable. ...

  19. DOE Notice of Inquiry on the Convention on Supplementary Compensation for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Damage (CSC) Contingent Cost Allocation - March 2, 2011 Meeting with CIGNL | Department of Energy Inquiry on the Convention on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation - March 2, 2011 Meeting with CIGNL DOE Notice of Inquiry on the Convention on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation - March 2, 2011 Meeting with CIGNL On March 2, 2011, representatives of CIGNL met at the Forrestal Building with DOE

  20. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2012-09-10

    Measurements of several radionuclides within environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Company website following the recent tsunami-initiated catastrophe were evaluated for the purpose of identifying the source term, reconstructing the release mechanisms, and estimating the extent of the release. 136Cs/137Cs and 134Cs/137Cs ratios identified Units 1-3 as the major source of radioactive contamination to the surface soil close to the facility. A trend was observed between the fraction of the total core inventory released for a number of fission product isotopes and their corresponding Gibbs Free Energy of formation for the primary oxide form of the isotope, suggesting that release was dictated primarily by chemical volatility driven by temperature and reduction potential within the primary containment vessels of the vented reactors. The absence of any major fractionation beyond volatilization suggested all coolant had evaporated by the time of venting. High estimates for the fraction of the total inventory released of more volatile species (Te, Cs, I) indicated the damage to fuel bundles was likely extensive, minimizing any potential containment due to physical migration of these species through the fuel matrix and across the cladding wall. 238Pu/239,240Pu ratios close-in and at 30 km from the facility indicated that the damaged reactors were the major contributor of Pu to surface soil at the source but that this contribution likely decreased rapidly with distance from the facility. The fraction of the total Pu inventory released to the environment from venting units 1 and 3 was estimated to be ~0.003% based upon Pu/Cs isotope ratios relative to the within-reactor modeled inventory prior to venting and was consistent with an independent model evaluation that considered chemical volatility based upon measured fission product release trends. Significant volatile radionuclides within the spent fuel

  1. Public Comments on DOE's NOI re Section 934 of the Energy Independence...

    Energy Savers [EERE]

    on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation. 75 Fed. Reg. 43945 (July 27, 2010). PDF icon Public Comments on DOE's NOI re Section 934 of...

  2. The United States Ratifies The Convention On Supplementary Compensatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CSC) Secretary Moniz's Remarks at the 2014 IAEA General Conference -- As Prepared for Delivery United States and France Sign Joint Statement on Civil Liability for Nuclear Damage

  3. Understanding the solidification and microstructure evolution during CSC-MIG welding of FeCrB-based alloy

    SciTech Connect (OSTI)

    Sorour, A.A. Chromik, R.R. Gauvin, R. Jung, I.-H. Brochu, M.

    2013-12-15

    The present is a study of the solidification and microstructure of Fe28.2%Cr3.8%B1.5%Si1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the ScheilGulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of the (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: We deposit FeCrB-based alloy onto plain carbon steel using the CSC-MIG process. We model the solidification behavior using thermodynamic calculation. As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. We study the effect of the welding heat input on the microstructure.

  4. CSC | Open Energy Information

    Open Energy Info (EERE)

    Read more ... Challenge Submission Sponsors & Partners Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Powered by OpenEI 169x42.png GRC Manager...

  5. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  6. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2011-12-05

    Evidence of the release Pu from the Fukushima Daiichi nuclear power station to the local environment and surrounding communities and estimates on fraction of total fuel inventory released

  7. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used.

  8. CSC Original Contract - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplies or Services and Prices (PDF) Section C - Statement of Work (PDF) Section D - Packaging and Marketing (PDF) Section E - Inspection and Acceptance (PDF) Section F -...

  9. CSC Contract Modifications - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 121 - Add Section J.9, Fiscal Year 2011 Performance Evaluation and Measurement Plan (PEMP) 120 - Contract Clause B.2 is changed by increasing the contract obligation by ...

  10. CSC Conformed Contract - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services and Prices (PDF) Section C - Statement of Work (PDF) Section D - Packaging and Marketing (PDF) Section E - Inspection and Acceptance (PDF) Section F - Deliveries or...

  11. Memorandum Chung - March 30, 2011

    Office of Environmental Management (EM)

    Memo to DOE re conference call minutes Memo to DOE re conference call minutes DOE Notice of Inquiry on the Convention on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation --March 16, 2011 conference call with ConverDyn. Conference call minutes Memo to DOE re conference call minutes (15.08 KB) More Documents & Publications NOPR ConverDyn DOE Notice of Inquiry on the Convention on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation -

  12. Memo to DOE re conference call minutes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo to DOE re conference call minutes Memo to DOE re conference call minutes DOE Notice of Inquiry on the Convention on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation --March 16, 2011 conference call with ConverDyn. Conference call minutes Memo to DOE re conference call minutes (15.08 KB) More Documents & Publications NOPR ConverDyn DOE Notice of Inquiry on the Convention on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation -

  13. Memorandum for the Secretary 2013

    Energy Savers [EERE]

    Memo to DOE re conference call minutes Memo to DOE re conference call minutes DOE Notice of Inquiry on the Convention on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation --March 16, 2011 conference call with ConverDyn. Conference call minutes Memo to DOE re conference call minutes (15.08 KB) More Documents & Publications NOPR ConverDyn DOE Notice of Inquiry on the Convention on Supplementary Compensation for Nuclear Damage (CSC) Contingent Cost Allocation -

  14. Letter from the Nuclear Energy Institute to DOE GC

    Broader source: Energy.gov [DOE]

    Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation; Request for Extension of Public Comment Period

  15. Los Alamos offers new insights into radiation damage evolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two reports are helping crack the code of how certain materials respond in the highly-damaging radiation environments within a nuclear reactor. March 16, 2015 Researchers at Los ...

