Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear criticality safety guide  

Science Conference Proceedings (OSTI)

This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

1996-09-01T23:59:59.000Z

2

Nuclear criticality safety  

SciTech Connect

Important facts of the nuclear criticality safety field are covered in this volume. Both theoretical and practical aspects of the subject are included, based on insights provided by criticality experts and published information from many sources. An overview of nuclear criticality safety theory and a variety of practical in-plant operation applications are presented. Underlying principles of nuclear criticality safety are introduced and the state of the art of this technical discipline is reviewed. Criticality safety theoretical concepts, accident experience, standards, experiments computer calculations, integration of safety methods into individual practices, and overall facility operations are all included.

Knief, R.A.

1985-01-01T23:59:59.000Z

3

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

4

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

5

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Criticality Safety Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other...

6

Current R&D Activities in Nuclear Criticality Safety - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

7

Analysis Tools for Nuclear Criticality Safety - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

8

Nuclear data for criticality safety  

SciTech Connect

A brief overview is presented on emerging requirements for new criticality safety analyses arising from applications involving nuclear waste management, facility remediation, and the storage of nuclear weapons components. A derivation of criticality analyses from the specifications of national consensus standards is given. These analyses, both static and dynamic, define the needs for nuclear data. Integral data, used primarily for analytical validation, and differential data, used in performing the analyses, are listed, along with desirable margins of uncertainty. Examples are given of needs for additional data to address systems having intermediate neutron energy spectra and/or containing nuclides of intermediate mass number.

Westfall, R.M.

1994-09-01T23:59:59.000Z

9

Nuclear Criticality Safety | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Criticality Safety Criticality Safety SHARE Criticality Safety Nuclear Criticality Safety ORNL is the lead national laboratory responsible for supporting the National Nuclear Security Administration (NNSA) in managing the US Nuclear Criticality Safety Program. NCSP is chartered to maintain the technical infrastructure (integral experiments, computational tools, training, data, etc.) needed to support safe, efficient fissionable material operations. ORNL has extensive expertise in the area of nuclear criticality safety (NCS) based upon years of experience in the following areas: Operations Support: providing fissionable material operations support for enrichment, fabrication, production, and research; Critical Experiments: performing experiments at the Y-12 Critical Experiment Facility;

10

Nuclear criticality safety: 2-day training course  

SciTech Connect

This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

Schlesser, J.A. [ed.] [comp.

1997-02-01T23:59:59.000Z

11

DOE Nuclear Criticality Safety Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Nuclear Criticality Safety Program DOE Nuclear Criticality Safety Program Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr The DOE Nuclear Criticality Safety Program Bookmark and Share J. Morman and R. Bucher load J. Morman and R. Bucher load samples into the ZPR-6 critical assembly for material worth measurements. Click on image to view larger image. The DOE Nuclear Criticality Safety Program (NCSP) is focused on maintaining fundamental infrastructure that enables retention of DOE capabilities and expertise in nuclear criticality safety necessary to support line

12

Nuclear criticality safety department training implementation  

SciTech Connect

The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document.

Carroll, K.J.; Taylor, R.G.; Worley, C.A.

1996-09-06T23:59:59.000Z

13

Nuclear data for criticality safety - current issues  

SciTech Connect

Traditionally, nuclear data evaluations have been performed in support of the analysis and design of thermal and fast reactors. In general, the neutron spectra characteristic of the thermal and fast systems used for data testing are predominantly in the low- and high-energy range with a relatively small influence from the intermediate-energy range. In the area of nuclear criticality safety, nuclear systems arising from applications involving fissionable materials outside reactors can lead to situations very different from those most commonly found in reactor analysis and design. These systems are not limited to thermal or fast and may have significant influence from the intermediate energy range. The extension of the range of applicability of the nuclear data evaluation beyond thermal and fast systems is therefore needed to cover problems found in nuclear criticality safety. Before criticality safety calculations are performed, the bias and uncertainties of the codes and cross sections that are used must be determined. The most common sources of uncertainties, in general, are the calculational methodologies and the uncertainties related to the nuclear data, such as the microscopic cross sections, entering into the calculational procedure. The aim here is to focus on the evaluated nuclear data pertaining to applications in nuclear criticality safety.

Leal, L.C.; Jordan, W.C.; Wright, R.Q.

1995-06-01T23:59:59.000Z

14

Nuclear data needs for application in nuclear criticality safety programs  

SciTech Connect

In nuclear criticality safety applications, a number of important uncertainties have to be addressed to establish the required criticality safety margin of a nuclear system. One source of these uncertainties is the basic nuclear data used to calculate the effective multiplication factor of the system. Before criticality safety calculations are performed, the bias and uncertainties of the codes and cross sections that are used must be determined. Cross-section data are measured, evaluated, and tested prior to their inclusion in nuclear data libraries. Traditionally, nuclear data evaluations are performed to support the analysis and design of thermal and fast reactors. The neutron spectra characteristic of the thermal and fast systems used for data testing are predominantly in the low- and high-energy ranges, with a relatively minor influence from the intermediate-energy range. In the area of nuclear criticality safety, nuclear systems involving spent fuel elements from reactors can lead to situations very different from those most commonly found in reactor analysis and design. These systems are not limited to thermal or fast neutron spectra and may have their most significant influence from the intermediate energy range. This requires extending the range of applicability of the nuclear data evaluation beyond thermal and fast systems. The aim here is to focus on the evaluated nuclear data pertaining to applications in nuclear criticality safety.

Leal, L.C.; Westfall, R.M.; Jordan, W.C.; Wright, R.Q. [Oak Ridge National Lab., TN (United States). Computational Physics and Engineering Div.

1995-09-01T23:59:59.000Z

15

Nuclear Criticality Safety Application Guide: Safety Analysis Report Update Program  

SciTech Connect

Martin Marietta Energy Systems, Inc. (MMES) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Safety analyses are performed to identify hazards and potential accidents; to analyze the adequacy of measures taken to eliminate, control, or mitigate hazards; and to evaluate potential accidents and determine associated risks. Safety Analysis Reports (SARs) are prepared to document the safety analysis to ensure facilities can be operated safely and in accordance with regulations. Many of the facilities requiring a SAR process fissionable material creating the potential for a nuclear criticality accident. MMES has long had a nuclear criticality safety program that provides the technical support to fissionable material operations to ensure the safe processing and storage of fissionable materials. The guiding philosophy of the program has always been the application of the double-contingency principle, which states: {open_quotes}process designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible.{close_quotes} At Energy Systems analyses have generally been maintained to document that no single normal or abnormal operating conditions that could reasonably be expected to occur can cause a nuclear criticality accident. This application guide provides a summary description of the MMES Nuclear Criticality Safety Program and the MMES Criticality Accident Alarm System requirements for inclusion in facility SARs. The guide also suggests a way to incorporate the analyses conducted pursuant to the double-contingency principle into the SAR. The prime objective is to minimize duplicative effort between the NCSA process and the SAR process and yet adequately describe the methodology utilized to prevent a nuclear criticality accident.

1994-02-01T23:59:59.000Z

16

HANFORD NUCLEAR CRITICALITY SAFETY PROGRAM DATABASE  

Science Conference Proceedings (OSTI)

The Hanford Database is a useful information retrieval tool for a criticality safety practitioner. The database contains nuclear criticality literature screened for parameter studies. The entries, characterized with a value index, are segregated into 16 major and six minor categories. A majority of the screened entries have abstracts and a limited number are connected to the Office of Scientific and Technology Information (OSTI) database of full-size documents. Simple and complex searches of the data can be accomplished very rapidly and the end-product of the searches could be a full-size document. The paper contains a description of the database, user instructions, and a number of examples.

TOFFER, H.

2005-05-02T23:59:59.000Z

17

Development of the DOE Nuclear Criticality Safety Program Web Site for the Nuclear Criticality Safety Professional  

SciTech Connect

Development of the DOE Nuclear Criticality Safety Program (NCSP) web site is the result of the efforts of marry members of the Nuclear Criticality Safety (NCS) community and is maintained by Lawrence Livermore National Laboratory under the direction of the NCSP Management Team. This World Wide Web (WWW) resource was developed as part of the DOE response to the DNFSB Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The NCSP web site provides information of interest to NCS professionals and includes links to other sites actively involved in the collection and dissemination of criticality safety information. To the extent possible, the hyperlinks on this web site direct the user to the original source of the referenced material in order to ensure access to the latest, most accurate version.

Lee, C.K.; Huang, S.; Morman, J.A.; Garcia, A.S.

2000-02-01T23:59:59.000Z

18

The Department of Energy nuclear criticality safety program.  

SciTech Connect

This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

Felty, J. R. (James R.)

2004-01-01T23:59:59.000Z

19

Experience with performance based training of nuclear criticality safety engineers  

SciTech Connect

For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas.

Taylor, R.G.

1993-07-13T23:59:59.000Z

20

Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation  

SciTech Connect

One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

John D. Bess; J. Blair Briggs; David W. Nigg

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation  

SciTech Connect

One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

John D. Bess; J. Blair Briggs; David W. Nigg

2009-11-01T23:59:59.000Z

22

Martin Marietta Energy Systems Nuclear Criticality Safety Improvement Program  

SciTech Connect

This report addresses questions raised by criticality safety violation at several DOE plants. Two charts are included that define the severity and reporting requirements for the six levels of accidents. A summary is given of all reported criticality incident at the DOE plants involved. The report concludes with Martin Marietta's Nuclear Criticality Safety Policy Statement. (JDH)

Speas, I.G.

1987-04-29T23:59:59.000Z

23

Nuclear Criticality Technology and Safety Project parameter study database  

SciTech Connect

A computerized, knowledge-screened, comprehensive database of the nuclear criticality safety documentation has been assembled as part of the Nuclear Criticality Technology and Safety (NCTS) Project. The database is focused on nuclear criticality parameter studies. The database has been computerized using dBASE III Plus and can be used on a personal computer or a workstation. More than 1300 documents have been reviewed by nuclear criticality specialists over the last 5 years to produce over 800 database entries. Nuclear criticality specialists will be able to access the database and retrieve information about topical parameter studies, authors, and chronology. The database places the accumulated knowledge in the nuclear criticality area over the last 50 years at the fingertips of a criticality analyst.

Toffer, H.; Erickson, D.G.; Samuel, T.J. [Westinghouse Hanford Co., Richland, WA (United States); Pearson, J.S. [Lawrence Livermore National Lab., CA (United States)

1993-03-01T23:59:59.000Z

24

A Web-Based Nuclear Criticality Safety Bibliographic Database  

SciTech Connect

A bibliographic criticality safety database of over 13,000 records is available on the Internet as part of the U.S. Department of Energy's (DOE) Nuclear Criticality Safety Program (NCSP) website. This database is easy to access via the Internet and gets substantial daily usage. This database and other criticality safety resources are available at ncsp.llnl.gov. The web database has evolved from more than thirty years of effort at Lawrence Livermore National Laboratory (LLNL), beginning with compilations of critical experiment reports and American Nuclear Society Transactions.

Koponen, B L; Huang, S

2007-02-22T23:59:59.000Z

25

License Application Chapter 5 Nuclear Criticality Safety  

E-Print Network (OSTI)

uranium or other fissile material outside of check-sources and various standards for radiological measurement calibration. As such, no criticality safety programs or procedures are maintained or implemented at the facility; however, the IIFP Integrated Safety Analysis (ISA), as documented in the ISA Summary, did evaluate the potential for a criticality accident at the IIFP Site. The only potential method of having a criticality accident at the facility involves the inadvertent receipt and processing of fissile materials, which is addressed in the ISA. Controls are established to verify that no enriched uranium hexafluoride (UF6) is received and processed at the facility. The cylinders processed at the IIFP Facility are the large, 14-ton or 10-ton UF6 tails cylinders, not the 2 -ton enriched product cylinders. Processing equipment at the plant, namely the autoclaves, is not sized to handle these smaller cylinders, so there is no method to feed enriched material into the processing plants. Additionally, each cylinder will be scanned with a detector to verify that the incoming cylinders do not contain fissile materials. The scan does not determine the shipper’s assay exactness for the cylinder contents, but does provide a reasonable indication if the cylinder is depleted or enriched. Both the receipt inspection and the scan for the assay at the Facility Site are maintained as Items Relied on for Safety (IROFS) controls. Also, feed suppliers (UF6 enrichment plants) have redundant and

Uranium De-conversion; Revision B

2011-01-01T23:59:59.000Z

26

Proceedings of the Nuclear Criticality Technology Safety Workshop  

SciTech Connect

This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

Rene G. Sanchez

1998-04-01T23:59:59.000Z

27

Criticality Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Left Tab EVENTS Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical...

28

Tank waste remediation system nuclear criticality safety program management review  

SciTech Connect

This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

BRADY RAAP, M.C.

1999-06-24T23:59:59.000Z

29

Experience with performance based training of nuclear criticality safety engineers  

SciTech Connect

Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i`s incompletely developed in some areas. Details of this analysis are provided in this report.

Taylor, R.G.

1993-12-20T23:59:59.000Z

30

Web-based nuclear criticality safety bibliographic database  

SciTech Connect

The Lawrence Livermore National Laboratory has prepared a Nuclear Criticality Safety Bibliographic Database that is now available via the Internet. This database is a component of the U.S. DOE Nuclear Criticality Safety Program (NCSP) Web site. This WWW resource was developed as part of the DOE response to the DNFSB Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. To the extent possible, the hyperlinks on the Web pages direct the user to original source of the reference material in order to ensure accuracy and access to the latest versions. A master index is in place for simple navigation through the site. A search capability is available to assist in locating the on-line reference materials. Among the features included are: A user-friendly site map for ease of use; A personnel registry; Links to all major laboratories and organizations involved in the many aspects of criticality safety; General help for new criticality safety practitioners, including basic technical references and training modules; A discussion of computational methods; An interactive question and answer forum for the criticality safety community; and Collections of bibliographic references mdvahdation experiments. This paper will focus on the bibliographic database. This database evolved from earlier work done by the DOE's Nuclear Criticality Information System (NCIS) maintained at LLNL during the 1980s. The bibliographic database at the time of the termination of NCIS were composed principally of three parts: (1) A critical experiment bibliography of 1067 citations (reported in UCRL-52769); (2) A compilation of criticality safety papers from Volumes 1 through 41 of the Transactions of the American Nuclear Society (reported in UCRL-53369); and (3) A general criticality bibliography of several thousand citations (unpublished). When the NCIS project was terminated the database was nearly lost but, fortunately, several years later most of the data were restored from backup tapes that had been archived by LLNL's ICNC conferences and American Nuclear Society publications, Nuclear Science and Engineering and Nuclear Technology. Since the Rocky Flats facility is heading for closure maintenance of the database was again threatened. This has now been avoided since LLNL was selected in 1999 to fulfill part of the ''Information Preservation and Dissemination'' task of the DOE's Nuclear Criticality Safety Program Five-Year Plan. This effort will ''collect, preserve and make readily available criticality safety information'' and make the information available via the Internet.

Koponen, B L; Huang, S T

2000-06-21T23:59:59.000Z

31

Proceedings of the Nuclear Criticality Technology and Safety Project Workshop  

Science Conference Proceedings (OSTI)

This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

Sanchez, R.G. [comp.

1994-01-01T23:59:59.000Z

32

Proceedings of the nuclear criticality technology safety project  

SciTech Connect

This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

Sanchez, R.G. [comp.

1997-06-01T23:59:59.000Z

33

Nuclear criticality safety training: guidelines for DOE contractors  

SciTech Connect

The DOE Order 5480.1A, Chapter V, Safety of Nuclear Facilities, establishes safety procedures and requirements for DOE nuclear facilities. This guide has been developed as an aid to implementing the Chapter V requirements pertaining to nuclear criticality safety training. The guide outlines relevant conceptual knowledge and demonstrated good practices in job performance. It addresses training program operations requirements in the areas of employee evaluations, employee training records, training program evaluations, and training program records. It also suggests appropriate feedback mechanisms for criticality safety training program improvement. The emphasis is on academic rather than hands-on training. This allows a decoupling of these guidelines from specific facilities. It would be unrealistic to dictate a universal program of training because of the wide variation of operations, levels of experience, and work environments among DOE contractors and facilities. Hence, these guidelines do not address the actual implementation of a nuclear criticality safety training program, but rather they outline the general characteristics that should be included.

Crowell, M.R.

1983-09-01T23:59:59.000Z

34

Merger of Nuclear Data with Criticality Safety Calculations  

SciTech Connect

In this paper we report on current activities related to the merger of differential/integral data (especially in the resolved-resonance region) with nuclear criticality safety computations. Techniques are outlined for closer coupling of many processes ? measurement, data reduction, differential-data analysis, integral-data analysis, generating multigroup cross sections, data-testing, criticality computations ? which in the past have been treated independently.

Derrien, H.; Larson, N.M.; Leal, L.C.

1999-09-20T23:59:59.000Z

35

Role of criticality models in ANSI standards for nuclear criticality safety  

SciTech Connect

Two methods used in nuclear criticality safety evaluations in the area of neutron interaction among subcritical components of fissile materials are the solid angle and surface density techniques. The accuracy and use of these models are briefly discussed. (TFD)

Thomas, J.T.

1976-01-01T23:59:59.000Z

36

Nuclear Criticality Safety Requirements Implementation Matrix for Tank Farms  

SciTech Connect

This document provides a detailed matrix of specific Tank Farms nuclear criticality safety program elements indexed to primary requirements documents. These requirements are collected at a higher level in HNF-SO-MP-SRID-001, ''Tank Waste Remediation System Standards/Requirements Identification Document.'' The intended use of this document is to provide a roadmap for implementing procedures and assessments.

WEISS, E.V.

2000-05-17T23:59:59.000Z

37

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility  

SciTech Connect

A panel of experts in the fields of process engineering, process chemistry, and safety analysis met together on January 26, 1993, and February 19, 1993, to discuss nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility (DWPF) processes. Nuclear safety issues and possibilities of nuclear criticality incidents in the DWPF were examined in depth. The discussion started at the receipt of slurry feeds: The Low Point Pump Pit Precipitate Tank (LPPPPT) and the Low Point Pump Pit Sludge Tank (LPPPST), and went into detail the whole DWPF processes. This report provides discussion of each of the areas and processes of the DWPF in terms of potential nuclear safety issues and nuclear criticality concerns.

Ha, B.C.

1993-05-10T23:59:59.000Z

38

Status and Value of International Standards for Nuclear Criticality Safety  

SciTech Connect

This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards developments in their own countries. A testament to the value of the international standards efforts is that nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards and are mainly consistent with international ISO member domestic standards.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

39

Scale 6.1 Enhancements for Nuclear Criticality Safety  

SciTech Connect

The Scale code system developed at Oak Ridge National Laboratory provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used Scale for safety analysis and design. Scale provides a 'plug-and-play' framework with 89 computational modules, including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. Scale's graphical user interfaces assist with accurate system modeling and convenient access to desired results. Scale 6.1 builds on the existing capabilities and ease-of-use of Scale and provides several new features such as improved options and capabilities for sensitivity and uncertainty analysis calculations, improved flexibility in shielding and criticality accident alarm system calculations with automated variance reduction, and new options for the definition of group structures for depletion calculations. The Scale 6.1 development team has focused on improved robustness via substantial additional regression testing and verification for new and existing features, providing improved performance relative to Scale 6.0, especially in reactor physics calculations and in the nuclear data used for source term characterization and shielding calculations.

Rearden, Bradley T [ORNL; Petrie Jr, Lester M [ORNL; Peplow, Douglas E. [ORNL; Jessee, Matthew Anderson [ORNL; Wiarda, Dorothea [ORNL; Williams, Mark L [ORNL; Lefebvre, Robert A [ORNL; Lefebvre, Jordan P [ORNL; Gauld, Ian C [ORNL; Goluoglu, Sedat [ORNL

2011-01-01T23:59:59.000Z

40

Training and qualification program for nuclear criticality safety technical staff  

SciTech Connect

A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. The program is compliant with requirements and provides evidence that a systematic approach has been taken to indoctrinate new technical staff. Development involved task analysis to determine activities where training was necessary and the standard which must be attained to qualify. Structured mentoring is used where experienced personnel interact with candidates using checksheets to guide candidates through various steps and to provide evidence that steps have been accomplished. Credit can be taken for the previous experience of personnel by means of evaluation boards which can credit or modify checksheet steps. Considering just the wealth of business practice and site specific information a new person at a facility needs to assimilate, the program has been effective in indoctrinating new technical staff personnel and integrating them into a productive role. The program includes continuing training.