  16. Experiments ✚ Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    various cladding materials and fuels used in reactors respond to radiation damage. ... and extending their study to look at accident-tolerant nuclear fuel cladding. "This marriage ...

  17. Radiation damage in cubic-stabilized zirconia

    SciTech Connect (OSTI)

    Costantini, Jean-Marc; Beuneu, Francois; Weber, William J

    2013-01-01

    Cubic yttria-stabilized zirconia (YSZ) can be used for nuclear applications as an inert matrix for actinide immobilization or transmutation. Indeed, the large amount of native oxygen vacancies leads to a high radiation tolerance of this material owing to defect recombination occurring in the atomic displacements cascades induced by fast neutron irradiation or ion implantations, as showed by Molecular dynamics (MD) simulations. Amorphization cannot be obtained in YSZ either by nuclear-collision or electronic-excitation damage, just like in urania. A kind of polygonization structure with slightly disoriented crystalline domains is obtained in both cases. In the first steps of damage, specific isolated point defects (like F+-type color centers) and point-defect clusters are produced by nuclear collisions with charged particles or neutrons. Further increase of damage leads to dislocation-loop formation, then to collapse of the dislocation network into a polygonization structure. For swift heavy ion irradiations, a similar polygonization structure is obtained above a threshold stopping power value of about 20-30 keV nm-1.

  18. Widget:CSC-CSS | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Widget Edit History...

  19. CSC/CSM 2014 | Open Energy Information

    Open Energy Info (EERE)

    Colorado School of Mines YearTerm: 2014Spring Professor: Team Lead: Travis Cole Brown Team Members: Kamran Bakhsh Geothermal Area: Waunita Hot Springs Geothermal Area...

  20. User:Nlangle/CSC | Open Energy Information

    Open Energy Info (EERE)

    University of North Dakota Rye Patch Geothermal Area Kamran Jahan Bakhsh,Travis Cole Brown Colorado School of Mines Waunita Hot Springs Geothermal Area completed areas Blue...

  1. arg | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    arg Emergency Response Planning for Emergencies Exercise Program Field Assistance and Oversight Liaison Homeland Security and Emergency Management Coordination HQ Emergency Management Team Responding to Emergencies Consequence Management First Responders Operations Render Safe Nuclear Forensics International... Accident Response Group NNSA's Accident Response Group (ARG) provides technical guidance and responds to U.S. nuclear weapons accidents. The team assists in assessing weapons damage and

  2. PV Module Intraconnect Thermomechanical Durability Damage Prediction Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Module Intraconnect Thermomechanical Durability Damage Prediction Model PV Module Intraconnect Thermomechanical Durability Damage Prediction Model Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_dow_gaston.pdf (1.26 MB) More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments 2014 Propulsion Materials R&D Annual

  3. safety | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    safety New Pantex Plant sensors provide ample warning to protect NNSA operations from lightning NNSA is charged with making sure the nation's nuclear deterrent is safe, secure, and effective. That mission includes protecting the Nuclear Security Enterprise from forces of nature. One natural threat, lightning, can damage electronics and even degrade concrete buildings and... NNSA Achieves Major Milestone in BUILDER Implementation WASHINGTON, D.C. - The Department of Energy's National Nuclear

  4. Convention on Supplementary Compensation Rulemaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Convention on Supplementary Compensation Rulemaking Convention on Supplementary Compensation Rulemaking The Convention on Supplementary Compensation for Nuclear Damage (CSC) provides for a global nuclear liability regime assuring prompt and equitable compensation in the event of certain nuclear incidents, and features the creation of an international fund to supplement the amount of compensation available for nuclear damage resulting from such incidents. Section 934 of the Energy Independence

  5. Cryogenic and Fire Damage Analysis on Liquefied Natural Gas Ships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Fire Damage Analysis on Liquefied Natural Gas Ships - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  6. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  7. 2010_Nuclear_Security_Joint_Statement.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    _Nuclear_Security_Joint_Statement.pdf 2010_Nuclear_Security_Joint_Statement.pdf (411.14 KB) More Documents & Publications United States and France Sign Joint Statement on Civil Liability for Nuclear Damage US-Japan_NuclearEnergyActionPlan.pdf Before the Senate Armed Services Committee

  8. High-energy radiation damage in zirconia: Modeling results

    SciTech Connect (OSTI)

    Zarkadoula, E.; Devanathan, R.; Weber, W. J.; Seaton, M. A.; Todorov, I. T.; Nordlund, K.; Dove, M. T.; Trachenko, K.

    2014-02-28

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.10.5?MeV energies with account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution, and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  9. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Devanathan, Ram; Weber, William J.; Seaton, Michael; Todorov, Ilian; Nordlund, Kai; Dove, Martin T.; Trachenko, Kostya

    2014-02-28

    Zirconia has been viewed as a material of exceptional resistance to amorphization by radiation damage, and was consequently proposed as a candidate to immobilize nuclear waste and serve as a nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with the account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely disjoint from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  10. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Evangelia; Devanathan, Ram; Weber, William J; Seaton, M; Todorov, I T; Nordlund, Kai; Dove, Martin T; Trachenko, Kostya

    2014-01-01

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with account of electronic energy losses. We nd that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  11. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. nuclear outages this summer were higher than in summer 2015

  12. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the

  13. Nuclear Energy Institute (NEI) Ex Parte

    Broader source: Energy.gov [DOE]

    Mr. Harris and Ms. Ginsberg discussed DOE’s Notice of Proposed Rulemaking (NOPR) regarding the Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation,10 CFR Part 951...

  14. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  15. Experiments ✚ Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations = Better Nuclear Power Research Experiments ✚ Simulations = Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation Damage July 31, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Radiation Damage PNNL In a study featured on the cover of a Journal of Materials Research focus issue, an international research collaboration used molecular dynamics simulations run at NERSC to identify atomic-level details of early-stage

  16. Underground infrastructure damage for a Chicago scenario

    SciTech Connect (OSTI)

    Dey, Thomas N; Bos, Rabdall J

    2011-01-25

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  17. Shock Initiation of Damaged Explosives

    SciTech Connect (OSTI)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  18. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  19. Nuclear Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  20. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  1. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  2. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  3. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear science nuclear chemistry Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line

  4. Convention on Supplementary Compensation Rulemaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rulemaking Convention on Supplementary Compensation Rulemaking DOE made a presentation at the information session held on January 7, 2015. CSC Rulemaking Information Session Presentation (133.19 KB) More Documents & Publications NOPR NEI NOPR Fluor Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation

  5. Convention on Supplementary Compensation for Nuclear Damage Contingent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of extension of public comment period for reply comments. On July 27, 2010, the ... The NOI stated that comments were to be submitted by September 27, 2010. This notice ...

  6. Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation

    Broader source: Energy.gov [DOE]

    Notice of extension of public comment period for reply comments. On July 27, 2010, the Department of Energy (DOE) published in the Federal Register, a notice of inquiry (NOI) and request for...

  7. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  8. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Nuclear Energy Nuclear Energy Tara Camacho-Lopez 2016-06-29T14:02:38+00:00 Contributing to the Next Generation of Nuclear Power Generation Our nuclear energy and fuel cycle technologies supports the safe, secure, reliable, and sustainable use of nuclear power worldwide through strengths in repository science, nonproliferation, safety and security, transportation, modeling, and system demonstrations. Areas of Expertise Defense Waste Management Sandia advises the U.S. Department

  9. Boulder damage symposium annual thin film laser damage competition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stolz, Christopher J.

    2012-11-28

    Optical instruments and laser systems are often fluence-limited by multilayer thin films deposited on the optical surfaces. When comparing publications within the laser damage literature, there can be confusing and conflicting laser damage results. This is due to differences in testing protocols between research groups studying very different applications. In this series of competitions, samples from multiple vendors are compared under identical testing parameters and a single testing service. Unlike a typical study where a hypothesis is tested within a well-controlled experiment with isolated variables, this competition isolates the laser damage testing variables so that trends can be observed betweenmore » different deposition processes, coating materials, cleaning techniques, and multiple coating suppliers. The resulting series of damage competitions has also been designed to observe general trends of damage morphologies and mechanisms over a wide range of coating types (high reflector and antireflector), wavelengths (193 to 1064 nm), and pulse lengths (180 fs to 13 ns). A double blind test assured sample and submitter anonymity were used in each of the competitions so only a summary of the deposition process, coating materials, layer count and spectral results are presented. Laser resistance was strongly affected by substrate cleaning, coating deposition method, and coating material selection whereas layer count and spectral properties had minimal impact.« less

  10. Boulder damage symposium annual thin film laser damage competition

    SciTech Connect (OSTI)

    Stolz, Christopher J.

    2012-11-28

    Optical instruments and laser systems are often fluence-limited by multilayer thin films deposited on the optical surfaces. When comparing publications within the laser damage literature, there can be confusing and conflicting laser damage results. This is due to differences in testing protocols between research groups studying very different applications. In this series of competitions, samples from multiple vendors are compared under identical testing parameters and a single testing service. Unlike a typical study where a hypothesis is tested within a well-controlled experiment with isolated variables, this competition isolates the laser damage testing variables so that trends can be observed between different deposition processes, coating materials, cleaning techniques, and multiple coating suppliers. The resulting series of damage competitions has also been designed to observe general trends of damage morphologies and mechanisms over a wide range of coating types (high reflector and antireflector), wavelengths (193 to 1064 nm), and pulse lengths (180 fs to 13 ns). A double blind test assured sample and submitter anonymity were used in each of the competitions so only a summary of the deposition process, coating materials, layer count and spectral results are presented. Laser resistance was strongly affected by substrate cleaning, coating deposition method, and coating material selection whereas layer count and spectral properties had minimal impact.

  11. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect (OSTI)

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete [1]. Much of the historical mechanical performance data of irradiated concrete [2] does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure [3]. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  12. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect (OSTI)

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  13. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  14. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  15. LANL Natural Resource Damage Assessment

    Broader source: Energy.gov [DOE]

    This Performance Work Statement (PWS) sets forth the tasks to be performed to complete a Natural Resource Damage Assessment (NRDA) and Restoration Plan based on injuries to natural resources from the release of hazardous substances from the Los Alamos National Laboratory (LANL).