Taylor, R.G.; Worley, C.A.

1996-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Status and Value of International Standards for Nuclear Criticality Safety  

SciTech Connect

This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards developments in their own countries. A testament to the value of the international standards efforts is that nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards and are mainly consistent with international ISO member domestic standards.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

42

CRITICALITY SAFETY (CS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OBJECTIVE CS.1 The LANL criticality safety program provides the required technical guidance and oversight capabilities to ensure a comprehensive criticality safety program for the storage of nuclear materials in SSTs. (Core Requirements 3, 4, 8) Criteria * The Criticality Safety Program is an administrative TSR and meets the General and * Specific Requirements of DOE O 420.1A, Section 4.3 Nuclear Criticality Safety. * All processes and operations involving significant quantities of fissile materials are * described in current procedures approved by line management. * Procedures contain approved criticality controls and limits, based on HSR-6 evaluations and recommendations. * Supervisors, operations personnel, and criticality safety officers have received

43

SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing  

SciTech Connect

Review of NMP-NCS-94-0087, ``Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,`` was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion.

Rathbun, R. [Westinghouse Savannah River Co., Aiken, SC (United States)

1994-04-26T23:59:59.000Z

44

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect

This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

1993-11-01T23:59:59.000Z

45

PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT  

SciTech Connect

Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

Low, M; Matthew02 Miller, M; Thomas Reilly, T

2007-04-30T23:59:59.000Z

46

Nuclear criticality safety modeling of an LEU deposit  

DOE Green Energy (OSTI)

The construction of the Oak Ridge Gaseous Diffusion Plant (now known as the K-25 Site) began during World War H and eventually consisted of five major process buildings: K-25, K-27, K-29, K-31, and K-33. The plant took natural (0.711% {sup 231}U) uranium as feed and processed it into both low-enriched uranium (LEU) and high-enriched uranium (HEU) with concentrations up to {approximately}93% {sup 231}U. The K-25 and K-27 buildings were shut down in 1964, but the rest of the plant produced LEU until 1985. During operation, inleakage of humid air into process piping and equipment caused reactions with gaseous uranium hexafluoride (UF{sub 6}) that produced nonvolatile uranyl fluoride (UO{sub 2}F{sub 2}) deposits. As part of shutdown, most of the uranium was evacuated as volatile UF{sub 6}. The UO{sub 2}F{sub 2} deposits remained. The U.S. Department of Energy has mitiated a program to unprove nuclear criticality safety by removing the larger enriched uranium deposits.

Haire, M.J.; Elam, K.R.; Jordan, W.C.; Dahl, T.L.

1996-11-01T23:59:59.000Z

47

Nuclear criticality safety program for environmental restoration projects  

SciTech Connect

The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center (FMPC), is located on a 1050 acre site approximately twenty miles northwest of Cincinnati, Ohio. The production area of the site covers approximately 136 acres in the central portion of the site. Surrounding the core production area is a buffer consisting of leased grazing land, reforested land, and unused areas. The uranium processing facility was designed and constructed in the early 1950s. During the period from 1952 to 1989 the site produced uranium feed material and uranium products used in the United States weapons complex. Production at the site ended in 1989, when the site was shut down for what was expected to be a short period of time. However, the FUTC was permanently shut down in 1991, and the site`s mission was changed from production to environmental restoration. The objective of this paper is to give an update on activities at the Fernald Site and to describe the Nuclear Criticality Safety issues that are currently being addressed.

Marble, R.C.; Brown, T.D.

1994-05-01T23:59:59.000Z

48

Nuclear criticality safety evaluation of SRS 9971 shipping package  

SciTech Connect

This evaluation is requested to revise the criticality evaluation used to generate Chapter 6 (Criticality Evaluation) of the Safety Analysis Report for Packaging (SARP) for shipment Of UO{sub 3} product from the Uranium Solidification Facility (USF) in the SRS 9971 shipping package. The pertinent document requesting this evaluation is included as Attachment I. The results of the evaluation are given in Attachment II which is written as Chapter 6 of a NRC format SARP.

Vescovi, P.J.

1993-02-01T23:59:59.000Z

49

Training and qualification program for nuclear criticality safety technical staff. Revision 1  

SciTech Connect

A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. All personnel who are to perform nuclear criticality safety technical work are required to participate in the program. The program includes both general nuclear criticality safety and plant specific knowledge components. Advantage can be taken of previous experience for that knowledge which is portable such as performance of computer calculations. Candidates step through a structured process which exposes them to basic background information, general plant information, and plant specific information which they need to safely and competently perform their jobs. Extensive documentation is generated to demonstrate that candidates have met the standards established for qualification.

Taylor, R.G.; Worley, C.A.

1997-03-05T23:59:59.000Z

50

Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory  

SciTech Connect

Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.

Monahan, S.P.; McLaughlin, T.P.

1997-05-01T23:59:59.000Z

51

International Safety Projects - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

52

Facility Safety Assessment - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

53

Safety - Vulnerability Assessment Team - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

54

Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear Safety information site that provides assistance and resources to field elements in implementation of requirements and resolving nuclear safety, facility safety, and quality assurance issues.

55

Resolution of the nuclear criticality safety issue for the Hanford site high-level waste tanks  

SciTech Connect

This paper describes the approach used to resolve the Nuclear Criticality Safety Issue for the Hanford Site high-level waste tanks. Although operational controls have been in place at the Hanford Site throughout its operating life to minimize the amount of fissile material discarded as waste, estimates of the total amount of plutonium that entered the waste tanks range from 500 to 1,000 kg. Nuclear criticality safety concerns were heightened in 1991 based on a review of waste analysis results and a subsequent U.S. Department of Energy 1399 review of the nuclear criticality program. Although the DOE review team concluded that there was no imminent risk of a criticality at the Hanford Site tank farms, the team also stated its concern regarding the lack of definitive knowledge of the fissile material inventory and distribution within the waste tanks and the lack of sufficient management support for the overall criticality safety program. An in-depth technical review of the nuclear criticality safety of the waste tanks was conducted to develop a defensible technical basis to ensure that waste tanks are subcritical. The review covered all relevant aspects of nuclear criticality safety including neutronics and chemical and physical phenomena of the waste form under aging waste conditions as well as during routine waste management operations. This paper provides a review of the technical basis to support the conclusion that given current plutonium inventories and operating conditions, a nuclear criticality is incredible. The DOE has been requested to close the Nuclear Criticality Safety Issue. The Defense Nuclear Facilities Safety Board is currently reviewing the technicalbasis.

Bratzel, D.R.

1997-01-07T23:59:59.000Z

56

International Cooperation on Safety of Nuclear Plants - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

57

Qualification of safety-critical systems in TVO nuclear power plants  

Science Conference Proceedings (OSTI)

Teollisuuden Voima Oy (TVO) operates two nuclear power plant units in Finland and has started to build a third one. The current nuclear power units have to continuously maintain and update existing instrumentation and control systems (I&C). Each new ... Keywords: FMECA, SPICE, instrumentation and control, qualification, safety-critical systems

Juha Halminen; Risto Nevalainen

2007-11-01T23:59:59.000Z

58

Office of Nuclear Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Safety (HS-30) Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us

59

Nuclear Criticality Safety Organization guidance for the development of continuing technical training. Revision 1  

SciTech Connect

The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in nuclear criticality safety at the Oak Ridge Y-12 Plant and throughout the DOE complex. Continuing technical training is training outside of the initial qualification program to address identified organization-wide needs. Typically, this training is used to improve organization performance in the conduct of business. This document provides guidelines for the development of the technical portions of the Continuing Training Program. It is not a step-by-step procedure, but a collection of considerations to be used during the development process.

Carroll, K.J.; Taylor, R.G.; Worley, C.A.

1997-05-20T23:59:59.000Z

60

Single parameter controls for nuclear criticality safety at the Oak Ridge Y-12 Plant  

SciTech Connect

At the Oak Ridge Y-12 Plant, there are numerous situations in which nuclear criticality safety must be assured and subcriticality demonstrated by some method other than the straightforward use of the double contingency principle. Some cases are cited, and the criticality safety evaluation of contaminated combustible waste collectors is considered in detail. The criticality safety evaluation for combustible collectors is based on applying one very good control to the one controllable parameter. Safety can only be defended when the contingency of excess density is limited to a credible value based on process knowledge. No reasonable single failure is found that will result in a criticality accident. The historically accepted viewpoint is that this meets double contingency, even though there are not two independent controls on the single parameter of interest.

Baker, J.S.; Peek, W.M.

1995-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nuclear criticality safety analysis summary report: The S-area defense waste processing facility  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) can process all of the high level radioactive wastes currently stored at the Savannah River Site with negligible risk of nuclear criticality. The characteristics which make the DWPF critically safe are: (1) abundance of neutron absorbers in the waste feeds; (2) and low concentration of fissionable material. This report documents the criticality safety arguments for the S-Area DWPF process as required by DOE orders to characterize and to justify the low potential for criticality. It documents that the nature of the waste feeds and the nature of the DWPF process chemistry preclude criticality.

Ha, B.C.

1994-10-21T23:59:59.000Z

62

Nuclear criticality safety in D and D operations: a Los Alamos experience  

SciTech Connect

Decommissioning operations at the Los Alamos National Laboratory require the interaction of several disciplines so that the effort to D&D radiological facilities can proceed unencumbered, on schedule, and within budget. Although playing a minor role, the Laboratory`s Nuclear Criticality Safety Group has provided criticality safety guidance to one such D&D team efficiently and cost-effectively. During the first major D&D effort at Los Alamos, a total of about 6 kilograms of uranium [U(93)] was recovered from a facility thought to contain only tens of grams.

Schlesser, J.A.

1996-12-31T23:59:59.000Z

63

The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project  

SciTech Connect

In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

64

The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project  

SciTech Connect

In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

65

Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory  

SciTech Connect

One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

J. D. Bess; J. B. Briggs; A. S. Garcia

2011-09-01T23:59:59.000Z

66

Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory  

SciTech Connect

One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

J. D. Bess; J. B. Briggs; A. S. Garcia

2011-09-01T23:59:59.000Z

67

Review of Nuclear Criticality Safety Requirements Implementation for Hanford Tank Farms Facility  

SciTech Connect

In November 1999, the Deputy Secretary of the Department of Energy directed a series of actions to strengthen the Department's ongoing nuclear criticality safety programs. A Review Plan describing lines of inquiry for assessing contractor programs was included. The Office of River Protection completed their assessment of the Tank Farm Contractor program in May 2000. This document supports that assessment by providing a compliance statement for each line of inquiry.

DEFIGH PRICE, C.

2000-08-09T23:59:59.000Z

68

Reactor Safety Testing and Analysis - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

69

Risk and Safety Assessments - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

70

Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel  

SciTech Connect

Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., <40 years). Extended storage (ES) time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k{sub eff}. Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

Marshall, William BJ J [ORNL; Wagner, John C [ORNL

2012-01-01T23:59:59.000Z

71

Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell  

SciTech Connect

The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

Williamson, T.G.

1994-10-17T23:59:59.000Z

72

Glossary of nuclear criticality terms  

SciTech Connect

This is a glossary of terms generally encountered in the literature of nuclear criticality and criticality safety. Terms sometimes misused are emphasized. 7 refs.

Paxton, H.C.

1989-10-01T23:59:59.000Z

73

DOE-STD-1135-99 Guidance for Nuclear Criticality Safety Engineer Training and Qualification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5-99 5-99 September 1999 DOE STANDARD GUIDANCE FOR NUCLEAR CRITICALITY SAFETY ENGINEER TRAINING AND QUALIFICATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1135-99 iii FOREWORD This Department of Energy Standard is required for use by all DOE Contractor criticality safety personnel. It contains guidelines that should be followed for NCS training and qualification

74

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility. Revision 1  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) will initially process Batch 1 sludge in the sludge-only processing mode, with simulated non-radioactive Precipitate Hydrolysis, Aqueous (PHA) product, without the risk of nuclear criticality. The dilute concentration of fissile material in the sludge combined with excess of neutron absorbers during normal operations make criticality throughout the whole process incredible. Subsequent batches of the DWPF involving radioactive precipitate slurry and PHA will require additional analysis. Any abnormal or upset process operations, which are not considered in this report and could potentially separate fissile material, must be individually evaluated. Scheduled maintenance operation procedures are not considered to be abnormal.

Ha, B.C.

1993-07-20T23:59:59.000Z

75

BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities  

Science Conference Proceedings (OSTI)

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

2012-03-01T23:59:59.000Z

76

Privatization of the gaseous diffusion plants and impacts on nuclear criticality safety administration  

SciTech Connect

The Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) on July 1, 1993. The USEC is a government-owned business that leases those Gaseous Diffusion Plant (GDP) facilities at the Portsmouth, Ohio, and Paducah, Kentucky, sites from the U.S. Department of Energy (DOE) that are required for enriching uranium. Lockheed Martin Utility Services is the operating contractor for the USEC-leased facilities. The DOE has retained use of, and regulation over, some facilities and areas at the Portsmouth and Paducah sites for managing legacy wastes and environmental restoration activities. The USEC is regulated by the DOE, but is currently changing to regulation under the U.S. Nuclear Regulatory Commission (NRC). The USEC is also preparing for privatization of the uranium enrichment enterprise. These changes have significantly affected the nuclear criticality safety (NCS) programs at the sites.

D`Aquila, D.M.; Holliday, R.T. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States); Dean, J.C. [Lockheed Martin Utility Services, Inc., Paducah, KY (United States)

1996-12-31T23:59:59.000Z

77

CRITICALITY SAFETY (CS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Objective CS.1 - A criticality safety program is established, sufficient numbers of qualified personnel are provided, and adequate facilities and equipment are available to ensure criticality safety support services are adequate for safe operations. (Core Requirements 1, 2, and 6) Criteria * Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented. * Operations support personnel for the criticality safety area are adequately staffed and trained. Approach Record Review: Review the documentation that establishes the Criticality Safety Requirements (CSRs) for appropriateness and completeness. Review for adequacy and completion the criticality safety personnel training records that indicate training on facility procedures and systems under

78

Tank waste remediation system nuclear criticality safety inspection and assessment plan  

SciTech Connect

This plan provides a management approved procedure for inspections and assessments of sufficient depth to validate that the Tank Waste Remediation System (TWRS) facility complies with the requirements of the Project Hanford criticality safety program, NHF-PRO-334, ''Criticality Safety General, Requirements''.

VAIL, T.S.

1999-04-06T23:59:59.000Z

79

Additional Studies of the Criticality Safety of Failed Used Nuclear Fuel  

Science Conference Proceedings (OSTI)

Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for periods potentially greater than 40 years. Extended storage (ES) time and irradiation to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, could result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. Criticality analyses are conducted considering representative UNF designs covering a range of enrichments and burnups in multiple cask systems. Prior work developed a set of failed fuel configuration categories and specific configurations were evaluated to understand trends and quantify the consequences of worst-case potential reconfiguration progressions. These results will be summarized here and indicate that the potential impacts on subcriticality can be rather significant for certain configurations (e.g., >20% keff). It can be concluded that the consequences of credible fuel failure configurations from ES or transportation following ES are manageable (e.g., <5% keff). The current work expands on these efforts and examines some modified scenarios and modified approaches to investigate the effectiveness of some techniques for reducing the calculated increase in keff. The areas included here are more realistic modeling of some assembly types and the effect of reconfiguration of some assemblies in the storage and transportation canister.

Marshall, William BJ J [ORNL; Wagner, John C [ORNL

2013-01-01T23:59:59.000Z

80

Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society  

Science Conference Proceedings (OSTI)

This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

Koponen, B.L.; Hampel, V.E.

1982-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear criticality safety controls for uranium deposits during D and D at the Oak Ridge Gaseous Diffusion Plant  

SciTech Connect

The US Department of Energy (DOE) Deputy Assistant Secretary of Energy for Environmental Management has issued a challenge to complete DOE environmental cleanup within a decade. The response for Oak Ridge facilities is in accordance with the DOE ten-year plan which calls for completion of > 95% of environmental management work by the year 2006. This will result in a 99% risk reduction and in a significant savings in base line costs in waste management (legacy waste); remedial action (groundwater, soil, etc.); and decontamination and decommissioning (D and D). It is assumed that there will be long-term institutional control of cascade equipment, i.e., there will be no walk away from sites, and that there will be firm radioactivity release limits by 1999 for recycle metals. An integral part of these plants is the removal of uranium deposits which pose nuclear criticality safety concerns in the shut down of the Oak Ridge Gaseous Diffusion Plant. DOE has initiated the Nuclear Criticality Stabilization Program to improve nuclear criticality safety by removing the larger uranium deposits from unfavorable geometry equipment. Nondestructive assay (NDA) measurements have identified the location of these deposits. The objective of the K-25 Site Nuclear Criticality Stabilization Program is to remove and place uranium deposits into safe geometry storage containers to meet the double contingency principle. Each step of the removal process results in safer conditions where multiple controls are present. Upon completion of the Program, nuclear criticality risks will be greatly reduced.

Haire, M.J.; Jordan, W.C. [Oak Ridge National Lab., TN (United States); Jollay, L.J. III; Dahl, T.L. [Oak Ridge K-25 Site, TN (United States)

1997-02-01T23:59:59.000Z

82

Nuclear criticality safety aspects of emergency response at the Los Alamos National Laboratory.  

SciTech Connect

Emergency response at Los Alamos National Laboratory (LANL) is handled through a graded approach depending on the specific emergency situation . LANL maintains a comprehensive capability to respond to events ranging from minor facility events (alerts) through major community events (general emergencies), including criticality accidents . Criticality safety and emergency response apply to all activities involving significant quantities of fissile material at LANL, primarily at Technical Area 18 (TA-18, the Los Alamos Critical Experiments Facility) and Technical Area 55 (TA-55, the Plutonium Facility). This discussion focuses on response to a criticality accident at TA-55; the approach at TA-18 is comparable .

Baker, J. S. (James S.)

2003-01-01T23:59:59.000Z

83

The Effect of Measurement Bias on Nuclear Criticality Safety Calculations for WIPP TRUPACT-II Shipments  

Science Conference Proceedings (OSTI)

Current nuclear criticality safety limit requirements for transporting TRUPACT-II waste containers to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) specify that the {sup 239}Pu fissile gram equivalent (FGE) plus two times its measurement error must be {TRUPACT-II FGE measurement error value is to take the square root of the sum of the squared error values for the individual containers (often called root-sum-squares or simply RSS). However, to the extent that the individual drum measurements contain common bias effects (e.g., due to common calibration or other adjustment factors), the corresponding measurement errors are correlated, and simple RSS calculations will underestimate the true error in the TRUPACT-II FGE value.The RSS calculations assume independence, while common bias effects can induce strong correlations between the errors in measurements. Significant bias effects can occur when the matrix characteristics for a particular waste type are not fully accounted for in the measurement process. Depending on the relative size of the bias error compared to precision error, the true measurement error can be greater than twice that calculated by RSS. In such cases, the FGE shipping requirement may not be met. To avoid underestimating the error, bias components should be estimated and propagated separately (combined only at the final step in the TRUPACT-II FGE calculation), or the effect of bias on covariance between measurements must be calculated. These covariance terms then need to be included in the final uncertainty calculations.

Blackwood, Larry G.; Harker, Yale D. [Idaho National Engineering and Environmental Laboratory (United States)

2000-12-15T23:59:59.000Z

84

OECD/NEA working party on nuclear criticality safety: Challenge of new realities  

SciTech Connect

New issues in criticality safety continue to emerge as spent fuel storage facilities reach the saturation point, fuel enrichments and burn-ups increase and new types of plutonium-carrying fuels are being developed. The new challenges related to the manipulation, transportation and storage of fuel demand further work to improve models predicting behavior through new experiments, especially where there is a lack of data in the present databases. This article summarizes the activities of the OECD/NEA working groups that coordinate and carry out work in the domain of criticality safety. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burn-up credit. This is aimed toward improving safety and identifying economic solutions to issues concerning the back end of the fuel cycle.

Nomura, Y. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Brady, M.C. [DE and S Hanford Inc., Richland, WA (United States); Briggs, J.B. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Sartori, E. [OECD/NEA Data Bank, Issy-les-Moulineaux (France)

1998-03-01T23:59:59.000Z

85

Criticality safety aspects of decontamination and decommissioning at defense nuclear facilities  

SciTech Connect

Defense nuclear facilities have operated for forty years with a well-defined mission to produce weapons components for the nation. With the end of the cold war, the facilities` missions have changed to one of decontamination and decommissioning. Off-normal operations and use of new procedures, such as will exist during these activities, have often been among the causal factors in previous criticality accidents at process facilities. This paper explores the similarities in causal factors in previous criticality accidents to the conditions existing in current defense nuclear facilities undergoing the transition to decontamination and decommissioning. Practices to reduce the risk to workers, the public, and the environment are recommended.