  16. Method for producing damage resistant optics

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Burnham, Alan K.; Penetrante, Bernardino M.; Brusasco, Raymond M.; Wegner, Paul J.; Hrubesh, Lawrence W.; Kozlowski, Mark R.; Feit, Michael D.

    2003-01-01

    The present invention provides a system that mitigates the growth of surface damage in an optic. Damage to the optic is minimally initiated. In an embodiment of the invention, damage sites in the optic are initiated, located, and then treated to stop the growth of the damage sites. The step of initiating damage sites in the optic includes a scan of the optic using a laser to initiate defects. The exact positions of the initiated sites are identified. A mitigation process is performed that locally or globally removes the cause of subsequent growth of the damaged sites.

  17. On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate

    SciTech Connect (OSTI)

    Bianconi, M.; Argiolas, N.; Bazzan, M.; Bentini, G.G.; Chiarini, M.; Cerutti, A.; Mazzoldi, P.; Pennestri, G.; Sada, C.

    2005-08-15

    The damage induced by 5 MeV oxygen ion implantation in x-cut congruent LiNbO{sub 3} has been investigated by Rutherford backscattering spectrometry channeling technique. The dynamics of the damage growth has been described by an analytical formula considering the separate contributions of nuclear and electronic energy deposition. It has been hypothesized that the nuclear damage provides the localization of the energy released to the electronic subsystem necessary for the conversion into atomic displacements. The strong influence of the preexisting defects on the damage pileup, foreseen by the analytical formula, has been experimentally verified by pre-implanting the samples with 500 keV oxygen ions. It has been shown that a subsequent 5 MeV oxygen implantation step gives rise to an impressive damage accumulation, eventually leading to the total amorphization of the surface, even at moderate fluences.

  18. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad approach to different, but related, scientific

  19. Nuclear Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  20. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  1. Evaluation of ATWS core damage frequency for a BWR/4

    SciTech Connect (OSTI)

    Shiu, K.; Ilberg, D.; Hanan, N.

    1985-01-01

    This paper reports a study performed to evaluate the core damage frequency contribution from Anticipated Transient Without Scram (ATWS) in a BWR/4 plant. Discussions on improvements in the design and operation of BWR plants to reduce the likelihood of occurrence and core damage frequency of ATWS have continued for years. In November 1981, subsequent to the issuance of three alternate proposed ATWS rules, the Nuclear Regulatory Commission invited comments on these rules. In June 1984, a final rule on the reduction of risk from ATWS events was issued. In the study, it is assumed that the BWR/4 reactor is of an earlier vintage. However, only two of the modifications have been implemented in accordance with the final rule: a diverse scram system and automatic recirculation pump trip. It is further assumed that the setpoint for Main Steam Isolation Valves (MSIVs) closure is at reactor pressure vessel (RPV) water level 1 and that the BWR emergency procedure guidelines are implemented.

  2. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Y.; Yu, K. Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X.

    2015-04-24

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from highmore » density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.« less

  3. nuclear smuggling

    National Nuclear Security Administration (NNSA)

    13, 2015

    SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense...

  4. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  5. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  6. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  7. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  8. NUCLEAR ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP Table of Contents List of Acronyms ................................................................................................... iii Executive Summary ............................................................................................... v 1. Introduction ...................................................................................................... 1 2. Background

  9. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  10. Pantex Plant | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pantex Plant On Womens Equality Day, we celebrate NNSA's talented Women in STEM New Pantex Plant sensors provide ample warning to protect NNSA operations from lightning NNSA is charged with making sure the nation's nuclear deterrent is safe, secure, and effective. That mission includes protecting the Nuclear Security Enterprise from forces of nature. One natural threat, lightning, can damage electronics and even degrade concrete buildings and... NNSA's systems administrators keep the computers

  11. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 ...

  12. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Myths Topics: Can a Nuclear Reactor Explode Like a Bomb? Will Nuclear Waste Be Around for Millions of Years? Is Nuclear Energy Dangerous? Moderator: Suzy Hobbs ...

  13. The Fukushima Nuclear Event and its Implications for Nuclear Power

    SciTech Connect (OSTI)

    Golay, Michael

    2011-07-06

    The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

  14. nuclear | National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA)

    nuclear Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  15. Nuclear Nonproliferation Program Offices | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and monitor nuclear weapons production, proliferation, and nuclear explosions worldwide. ...

  16. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, ...

  17. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  18. Chernobyl Nuclear Accident | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor 4 in the then Soviet Republic of Ukraine

  19. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, International ...

  20. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    SciTech Connect (OSTI)

    Cheaito, Ramez; Gorham, Caroline S.; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacement damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.

  1. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less

  2. Materials challenges for nuclear systems

    SciTech Connect (OSTI)

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclear systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.

  3. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    SciTech Connect (OSTI)

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann; Remec, Igor; Giorla, Alain B; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.

  4. Public comment re Convention on Supplementary Compensation Contingent Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Allocation | Department of Energy Compensation Contingent Cost Allocation Public comment re Convention on Supplementary Compensation Contingent Cost Allocation DOE published a Notice of Inquiry in the Federal Register (75 Fed. Reg. 43,945) requesting public comment on issues related to the funding obligations under the Convention on Supplementary Compensation for Nuclear Damage (CSC) and Section 934 of the Energy Independence and Security Act of 2007. American Nuclear Insurers (ANI) is a

  5. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  6. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  7. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  9. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  10. Nuclear option

    SciTech Connect (OSTI)

    Olson, P.S.