Croucher, D.W.

1994-02-01T23:59:59.000Z

86

Nuclear criticality information system  

SciTech Connect

The nuclear criticality safety program at LLNL began in the 1950's with a critical measurements program which produced benchmark data until the late 1960's. This same time period saw the rapid development of computer technology useful for both computer modeling of fissile systems and for computer-aided management and display of the computational benchmark data. Database management grew in importance as the amount of information increased and as experimental programs were terminated. Within the criticality safety program at LLNL we began at that time to develop a computer library of benchmark data for validation of computer codes and cross sections. As part of this effort, we prepared a computer-based bibliography of criticality measurements on relatively simple systems. However, it is only now that some of these computer-based resources can be made available to the nuclear criticality safety community at large. This technology transfer is being accomplished by the DOE Technology Information System (TIS), a dedicated, advanced information system. The NCIS database is described.

Koponen, B.L.; Hampel, V.E.

1981-11-30T23:59:59.000Z

87

Nuclear Safety Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search Approved Standards Recently Approved RevCom...

88

The International Criticality Safety Benchmark Evaluation Project  

SciTech Connect

Most safety concerns associated with operations at nuclear facilities are very similar to the safety concerns associated with operations at non-nuclear facilities. The potential for a nuclear criticality accident is one concern that is unique to the nuclear industry. However, if managed properly, the risk of a criticality accident can be reduced to an acceptable level. In fact, the risk of a criticality accident can generally be reduced to a level that is much lower than the risk associated with non-nuclear activities that have similar consequences.

Briggs, Joseph Blair; Dean, V. F.; Presic, M.

2002-10-01T23:59:59.000Z

89

NCIS - a Nuclear Criticality Information System (overview)  

SciTech Connect

A Nuclear Criticality Information System (NCIS) is being established at the Lawrence Livermore National Laboratory (LLNL) in order to serve personnel responsible for safe storage, transport, and handling of fissile materials and those concerned with the evaluation and analysis of nuclear, critical experiments. Public concern for nuclear safety provides the incentive for improved access to nuclear safety information.

Koponen, B.L.; Hampel, V.E.

1983-07-01T23:59:59.000Z

90

Criticality safety considerations in the geologic disposal of spent nuclear fuel assemblies  

SciTech Connect

Features of geologic disposal which hamper the demonstration that criticality cannot occur therein include possible changes of shape and form, intrusion of water as a neutron moderator, and selective leaching of spent fuel constituents. If the criticality safety of spent fuel disposal depends on burnup, independent measurements verifying the burnup should be performed prior to disposal. The status of nondestructive analysis method which might provide such verification is discussed. Calculations were performed to assess the potential for increasing the allowed size of a spent fuel disposal canister if potential water intrusion were limited by close-packing the enclosed rods. Several factors were identified which severely limited the potential of this application. The theoretical limit of hexagonal close-packing cannot be achieved due to fuel rod bowing. It is concluded that disposal canisters should be sized on the basis of assumed optimum moderation. Several topics for additional research were identified during this limited study.

Gore, B.F.; McNair, G.W.; Heaberlin, S.W.

1980-05-01T23:59:59.000Z

91

2011 Annual Criticality Safety Program Performance Summary  

SciTech Connect

The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

Andrea Hoffman

2011-12-01T23:59:59.000Z

92

2011 Annual Criticality Safety Program Performance Summary  

SciTech Connect

The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Progra

Andrea Hoffman

2011-12-01T23:59:59.000Z

93

Lecture notes for criticality safety  

Science Conference Proceedings (OSTI)

These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

Fullwood, R.

1992-03-01T23:59:59.000Z

94

AIRCRAFT NUCLEAR PROPULSION DEPARTMENT NUCLEAR SAFETY GUIDE  

SciTech Connect

The limitations and operating techniques which were in effect at ANPD for the prevention of criticality accidents are summarized. The standards followed by the atomic industry were followed; however, the safe mass of U/sup 235/ moderated with beryllium oxide and hydrogeneous materials was based upon criticality experiments conducted at ANPD. Although the guide was primarily for the use of the ANPD nuclear safety control organization, it may also be of assistance to designers and operating management in maintaining nuclear safety. (auth)

Pryor, W.A.

1961-06-01T23:59:59.000Z

95

Review of the Nevada National Security Site Criticality Safety...  

NLE Websites -- All DOE Office Websites (Extended Search)

NCSP Nuclear Criticality Safety Program NFO Nevada Field Office NNSA National Nuclear Security Administration NNSS Nevada National Security Site NP Noteworthy Practice NSO Nevada...

96

Assessment of criticality safety in DOE facilities  

SciTech Connect

A study was made to assess nuclear criticality safety in DOE Facilities and to assess the effects of various types of possible improvements. The accident statistics in DOE operations show that the fatalities caused by Nuclear Criticality accidents are small compared to other accident categories. The data show the safety performance after 1965, compared to prior years, was considerably improved indicating that overall safety programs have been effective. Data on criticality safety violations were collected from eight major facilities. These data were categorized by severity indexes and causes were assigned. A total of 421 violations were used in the data base for analysis in a fault tree model. Calculations were made using the fault tree methodology to show expected improvement in safety (reduction in probability of a criticality accident) for a fixed reduction in the number of criticality violations. Based on this analysis, about equal emphasis should be placed on reducing mechanical failures and operator errors as efforts in these two areas will likely produce the most significant improvements in safety. A criticality safety infraction form was prepared to facilitate uniformity in recording data on infractions for subsequent analysis. Discussions with Nuclear Safety Specialists working in the field instilled confidence that criticality safety is being handled by concerned, capable, and knowledgable persons.

Lloyd, R.C.; Clayton, E.D.; Converse, W.E.; Kottwitz, D.A.

1981-05-01T23:59:59.000Z

97

Criticality safety basics, a study guide  

SciTech Connect

This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

V. L. Putman

1999-09-01T23:59:59.000Z

98

Criticality safety basics, a study guide  

SciTech Connect

This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

V. L. Putman

1999-09-01T23:59:59.000Z

99

Office of Nuclear Facility Safety Programs: Nuclear Facility Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety (HS-30) Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us » Facility Representative Program

100

Criticality Safety Evaluation of a LLNL Training Assembly for Criticality Safety (TACS)  

SciTech Connect

Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, ''Guidance for Nuclear Criticality Safety Engineer Training and Qualification''. This document is a criticality safety evaluation of the training activities (or operations) associated with HS-3200, ''Laboratory Class for Criticality Safety''. These activities utilize the Training Assembly for Criticality Safety (TACS). The original intent of HS-3200 was to provide LLNL fissile material handlers with a practical hands-on experience as a supplement to the academic training they receive biennially in HS-3100, ''Fundamentals of Criticality Safety'', as required by ANSI/ANS-8.20-1991, ''Nuclear Criticality Safety Training''. HS-3200 is to be enhanced to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program.

Heinrichs, D P

2006-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AGING FACILITY CRITICALITY SAFETY CALCULATIONS  

Science Conference Proceedings (OSTI)

The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

C.E. Sanders

2004-09-10T23:59:59.000Z

102

Nuclear Safety Regulatory Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting DOE Directives & Manuals DOE Standards Central Technical Authorities (CTA) Office of Health, Safety, and Security (HSS) Line Management SSO/ FAC Reps 48 CFR 970 48 CFR 952 Federal Acquisition Regulations External Oversight *Defense Nuclear Facility

103

Criticality Safety Controls Implementation Inspection Criteria, Approach,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Controls Implementation Inspection Criteria, Criticality Safety Controls Implementation Inspection Criteria, Approach, and Lines of Inquiry, October 23, 2009, (HSS CRAD 64-18, Rev 0 ) Criticality Safety Controls Implementation Inspection Criteria, Approach, and Lines of Inquiry, October 23, 2009, (HSS CRAD 64-18, Rev 0 ) DOE has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as Specific Administrative Controls (SACs) (see HSS CRAD 64-32). Also, in instances when the review addresses functionality and operability of structures, systems, and components (SSCs) of nuclear facilities specifically required

104

THE FUNDAMENTALS OF CRITICALITY. Pt. E of STUDIES IN NUCLEAR SAFETY. Lectures Presented at the Nuclear Safety Training School Conducted by Union Carbide Nuclear Company, June 3-14, 1957  

SciTech Connect

The basic considerations in determining criticality are outlined. Fundamentals of nuclear properties, neutronnuclear interactions, the criticality conditions, and heterogeneous systems are discussed. (T.R.H.)

Osborn, R.K.

1958-10-31T23:59:59.000Z

105

Criticality safety and facility design considerations  

SciTech Connect

Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems.

Waltz, W.R.

1991-06-01T23:59:59.000Z

106

Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage  

SciTech Connect

This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concluded that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.

Hobbs, D.T.; Davis, J.R.

1994-05-27T23:59:59.000Z

107

Y-12 PLANT NUCLEAR SAFETY HANDBOOK  

SciTech Connect

Information needed to solve nuclear safety problems is condensed into a reference book for use by persons familiar with the field. Included are a glossary of terms; useful tables; nuclear constants; criticality calculations; basic nuclear safety limits; solution geometries and critical values; metal critical values; criticality values for intermediate, heterogeneous, and interacting systems; miscellaneous and related information; and report number, author, and subject indexes. (C.H.)

Wachter, J.W. ed.; Bailey, M.L.; Cagle, T.J.; Mee, W.T.; Pletz, R.H.; Welfare, F.G.; Youngblood, B.J. comps

1963-03-27T23:59:59.000Z

108

Nuclear safety of critical assemblies with a neutron absorber in a cavity  

Science Conference Proceedings (OSTI)

Full-scale direct calculations were made of the energy release in various highly ..... the latent autocatalysis effect manifests itself with particular intensity in critical  ...

109

FAQS Reference Guide – Criticality Safety  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the April 2009 edition of DOE-STD-1173-2009, Criticality Safety Functional Area Qualification Standard.

110

Reference handbook: Nuclear criticality  

SciTech Connect

The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

1991-12-06T23:59:59.000Z

111

SAFETY INSTRUMENTED FUNCTIONS AS CRITICALITY DEFENSES  

SciTech Connect

The objective of this paper is to share the SRS methodology for identifying the reliability requirements and documenting the expected performance of Safety Instrumented Functions (SIFs) used as criticality defenses. Nuclear Criticality SIFs are comprised of sensors, logic solvers, and final control elements, which may be either automatic or manual, to detect a process hazard and respond to prevent a criticality. The Savannah River Site (SRS) has invoked the chemical process industry safety standard (ANSI/ISA 84.00.01) for the design of safety significant instrumented systems. The ISA standard provides a graded approach to design based on the amount of risk reduction that is required of an SIF. SRS is embarking on application of this standard to nuclear criticality defenses, thus integrating criticality safety requirements with verifiable design methodology. Per the DOE G 421.1-1 discussion of the double contingency principle, guidance for a single contingency barrier includes, ''The estimated probability that the control will fail (when called upon for protection) is not greater than 1 in 100 demands''. The application of this standard to nuclear criticality SIFs will provide clear requirements in terms of safety availability and testing to assure that the instrumented criticality system as designed, installed, and maintained will meet is performance requirements. The paper identifies the numerous challenges presented by this initiative and the benefits of this approach.

Suttinger, L; William Hearn, W

2007-03-26T23:59:59.000Z

112

DOE/EM Criticality Safety Needs Assessment  

SciTech Connect

The issue of nuclear criticality safety (NCS) in Department of Energy Environmental Management (DOE/EM) fissionable material operations presents challenges because of the large quantities of material present in the facilities and equipment that are committed to storage and/or material conditioning and dispositioning processes. Given the uncertainty associated with the material and conditions for many DOE/EM fissionable material operations, ensuring safety while maintaining operational efficiency requires the application of the most-effective criticality safety practices. In turn, more-efficient implementation of these practices can be achieved if the best NCS technologies are utilized. In 2002, DOE/EM-1 commissioned a survey of criticality safety technical needs at the major EM sites. These needs were documented in the report Analysis of Nuclear Criticality Safety Technology Supporting the Environmental Management Program, issued May 2002. Subsequent to this study, EM safety management personnel made a commitment to applying the best and latest criticality safety technology, as described by the DOE Nuclear Criticality Safety Program (NCSP). Over the past 7 years, this commitment has enabled the transfer of several new technologies to EM operations. In 2008, it was decided to broaden the basis of the EM NCS needs assessment to include not only current needs for technologies but also NCS operational areas with potential for improvements in controls, analysis, and regulations. A series of NCS workshops has been conducted over the past years, and needs have been identified and addressed by EM staff and contractor personnel. These workshops were organized and conducted by the EM Criticality Safety Program Manager with administrative and technical support by staff at Oak Ridge National Laboratory (ORNL). This report records the progress made in identifying the needs, determining the approaches for addressing these needs, and assimilating new NCS technologies into EM fissionable material operations. In addition, the report includes projections of future EM needs and associted recommendations.

Westfall, Robert Michael [ORNL; Hopper, Calvin Mitchell [ORNL

2011-02-01T23:59:59.000Z

113

Nuclear criticality accidents  

SciTech Connect

Criticality occurs when a sufficient quantity of fissionable material is accumulated, and it results in the liberation of nuclear energy. All process accidents have involved plutonium or highly enriched uranium, as have most of the critical experiment accidents. Slightly enriched uranium systems require much larger quantities of material to achieve criticality. An appreciation of criticality accidents should be based on an understanding of factors that influence criticality, which are discussed in this article. 11 references.

Smith, D.R. (Los Alamos National Laboratory, New Mexico (Unites States))

1991-10-01T23:59:59.000Z

114

Nuclear Safety Information Dashboard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into...

115

Office of Nuclear Safety | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Office of Nuclear Safety Mission The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of...

116

Nuclear and Facility Safety Policy Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

117

Nuclear Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Basis Safety Basis FUNCTIONAL AREA GOAL: A fully compliant Nuclear Facility Safety Basis. Program is implemented and maintained across the site. REQUIREMENTS: ï‚· 10 CFR 830 Subpart B Guidance: ï‚· DOE STD 3009 ï‚· DOE STD 1104 ï‚· DOE STD ï‚· DOE G 421.1-2 Implementation Guide For Use in Developing Documented Safety Analyses To Meet Subpart B Of 10 CFR 830 ï‚· DOE G 423.1-1 Implementation Guide For Use In Developing Technical Safety Requirements ï‚· DOE G 424.1-1 Implementation Guide For Use In Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation The site contractor has developed an up-to-date, comprehensive, compliant, documented nuclear facility safety basis and associated implementing mechanisms and procedures for all required nuclear facilities and activities (10 CFR

118

Microsoft Word - Nuclear Safety Reporting Criteria.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of other TSROSR requirement (3) Violation of DSA hazard control B. Documented Safety Analysis (DSA) Inadequacies (1) Positive unreviewed safety question C. Nuclear Criticality...

119

Technical information resources for criticality safety  

SciTech Connect

This paper will discuss some basic technical information resources that would be helpful to the novice nuclear criticality safety specialist. These include bibliographic and benchmark compilations, handbooks, and online resources. The specialist should also be familiar with benchmark quality experimental data needed for code validation. This paper will also discuss the critical experiment data obtained in the 1950s and 1960s at the Lawrence Livermore National Laboratory.

Heinrichs, D.P.; Koponen, B.L.

1997-06-25T23:59:59.000Z

120

Nuclear regulation and safety  

SciTech Connect

Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed. (DLC)

Hendrie, J.M.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the specific design chosen (see Assumption 3.4). A more current design will be included in the next revision of the criticality calculations for the Aging Facility. In addition, this calculation is valid for the current design as provided in Attachment III of the DTF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document.

C.E. Sanders

2005-05-17T23:59:59.000Z

122

Nuclear Criticality Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

design and operations of a variety of Argonne facilities and operations: the Alpha- Gamma Hot Cell Facility (AGHCF), Chemical Engineering Division (CMT) separa- tion technology...

123

Surveillance Guide - NSS 18.1 Criticality Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRITICALITY SAFETY CRITICALITY SAFETY 1.0 Objective The objective of this surveillance is to ensure that effective programs have been developed and implemented to protect the public and DOE's workers from unplanned criticality. The programs should minimize the potential for inadvertent criticality, provide appropriate training for personnel on criticality hazards and procedures for preventing inadvertent criticality, and provide appropriate systems to detect such criticalities and warn workers. The surveillance activities provide a basis for evaluating the effectiveness of policies, programs, and procedures and for reviewing compliance with specific DOE requirements. 2.0 References 2.1 DOE 5480.24, Nuclear Criticality Safety

124

CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP  

SciTech Connect

With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5, Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified i

Kessler, S

2009-04-21T23:59:59.000Z

125

Nuclear multifragmentation critical exponents  

SciTech Connect

In a recent Letter, cited in a reference, the EoS collaboration presented data of fragmentation of 1 A GeV gold nuclei incident on carbon. By analyzing moments of the fragment charge distribution, the authors claim to determine the values of the critical exponents {gamma}, {beta}, and {tau} for finite nuclei. These data represent a crucial step forward in the understanding of the physics of nuclear fragmentation. However, as shown in this paper, the analysis presented in the cited reference is not sufficient to support the claim that the critical exponents for nuclear fragmentation have been unambiguously determined.

Bauer, W. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[National Superconducting Cyclotron Lab., East Lansing, MI (United States); Friedman, W.A. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

1995-12-31T23:59:59.000Z

126

Criticality safety considerations for low-level-waste facilities  

SciTech Connect

The nuclear criticality safety for handling and burial of certain special nuclear materials (SNM) at low-level-waste (LLW) facilities is licensed by the US Nuclear Regulatory Commission (NRC). Recently, Oak Ridge National Laboratory (ORNL) staff assisted the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, in developing technical specifications for the nuclear criticality safety of {sup 235}U and {sup 235}Pu in LLW facilities. This assistance resulted in a set of nuclear criticality safety criteria that can be uniformly applied to the review of LLW package burial facility license applications. These criteria were developed through the coupling of the historic surface-density criterion with current computational technique to establish safety criteria considering SNM material form and reflector influences. This paper presents a summary of the approach used to establish and to apply the criteria to the licensing review process.

Hopper, C.M.

1995-04-01T23:59:59.000Z

127

Nuclear Safety Workshop Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Summary Workshop Summary September 19-20, 2012 1 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme

128

Use of International Criticality Safety Benchmark Evaluation Project Data for Validation of the Nuclear Data Library BAS  

SciTech Connect

Effective neutron multiplication factors for 66 critical systems were calculated in order to test the neutron data library BAS. The class of systems chosen for the k{sub eff} calculations includes unreflected metal uranium and plutonium systems and systems that were reflected by {sup 238}U, Fe, Al, Ti, Pb, Be, C, CH{sub 2}, and H{sub 2}O. Configurations and materials used in these critical systems were taken from the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. The calculations with BAS were performed using the codes PRIZMA-D and MCNP.4a. For comparison, the calculations were repeated using MCNP.4a with ENDF/B5 and ENDF/B6 cross-section data. A comparison of all results is provided.

Shmakov, V.M.; Lyutov, V.D.; Bekhterev, V.A. [Russian Federal Nuclear Center (Russian Federation)

2003-10-15T23:59:59.000Z

129

Nuclear Safety Management  

NLE Websites -- All DOE Office Websites (Extended Search)

[6450-01-P] [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 830 Nuclear Safety Management AGENCY: Department of Energy (DOE). ACTION: Final Rule. SUMMARY: The Department of Energy (DOE) is issuing a final rule regarding Nuclear Safety Management. This Part establishes requirements for the safe management of DOE contractor and subcontractor work at the Department's nuclear facilities. Today's rule adopts the sections that will make up the generally applicable provisions for Part 830. It also adopts the specific section on provisions for developing and implementing a formalized quality assurance program. EFFECTIVE DATE: This regulation becomes effective [insert 30 days after publication in the Federal Register.] FOR FURTHER INFORMATION CONTACT: Frank Hawkins, U.S. Department of Energy, Nuclear Safety

130

Criticality Safety Information Meeting for the Hanford Plutonium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Security (HSS), conducted a criticality safety information meeting with Hanford site criticality safety engineers on May 14, 2012, to discuss criticality safety...