    1983-03-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.

  11. Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  12. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  13. A creep-damage model for mesoscale simulations of concrete expansion-degradation phenomena

    SciTech Connect (OSTI)

    Giorla, Alain B; Le Pape, Yann

    2015-01-01

    Long-term performance of aging concrete in nuclear power plants (NPPs) requires a careful examination of the physical phenomena taking place in the material. Concrete under high neutron irradiation is subjected to large irreversible deformations as well as mechanical damage, caused by a swelling of the aggregates. However, these results, generally obtained in accelerated conditions in test reactors, cannot be directly applied to NPP irradiated structures, i.e., the biological shield, operating conditions due to difference in time scale and environmental conditions (temperature, humidity). Mesoscale numerical simulations are performed to separate the underlying mechanisms and their interactions. The cement paste creep-damage model accounts for the effect of the loading rate on the apparent damage properties of the material and uses an event-based approach to capture the competition between creep and damage. The model is applied to the simulation of irradiation experiments from the literature and shows a good agreement with the experimental data.

  14. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

    2014-10-01

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

  15. Emulation of reactor irradiation damage using ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  16. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.

  17. Geothermal CSC Exploration Activities Template | OpenEI Community

    Open Energy Info (EERE)

    2014 Geothermal Case Study Challenge Login to post comments Latest documents CSM Travis Brown and Kamran Baksh, Final Submission Posted: 14 May 2014 - 21:59 by CSM Mbennett 2014...

  18. Geothermal CSC Data Tables Template | OpenEI Community

    Open Energy Info (EERE)

    2014 Geothermal Case Study Challenge Login to post comments Latest documents CSM Travis Brown and Kamran Baksh, Final Submission Posted: 14 May 2014 - 21:59 by CSM Mbennett 2014...

  19. Geothermal CSC Reference List | OpenEI Community

    Open Energy Info (EERE)

    2014 Geothermal Case Study Challenge Login to post comments Latest documents CSM Travis Brown and Kamran Baksh, Final Submission Posted: 14 May 2014 - 21:59 by CSM Mbennett 2014...

  20. Geothermal CSC Narratives Template | OpenEI Community

    Open Energy Info (EERE)

    2014 Geothermal Case Study Challenge Login to post comments Latest documents CSM Travis Brown and Kamran Baksh, Final Submission Posted: 14 May 2014 - 21:59 by CSM Mbennett 2014...

  1. Method for assaying clustered DNA damages

    DOE Patents [OSTI]

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  2. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  3. Nuclear pursuits

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  4. Defense Nuclear Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Facility NNSA's safety office accredited and recognized for leadership in safe operation of defense nuclear facilities Part of NNSA's commitment to maintaining the nation's safe, secure, and effective nuclear deterrent are relentlessly high standards for technically capable nuclear enterprise personnel qualifications for all aspects of Defense Nuclear Facility operations. In December 2015, the Department of Energy

  5. Nuclear Controls | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Controls Challenge: Detect/deter illicit transfers of nuclear/dual-use materials, technology, and commodities. Solution: Build domestic and international capacity to implement and meet export control obligations. Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification International Nuclear Safeguards Nonproliferation Policy Nonproliferation and Arms Control NIS

  6. Nuclear Verification | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  7. nuclear controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    controls Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  8. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  9. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook Current New Nuclear Energy Construction Projects Small Modular...

  10. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  11. Horizontal baffle for nuclear reactors

    DOE Patents [OSTI]

    Rylatt, John A. (Monroeville, PA)

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  12. Special Section Guest Editorial: Laser Damage

    SciTech Connect (OSTI)

    Gruzdev, Vitaly E.; Shinn, Michelle D.

    2012-11-09

    Laser damage of optical materials, first reported in 1964, continues to limit the output energy and power of pulsed and continuous-wave laser systems. In spite of some 48 years of research in this area, interest from the international laser community to laser damage issues remains at a very high level and does not show any sign of decreasing. Moreover, it grows with the development of novel laser systems, for example, ultrafast and short-wavelength lasers that involve new damage effects and specific mechanisms not studied before. This interest is evident from the high level of attendance and presentations at the annual SPIE Laser Damage Symposium (aka, Boulder Damage Symposium) that has been held in Boulder, Colorado, since 1969. This special section of Optical Engineering is the first one devoted to the entire field of laser damage rather than to a specific part. It is prepared in response to growing interest from the international laser-damage community. Some papers in this special section were presented at the Laser Damage Symposium; others were submitted in response to the general call for papers for this special section. The 18 papers compiled into this special section represent many sides of the broad field of laser-damage research. They consider theoretical studies of the fundamental mechanisms of laser damage including laser-driven electron dynamics in solids (O. Brenk and B. Rethfeld; A. Nikiforov, A. Epifanov, and S. Garnov; T. Apostolova et al.), modeling of propagation effects for ultrashort high-intensity laser pulses (J. Gulley), an overview of mechanisms of inclusion-induced damage (M. Koldunov and A. Manenkov), the formation of specific periodic ripples on a metal surface by femtosecond laser pulses (M. Ahsan and M. Lee), and the laser-plasma effects on damage in glass (Y. Li et al). Material characterization is represented by the papers devoted to accurate and reliable measurements of absorption with special emphasis on thin films (C. Mühlig and S

  13. Materials challenges for nuclear systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  14. Defense Nuclear Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Nonproliferation NNSA Announces Elimination of Highly Enriched Uranium (HEU) from Indonesia All of Southeast Asia Now HEU-Free (WASHINGTON, D.C.) - The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA), Indonesian Nuclear Industry, LLC (PT INUKI), the National Nuclear Energy Agency (BATAN), and the Nuclear Energy Regulatory Agency (BAPETEN) of the... NNSA program strengthens national security from afar The Nuclear Smuggling Detection and Deterrence

  15. Nuclear Security Enterprise | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Nuclear Security Enterprise The Nuclear Security Enterprise ... efficient 21stcentury NSE with less environmental impact. ... is referred to as Stockpile Stewardship and Management. ...

  16. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or ...

  17. Nuclear Incident Team | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or ...

  18. Nuclear Energy Systems Laboratory (NESL) / Transient Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient Nuclear Fuels Testing - Sandia Energy Energy Search Icon Sandia Home Locations ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  19. nuclear science week | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    science week Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  20. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  1. Nuclear Forensics | National Nuclear Security Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy ...

  2. Nuclear Security Enterprise | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Our Programs Defense Programs Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective ...

  3. Nuclear Verification | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: ...

  4. Nuclear Suppliers Group & Regimes | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  5. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  6. Nuclear structure and nuclear reactions | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear structure and nuclear reactions PI Name: James Vary PI Email: jvary@iastate.edu Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 15 ...

  7. nuclear emergency | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home nuclear emergency nuclear emergency Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ...

  8. Testing model for predicting spillway cavitation damage

    SciTech Connect (OSTI)

    Lee, W.; Hoopes, J.A.

    1995-12-31

    Using fuzzy mathematics a comprehensive model has been developed to predict the time, location and level (intensity) of spillway cavitation damage. Five damage levels and four factors affecting damage are used. Membership functions express the degree that each factor effects damage, and weights express the relative importance of each factor. The model has been calibrated and tested with operating data and experience from the Glen Canyon Dam left tunnel spillway, which had major cavitation damage in 1983. An error analysis for the Glen Canyon Dam left tunnel spillway gave the best ranges for model weights. Prediction of damage at other spillways (4 tunnels, 3 chutes) with functions and parameters as for the Glen Canyon Dam left tunnel spillway gave reasonable predictions of damage intensity and location and poor estimates of occurrence time in the tunnels. Chute predictions were in poor agreement with observations, indicating need for different parameter values. Finally, two membership functions with constant or time varying parameters are compared with observed results from the Glen Canyon Dam left tunnel spillway.

  9. Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Moving Forward to Address Nuclear Waste Storage and Disposal Three trucks transport nuclear waste

  10. Accident Response Group | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Accident Response Group NNSA's Accident Response Group (ARG) provides technical guidance and responds to U.S. nuclear weapons accidents. ARG_Logo The team assists in assessing weapons damage and risk, and in developing and implementing procedures for safe weapon recovery, packaging, transportation, and disposal of damaged weapons. The ARG headquarters is located in Albuquerque, New Mexico and is supported by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National

  11. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  12. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  13. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  14. War damages and reconstruction of Peruca dam

    SciTech Connect (OSTI)

    Nonveiller, E.; Rupcic, J.; Sever, Z.

    1999-04-01

    The paper describes the heavy damages caused by blasting in the Peruca rockfill dam in Croatia in January 1993. Complete collapse of the dam by overtopping was prevented through quick action of the dam owner by dumping clayey gravel on the lowest sections of the dam crest and opening the bottom outlet of the reservoir, thus efficiently lowering the water level. After the damages were sufficiently established and alternatives for restoration of the dam were evaluated, it was decided to construct a diaphragm wall through the damaged core in the central dam part as the impermeable dam element and to rebuild the central clay core at the dam abutments. Reconstruction works are described.

  15. Radiation Damage Study in Natural Zircon Using Neutrons Irradiation

    SciTech Connect (OSTI)

    Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu; Mohamed, Abdul Aziz; Karim, Julia Abdul

    2011-03-30

    Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emission of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.

  16. Severe fuel-damage scoping test performance. [PWR

    SciTech Connect (OSTI)

    Gruen, G.E.; Buescher, B.J.

    1983-01-01

    As a result of the Three Mile Island Unit-2 (TMI-2) accident, the Nuclear Regulatory Commission has initiated a severe fuel damage test program to evaluate fuel rod and core response during severe accidents similar to TMI-2. The first test of Phase I of this series has been successfully completed in the Power Burst Facility at the Idaho National Engineering Laboratory. Following the first test, calculations were performed using the TRAC-BD1 computer code with actual experimental boundary conditions. This paper discusses the test conduct and performance and presents the calculated and measured test bundle results. The test resulted in a slow heatup to 2000 K over about 4 h, with an accelerated reaction of the zirconium cladding at temperatures above 1600 K in the lower part or the bundle and 2000 K in the upper portion of the bundle.

  17. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    SciTech Connect (OSTI)

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  18. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    SciTech Connect (OSTI)

    Chen, Y.; Yu, K. Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X.

    2015-04-24

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.