131

Nuclear Data for Criticality Safety and Reactor Applications at the Gaerttner LINAC Center Y. Danon, R.M. Bahran, E.J. Blain, A.M. Daskalakis, B.J. McDermott, D.G. Williams  

E-Print Network (OSTI)

Nuclear Data for Criticality Safety and Reactor Applications at the Gaerttner LINAC Center Y. Danon INTRODUCTION The Rensselaer Polytechnic Institute (RPI) nuclear data program utilizes a 60 MeV pulsed electron Linear Accelerator (LINAC) to produce short pulses of neutrons for nuclear data measurements1 . Neutron

Danon, Yaron

132

A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF sub 6  

Science Conference Proceedings (OSTI)

Moderation control for maintaining nuclear criticality safety in 2-1/2-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a safetime,'' for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations. 2 refs., 5 figs., 1 tab.

Newvahner, R.L. (Portsmouth Gaseous Diffusion Plant, OH (United States)); Pryor, W.A. (PAI Corp., Oak Ridge, TN (United States))

1991-08-16T23:59:59.000Z

133

The Misuse of Spreadsheets in the Nuclear Fuel Industry: The Falsification of Safety Critical Data Using Spreadsheets at British Nuclear Fuels Limited BNFL  

Science Conference Proceedings (OSTI)

This paper considers the management, technological and human factor issues that led to the BNFL fuel rod spreadsheet data falsification incident in 1999. BNFL discovered in 1999 that some data supporting quality assurance and safety processes had been ... Keywords: British Nuclear Fuels Limited BNFL, Falsifying Data, Fraud, Mangerial Failings, Spreadsheet Misuse

Simon Thorne

2013-07-01T23:59:59.000Z

134

Office of Nuclear Safety | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Office of Nuclear Safety Organization Office of Health and Safety Office of Environmental Protection, Sustainability Support & Corporate Safety Analysis Office of...

135

CRITICALITY SAFETY QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Criticality Safety Qualification Standard Reference Guide APRIL 2011 This page is intentionally blank. Table of Contents i FIGURES ...................................................................................................................................... iii PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1 PREFACE ...................................................................................................................................... 1 ACKNOWLEDGEMENTS ......................................................................................................... 2

136

CRITICALITY SAFETY QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 Page 1 of 47 9, 2010 Page 1 of 47 Criticality Safety Qualification Standard Reference Guide 2010 For use with DOE-STD 1173-2009, CRITICALITY SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD September 9, 2010 Page 2 of 47 PURPOSE....................................................................................................................... 5 SCOPE............................................................................................................................ 5 1. Criticality safety personnel must demonstrate a working-level knowledge of the fission process. .......................................................................................................... 6 2. Criticality safety personnel must demonstrate a working-level knowledge of the

137

Language choice for safety critical applications  

Science Conference Proceedings (OSTI)

The programming languages currently most popular among software engineers for writing safety critical applications are C and, more recently, C++. The Ada language has been designed with software safety in mind. Although Ada is not perfect concerning ... Keywords: safety, safety-critical

James S. Rogers

2011-11-01T23:59:59.000Z

138

Nuclear Data and Measurement Series - a method to construct covariance files in ENDF/B format for criticality safety applications.  

DOE Green Energy (OSTI)

Argonne National Laboratory is providing support for a criticality safety analysis project that is being performed at Oak Ridge National Laboratory. The ANL role is to provide the covariance information needed by ORNL for this project. The ENDF/B-V evaluation is being used for this particular criticality analysis. In this evaluation, covariance information for several isotopes or elements of interest to this analysis is either not given or needs to be reconsidered. For some required materials, covariance information does not exist in ENDF/B-V: {sup 233}U, {sup 236}U, Zr, Mg, Gd, and Hf. For others, existing covariance information may need to be re-examined in light of the newer ENDF/B-V evaluation and recent experimental data. In this category are the following materials: {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, Fe, H, C, N, O, Al, Si, and B. A reasonable estimation of the fractional errors for various evaluated neutron cross sections from ENDF/B-V can be based on the comparisons between the major more recent evaluations including ENDF/B-VI, JENDL3.2, BROND2.2, and JEF2.2, as well as a careful examination of experimental data. A reasonable method to construct correlation matrices is proposed here. Coupling both of these considerations suggests a method to construct covariances files in ENDF/B format that can be used to express uncertainties for specific ENDF/B-V cross sections.

Naberejnev, D.G.; Smith, D.L.

1999-07-30T23:59:59.000Z

139

Use of a Web Site to Enhance Criticality Safety Training  

SciTech Connect

Currently, a website dedicated to enhancing communication and dissemination of criticality safety information is sponsored by the U.S. Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP). This website was developed as part of the DOE response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The website is the focal point for DOE nuclear criticality safety (NCS) activities, resources and references, including hyperlinks to other sites actively involved in the collection and dissemination of criticality safety information. The website is maintained by the Lawrence Livermore National Laboratory (LLNL) under auspices of the NCSP management. One area of the website contains a series of Nuclear Criticality Safety Engineer Training (NCSET) modules. During the past few years, many users worldwide have accessed the NCSET section of the NCSP website and have downloaded the training modules as an aid for their training programs. This trend was remarkable in that it points out a continuing need of the criticality safety community across the globe. It has long been recognized that training of criticality safety professionals is a continuing process involving both knowledge-based training and experience-based operations floor training. As more of the experienced criticality safety professionals reach retirement age, the opportunities for mentoring programs are reduced. It is essential that some method be provided to assist the training of young criticality safety professionals to replenish this limited human expert resource to support on-going and future nuclear operations. The main objective of this paper is to present the features of the NCSP website, including its mission, contents, and most importantly its use for the dissemination of training modules to the criticality safety community. We will discuss lessons learned and several ideas for future development in the area of web-based training for criticality safety professionals. Our effort is intended to stimulate a discussion of ideas and solicit participation in the development of the next generation of a web-based criticality training site that can be used to assist the training of newcomers to this important safety discipline.

Huang, S T; Morman, J

2003-08-04T23:59:59.000Z

140

National Nuclear SecurityAdministration's Nuclear ExplosiveSafety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear SecurityAdministration's Nuclear ExplosiveSafety Study Program, IG-0581 National Nuclear SecurityAdministration's Nuclear ExplosiveSafety Study Program, IG-0581 To...

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Applicability of ZPR critical experiment data to criticality safety  

SciTech Connect

More than a hundred zero power reactor (ZPR) critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9 and ZPPR fast critical assembly facilities. To be sure, the original reason for performing these critical experiments was to support fast reactor development. Nevertheless, data from some of the assemblies are well suited to form the basis for valuable, new criticality safety benchmarks. The purpose of this paper is to describe the ZPR data that would be of benefit to the criticality safety community and to explain how these data could be developed into practical criticality safety benchmarks.

Schaefer, R.W.; Aumeier, S.E.; McFarlane, H.F.

1995-12-31T23:59:59.000Z

142

CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety - Idaho Accelerated Retrieval Project Criticality Safety - Idaho Accelerated Retrieval Project Phase II CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Criticality Safety program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II

143

CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Criticality Safety program at the Y-12 - Enriched Uranium Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

144

CRAD, Criticality Safety - Los Alamos National Laboratory TA 55 SST  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety - Los Alamos National Laboratory TA 55 SST Criticality Safety - Los Alamos National Laboratory TA 55 SST Facility CRAD, Criticality Safety - Los Alamos National Laboratory TA 55 SST Facility June 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Criticality Safety program at the Los Alamos National Laboratory, TA 55 SST Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Criticality Safety - Los Alamos National Laboratory TA 55 SST Facility More Documents & Publications CRAD, Configuration Management - Los Alamos National Laboratory TA 55 SST

145

Nuclear reactor safety device  

DOE Patents (OSTI)

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01T23:59:59.000Z

146

DOE-STD-3007-93 CN-1; DOE Standard Guidelines For Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-93 7-93 November 1993 CHANGE NOTICE NO. 1 September 1998 DOE STANDARD GUIDELINES FOR PREPARING CRITICALITY SAFETY EVALUATIONS AT DEPARTMENT OF ENERGY NON-REACTOR NUCLEAR FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Order No. DE98003918 Change Notice No. 1 DOE-STD-3007-93 September 1998

147

Principles of safety. Safety in general, criticality risk in perspective  

SciTech Connect

The role of management in the responsibility for training personnel in the fundamentals of safety and accident prevention is discussed. Program for radiation protection, with emphasis on criticality safety, are discussed briefly. (CH)

Reider, R.

1974-04-30T23:59:59.000Z

148

Nuclear Safety and Global Cooperation.  

E-Print Network (OSTI)

??The thesis of is to strengthen the capacity building of nuclear safety and disaster prevention all over the world from a preventive perspective, and to… (more)

Chang, Yu-shan

2012-01-01T23:59:59.000Z

149

FAQS Reference Guide – Criticality Safety (NNSA)  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide has been developed to address the competency statements in DOE-STD-1173-2009, Criticality Safety Functional Area Qualification Standard.

150

July 1995, Department's Criticality Safety Assessment Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Company at the Lynchburg Research Center; and two-and-a-half years as a Criticality Safety Analyst for General Electric Company at the Wilmington Fuel Fabrication Facility....

151

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

152

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

153

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

154

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

155

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

156

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

157

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

158

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

159

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

160

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Status, plans, and capabilities of the Nuclear Criticality Information System  

SciTech Connect

The Nuclear Criticality Information System (NCIS), in preparation since 1981, has substantially evolved and now contains a growing number of resources pertinent to nuclear criticality safety. These resources include bibliographic compilations, experimental data, communications media, and the International Directory of Nuclear Criticality Safety Personnel. These resources are part of the LLNL Technology Information System (TIS) which provides the host computer for NCIS. The TIS provides nationwide access to authorized members of the nuclear criticality community via interactive dial-up from computer terminals that utilize communication facilities such as commercial and federal telephone networks, toll-free WATS lines, TYMNET, and the ARPANET/MILNET computer network.

Koponen, B.L.

1984-01-06T23:59:59.000Z

162

Office of Nuclear Safety - Directives  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives The HSS Office of Nuclear Safety is the responsible office for the development, interpretation, and revision of the following Department of Energy (DOE) directives. Go to DOE's Directives Web Page to view these directives. DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

163

Nuclear reactor safety device  

DOE Patents (OSTI)

A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

Hutter, E.

1983-08-15T23:59:59.000Z

164

Nuclear safety guide TID-7016 Revision 2  

SciTech Connect

The present revision of TID-7016 Nuclear Safety Guide is discussed. This Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available, information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the former Guides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information.

Thomas, J.T.

1980-01-01T23:59:59.000Z

165

Nuclear Safety Research and Development (NSR&D) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

166

2012 Nuclear Safety Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Nuclear Safety 2012 Nuclear Safety Workshop 2012 Nuclear Safety Workshop 1 of 5 Podonsky This is the Title 2 of 5 This is the Title DOE Deputy Secretary Daniel...

167

Criticality Safety Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1173-2009 April 2009 DOE STANDARD CRITICALITY SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1173-2009 ii This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1173-2009 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible for reviewing and approving the qualification standard for Department-wide

168

Total Risk Approach in Applying PRA to Criticality Safety  

SciTech Connect

As nuclear industry continues marching from an expert-base support to more procedure-base support, it is important to revisit the total risk concept to criticality safety. A key objective of criticality safety is to minimize total criticality accident risk. The purpose of this paper is to assess key constituents of total risk concept pertaining to criticality safety from an operations support perspective and to suggest a risk-informed means of utilizing criticality safety resources for minimizing total risk. A PRA methodology was used to assist this assessment. The criticality accident history was assessed to provide a framework for our evaluation. In supporting operations, the work of criticality safety engineers ranges from knowing the scope and configurations of a proposed operation, performing criticality hazards assessment to derive effective controls, assisting in training operators, response to floor questions, surveillance to ensure implementation of criticality controls, and response to criticality mishaps. In a compliance environment, the resource of criticality safety engineers is increasingly being directed towards tedious documentation effort to meet some regulatory requirements to the effect of weakening the floor support for criticality safety. By applying a fault tree model to identify the major contributors of criticality accidents, a total risk picture is obtained to address relative merits of various actions. Overall, human failure is the key culprit in causing criticality accidents. Factors such as failure to follow procedures, lacks of training, lack of expert support at the floor level etc. are main contributors. Other causes may include lack of effective criticality controls such as inadequate criticality safety evaluation. Not all of the causes are equally important in contributing to criticality mishaps. Applying the limited resources to strengthen the weak links would reduce risk more than continuing emphasis on the strong links of criticality safety support. For example, some compliance failures such as lack of detailed documentation may not be as relevant as the lack of floor support in answering operator's questions during operations. Misuse of resources in reducing lesser causes rather than on major causes of criticality accidents is not risk free without severe consequences. A regulatory mandate without due consideration of total risk may have its opposite effect of increasing the total risk of an accident. A lesson is to be learned here. For regulatory standard/guide development, use of ANS/ANSI standard process, which provides the pedigree of consensus participation, is recommended.

Huang, S T

2005-03-24T23:59:59.000Z

169

Safety Related Applications (Sensors and Instrumentation and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

170

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and...

171

Office of Nuclear Facility Safety Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Programs establishes requirements related to safety management programs that are essential to the safety of DOE nuclear facilities. In addition, establishes requirements...

172

Preservation and Dissemination of the Hardcopy Documentation Portion of the NCSP Nuclear Criticality Bibliographic Database  

SciTech Connect

The U.S. Department of Energy supports a nuclear criticality safety bibliographic internet database that contains approximately 15,000 records. We are working to ensure that a substantial portion of the corresponding hardcopy documents are preserved, digitized, and made available to criticality safety practitioners via the Nuclear Criticality Safety Program web site.

Koponen, B L; Heinrichs, D

2009-05-18T23:59:59.000Z

173

CRAD, Facility Safety - Nuclear Facility Safety Basis | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Nuclear Facility Safety Basis More Documents & Publications CRAD, Facility Safety - Unreviewed Safety Question Requirements Site Visit Report, Livermore Site Office - February 2011 FAQS Job Task Analyses - Nuclear Safety Specialist

174

Criticality Safety Basics for INL FMHs and CSOs  

SciTech Connect

Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.

V. L. Putman

2012-04-01T23:59:59.000Z

175

Nuclear Security & Safety  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department is working to enhance nuclear security through defense, nonproliferation, and environmental efforts.

176

Processes for Software in Safety Critical Systems  

E-Print Network (OSTI)

Two complementary standards are compared, both of which are concerned with the production of quality software. One, IEC 61508, is concerned with the safety of software intensive systems and the other, ISO/IEC TR 15504, takes a process view of software capability assessment. The standards are independent, though both standards build on ISO/IEC 12207. The paper proposes a correspondence between the safety integrity levels (SILs) of 61508 and the capability levels (CLs) of 15504, and considers the appropriateness of the 15504 reference model as a framework for assessing safety critical software processes. Empirical work from the SPICE trials and COCOMO II is used to support the arguments of the paper as well as to investigate their consequences. The development of a 15504 compatible assessment model for software in safety critical systems is proposed. Keywords Process assessment, safety critical software, international standards 1

Benediktsson Hunter And; O Benediktsson; R B Hunter; A D Mcgettrick

1999-01-01T23:59:59.000Z

177

Drain Holes for Criticality Safety Control Guidance for the Analyst  

SciTech Connect

Drain and overflow holes are integral to the nuclear criticality safety basis of many processes and provide different functions inachieving their safety goaL Inmost cases at the Oak RidgeY-12 Plant, unverified engineering judgment has been previously used to conclude that the holes were adequate to accomplish their mission. Such judgment may adequately serve some configurations but is inadequate in other applications. It is important to understand and document the exact function of every drain for both normal and upset process conditions. After this is accomplished, the holes must be demonstrated to be capable of penlorming their intended safety fi,mction. This paper gives examples of different types of drains used for criticality safety, gives examples of how to ensure they will work as intended, and gives guidance to the analyst who relies on such holes to prevent criticality accidents.

LeTellier, M.S.; Smallwood, D.J.

1999-05-10T23:59:59.000Z

178

NUCLEAR DATA AND MEASUREMENTS REPORTS 161-180 - Nuclear Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

179

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

180

Organization - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Achievements: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

182

Reliability quantification of nuclear safety-related software  

E-Print Network (OSTI)

The objective of this study is to improve quality and reliability of safety-critical software in the nuclear industry. It is accomplished by focusing on the following two areas: Formulation of a standard extensive integrated ...

Zhang, Yi, 1973-

2004-01-01T23:59:59.000Z

183

Work for NASA, Safety Related Applications (Sensors and Instrumentatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

184

Nuclear Safety: Software Quality Assurance  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety: Software Quality Assurance Nuclear Safety: Software Quality Assurance cd Welcome to the Department of Energy's Office of Health, Safety and Security (HSS) Software Quality Assurance (SQA) homepage. The purpose of this Web site is to promote continuous improvement and the sharing of knowledge of safety software quality assurance among interested parties across the DOE complex. It consolidates information and contains links to subject matter experts, procedures, training material, program descriptions, good practices, lessons learned and the Central Registry Toolbox Codes. The Portal also provides capabilities for member collaboration in product development and threaded discussions. Central Registry: The Central Registry provides a library of DOE "Toolbox" Codes covering site boundary accident dose consequences, fire accident source terms, leakpath factors, chemical release/dispersion and consequence, and radiological dispersion and consequence.

185

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

186

FAQS Qualification Card - Criticality Safety | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Criticality Safety FAQS Qualification Card - Criticality Safety A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-CriticalitySafety.docx Description Criticality Safety Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Criticality Safety

187

Program for documenting the criticality safety basis for operations in a research and development facility consistent with new regulatory requirements  

SciTech Connect

A program was developed and implemented at LLNL to provide more detailed, documented Criticality Safety Evaluations of operations in an R&D facility. The new Criticality Safety evaluations were consistent with regulatory requirements of the then new DOE Order 5480.24, Nuclear Criticality Safety. The evaluations provide a criticality safety basis for each operation in the facility in support of the facility Safety Analysis Report. This implementation program provided a transition from one method of conducting and documenting Criticality Safety Evaluations to a new method consistent with new regulatory requirements. The program also allowed continued safe operation of the facility while the new implementation level Criticality Safety Evaluations were developed.

Pearson, J.S.; Evarts, R.B.; Huang, S.T.; Goebel, G.

1997-04-24T23:59:59.000Z

188

Major Programs - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program International Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form...

189

Executive Bios: Christopher Grandy - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

190

Nuclear Engineering Division of Argonne National Laboratory:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

191

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

192

The Dawn of the Nuclear Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

193

Computer Facilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

194

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

195

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

196

The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory  

SciTech Connect

The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is a program jointly funded by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) in conjunction with the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2. The goal of CSIRC is to preserve primary criticality safety documentation from U.S. critical experimental sites and to make this information available for the benefit of the technical community. Progress in archiving criticality safety primary documents at the LANL archives as well as efforts to make this information available to researchers are discussed. The CSIRC project has a natural linkage to the International Criticality Safety Benchmark Evaluation Project (ICSBEP). This paper raises the possibility that the CSIRC project will evolve in a fashion similar to the ICSBEP. Exploring the implications of linking the CSIRC to the international criticality safety community is the motivation for this paper.

Henderson, B.D.; Meade, R.A.; Pruvost, N.L.

1999-09-20T23:59:59.000Z

197

Recent Changes to the Criticality Safety Program at LLNL  

SciTech Connect

During the 1996 audit, a corrective action program was developed and implemented to enhance the Criticality Safety Program at Lawrence Livermore National Laboratory. The Criticality Safety Program at LLNL has been rebuilt to combine a strong core criticality safety program with direct field support to floor operations. Field staff are integrated into the supported facility and program efforts. This method of operation effects all aspects of the criticality safety program including, as examples, development of criticality safety controls and training.

Pearson, J.S.; Burch, J.G.; Huang, S.T.

2001-08-22T23:59:59.000Z

198

Criticality Safety Basics for INL Emergency Responders  

Science Conference Proceedings (OSTI)

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency. This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel. For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …). INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

199

Nuclear Safety (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Safety and Operational Guidelines Provider Pennsylvania Department of Environmental Protection The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the activities associated with management and disposal of a low-level radioactive waste disposal facility in Pennsylvania and provides planning and support for Bureau response to incidents involving nuclear power plants and/or radioactive material in

200

Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)  

Science Conference Proceedings (OSTI)

This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weld station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.

KESSLER, S.F.

1999-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NUCLEAR DATA AND MEASUREMENTS REPORTS 61-80 - Nuclear Data Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

202

NUCLEAR DATA AND MEASUREMENTS REPORTS 81-100 - Nuclear Data Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

203

2012 Nuclear Safety Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » 2012 Nuclear Safety Workshop Nuclear Safety » 2012 Nuclear Safety Workshop 2012 Nuclear Safety Workshop Glenn Podonsky 1 of 13 Glenn Podonsky Glenn Podonsky (DOE Chief Health, Safety and Security Officer) provides his welcoming remarks. Daniel Poneman 2 of 13 Daniel Poneman DOE Deputy Secretary Daniel Poneman discusses maintaining our focus on nuclear safety. Akira Kawano 3 of 13 Akira Kawano Akira Kawano, Tokyo Electric Power Company, provides lessons learned from the Fukushima nuclear accident. Bill Ostendorff 4 of 13 Bill Ostendorff NRC Commissioner Bill Ostendorff gives his perspective on the NRC's response to the Fukushima nuclear accident. Miroslav Lipar 5 of 13 Miroslav Lipar Miroslav Lipar, IAEA, provides an international perspective on the Fukushima nuclear accident. Dr. Sonja Haber 6 of 13

204

Nuclear Safety Information Dashboard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reporting » Analytical Dashboards » Nuclear Safety Reporting » Analytical Dashboards » Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into ORPS. The NSI Dashboard displays information developed from occurrence information reported into DOE's ORPS database. Events or conditions associated with nuclear safety are reported into ORPS, assigned unique ORPS reporting criteria and used for trending. ORPS reporting criteria are assigned a weighted value to indicate their relative importance to nuclear safety; associated ORPS reporting criteria are combined in key groups and charted over time to index trends in nuclear

205

Drain Holes for Criticality Safety Control Guidance for the Analyst  

SciTech Connect

Drain and overflow holes are integral to the nuclear criticality safety basis of many processes and provide different functions in achieving their safety goal. In most cases, unverified engineering judgement was used to conclude that the holes were adequate to accomplish their mission. Such judgement may adequately serve some configurations but is inadequate in other applications. It was determined that the exact function of every hole for both normal and upset process conditions must be understood and clearly documented. Y-12 has embarked on an effort to document engineering analyses of drain and overflow holes. This effort is essential to demonstrating that the holes are capable performing their intended safety function. The Y-12 EUO approach is based on criticality safety function and engineering analysis. The main components of the policies regarding drain holes are: C The criticality safety requirements are written in terms of function (e.g., depth in pan filter must always be less than 5 cm). C Engineering justifications are being written to show existing drains meet required function. Sometimes, detailed analysis of inflows and outflows is required. In some other cases, physical functional tests are performed. C Drains are documented on controlled drawings to ensure configuration control. A program of periodic inspections (usually annual) is in place for each required drain.

LeTellier, m.s.; Smallwood, d.j.

1998-11-30T23:59:59.000Z

206

Criticality Safety Controls Implementation, May 31, 2013 (HSS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Office of Safety and Emergency Management Evaluations Criteria and Review Approach Document 1.0 PURPOSE Subj ect: Criticality Safety Controls lmplementation - Criteria and...

207

Criticality Safety Basics for INL Emergency Responders  

SciTech Connect

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

208

SRTC criticality safety technical review of SRT-CMA-930039  

SciTech Connect

Review of SRT-CMA-930039, ``Nuclear Criticality Safety Evaluation (NCSE): DWPF Melter-Batch 1,`` December 1, 1993, has been performed by the Savannah River Technical Center (SRTC) Applied Physics Group. The NCSE is a criticality assessment of the Melt Cell in the DWPF. Additionally, this pertains only to Batch 1 operation, which differs from batches to follow. Plans for subsequent batch operations call for fissile material in the Salt Cell feed-stream, which necessitates a separate criticality evaluation in the future. The NCSE under review concludes that the process is safe from criticality events, even in the event that all lithium and boron neutron poisons are lost, provided uranium enrichments are less than 40%. Furthermore, if all the lithium and as much as 98% of the boron would be lost, uranium enrichments of 100% would be allowable. After a thorough review of the NCSE, this reviewer agrees with that conclusion. This technical review consisted of: an independent check of the methods and models employed, independent calculations application of ANSI/ANS 8.1, verification of WSRC Nuclear Criticality Safety Manual({sup 2}) procedures.

Rathbun, R.

1993-12-03T23:59:59.000Z

209

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Nuclear Energy Announces Central Europe Nuclear The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional Nuclear Safety Workshop on Trends in Nuclear Power Plant Safety for Robust Civil Nuclear Programs on Oct. 10-13, 2011 in Prague. U.S. Ambassador Norman Eisen and Department of Energy Assistant Secretary for Nuclear Energy Dr. Pete Lyons will deliver speeches welcoming participants. Representatives from the Czech Republic, Bulgaria, Lithuania,

210

Executive Bios: Dr. Robert N. Hill - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

211

Related Sites, Experimental Resources for Nuclear Data Studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

212

Executive Bios: Dr. David C. Wade - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

213

ANS President interviewed at the Argonne Booth during the Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

214

Executive Bios: Jerome L. Gaston - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

215

Executive Bios: A. C. (Paul) Raptis - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

216

Executive Bios: Dr. Hussein S. Khalil - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

217

Argonne's role in DOE/NNSA International Nuclear Safeguards and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

218

Argonne staff members elected to American Nuclear Society governance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

219

Executive Bios: Dr. Temitope Taiwo - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

220

Sloshing response of module-type worm tank - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Executive Bios: Dr. Thomas F. Ewing - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

222

Waste Form Performance Modeling [Nuclear Waste Management using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

223

Executive Bios: Dr. John G. Stevens - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

224

Vulnerability Assessment Team (VAT) in the News - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

225

Executive Bios: Dr. Pete Heine - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

226

Executive Bios: Dr. Tanju Sofu - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

227

Executive Bios: Dr. Ken Natesan - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

228

Unit Process Modeling [Nuclear Waste Management using Electrometallurg...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

229

Historical perspective of criticality safety in the United States  

SciTech Connect

The stages through which criticality safety has progressed are reviewed and speculation about present signs of maturity is made. Early history, evolution, and accident experiences are described. It is concluded that criticality safety as a discipline is mature.

Paxton, H.C. (comp.)

1980-01-01T23:59:59.000Z

230

TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS  

SciTech Connect

The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-26T23:59:59.000Z

231

Experience in Nuclear Criticality Safety - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

design and operations of a variety of Argonne facilities and operations: the Alpha-Gamma Hot Cell Facility (AGHCF), Chemical Engineering Division (CMT) separation technology...

232

Anomalies of Nuclear Criticality, Revision 6  

SciTech Connect

This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.

Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.

2010-02-19T23:59:59.000Z

233

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

Science Conference Proceedings (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

234

Validation of Criticality Safety Calculations with SCALE 6.2  

SciTech Connect

SCALE 6.2 provides numerous updates in nuclear data, nuclear data processing, and computational tools utilized in the criticality safety calculational sequences relative to SCALE 6.1. A new 252-group ENDF/B-VII.0 multigroup neutron library, improved ENDF/B-VII.0 continuous energy data, as well as the previously deployed 238-group ENDF/B-VII.0 neutron library are included in SCALE 6.2 for criticality safety analysis. The performance of all three libraries for keff calculations is examined with a broad sampling of critical experiment models covering a range of fuels and moderators. Critical experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) that are available in the SCALE Verified, Archived Library of Inputs and Data (VALID) are used in this validation effort. Over 300 cases are used in the validation of KENO V.a, and a more limited set of approximately 50 configurations are used for KENO-VI validation. Additionally, some KENO V.a cases are converted to KENO-VI models so that an equivalent set of experiments can be used to validate both codes. For continuous-energy calculations, SCALE 6.2 provides improved performance relative to SCALE 6.1 in most areas with notable improvements in fuel pin lattice cases, particularly those with mixed oxide fuel. Multigroup calculations with the 252-group library also demonstrate improved performance for fuel lattices, uranium (high and intermediate enrichment) and plutonium metal experiments, and plutonium solution systems. Overall, SCALE 6.2 provides equivalent or smaller biases than SCALE 6.1, and the two versions of KENO provide similar results on the same suite of problems.

Marshall, William BJ J [ORNL; Wiarda, Dorothea [ORNL; Celik, Cihangir [ORNL; Rearden, Bradley T [ORNL

2013-01-01T23:59:59.000Z

235

Western University Nuclear Radiation Safety Inspection Checklist  

E-Print Network (OSTI)

with unsealed nuclear substances. Print out of wipe test kept in the logbook . For safety work practices, rightMay 2012 Western University Nuclear Radiation Safety Inspection Checklist Permit Holder to nuclear substances or radiation devices is restricted to authorized radiation users listed on the permit

Sinnamon, Gordon J.

236

Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls  

E-Print Network (OSTI)

Metal Coatings for Spent Nuclear Fuel (SNF) Containers: UseCoatings for Spent Nuclear Fuel (SNF) Container to Enhance2006 ABSTRACT Spent nuclear fuel contains fissionable

2006-01-01T23:59:59.000Z

237

Nuclear Plant Dynamics and Safety - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis > Nuclear Plant Dynamics and Safety Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Nuclear Plant Dynamics and Safety Bookmark and Share Activities in Nuclear Plant Dynamics and Safety research and development fulfill a primary goal of the Nuclear Engineering (NE) Division to promote improvements in safe and reliable operation of present and future

238

FAQS Reference Guide – Nuclear Safety Specialist  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1183-2007, Nuclear Safety Specialist Functional Area Qualification Standard.

239

Facility Representative Program: Nuclear Safety Basis Fundamentals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available...

240

Nuclear Safety Technical Positions/Interpretations  

NLE Websites -- All DOE Office Websites (Extended Search)

(OPI) responsible for the development, interpretation, and revision of a number of DOE directives. Technical Positions to directives issued by Nuclear and Facility Safety...

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Khalil named co-director of the Center for Advanced Nuclear Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

242

Experimental Resources for Nuclear Data Studies in the U.S. ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

243

Peters and Fanning appear on NBC-5 report on Illinois nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

244

NUCLEAR SAFETY SPECIALIST QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Nuclear Safety Specialist Qualification Standard Reference Guide AUGUST 2008 This page is intentionally blank. i Table of Contents LIST OF FIGURES ..................................................................................................................... iv LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE...................................................................................................................................... 1 SCOPE ...........................................................................................................................................

245

Identification of Integral Benchmarks for Nuclear Data Testing Using DICE (Database for the International Handbook of Evaluated Criticality Safety Benchmark Experiments)  

SciTech Connect

Typical users of the International Criticality Safety Evaluation Project (ICSBEP) Handbook have specific criteria to which they desire to find matching experiments. Depending on the application, those criteria may consist of any combination of physical or chemical characteristics and/or various neutronic parameters. The ICSBEP Handbook contains a structured format helping the user narrow the search for experiments of interest. However, with nearly 4300 different experimental configurations and the ever increasing addition of experimental data, the necessity to perform multiple criteria searches have rendered these features insufficient. As a result, a relational database was created with information extracted from the ICSBEP Handbook. A users’ interface was designed by OECD and DOE to allow the interrogation of this database. The database and the corresponding users’ interface are referred to as DICE. DICE currently offers the capability to perform multiple criteria searches that go beyond simple fuel, physical form and spectra and includes expanded general information, fuel form, moderator/coolant, neutron-absorbing material, cladding, reflector, separator, geometry, benchmark results, spectra, and neutron balance parameters. DICE also includes the capability to display graphical representations of neutron spectra, detailed neutron balance, sensitivity coefficients for capture, fission, elastic scattering, inelastic scattering, nu-bar and mu-bar, as well as several other features.

J. Blair Briggs; A. Nichole Ellis; Yolanda Rugama; Nicolas Soppera; Manuel Bossant

2011-08-01T23:59:59.000Z

246

Analysis of Fundamental NIST Sphere Experiments Related to Criticality Safety  

SciTech Connect

A series of neutron transport experiments was performed in 1989 and 1990 at NIST (National Institute of Standards and Technology) using a spherical stainless steel container and fission chambers. These experiments were performed to help understand errors observed in criticality calculations for arrays of individually subcritical components, particularly solution arrays [1-3]. They were supported by the U.S. Department of Energy, Environment and Health, Nuclear Criticality Technology and Safety Project. The intent was to evaluate the possibility that the criticality prediction errors stem from errors in the calculation of neutron leakage from individual components of the array. Thus, the explicit product of the experiments was the measurement of the leakage flux, as characterized by various Cd-shielded and unshielded fission rates. Because the various fission rates have different neutron-energy sensitivities, collectively they give an indication of the energy dependence of the leakage flux. Leakage and moderation were varied systematically through the use of different diameter spheres, with and without water. Some of these experiments with bare fission chambers have been evaluated by the International Criticality Safety Benchmark Evaluation Project (ICSBEP)[4].

Kim, Soon S.

2007-06-01T23:59:59.000Z

247

Characterization strategy report for the criticality safety issue  

SciTech Connect

High-level radioactive waste from nuclear fuels processing is stored in underground waste storage tanks located in the tank farms on the Hanford Site. Waste in tank storage contains low concentrations of fissile isotopes, primarily U-235 and Pu-239. The composition and the distribution of the waste components within the storage environment is highly complex and not subject to easy investigation. An important safety concern is the preclusion of a self-sustaining neutron chain reaction, also known as a nuclear criticality. A thorough technical evaluation of processes, phenomena, and conditions is required to make sure that subcriticality will be ensured for both current and future tank operations. Subcriticality limits must be based on considerations of tank processes and take into account all chemical and geometrical phenomena that are occurring in the tanks. The important chemical and physical phenomena are those capable of influencing the mixing of fissile material and neutron absorbers such that the degree of subcriticality could be adversely impacted. This report describes a logical approach to resolving the criticality safety issues in the Hanford waste tanks. The approach uses a structured logic diagram (SLD) to identify the characterization needed to quantify risk. The scope of this section of the report is limited to those branches of logic needed to quantify the risk associated with a criticality event occurring. The process is linked to a conceptual model that depicts key modes of failure which are linked to the SLD. Data that are needed include adequate knowledge of the chemical and geometric form of the materials of interest. This information is used to determine how much energy the waste would release in the various domains of the tank, the toxicity of the region associated with a criticality event, and the probability of the initiating criticality event.

Doherty, A.L.; Doctor, P.G.; Felmy, A.R.; Prichard, A.W.; Serne, R.J.

1997-06-01T23:59:59.000Z

248

Nuclear Explosive Safety Study Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3015-2001 3015-2001 February 2001 Superseding DOE-STD-3015-97 January 1997 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY PROCESS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3015-2001 iii CONTENTS FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1. PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. SCOPE . . . . . . . . . . . . . . . . . . . . . . .

249

Criticality safety evaluation - an endusers's perspective  

SciTech Connect

This paper presents criticality safety evaluations from an enduser's perspective. Overall issues related to a criticality safety evaluation in an operations support setting are discussed. A work flow process is presented which shows the key steps in conducting an effective criticality evaluation. Finally, a few suggestions are given to assist newcomers to this field.

Huang, S T

1999-05-06T23:59:59.000Z

250

The history of nuclear weapon safety devices  

SciTech Connect

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

251

CRAD, Criticality Safety Controls Implementation - May 31, 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Controls Implementation - May 31, 2013 Criticality Safety Controls Implementation - May 31, 2013 CRAD, Criticality Safety Controls Implementation - May 31, 2013 May 31, 2013 Criticality Safety Controls Implementation with DOE activities and sites (HSS CRAD 45-18) Within the Office of Health, Safety and Security (HSS), the Office of Enforcement and Overs ight, Office of Safety and Emergency Management Evaluations' (HS-45) mission is to assess the effectiveness of the environment, safety, health and emergency management systems and practices used by line and contractor organ izations in implementing Integrated Safety Management; and to provide clear, concise,and independent evaluations of performance in protecting our workers, the public, and the environment from the hazards associated with Department of Energy (DOE)

252

Advanced research workshop: nuclear materials safety  

SciTech Connect

The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectiveÑthe safe and secure storage and disposition of excess fissile nuclear materials.

Jardine, L J; Moshkov, M M

1999-01-28T23:59:59.000Z

253

CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix...

254

Criticality Safety Information Meeting for the Hanford Plutonium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluations Activity Report for Criticality Safety Information Meeting for the Plutonium Finishing Plant Dates of Activity : May 14, 2012 Report Preparer: Ivon Fergus...

255

Review of the Nevada National Security Site Criticality Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Manager CSRC Criticality Safety Review Committee DAF Device Assembly Facility DOE U.S. Department of Energy IA Independent Assessment LANL Los Alamos National Laboratory...

256

RECENT ADDITIONS OF CRITICALITY SAFETY RELATED INTEGRAL BENCHMARK DATA TO THE ICSBEP AND IRPHEP HANDBOOKS  

SciTech Connect

High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Sartori

2009-09-01T23:59:59.000Z

257

Independent Oversight Assessment of the Nuclear Safety Culture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization...

258

Neutron absorbing coating for nuclear criticality control  

DOE Patents (OSTI)

A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

Mizia, Ronald E. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID); Lister, Tedd E. (Idaho Falls, ID); Pinhero, Patrick J. (Idaho Falls, ID)

2007-10-23T23:59:59.000Z

259

Criticality safety training at the Hot Fuel Examination Facility  

SciTech Connect

HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program. (DLC)

Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

1983-01-01T23:59:59.000Z

260

COG - Special Features of Interest to Criticality Safety Practitioners  

SciTech Connect

COG is a modern, general-purpose, high fidelity, multi-particle transport code developed at the Lawrence Livermore National Laboratory specifically for use in deep penetration (shielding) and criticality safety calculations. This paper describes some features in COG of special interest to criticality safety practitioners.

Buck, R M; Heinrichs, D P; Krass, A W; Lent, E M

2010-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Better safe than sorry: collaboration in safety-critical environments  

Science Conference Proceedings (OSTI)

Collaboration in safety-critical environment introduces special challenges for the tools in use, as the tools need to reliably support work tasks conducted in challenging and verifying situations. Examples of these types of environments include industrial ... Keywords: design methods, ethnographic studies, hci, safety-critical systems

Elina Vartiainen; Kristoffer Husøy; Clint Heyer

2013-02-01T23:59:59.000Z

262

The Activities of the International Criticality Safety Benchmark Evaluation Project (ICSBEP)  

SciTech Connect

The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organization for Economic Cooperation and Development (OECD) – Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Spain, and Israel are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled “International Handbook of Evaluated Criticality Safety Benchmark Experiments”. The 2001 Edition of the Handbook contains benchmark specifications for 2642 critical or subcritical configurations that are intended for use in validation efforts and for testing basic nuclear data.

Briggs, Joseph Blair

2001-10-01T23:59:59.000Z

263

Criticality Safety Evaluation of Hanford Tank Farms Facility  

SciTech Connect

Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

WEISS, E.V.

2000-12-15T23:59:59.000Z

264

Nuclear Safety Workshop Summary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Summary Workshop Summary Nuclear Safety Workshop Summary September 19-20, 2012 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme was Post Fukushima Initiatives and Results, and included technical breakout sessions focused on beyond design basis events (BDBEs) analysis and response, safety culture, and risk assessment and management.

265

Sharing of Nuclear Safety Information through Distributed Database Systems  

SciTech Connect

This presentation discusses the sharing of nuclear safety information through distributed database systems.

Ley, H.

2004-10-03T23:59:59.000Z

266

FAQS Qualification Card - Nuclear Safety Specialist | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Specialist Nuclear Safety Specialist FAQS Qualification Card - Nuclear Safety Specialist A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-NuclearSafetySpecialist-2007.docx Description Nuclear Safety Specialist Qualification Card - 2007 FAQC-NuclearSafetySpecialist-2004.docx

267

SCALE Graphical Developments for Improved Criticality Safety Aalyses  

SciTech Connect

New computer graphic developments at Oak Ridge National Ridge National Laboratory (ORNL) are being used to provide visualization of criticality safety models and calculational results as well as tools for criticality safety analysis input preparation. The purpose of this paper is to present the status of current development efforts to continue to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system. Applications for criticality safety analysis in the areas of 3-D model visualization, input preparation and execution via a graphical user interface (GUI), and two-dimensional (2-D) plotting of results are discussed.

Barnett, D.L.; Bowman, S.M.; Horwedel, J.E.; Petrie, L.M.

1999-09-20T23:59:59.000Z

268

Computational methods for criticality safety analysis within the scale system  

SciTech Connect

The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs.

Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.

1986-01-01T23:59:59.000Z

269

Nuclear Safety Enforcement Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement » Nuclear Safety Enforcement Documents Enforcement » Nuclear Safety Enforcement Documents Nuclear Safety Enforcement Documents Documents Available for Download July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic Deficiencies in the Software Quality Assurance Program at the Lawrence Livermore National Laboratory February 12, 2013 Enforcement Letter, NEL-2013-02 Issued to Los Alamos National Security, LLC related to a Radiological Contamination Event at the Los Alamos Neutron Science Center at Los Alamos National Laboratory January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant October 23, 2012 Enforcement Letter, Controlled Power Company - WEL-2012-02

270

Criticality Safety Validation of SCALE 6.1 with ENDF/B-VII.0 Libraries  

SciTech Connect

ANSI/ANS-8.1-1998;2007, Nuclear Criticality Safety in Operations with Fissionable Material Outside Reactors, and ANSI/ANS-8.24-2007, Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations, require validation of a computer code and the associated data through benchmark evaluations based on physical experiments. The performance of the code and data are validated by comparing the calculated and the benchmark results. A SCALE procedure has been established to generate a Verified, Archived Library of Inputs and Data (VALID). This procedure provides a framework for preparing, peer reviewing, and controlling models and data sets derived from benchmark definitions so that the models and data can be used with confidence. The procedure ensures that the models and data were correctly generated using appropriate references with documented checks and reviews. Configuration management is implemented to prevent inadvertent modification of the models and data or inclusion of models that have not been subjected to the rigorous review process. VALID entries for criticality safety are based on critical experiments documented in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). The findings of a criticality safety validation of SCALE 6.1 utilizing the benchmark models vetted in the VALID library at Oak Ridge National Laboratory are summarized here.

Marshall, William BJ J [ORNL; Rearden, Bradley T [ORNL

2012-01-01T23:59:59.000Z

271

Nuclear Power - Operation, Safety and Environment  

E-Print Network (OSTI)

Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. At the same time, catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, design requirements and facilitated growing interests in advanced nuclear energy systems, next generation nuclear reactors, which are inherently capable to withstand natural disasters and avoid catastrophic consequences without any environmental impact. This book is one in a series of books on nuclear power published by InTech. Under the single-volume cover, we put together such topics as operation, safety, environment and radiation effects. The book is not offering a comprehensive coverage of the material in each area. Instead, selected themes are highlighted by authors of individual chapters representing contemporary interests worldwide. With all diversity of topics in 16 chapters, the integrated system analysis approach of nuclear power operation, safety and environment is the common thread. The goal of the book is to bring nuclear power to our readers as one of the promising energy sources that has a unique potential to meet energy demands with minimized environmental impact, near-zero carbon footprint, and competitive economics via robust potential applications. The book targets everyone as its potential readership groups - students, researchers and practitioners - who are interested to learn about nuclear power.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

272

Nuclear criticality project plan for the Hanford Site tank farms  

SciTech Connect

The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste characterization with respect to fissile material. The review indicated that the conclusion in the FSARS, that a criticality is not credible, cannot be supported for a full range of potential tank constituents. Therefore, a USQ was declared. Development of a credible scenario leading to a criticality proved to be extremely difficult, given the paucity of data on the quantity and distribution of fissile material in the tanks. The objective of this project plan is to develop a strategy and technical approach to provide a CTBSD for the FSAR and for resolution of the nuclear criticality safety issue pertaining to tank farm waste storage and transfer operations. The strategy and technical approach identified in this project plan include definition of administrative and technical tasks. Technical analyses will include mechanistic studies, historical data review, and additional limited neutronics analysis. Completion of these studies will be documented in a CTBSD to support the existing criticality technical basis. The CTBSD will be incorporated in the criticality portion of the FSAR.

Bratzel, D.R., Westinghouse Hanford

1996-08-06T23:59:59.000Z

273

Office of Nuclear Safety Enforcement  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

274

Criticality Safety Validation of Scale 6.1  

SciTech Connect

The computational bias of criticality safety computer codes must be established through the validation of the codes to critical experiments. A large collection of suitable experiments has been vetted by the International Criticality Safety Benchmark Experiment Program (ICSBEP) and made available in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). A total of more than 350 cases from this reference have been prepared and reviewed within the Verified, Archived Library of Inputs and Data (VALID) maintained by the Reactor and Nuclear Systems Division at Oak Ridge National Laboratory. The performance of the KENO V.a and KENO-VI Monte Carlo codes within the Scale 6.1 code system with ENDF/B-VII.0 cross-section data in 238-group and continuous energy is assessed using the VALID models of benchmark experiments. The TSUNAMI tools for sensitivity and uncertainty analysis are utilized to examine some systems further in an attempt to identify potential causes of unexpected results. The critical experiments available for validation of the KENO V.a code cover eight different broad categories of systems. These systems use a range of fissile materials including a range of uranium enrichments, various plutonium isotopic vectors, and mixed uranium-plutonium oxides. The physical form of the fissile material also varies and is represented as metal, solutions, or arrays of rods or plates in a water moderator. The neutron energy spectra of the systems also vary and cover both fast and thermal spectra. Over 300 of the total cases used utilize the KENO V.a code. The critical experiments available for the validation of the KENO-VI code cover three broad categories of systems. The fissile materials in the systems vary and include high and intermediate-enrichment uranium and mixed uranium/plutonium oxides. The physical form of the fissile material is either metal or rod arrays in water. As with KENO V.a, both fast and thermal neutron energy spectra are represented in the systems considered. The results indicate generally good performance of both the KENO V.a and KENO-VI codes across the range of systems analyzed. The bias of calculated k{sub eff} from expected values is less than 0.9% {Delta}k in all cases. All eight categories of experiments show biases of less than 0.5% {Delta}k in KENO V.a with the exception of intermediate enrichment metal systems using the 238-group library. The continuous energy library generally manifests lower biases than the multi-group data. The KENO-VI results show slightly larger biases, though this may primarily be the result of modeling systems with more geometric complexity, which are more difficult to describe accurately, even with a generalized geometry code like KENO-VI. Several additional conclusions can be drawn from the results of this validation effort. These conclusions include that the TSUNAMI tools can be used successfully to explain the cause of aberrant results, that some evaluations in the IHECSBE should be updated to provide more rigorous expected k{sub eff} values and uncertainties, and that potential cross-section errors can be identified by detailed review of the results of this validation. It also appears that the overall cross-section uncertainty as quantified through the Scale covariance library is overestimated. Overall, the KENO V.a and KENO-VI codes are shown to provide consistent, low bias results for a wide range of physical systems of potential interest in criticality safety applications.

Marshall, William BJ J [ORNL; Rearden, Bradley T [ORNL

2011-11-01T23:59:59.000Z

275

Criticality safety evaluation for K Area Disassembly Basin cleanup  

SciTech Connect

Preparations are currently being made to remove sludge from the Disassembly Basin in all reactor areas. Because this sludge contains fissile isotopes, it is necessary to perform a criticality safety evaluation for the planned activities. A previous evaluation examined the criticality safety aspects of the sludge removal process for L Area. This document addresses the criticality safety aspects of the K Area Disassembly Basin cleanup work. The K Area Disassembly Basin cleanup will involve, as a first step, pumping the basin sludge into the Monitor Basin portion of the Disassembly Basin. From the Monitor Basin, the sludge will be pumped into tanks or containers for permanent disposition. The criticality safety evaluation discussed in this document covers the transfer of the sludge to the Monitor Basin.

Rosser, M.A.

1994-02-01T23:59:59.000Z

276

Interaction walkthrough: evaluation of safety critical interactive systems  

Science Conference Proceedings (OSTI)

Usability evaluation methods are a battery of techniques for assessing the usability of interactive systems or of proposed interactive systems. This paper describes a new evaluation method, particularly appropriate for evaluating safety critical and ...

Harold Thimbleby

2006-07-01T23:59:59.000Z

277

Nuclear Safeguards Infrastructure Development and Integration with Safety and Security  

SciTech Connect

Faced with increasing global energy demands, many developing countries are considering building their first nuclear power plant. As a country embarks upon or expands its nuclear power program, it should consider how it will address the 19 issues laid out in the International Atomic Energy Agency (IAEA) document Milestones in Development of a National Infrastructure for Nuclear Power. One of those issues specifically addresses the international nonproliferation treaties and commitments and the implementation of safeguards to prevent diversion of nuclear material from peaceful purposes to nuclear weapons. Given the many legislative, economic, financial, environmental, operational, and other considerations preoccupying their planners, it is often difficult for countries to focus on developing the core strengths needed for effective safeguards implementation. Typically, these countries either have no nuclear experience or it is limited to the operation of research reactors used for radioisotope development and scientific research. As a result, their capacity to apply safeguards and manage fuel operations for a nuclear power program is limited. This paper argues that to address the safeguards issue effectively, a holistic approach must be taken to integrate safeguards with the other IAEA issues including safety and security - sometimes referred to as the '3S' concept. Taking a holistic approach means that a country must consider safeguards within the context of its entire nuclear power program, including operations best practices, safety, and security as well as integration with its larger nonproliferation commitments. The Department of Energy/National Nuclear Security Administration's International Nuclear Safeguards and Engagement Program (INSEP) has been involved in bilateral technical cooperation programs for over 20 years to promote nonproliferation and the peaceful uses of nuclear energy. INSEP is currently spearheading efforts to promote the development of nuclear safeguards infrastructure in countries with credible plans for nuclear energy as part of the Next Generation Safeguards Initiative. Developing an adequate safeguards infrastructure is critical to becoming a responsible 'owner' of nuclear power. The 3S concept is the optimal path forward to achieving this goal.

Kovacic, Donald N [ORNL; Raffo-Caiado, Ana Claudia [ORNL; McClelland-Kerr, John [U.S. Department of Energy; Van sickle, Matthew [U.S. National Nuclear Security Administration; Bissani, Mo [Lawrence Livermore National Laboratory (LLNL)

2009-01-01T23:59:59.000Z

278

Influence of safeguards and fire protection on criticality safety  

SciTech Connect

There are several positive influences of safeguards and fire protection on criticality safety. Experts in each discipline must be aware of regulations and requirements of the others and work together to ensure a fault-tree design. EG and G Idaho, Inc., routinely uses an Occupancy-Use Readiness Manual to consider all aspects of criticality safety, fire protection, and safeguards. The use of the analytical tree is described.

Six, D.E.

1980-01-01T23:59:59.000Z

279

Capabilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Waste Form and Repository Performance Modeling Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis System Process Monitoring,...

280

2012 Nuclear Safety Workshop Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations Wednesday, September 19 - Plenary Session September 19, 2012 Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company September 19, 2012 A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Presenter: Honorable William C. Ostendorff, Commissioner US Nuclear Regulatory Commission September 19, 2012 International Perspective on Fukushima Accident Presenter: Miroslav Lipár, Head, Operational Safety Section, Department of

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP) & QUICK SCREENS, ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS & EVALUATIONS  

SciTech Connect

Since the end of the cold war, the need for operating weapons production facilities has faded. Criticality Safety Limits and controls supporting production modes in these facilities became outdated and furthermore lacked the procedure based rigor dictated by present day requirements. In the past, in many instances, the formalism of present day criticality safety evaluations was not applied. Some of the safety evaluations amounted to a paragraph in a notebook with no safety basis and questionable arguments with respect to double contingency criteria. When material stabilization, clean out, and deactivation activities commenced, large numbers of these older criticality safety evaluations were uncovered with limits and controls backed up by tenuous arguments. A dilemma developed: on the one hand, cleanup activities were placed on very aggressive schedules; on the other hand, a highly structured approach to limits development was required and applied to the cleanup operations. Some creative approaches were needed to cope with the limits development process.

TOFFER, H.

2006-02-21T23:59:59.000Z

282

Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project.

Bougaenko, S.E.; Kraev, A.E. [International Nuclear Safety Center of the Russian MINATOM, Moscow (Russian Federation); Hill, D.L.; Braun, J.C.; Klickman, A.E. [Argonne National Lab., IL (United States). International Nuclear Safety Center

1998-08-01T23:59:59.000Z

283

COG - Publicly Available Now to Criticality Safety Practitioners  

SciTech Connect

COG is a modern, general-purpose, high fidelity, multi-particle transport code with a long history of use in criticality safety studies at the Lawrence Livermore National Laboratory. This code was released to the Radiation Safety Information Computational Center (RSICC) for distribution to the public for the first time in January 2006. This paper provides an overview of the code development history, a description of features and capabilities of interest to the criticality safety practitioner, and our plans in support of the next public RSICC release.

Buck, R M; Cullen, D E; Heinrichs, D P; Lent, E M; Nielsen, Jr, D E; Sale, K E

2006-09-12T23:59:59.000Z

284

Nuclear safety surveillance and control of National Nuclear Safety Administration of PRC during commissioning and operation of nuclear power plants  

Science Conference Proceedings (OSTI)

This article describes the method of nuclear safety surveillance and control of National Nuclear Safety Administration (NNSA) of PRC during commissioning and operation of nuclear power plants (NPPs) and the practice for Qinshan NPP and for Guangdong Daya Bay NPP (GNPS). The results of the practice show that the surveillance models set up for Qinshan NPP and for GNPS commissioning were effective and the surveillance has played an important role for ensuring the quality and safety of the commissioning testing and consequently the nuclear safety of these two plants.

Feng, W.; Zhang, C.

1994-12-31T23:59:59.000Z

285

FAQS Qualification Card - Nuclear Explosive Safety Study | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Explosive Safety Study Nuclear Explosive Safety Study FAQS Qualification Card - Nuclear Explosive Safety Study A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-NuclearExplosiveSafetyStudy.docx Description Nuclear Explosive Safety Study Qualification Card More Documents & Publications

286

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency...

287

Defense Nuclear Facilitiets Safety Board Visit and Site Lead...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos...

288

June 2010, Risk Assessment in Support of DOE Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Safety Policy and Assistance Office of Nuclear Safety Policy and Assistance Nuclear Safety, Quality Assurance and Environment Information Notice June 2010 1 BACKGROUND & PURPOSE: On August 12, 2009, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2009-1, Risk Assessment Methodologies at Defense Nuclear Facilities. This recommendation focused on the need for clear direction on use of quantitative risk assessments in nuclear safety applications at defense nuclear facilities. The Department of Energy (DOE) is presently analyzing directives, standards, training, and other tools that may support more effective development and use of

289

Siting of nuclear facilities. Selections from Nuclear Safety  

SciTech Connect

The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

Buchanan, J.R.

1976-07-01T23:59:59.000Z

290

Management of National Nuclear Power Programs for assured safety  

SciTech Connect

Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

Connolly, T.J. (ed.)

1985-01-01T23:59:59.000Z

291

Environmental safety evaluations for nuclear installations  

SciTech Connect

Environmental safety has been an important consideration in the siting, design, and operation of nuclear installations. As a result there have been very few cases in which the releases of radioactive materials from these installations have posed a dosimetrically significant environmental risk, and almost all of these have been connected with accidents or other unintentional situations. In no situation do the intentional releases from nuclear installations appear to have posed significant environmental risks, and with adequate planning and design a high degree of environmental safety may be assured. Many disciplines are involved in the evaluation of safety for nuclear installations. These include such fundamental ones as physics, chemistry, and biology, and more specialized ones such as meteorology, engineering, ecology, medicine, and electronics. A comprehensive review of environmental surveillance data and estimates of dose commitments from nuclear installations suggests that compared to the doses from background and from fallout, those attributable to the effluents from nuclear facilities have been small and for the most part quite local. it is concluded that, the upper limit of the risk associated with exposure of up to a few millirems per year is indeed small compared to many other commonly accepted risks of living in present day society. (72 refurences) (CH)

Hull, A.P.

1973-01-01T23:59:59.000Z

292

Code of Federal Regulations NUCLEAR SAFETY MANAGEMENT | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of DOE nuclear facilities. Code of Federal Regulations NUCLEAR SAFETY MANAGEMENT More Documents & Publications Code of Federal Regulations TRESPASSING ON DEPARTMENT OF ENERGY...

293

NNSA, Tajikistan Nuclear and Radiation Safety Agency Sign MOU...  

National Nuclear Security Administration (NNSA)

Tajikistan Nuclear and Radiation Safety Agency Sign MOU to Combat Illicit Trafficking | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing...

294

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have any authority to direct DOE and/or NNSA program

295

FTCP Site Specific Information - Chief of Nuclear Safety | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Nuclear Safety FTCP Site Specific Information - Chief of Nuclear Safety FTCP Agent Organization Name Phone E-Mail CNS Richard Lagdon 202586-9471 chip.lagdon@hq.doe.gov...

296

Technical Basis for U. S. Department of Energy Nuclear Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1, 711 Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1,...

297

Nuclear Safety Research and Development Status Workshop Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSR&D STATUS WORKSHOP SUMMARIES Caroline Garzon Chief of Nuclear Safety Staff NUCLEAR SAFETY R&D Perform a peer review of Risk Assessment Corporation WTP analysis by a team...

298

Safety of Decommissioning of Nuclear Facilities  

Science Conference Proceedings (OSTI)

Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

299

An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Criticality (keff) Predictions  

SciTech Connect

One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available fission product LCE data to predict and verify individual biases for relevant minor actinides and fission products. This paper (1) provides a detailed description of the approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias results based on the prerelease SCALE 6.1 code package and ENDF/B-VII nuclear cross-section data, and (4) provides recommendations for application of the results and methods to other code and data packages.

Scaglione, John M [ORNL; Mueller, Don [ORNL; Wagner, John C [ORNL

2011-01-01T23:59:59.000Z

300

Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these joint projects are given.

Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

2000-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Formalization and Validation of Safety-Critical Requirements  

E-Print Network (OSTI)

The validation of requirements is a fundamental step in the development process of safety-critical systems. In safety critical applications such as aerospace, avionics and railways, the use of formal methods is of paramount importance both for requirements and for design validation. Nevertheless, while for the verification of the design, many formal techniques have been conceived and applied, the research on formal methods for requirements validation is not yet mature. The main obstacles are that, on the one hand, the correctness of requirements is not formally defined; on the other hand that the formalization and the validation of the requirements usually demands a strong involvement of domain experts. We report on a methodology and a series of techniques that we developed for the formalization and validation of high-level requirements for safety-critical applications. The main ingredients are a very expressive formal language and automatic satisfiability procedures. The language combines first-order, tempor...

Cimatti, Alessandro; Susi, Angelo; Tonetta, Stefano

2010-01-01T23:59:59.000Z

302

Verification of MCNP5-1.60 and MCNP6-Beta-2 for Criticality Safety Applications  

SciTech Connect

To verify that both MCNP5-1.60 and MCNP6-Beta-2 are performing correctly for criticality safety applications, several suites of verification/validation benchmark problems were run in early 2012. Results from these benchmark suites were compared with results from previously verified versions of MCNP5. The goals of this verification testing were: (1) Verify that MCNP5-1.60 works correctly for nuclear criticality safety applications, producing the same results as for the previous verification performed in 2010; (2) Determine the sensitivity to computer roundoff using different Fortran-90 compilers for building MCNP5 and MCNP6, to support moving to current versions of the compilers; and (3) Verify that MCNP6-Beta-2 works correctly for nuclear criticality safety applications, producing the same results as for MCNP5-1.60. This provides support for eventual migration of users and applications to MCNP6. The current production version of MCNP5 included in the RSICC release package is MCNP5-1.60. This version was first distributed by RSICC in October 2010. While there were subsequent RSICC distributions of the MCNP package in July 2011 and February 2012, no changes were made to MCNP5-1.60. The RSICC release package in February 2012 included both MCNP5-1.60 and the current beta version of MCNP6, MCNP6-Beta-2. MCNP6 is the merger of MCNP5 and MCNPX capabilities. The current release of MCNP6 available from RSICC as of February 2012 is MCNP6-Beta-2. This version includes all of the features for criticality safety calculations that are available in MCNP5-1.60, and many new features largely unrelated to nuclear criticality safety calculations. This release is a 'beta' release to allow intermediate and advanced users to begin testing the merged code in their field of expertise. It should not be used for production calculations.

Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Bull, Jeffrey S. [Los Alamos National Laboratory

2012-05-01T23:59:59.000Z

303

Verification of MCNP5-1.60 and MCNP6-Beta-2 for Criticality Safety Applications  

SciTech Connect

To verify that both MCNP5-1.60 and MCNP6-Beta-2 are performing correctly for criticality safety applications, several suites of verification/validation benchmark problems were run in early 2012. Results from these benchmark suites were compared with results from previously verified versions of MCNP5. The goals of this verification testing were: (1) Verify that MCNP5-1.60 works correctly for nuclear criticality safety applications, producing the same results as for the previous verification performed in 2010; (2) Determine the sensitivity to computer roundoff using different Fortran-90 compilers for building MCNP5 and MCNP6, to support moving to current versions of the compilers; and (3) Verify that MCNP6-Beta-2 works correctly for nuclear criticality safety applications, producing the same results as for MCNP5-1.60. This provides support for eventual migration of users and applications to MCNP6. The current production version of MCNP5 included in the RSICC release package is MCNP5-1.60. This version was first distributed by RSICC in October 2010. While there were subsequent RSICC distributions of the MCNP package in July 2011 and February 2012, no changes were made to MCNP5-1.60. The RSICC release package in February 2012 included both MCNP5-1.60 and the current beta version of MCNP6, MCNP6-Beta-2. MCNP6 is the merger of MCNP5 and MCNPX capabilities. The current release of MCNP6 available from RSICC as of February 2012 is MCNP6-Beta-2. This version includes all of the features for criticality safety calculations that are available in MCNP5-1.60, and many new features largely unrelated to nuclear criticality safety calculations. This release is a 'beta' release to allow intermediate and advanced users to begin testing the merged code in their field of expertise. It should not be used for production calculations.

Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Bull, Jeffrey S. [Los Alamos National Laboratory

2012-05-01T23:59:59.000Z

304

Nuclear and Facility Safety Directives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear and Facility Safety Nuclear Safety » Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. HS-30 Contact: James O'Brien

305

Nuclear Safety Specialist Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83-2007 83-2007 November 2007 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1183-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1183-2007 iv INTENTIONALLY BLANK DOE-STD-1183-2007 v TABLE OF CONTENTS ACKNOWLEDGMENT ................................................................................................................ vii PURPOSE ....................................................................................................................................9

306

Double-clad nuclear fuel safety rod  

DOE Patents (OSTI)

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, William H. (Los Altos, CA); Atcheson, Donald B. (Cupertino, CA); Vaidyanathan, Swaminathan (San Jose, CA)

1984-01-01T23:59:59.000Z

307

Fast Reactor Spent Fuel Processing: Experience and Criticality Safety  

SciTech Connect

This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a cathode, causing metallic uranium in the spent fuel to undergo electro-chemical oxidation thereby forming uranium chloride. Simultaneously at the cathode, uranium chloride undergoes electro-chemical reduction and deposits uranium metal onto the mandrel. The uranium metal and accompanying entrained salt are placed in a distillation furnace where the uranium melts forming an ingot and the entrained salt boils and subsequently condenses in a separate crucible. The uranium ingots are placed in long term storage. During the ten year operating history, over one hundred criticality safety evaluations were prepared. All criticality safety related limits and controls for the entire process are contained in a single document which required over thirty revisions to accommodate the process changes. Operational implementation of the limits and controls includes use of a near real-time computerized tracking system. The tracking system uses an Oracle database coupled with numerous software applications. The computerized tracking system includes direct fuel handler interaction with every movement of material. Improvements to this system during the ten year history include introduction of web based operator interaction, tracking of moderator materials and the development of a plethora database queries to assist in day to day operations as well as obtaining historical information. Over 12,000 driver fuel elements have been processed resulting in the production of 2500 kg of 20% enriched uranium. Also, over one thousand blanket fuel elements have been processed resulting in the production of 2400 kg of depleted uranium. These operations required over 35,000 fissile material transfers between zones and over 6000 transfers between containers. Throughout all of these movements, no mass limit violations occurred. Numerous lessons were learned over the ten year operating history. From a criticality safety perspective, the most important lesson learned was the involvement of a criticality safety practitioner in daily operations. A criticality safety engineer was assigned directly to facility operations, and was responsible for implementation of limits and controls including upkeep of the associated computerized tracking files. The criticality safety engineer was also responsible for conducting fuel handler training activities including serving on fuel handler qualification oral boards, and continually assessing operations from a criticality control perspective. The criticality safety engineer also attended bimonthly project planning meetings to identify upcoming process changes that would require criticality safety evaluation. Finally, the excellent criticality safety record was due in no small part to the continual support, involvement, trust, and confidence of project and operations mana

Chad Pope

2007-05-01T23:59:59.000Z

308

Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Culture in the US Nuclear Regulatory Commission's Reactor Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process September 19, 2012 Presenter: Undine Shoop, Chief, Health Physics and Human Performance Branch, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission Topics covered: Purpose of the Reactor Oversight Process (ROP) ROP Framework Safety Culture within the ROP Safety Culture Assessments Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process More Documents & Publications A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11

309

DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Ecology Corp. for Violating Nuclear Safety Safety and Ecology Corp. for Violating Nuclear Safety Rules DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules June 14, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Safety and Ecology Corporation, the contractor responsible for radiological safety at the Portsmouth Gaseous Diffusion Project in Portsmouth, Ohio, that it will fine the company $55,000 for violating the department's regulations prohibiting retaliation against employees who raise nuclear safety concerns. "We take safety very seriously at the Department of Energy," said Assistant Secretary for Environment, Safety and Health John Shaw. "Today's action illustrates the department's commitment to ensuring that any and all valid

310

Maintaining scale as a realiable computational system for criticality safety analysis  

SciTech Connect

Accurate and reliable computational methods are essential for nuclear criticality safety analyses. The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer code system was originally developed at Oak Ridge National Laboratory (ORNL) to enable users to easily set up and perform criticality safety analyses, as well as shielding, depletion, and heat transfer analyses. Over the fifteen-year life of SCALE, the mainstay of the system has been the criticality safety analysis sequences that have featured the KENO-IV and KENO-V.A Monte Carlo codes and the XSDRNPM one-dimensional discrete-ordinates code. The criticality safety analysis sequences provide automated material and problem-dependent resonance processing for each criticality calculation. This report details configuration management which is essential because SCALE consists of more than 25 computer codes (referred to as modules) that share libraries of commonly used subroutines. Changes to a single subroutine in some cases affect almost every module in SCALE! Controlled access to program source and executables and accurate documentation of modifications are essential to maintaining SCALE as a reliable code system. The modules and subroutine libraries in SCALE are programmed by a staff of approximately ten Code Managers. The SCALE Software Coordinator maintains the SCALE system and is the only person who modifies the production source, executables, and data libraries. All modifications must be authorized by the SCALE Project Leader prior to implementation.

Bowmann, S.M.; Parks, C.V.; Martin, S.K.

1995-04-01T23:59:59.000Z

311

GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS  

Science Conference Proceedings (OSTI)

Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPhEP will be discussed in the full paper, selected benchmarks that have been added to the ICSBEP Handbook will be highlighted, and a preview of the new benchmarks that will appear in the September 2011 edition of the Handbook will be provided. Accomplishments of the IRPhEP will also be highlighted and the future of both projects will be discussed. REFERENCES (1) International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I-IX, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), September 2010 Edition, ISBN 978-92-64-99140-8. (2) International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC(2006)1, Organisation for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), March 2011 Edition, ISBN 978-92-64-99141-5.

J. Blair Briggs; John D. Bess; Jim Gulliford

2011-09-01T23:59:59.000Z

312

Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC  

SciTech Connect

In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a ``Deliberate Operating`` mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a ``Use Every Time`` (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points.

Boler-Melton, C.; Holland, M.K.

1991-12-31T23:59:59.000Z

313

Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC  

SciTech Connect

In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a Deliberate Operating'' mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a Use Every Time'' (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points.

Boler-Melton, C.; Holland, M.K.

1991-01-01T23:59:59.000Z

314

Enforcement Regulations and Directives - Nuclear Safety | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Nuclear Safety Enforcement Regulations and Directives - Nuclear Safety 10 C.F.R. Part 820 and Amendments 10 C.F.R. Part 820 - Procedural Rules for DOE Nuclear Activities 10 C.F.R. Part 820 - Procedural Rules for DOE Nuclear Activities; General Statement of Enforcement Policy; Final rule; amendment of enforcement policy statement and confirmation of interim rule 10 C.F.R. Part 830 10 C.F.R. Part 830 - Nuclear Safety Management; Final Rule Office of General Counsel Interpretation regarding the Application of DOE Technical Standard 1027-92 under 10 C.F.R. Part 830 Office of General Counsel Interpretation regarding Noncompliant Documented Safety Analyses and Exemption Relief (9/28/2011) Related Guidance DOE-STD-1083-2009, Processing Exemptions to Nuclear Safety Rules and

315

Princeton Plasma Physics Lab - Nuclear safety  

NLE Websites -- All DOE Office Websites (Extended Search)

safety Actions taken to safety Actions taken to prevent nuclear and radiation accidents or to limit their consequences. en Celebrating the 20th anniversary of the tritium shot heard around the world http://www.pppl.gov/news/2013/12/celebrating-20th-anniversary-tritium-shot-heard-around-world-2

Tensions rose in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) as the seconds counted down. At stake was the first crucial test of a high-powered mixture of fuel for producing fusion energy. As the control-room clock reached "zero," a flash of light on a closed-circuit television monitor marked a historic achievement:

316

A COMPUTER-ASSIST MATERIAL TRACKING SYSTEM AS A CRITICALITY SAFETY AID TO OPERATORS  

SciTech Connect

In today's compliant-driven environment, fissionable material handlers are inundated with work control rules and procedures in carrying out nuclear operations. Historically, human errors are one of the key contributors of various criticality accidents. Since moving and handling fissionable materials are key components of their job functions, any means that can be provided to assist operators in facilitating fissionable material moves will help improve operational efficiency and enhance criticality safety implementation. From the criticality safety perspective, operational issues have been encountered in Lawrence Livermore National Laboratory (LLNL) plutonium operations. Those issues included lack of adequate historical record keeping for the fissionable material stored in containers, a need for a better way of accommodating operations in a research and development setting, and better means of helping material handlers in carrying out various criticality safety controls. Through the years, effective means were implemented including better work control process, standardized criticality control conditions (SCCC) and relocation of criticality safety engineers to the plutonium facility. Another important measure taken was to develop a computer data acquisition system for criticality safety assessment, which is the subject of this paper. The purpose of the Criticality Special Support System (CSSS) is to integrate many of the proven operational support protocols into a software system to assist operators with assessing compliance to procedures during the handling and movement of fissionable materials. Many nuclear facilities utilize mass cards or a computer program to track fissionable material mass data in operations. Additional item specific data such as, the presence of moderators or close fitting reflectors, could be helpful to fissionable material handlers in assessing compliance to SCCC's. Computer-assist checking of a workstation material inventory against the designated SCCC to enhance the material movement was also recognized. The following three additional functions of the CSSS were requested by operational personnel: additional record keeping, assisting room inventory Material at Risk (MAR) calculations and generating the material label to be placed on a storage can. In 1998, a preliminary CSSS concept was presented to all key stakeholders for the feasibility of such an application. Subsequently, the CSSS was developed with full participation of all stakeholders including fissionable material handlers. In 2003, five CSSS workstations were deployed in the plutonium facility for beta testing and resolving any issues from the field uses. Currently, the CSSS is deployed in all laboratories in the LLNL Plutonium Facility. Initial deployment consists of only a few of the full system functions described in this paper. Final deployment of all functions will take a few more years to assure the system meets quality assurance requirements of a safety significant system.

Claybourn, R V; Huang, S T

2007-03-30T23:59:59.000Z

317

CRITICALITY HAZOP EFFICIENTLY EVALUATING HAZARDS OF NEW OR REVISED CRITICALITY SAFETY EVALUATIONS  

SciTech Connect

The 'Criticality HazOp' technique, as developed at Hanford's Plutonium Finishing Plant (PFP), has allowed for efficiencies enabling shortening of the time necessary to complete new or revised criticality safety evaluation reports (CSERs). For example, in the last half of 2007 at PFP, CSER revisions undergoing the 'Criticality HazOp' process were completed at a higher rate than previously achievable. The efficiencies gained through use of the 'Criticality HazOp' process come from the preliminary narrowing of potential scenarios for the Criticality analyst to fully evaluate in preparation of the new or revised CSER, and from the use of a systematized 'Criticality HazOp' group assessment of the relevant conditions to show which few parameter/condition/deviation combinations actually require analytical effort. The 'Criticality HazOp' has not only provided efficiencies of time, but has brought to criticality safety evaluation revisions the benefits of a structured hazard evaluation method and the enhanced insight that may be gained from direct involvement of a team in the process. In addition, involved personnel have gained a higher degree of confidence and understanding of the resulting CSER product.

CARSON DM

2008-04-15T23:59:59.000Z

318

CRITICALITY HAZOP EFFICIENTLY EVALUATING HAZARDS OF NEW OR REVISED CRITICALITY SAFETY EVALUATIONS  

SciTech Connect

The 'Criticality HazOp' technique, as developed at Hanford's Plutonium Finishing Plant (PFP), has allowed for efficiencies enabling shortening of the time necessary to complete new or revised criticality safety evaluation reports (CSERs). For example, in the last half of 2007 at PFP, CSER revisions undergoing the 'Criticality HazOp' process were completed at a higher rate than previously achievable. The efficiencies gained through use of the 'Criticality HazOp' process come from the preliminary narrowing of potential scenarios for the Criticality analyst to fully evaluate in preparation of the new or revised CSER, and from the use of a systematized 'Criticality HazOp' group assessment of the relevant conditions to show which few parameter/condition/deviation combinations actually require analytical effort. The 'Criticality HazOp' has not only provided efficiencies of time, but has brought to criticality safety evaluation revisions the benefits of a structured hazard evaluation method and the enhanced insight that may be gained from direct involvement of a team in the process. In addition, involved personnel have gained a higher degree of confidence and understanding of the resulting CSER product.

CARSON DM

2008-04-15T23:59:59.000Z

319

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

320

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

322

Microsoft Word - Nuclear Safety Pamphlet Final September 1 2010...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Basic Overview of NUCLEAR SAFETY AT THE DEPARTMENT OF ENERGY Outreach & Awareness Series Office of Health, Safety and Security (HSS) U.S. Department of Energy September 2010...

323

A Look Back at the Nuclear Safety Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Hear from Glenn Podonsky -- the Energy Department’s Chief Health, Safety and Security Officer -- about how we're continuing to improve the safety of our nuclear facilities.

324

Self-Assessment Standard for DOE Contractor Criticality Safety Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 10 March 2010 DOE STANDARD SELF-ASSESSMENT STANDARD FOR DOE CONTRACTOR CRITICALITY SAFETY PROGRAMS DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1158-2010 iii TABLE OF CONTENTS FOREWORD ................................................................................................................... v ACKNOWLEDGEMENT ..................................................................................................vi DEFINITIONS ................................................................................................................ vii

325

Qualification of the Framatome ANP TXS Digital Safety I&C System - Revision to EPRI TR-114017: Compliance with EPRI TR-107330, "Gene ric Requirements Specification for Qualifying a Commercially Available PLC for Safety-Related Applications in Nuclear P..  

Science Conference Proceedings (OSTI)

As its nuclear power plants age, the electric power industry is focusing on developing cost-effective replacement systems for obsolete instrumentation, control, and safety systems. This report describes the generic qualification of a platform for safety-related applications that incorporates programmable logic controllers (PLCs), a technology with an excellent track record in non-nuclear applications for critical control and safety functions.

2002-07-16T23:59:59.000Z

326

IT-Security for Safety-Critical Automation Systems  

E-Print Network (OSTI)

The protection of safety-critical and infrastructure systems (such as automation systems for utilities, but also for manufacturing plants) against electronic and communication network based attacks becomes more and more important. This paper investigates how such safety-critical plants and automation systems can be secured against information system and network based attacks. The two common approaches, hard perimeter, and defense-in-depth are discussed. Based on the defense-in-depth approach, a conceptional, generic security zone model for use in analysis and synthesis of a plant security architecture is proposed, and for each of its zones a survey of the available and appropriate security mechanisms is given. Using an example from the substation automation domain, it is shown how threats and counter-measures can be systematically derived and how the specific system and usage characteristics of automation systems (or at least their restricted safety critical sub-functions) can be exploited in a positive way to deploy security mechanisms that would in this form not be available and applicable to home or office information systems. 1.

Martin Naedele

2002-01-01T23:59:59.000Z

327

CSER 96-014: criticality safety of project W-151, 241-AZ-101 retrieval system process test  

Science Conference Proceedings (OSTI)

This Criticality Safety Evaluation Report (CSER) documents a review of the criticality safety implications of a process test to be performed in tank 241-AZ-101 (101-AZ). The process test will determine the effectiveness of the retrieval system for mobilization of solids and the practicality of the system for future use in the underground storage tanks at Hanford. The scope of the CSER extends only to the testing and operation of the mixer pumps and does not include the transfer of waste from the tank. Justification is provided that a nuclear criticality is extremely unlikely, if not impossible, in this tank.

Vail, T.S., Fluor Daniel Hanford

1997-02-06T23:59:59.000Z

328

Applicability of trends in nuclear safety analysis to space nuclear power systems  

SciTech Connect

A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication.

Bari, R.A.

1992-10-01T23:59:59.000Z

329

Tutorial on nuclear thermal propulsion safety for Mars  

DOE Green Energy (OSTI)

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-01-01T23:59:59.000Z

330

Tutorial on nuclear thermal propulsion safety for Mars  

DOE Green Energy (OSTI)

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-08-01T23:59:59.000Z

331

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

332

Assessment of Nuclear Safety Culture at the Salt Waste Processing...  

NLE Websites -- All DOE Office Websites (Extended Search)

BARS Behavioral Anchored Rating Scales DNFSB Defense Nuclear Facilities Safety Board DOE U.S. Department of Energy DPO Differing Professional Opinion ECP Employee Concern...

333

Nuclear Safety Component and Services Procurement, June 29, 2011...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Enforcement and Oversight Criteria Review and Approach Document Subject: Nuclear Safety Component and Services Procurement Inspection Criteria, Inspection Activities,...

334

DOE's Nuclear Weapons Complex: Challenges to Safety, Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR...

335

NNSA and Defense Nuclear Facilities Safety Board certifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

allocated funding NNSA and Defense Nuclear Facilities Safety Board certifications free up 47 million in previously allocated funding The DNFSB and NNSA required the CMRR...

336

Criticality safety evaluation report for the multi-canister overpack  

Science Conference Proceedings (OSTI)

This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark 1V or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operations at the Cold Vacuum Drying Facility, and storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the k{sub eff} = 0.95 criticality safety limit. Additional analyses in this revision include partial fuel basket loadings, loading 26.1 inch Mark IA fuel assemblies into Mark IV fuel baskets, and the revised fuel and scrap basket designs. The MCO MCNP model was revised to include the shield plug assembly.

KESSLER, S.F.

1999-05-21T23:59:59.000Z

337

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

338

Recent Progress in U.S. Nuclear Power Plant Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Progress in U.S. Nuclear Power Plant Safety Speaker(s): Robert Budnitz Date: April 15, 2010 - 12:00pm Location: 90-3122 The U.S. commercial nuclear-power industry consists...

339

Bibliography for nuclear criticality accident experience, alarm systems, and emergency management  

SciTech Connect

The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies.

Putman, V.L.

1995-09-01T23:59:59.000Z

340

Environmental assessment for consolidation of certain materials and machines for nuclear criticality experiments and training  

Science Conference Proceedings (OSTI)

In support of its assigned missions and because of the importance of avoiding nuclear criticality accidents, DOE has adopted a policy to reduce identifiable nuclear criticality safety risks and to protect the public, workers, government property and essential operations from the effects of a criticality accident. In support of this policy, the Los Alamos Critical Experiments Facility (LACEF) at the Los Alamos National Laboratory (LANL) Technical Area (TA) 18, provides a program of general purpose critical experiments. This program, the only remaining one of its kind in the United States, seeks to maintain a sound basis of information for criticality control in those physical situations that DOE will encounter in handling and storing fissionable material in the future, and ensuring the presence of a community of individuals competent in practicing this control.