  19. Laser Damage Precursors in Fused Silica

    SciTech Connect (OSTI)

    Miller, P; Suratwala, T; Bude, J; Laurence, T A; Shen, N; Steele, W A; Feit, M; Menapace, J; Wong, L

    2009-11-11

    There is a longstanding, and largely unexplained, correlation between the laser damage susceptibility of optical components and both the surface quality of the optics, and the presence of near surface fractures in an optic. In the present work, a combination of acid leaching, acid etching, and confocal time resolved photoluminescence (CTP) microscopy has been used to study laser damage initiation at indentation sites. The combination of localized polishing and variations in indentation loads allows one to isolate and characterize the laser damage susceptibility of densified, plastically flowed and fractured fused silica. The present results suggest that: (1) laser damage initiation and growth are strongly correlated with fracture surfaces, while densified and plastically flowed material is relatively benign, and (2) fracture events result in the formation of an electronically defective rich surface layer which promotes energy transfer from the optical beam to the glass matrix.

  20. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect (OSTI)

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  1. Quantitative damage evaluation of localized deep pitting

    SciTech Connect (OSTI)

    Al Beed, A.A.; Al Garni, M.A.

    2000-04-01

    Localized deep pitting is considered difficult to precisely measure and evaluate using simple techniques and daily-use analysis approaches. A case study was made of carbon steel heat exchangers in a typical fresh cooling water environment that experienced severe pitting. To effectively and precisely evaluate the encountered pitting damage, a simple measurement and analyses approach was devised. In this article, the pitting measurement technique and the damage evaluation approach are presented and discussed in detail.

  2. Controlled ion implant damage profile for etching

    DOE Patents [OSTI]

    Arnold, Jr., George W.; Ashby, Carol I. H.; Brannon, Paul J.

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  3. DOE Notice of inquiry and request for comment. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of inquiry and request for comment. DOE Notice of inquiry and request for comment. DOE is seeking comment and information from the public to assist in its development of regulations pertaining to section 934 of the Energy Independence and Security Act of 2007 (''Act''). Section 934 addresses how the United States will meet its obligations under the Convention on Supplementary Compensation for Nuclear Damage (''Convention'' or ''CSC'') and, in particular, its obligation to contribute to an

  4. Analysis of core damage frequency from internal events: Peach Bottom, Unit 2

    SciTech Connect (OSTI)

    Kolaczkowski, A.M.; Lambright, J.A.; Ferrell, W.L.; Cathey, N.G.; Najafi, B.; Harper, F.T.

    1986-10-01

    This document contains the internal event initiated accident sequence analyses for Peach Bottom, Unit 2; one of the reference plants being examined as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 will document the risk of a selected group of nuclear power plants. As part of that work, this report contains the overall core damage frequency estimate for Peach Bottom, Unit 2, and the accompanying plant damage state frequencies. Sensitivity and uncertainty analyses provided additional insights regarding the dominant contributors to the Peach Bottom core damage frequency estimate. The mean core damage frequency at Peach Bottom was calculated to be 8.2E-6. Station blackout type accidents (loss of all ac power) were found to dominate the overall results. Anticipated Transient Without Scram accidents were also found to be non-negligible contributors. The numerical results are largely driven by common mode failure probability estimates and to some extent, human error. Because of significant data and analysis uncertainties in these two areas (important, for instance, to the most dominant scenario in this study), it is recommended that the results of the uncertainty and sensitivity analyses be considered before any actions are taken based on this analysis.

  5. Nuclear Detonation Detection | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Research and Development Nuclear Detonation Detection The Office of Nuclear Detonation Detection (NDD) develops and provide continuous, global capabilities to detect foreign nuclear weapon detonations, including for test ban treaty monitoring needs and military requirements. These efforts are aligned along three functional areas: Space-based Detection of Nuclear Detonations: Develops and builds space sensors for the nation's operational nuclear test treaty monitoring and Integrated

  6. nuclear threat science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    threat science Counterterrorism Counterterrorism Policy and Cooperation Nuclear Threat Science Office of Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise and integrates and executes key activities to advise and enable technical aspects of U.S. Government nuclear counterterrorism and... Office of Counterterrorism Policy and Cooperation The 2011 National Strategy for

  7. nuclear science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    science Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on... Consortium Led by University of California, Berkeley Awarded $25M NNSA Grant for Nuclear Science and Security

  8. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  9. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  10. PV Module Intraconnect Thermomechanical Durability Damage Prediction...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments 2014 Propulsion ...

  11. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. Department of Energy. National Nuclear Data Center: Brookhaven National Laboratory; Evaluated Nuclear Structure Data Files (ENSDF), Nuclear Science References (NSR) and other databases. Isotopes Project: (E.O.L. Berkeley National Laboratory) Table of Isotopes, Isotope Explorer, XUNDL, Nuclear Data Dissemination Homepage, and

  12. Damaged Surface Hydrodynamics (DSH) Flash Report (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Damaged Surface Hydrodynamics (DSH) Flash Report Citation Details In-Document Search Title: Damaged Surface Hydrodynamics (DSH) Flash Report You are accessing ...

  13. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and ...

  14. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and measurements series ...

  15. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  16. Nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  17. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  18. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    SciTech Connect (OSTI)

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence; Guimaraes, Maria

    2015-11-30

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete is widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems

  19. TUNL Nuclear Data Evaluation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TUNL Nuclear Data Evaluation Group As a part of the United States Nuclear Data Network and the international Nuclear Structure and Decay Data Evaluators' Network, the Nuclear Data...

  20. Method to reduce damage to backing plate

    DOE Patents [OSTI]

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2001-01-01

    The present invention is a method for penetrating a workpiece using an ultra-short pulse laser beam without causing damage to subsequent surfaces facing the laser. Several embodiments are shown which place holes in fuel injectors without damaging the back surface of the sack in which the fuel is ejected. In one embodiment, pulses from an ultra short pulse laser remove about 10 nm to 1000 nm of material per pulse. In one embodiment, a plasma source is attached to the fuel injector and initiated by common methods such as microwave energy. In another embodiment of the invention, the sack void is filled with a solid. In one other embodiment, a high viscosity liquid is placed within the sack. In general, high-viscosity liquids preferably used in this invention should have a high damage threshold and have a diffusing property.

  1. Thermal Damage Characterization of Energetic Materials

    SciTech Connect (OSTI)

    Hsu, P C; DeHaven, M R; Springer, H K; Maienschein, J L

    2009-08-14

    We conducted thermal damage experiments at 180?C on PBXN-9 and characterized its material properties. Volume expansion at high temperatures was very significant which led to a reduction in material density. 2.6% of weight loss was observed, which was higher than other HMX-based formulations. Porosity of PBXN-9 increased to 16% after thermal exposure. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability and density were proved to be possible at higher temperatures.

  2. Structural damage detection using the holder exponent.

    SciTech Connect (OSTI)

    Farrar, C. R.; Do, N. B.; Green, S. R.; Schwartz, T. A.

    2002-01-01

    This paper implements a damage detection strategy that identifies damage sensitive features associated with nonlinearities. Some rion-linezlrities result from discontinuities introduced into the data by certain types of darnage. These discontinuities may also result from noise in the measured dynamic response data or can be caused by random excitation of the system. The Holder Exponent, which is a measure of the degree to which a signal is differentiable, is used to detect the discontinuities. By studying the Holder bponent as a function af time, a statistical model is developed that classifies changes in the Holder Exponent that are associated with clamage-induced discontinuities. The results show that for certain cases, the Holder Exponent is an effective technique to detect damage.

  3. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  4. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  5. Office of Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  6. Probing Radiation Damage at the Molecular Level

    SciTech Connect (OSTI)

    Mason, N. J.; Smialek, M. A.; Moore, S. A.; Folkard, M.; Hoffmann, S. V.

    2006-12-01

    Radiation damage of DNA and other cellular components has traditionally been attributed to ionisation via direct impact of high-energy quanta or by complex radical chemistry. However recent research has shown that strand breaks in DNA may be initiated by secondary electrons and is strongly dependent upon the target DNA base identity. Such research provides the fascinating perspective that it is possible that radiation damage may be described and understood at an individual molecular level introducing new possibilites for therapy and perhaps providing an insight into the origins of life.

  7. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments [OSTI]

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  8. Nuclear Incident Team | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Nuclear Incident Team Nuclear Incident Team Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  9. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these

  10. Civilian Nuclear Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Program Civilian Nuclear Program Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Venkateswara Rao Dasari (Rao) (505) 667-5098 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Program is the focal point for

  11. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  12. International Nuclear Security | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) International Nuclear Security The International Nuclear Security program collaborates with partners world-wide to improve the security of proliferation-sensitive materials, particularly weapons-usable nuclear material in both civilian and non-civilian use in key countries. As part of these efforts, INS works with partner countries to: Upgrade and sustain physical security and material control and accounting systems; Develop national-level nuclear security infrastructure in areas such

  13. Nuclear Materials Information Program | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Information Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  14. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  15. Nuclear Forensics | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy initiative that establishes federal agency missions and institutionalizes roles and responsibilities to enable operational support for materials, pre-detonation device, and post-detonation nuclear or radiological forensics programs with the broader goal of attribution. Technical nuclear forensics utilizes the data from

  16. Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin

    SciTech Connect (OSTI)

    Mickalonis, J. I.; Murphy, T. R.; Deible, R.

    2012-10-01

    Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

  17. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  18. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Practice in Nuclear Medicine Radiopharmacy Patient Care Medical Imaging & Computers Moderator: Deborah M. Gibbs, MEd, PET, CNMT Lead Nuclear Medicine PET Facility...

  19. Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  20. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Useful Online Nuclear Physics Journals Important Online Resources Science Direct ... Elsevier Physics Online: Nuclear Physics A, B, Physics Repots, Physics Letters B and more. ...

  1. Nuclear Controls Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Controls Yes No 1) Is your Facility involved in the research on or development, design, manufacture, construction, testing or maintenance of any nuclear explosive ...

  2. Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  3. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make other options for new nuclear capacity uneconomical even in the alternative...

  4. Nuclear Security Summit

    National Nuclear Security Administration (NNSA)

    Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material http:...

  5. Sandia Energy Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  6. Nuclear Energy University Programs

    Energy Savers [EERE]

    (NSUF) Gateway to Nuclear Research J. Rory Kennedy Director, NSUF Idaho National ... to NSUF (Integration into CINR) * Nuclear Energy Infrastructure Database (NEID) * ...

  7. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering ...

  8. Nuclear War Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear War Against Cancer 1663 Los Alamos science and technology magazine Latest Issue:March 2016 past issues All Issues submit Nuclear War Against Cancer Los Alamos, in ...

  9. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  10. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.