NONE

1996-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nuclear Safety Information Dashboard QuickStart Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard QuickStart Guide September 2012 Office of Analysis (HS-24) Office of Environmental Protection, Sustainability Support and Corporate Safety Analysis Office of Health, Safety and Security (HSS) Purpose of Nuclear Safety Information (NSI) Dashboard * The NSI Dashboard provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into ORPS. * ORPS reporting criteria associated with events at nuclear facilities have pre-assigned weighting factors according to their relative importance and are placed into groups. * This information can be evaluated to identify trends and, using insights from current events and nature of operations, enable

342

Automatic Fuzzy Parameter Selection in Dynamic Fuzzy Voter for Safety Critical Systems  

Science Conference Proceedings (OSTI)

The main objective of this research paper is designing automatic fuzzy parameter selection based dynamic fuzzy voter for safety critical systems with limited system knowledge. Existing fuzzy voters for controlling safety critical systems and sensor fusion ... Keywords: Fuzzy Bandwidth, Fuzzy Voters, Safety Critical Systems, Statistical Parameters Systems, Triple Modular Redundant TMR, Weighted Average Voters

PhaniKumar Singamsetty; SeethaRamaiah Panchumarthy

2012-04-01T23:59:59.000Z

343

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

344

Application of Risk Assessment and Management to Nuclear Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application of Risk Assessment and Management to Nuclear Safety Application of Risk Assessment and Management to Nuclear Safety Application of Risk Assessment and Management to Nuclear Safety September 20, 2012 Presenter: Commissioner George Apostolakis US Nuclear Regulatory Commission Topics covered: Management of (unquantified at the time) uncertainty was always a concern. Defense-in-depth and safety margins became embedded in the regulations. "Defense-in-Depth is an element of the NRC's safety philosophy that employs successive compensatory measures to prevent accidents or mitigate damage if a malfunction, accident, or naturally caused event occurs at a nuclear facility." [Commission's White Paper, February 1999] Design Basis Accidents are postulated accidents that a nuclear facility must be designed and built to withstand without loss to the

345

Recent developments in the TWODANT system of codes for criticality safety  

SciTech Connect

The application of deterministic, discrete ordinates codes to criticality safety problems can be a very useful complement to analyses performed using Monte Carlo methods. This is especially so if there is a need for dose or flux maps of the system or if configuration perturbations are to be studied. In these latter two situations, it is difficult to obtain reliable Monte Carlo results due to statistical effects. Deterministic calculations are also useful as an independent check and verification of Monte Carlo results. The TWODANT system of discrete ordinates codes` has recently been enhanced for criticality safety analysis. In addition to ONEDANT, TWODANT, and TWOHEX, the TWODANT system now includes TWODANT/GQ and THREEDANT. These two new code modules expand the applicability of the TWODANT system. These new capabilities will be demonstrated on a representative sample of nuclear criticality safety problems. First, TWODANT/GQ and THREEDANT will be described. Salient features of each code module will be discussed. Calculational results obtained by each will be presented and compared with each other and with Monte Carlo results. Finally, some guidelines for the effective use of the TWODANT system on criticality applications will be given.

Parsons, D.K.; Alcouffe, R.E.; Marr, D.R.; Brinkley, F.W.

1993-04-01T23:59:59.000Z

346

Chief of Nuclear Safety (CNS) Senior Technical Safety Manager (STSM) Qualification Program Self-Assessment Report - August 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chief of Nuclear Safety (CNS) Chief of Nuclear Safety (CNS) Self-Assessment Report Senior Technical Safety Manager Qualification Program CONTENTS Background ................................................................................................................................ 1 Results ....................................................................................................................................... 1 Assessment Criteria ................................................................................................................... 1 Finding ....................................................................................................................................... 2 Observation ............................................................................................................................... 2

347

New enhancements to SCALE for criticality safety analysis  

Science Conference Proceedings (OSTI)

As the speed, available memory, and reliability of computer hardware increases and the cost decreases, the complexity and usability of computer software will increase, taking advantage of the new hardware capabilities. Computer programs today must be more flexible and user friendly than those of the past. Within available resources, the SCALE staff at Oak Ridge National Laboratory (ORNL) is committed to upgrading its computer codes to keep pace with the current level of technology. This paper examines recent additions and enhancements to the criticality safety analysis sections of the SCALE code package. These recent additions and enhancements made to SCALE can be divided into nine categories: (1) new analytical computer codes, (2) new cross-section libraries, (3) new criticality search sequences, (4) enhanced graphical capabilities, (5) additional KENO enhancements, (6) enhanced resonance processing capabilities, (7) enhanced material information processing capabilities, (8) portability of the SCALE code package, and (9) other minor enhancements, modifications, and corrections to SCALE. Each of these additions and enhancements to the criticality safety analysis capabilities of the SCALE code system are discussed below.

Hollenbach, D.F.; Bowman, S.M.; Petrie, L.M.; Parks, C.V. [Oak Ridge National Lab., TN (United States). Computational Physics and Engineering Div.

1995-09-01T23:59:59.000Z

348

Nuclear Safety Enforcement Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2002 14, 2002 Preliminary Notice of Violation, Fluor Hanford, Incorporated - EA-2002-03 Preliminary Notice of Violation issued to Fluor Hanford, Incorporated, related to Quality Assurance issues at the Hanford Site. June 19, 2002 Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 Enforcement Letter issued to Kaiser-Hill Company, LLC related to Unplanned Radioactive Material Uptakes at the Rocky Flats Environmental Technology Site October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order issued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site October 9, 2001 Enforcement Letter, LANL - October 9, 2001 Enforcement Letter issued to Los Alamos National Laboratory related to

349

FAQS Job Task Analyses - Nuclear Safety Specialist  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JOB / TASK ANALYSIS for JOB / TASK ANALYSIS for Nuclear Safety Specialist (NSS) Functional Area Qualification Standard (FAQS) DOE-STD-1183-2007 Instructions for Step 1: Step 1 Identify and evaluate tasks - Develop a comprehensive list of tasks that define the job. o A great starting point is the list of Duties and Responsibilities from the FAQS. o Give careful thought to additional tasks that could be considered. o Don't worry about deleting tasks at this point - that is a part of the process further down. - List the tasks (and their sources, e.g., Duties and Responsibilities #1) in the chart below. - Discuss each task as a group and come to a consensus pertaining to Importance and Frequency of the task (i.e., each team member can consent to the assigned value, even

350

Defense Nuclear Facilities Safety Board's enabling legislation  

NLE Websites -- All DOE Office Websites (Extended Search)

ENABLING STATUTE OF THE ENABLING STATUTE OF THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD 42 U.S.C. § 2286 et seq. NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1989 (Pub. L. No. 100-456, September 29, 1988), AS AMENDED BY NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1991 (Pub. L. No. 101-510, November 5, 1990), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEARS 1992 AND 1993 (Pub. L. No. 102-190, December 5, 1991), ENERGY POLICY ACT OF 1992 (Pub. L. No. 102-486, October 24, 1992), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 1994 (Pub. L. No. 103-160, November 30, 1993), FEDERAL REPORTS ELIMINATION ACT OF 1998 (Pub. L. No. 105-362, November 10, 1998), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 2001 (Pub. L. No. 106-398, October 30, 2000), AND

351

NUCLEAR SAFETY WORKSHOP AGENDA Post Fukushima Initiatives and Results  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR SAFETY WORKSHOP AGENDA NUCLEAR SAFETY WORKSHOP AGENDA Post Fukushima Initiatives and Results September 19-20, 2012 - Bethesda North Marriott TUESDAY, SEPTEMBER 18 - Grand Ballroom, Salons F/G/H 1 9/14/12 6:00 - 8:00 pm Registration WEDNESDAY, SEPTEMBER 19 - Grand Ballroom, Salons F/G/H 7:00 - 8:00 am Registration 8:00 - 8:05 am Logistics Stephen A. Kirchhoff, Office of Health, Safety and Security US Department of Energy 8:05 - 8:15 am Welcoming Remarks and Workshop Objectives Glenn S. Podonsky, Chief Health, Safety and Security Officer US Department of Energy 8:15 - 8:45 am Maintaining Our Focus on Nuclear Safety Daniel B. Poneman, Deputy Secretary US Department of Energy 8:45 - 9:30 am Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - the

352

DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jacobs Company for Nuclear Safety Violations Jacobs Company for Nuclear Safety Violations DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations August 4, 2005 - 2:36pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) today notified the Bechtel Jacobs Company (BJC) that it will fine the company $247,500 for violations of the department's nuclear safety requirements. The company is the department's contractor responsible for environmental cleanup and waste management at its Oak Ridge Reservation in Tennessee. "One of our top safety priorities is to improve the performance of subcontractors, and to do that we need to hold prime contractors responsible," said John Shaw, Assistant Secretary for Environment, Safety and Health. "Our goal is to have work conducted in a manner that protects

353

Issues related to criticality safety analysis for burnup credit applications  

SciTech Connect

Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh fuel loading assumption. Parametric analyses are required to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models are evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. This paper discusses the results of studies to determine the effect of two important modeling assumptions on the criticality analysis of pressurized-water reactor (PWR) spent fuel: (1) the effect of assumed burnup history (i.e., specific power during and time-dependent variations in operational power) during depletion calculations, and (2) the effect of axial burnup distributions on the neutron multiplication factor calculated for a three-dimensional (3-D) conceptual cask design.

DeHart, M.D.; Parks, C.V.

1995-12-01T23:59:59.000Z

354

CSER 94-09: Implications of the heat anomaly in Tank 106-C to criticality safety  

Science Conference Proceedings (OSTI)

Water is periodically added to Tank C-106 to cool its waste. In March 1994 addition of water was temporarily discontinued to determine if the tank could be adequately cooled at a lower water level. Following an addition of water, a temperature fluctuation was observed on one of the thermocouple trees. This Criticality Safety Evaluation Report (CSER) explains why the anomalous temperature measurements could not have been caused by nuclear criticality. Waste in Tank C-106 was discharged from processing facilities under controls designed to ensure that the contents of the tank would remain well subcritical under all credible conditions. The observed temperature profile does not fit the profile expected from a criticality event. In addition, there has been no indication of any significant increase in the rate of water evaporation.

Rogers, C.A.

1994-10-01T23:59:59.000Z

355

Packaging Strategies for Criticality Safety for "Other" DOE Fuels in a Repository  

SciTech Connect

Since 1998, there has been an ongoing effort to gain acceptance of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in the national repository. To accomplish this goal, the fuel matrix was used as a discriminating feature to segregate fuels into nine distinct groups. From each of those groups, a characteristic fuel was selected and analyzed for criticality safety based on a proposed packaging strategy. This report identifies and quantifies the important criticality parameters for the canisterized fuels within each criticality group to: (1) demonstrate how the “other” fuels in the group are bounded by the baseline calculations or (2) allow identification of individual type fuels that might require special analysis and packaging.

Larry L Taylor

2004-06-01T23:59:59.000Z

356

Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 1996 February 1996 CHANGE NOTICE NO. 2 Date November 2005 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS DOCUMENTS (DOCUMENTED SAFETY ANALYSES AND TECHNICAL SAFETY REQUIREMENTS) U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, Fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Adminis tration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

357

Accurate fission data for nuclear safety  

E-Print Network (OSTI)

The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

A. Solders; D. Gorelov; A. Jokinen; V. S. Kolhinen; M. Lantz; A. Mattera; H. Penttila; S. Pomp; V. Rakopoulos; S. Rinta-Antila

2013-03-12T23:59:59.000Z

358

NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations, Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheet Sheet NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations On August 22, 2011, the National Nuclear Security Administration (NNSA) issued a Preliminary Notice of Violation (PNOV) to National Security Technologies, LLC (NSTec) for violations of Department of Energy's (DOE) nuclear safety regulations. NSTec is the operating contractor of NNSA's Nevada National Security Site (NNSS) located 65 miles northwest of Las Vegas, Nevada. The PNOV cites four violations of DOE regulations governing nuclear safety management. The violations are associated with quality assurance (QA) related deficiencies in the inspection and installation of penetration fire seals and other components at the Criticality Experiments Facility

359

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

DOE Green Energy (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

360

2012 Nuclear Safety Workshop Photos | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » 2012 Nuclear Safety Workshop Photos 2012 Nuclear Safety Workshop Photos Addthis Glenn Podonsky 1 of 13 Glenn Podonsky Glenn Podonsky (DOE Chief Health, Safety and Security Officer) provides his welcoming remarks. Daniel Poneman 2 of 13 Daniel Poneman DOE Deputy Secretary Daniel Poneman discusses maintaining our focus on nuclear safety. Akira Kawano 3 of 13 Akira Kawano Akira Kawano, Tokyo Electric Power Company, provides lessons learned from the Fukushima nuclear accident. Bill Ostendorff 4 of 13 Bill Ostendorff NRC Commissioner Bill Ostendorff gives his perspective on the NRC's response to the Fukushima nuclear accident. Miroslav Lipar 5 of 13 Miroslav Lipar Miroslav Lipar, IAEA, provides an international perspective on the Fukushima nuclear accident.

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft Word - Nuclear Safety Reporting Criteria.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Noncompliance Reporting Criteria (as of January 1, 2012) Safety Noncompliance Reporting Criteria (as of January 1, 2012) Nuclear Safety Noncompliances Associated With Occurrences (DOE Order 232.2) Consult the DOE Order for the full text of each occurrence criterion 1 Reporting Criteria Group Subgroup Occurrence Category and Summary Description 2 1. Operational Emergencies 3 N/A (1) Operational Emergency (2) Alert (3) Site Area Emergency (4) General Emergency 2. Personnel Safety and Health C. Fires (1) Fire within primary confinement/containment (2d) Self-extinguishing fires D. Explosions (1) Unplanned explosion within primary confinement/containment 3. Nuclear Safety Basis A. Technical Safety Requirement (TSR) Violations (1) Violation of TSR/Operational Safety Requirement (OSR) Safety Limit (2) Violation of other TSR/OSR requirement

362

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems  

SciTech Connect

The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

Timothy J. Leahy

2010-06-01T23:59:59.000Z

363

Nuclear Safety Reserch and Development Program Operating Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

364

Nuclear safety as applied to space power reactor systems  

SciTech Connect

Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety.

Cummings, G.E.

1987-01-01T23:59:59.000Z

365

Diagnostic and Advisory Systems - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic and Advisory Systems Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning SystemsProcess...

366

Artificial Intelligence / Expert Systems Expertise - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Intelligence Expert Systems Expertise Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning...

367

Process Monitoring & Signal Validation - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Monitoring & Signal Validation Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems...

368

SRTC criticality safety technical review: Phase 1 criticality analysis for the 9972-9975 family of shipping casks: (SRT-CMA-940003)  

SciTech Connect

Review of SRT-CMA-940003, ``Phase I Criticality Analysis For The 9972-9975 Family Of Shipping Casks (U). (SRT-CMA-940003).`` January 22, 1994, has been performed by the SRTC Applied Physics Group. The NCSE is a criticality assessment of the 9972-9975 family of shipping casks. This work is a follow-on of a previous criticality safety evaluation, with the differences between this and the previous evaluation are that now wall tolerances are modeled and more sophisticated analytical methods are applied. The NCSE under review concludes that, with one exception, the previously specified plutonium and uranium mass limits for 9972-9975 family of shipping casks do ensure that WSRC Nuclear Criticality Safety Manual requirements (ref. 1) are satisfied. The one exception is that the plutonium mass limit for the 9974 cask had to be reduced from 4.4 to 4.3 kg. In contrast, the 7.5 kg uranium mass limit for the 9974 cask was raised to 14.5 kg, making the uranium mass identical for all casks in this family. This technical review consisted of an independent check of the methods and models employed, application of ANSI/ANS 8.1 and 8.15, and verification of WSRC Nuclear Criticality Safety Manual procedures.

Rathbun, R.

1994-03-02T23:59:59.000Z

369

Work for Nuclear Regulatory Commission, Safety Related Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Regulatory Nuclear Regulatory Commission Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Safety-Related Applications Overview DOE Office of Nuclear Energy, Science, and Technology Nuclear Regulatory Commission National Aeronautics and Space Administration (NASA) Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Safety Related Applications Bookmark and Share Nuclear Regulatory Commission International Steam Generator Tube Integrity Program Key objectives of the International Steam Generator Tube Integrity Program

370

Safety Related Applications (Sensors and Instrumentation and NDE) - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Office of DOE Office of Nuclear Energy, Science, and Technology Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Safety-Related Applications Overview DOE Office of Nuclear Energy, Science, and Technology Nuclear Regulatory Commission National Aeronautics and Space Administration (NASA) Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Safety Related Applications Bookmark and Share DOE Office of Nuclear Energy, Science, and Technology The objective of this Nuclear Energy Plant Optimization Project is to

371

DOE Cites University of Chicago for Nuclear Safety Violations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Chicago for Nuclear Safety Violations University of Chicago for Nuclear Safety Violations DOE Cites University of Chicago for Nuclear Safety Violations March 7, 2006 - 11:42am Addthis WASHINGTON , DC - The Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to the University of Chicago (University), the Management and Operating contractor for DOE's Argonne National Laboratory (ANL), for nuclear safety violations identified through several safety reviews and inspections conducted by DOE. A series of reviews and inspections, the most recent of which occurred in 2005, identified breakdowns in the contractor's quality improvement, radiation protection, work process, and independent and management assessment programs. Prior to 2005, senior contractor management at ANL

372

Pantex sets safety record | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

sets safety record | National Nuclear Security Administration sets safety record | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex sets safety record Pantex sets safety record Posted By Office of Public Affairs Pantex has set a new safety record with the lowest recordable case rate in the plant's history. The record total recordable case rate of 0.26 is a fitting end to an

373

Pantex receives two safety awards | National Nuclear Security  

National Nuclear Security Administration (NNSA)

two safety awards | National Nuclear Security two safety awards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex receives two safety awards Pantex receives two safety awards Posted By Office of Public Affairs B&W Pantex was honored last week with a pair of awards for its exemplary safety record. The President's Award for Best Performing Business Unit and the Target

374

DOE O 410.1, Central Technical Authority Responsibilities Regarding Nuclear Safety Requirements  

Directives, Delegations, and Requirements

The order establishes Central Technical Authority and Chief of Nuclear Safety/Chief of Defense Nuclear Safety responsibilities and requirements directed by the ...

2007-08-28T23:59:59.000Z

375

Nuclear Safety Research and Development Committee Charter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter Nuclear Safety Research and Development Committee Charter July 5, 2012 Nuclear Safety Research and Development Committee Charter The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have

376

Deputy Secretary Poneman Discusses Nuclear Safety at the IAEA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discusses Nuclear Safety at the IAEA Discusses Nuclear Safety at the IAEA Deputy Secretary Poneman Discusses Nuclear Safety at the IAEA June 20, 2011 - 12:00am Addthis Washington, D.C. - U.S. Deputy Secretary of Energy Daniel Poneman today addressed the plenary session at the International Atomic Energy Agency's Ministerial Conference on Nuclear Safety. Deputy Secretary Poneman emphasized the importance of international cooperation and information sharing for developing lessons learned from the Fukushima accident. The IAEA is leading the process to develop these international best practices, which will help strengthen the international nuclear regulatory regime. Remarks as prepared for delivery are below. Thank you, Mr. Ambassador, for your work in organizing this important Conference and to Director General Amano and his staff for convening it.

377

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

378

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect

This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

Not Available

1993-11-01T23:59:59.000Z

379

DOE O 420.1C, Facility Safety  

Energy.gov (U.S. Department of Energy (DOE))

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, and criticality safety.

380

DOE O 420.1C, Facility Safety  

Directives, Delegations, and Requirements

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, ...

2012-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Plant Modernization with Digital Reactor Protection System Safety System Upgrades at US Nuclear Power Stations  

SciTech Connect

As the current fleet of nuclear power plants in the US reaches 25+ years of operation, obsolescence is driving many utilities to implement upgrades to both their safety and non-safety-related Instrumentation and Control (I and C) Systems. Digital technology is the predominant replacement technology for these upgrades. Within the last 15 years, digital control systems have been deployed in non-safety- related control applications at many utilities. In addition, a few utilities have replaced small safety-related systems utilizing digital technology. These systems have shown digital technology to be robust, reliable and simpler to maintain. Based upon this success, acceptance of digital technology has gained momentum with both utilities and regulatory agencies. Today, in an effort to extend the operating lives of their nuclear stations and resolve obsolescence of critical components, utilities are now pursuing digital technology for replacement of their primary safety systems. AREVA is leading this effort in the United States with the first significant digital upgrade of a major safety system. AREVA has previously completed upgrades to safety-related control systems emergency diesel engine controls and governor control systems for a hydro station which serves as the emergency power source for a nuclear station. Currently, AREVA is implementing the replacement of both the Reactor Protection System (RPS) and the Engineered Safety Features Actuation System (ESFAS) on all three units at a US PWR site. (authors)

Heckle, Wm. Lloyd; Bolian, Tricia W. [AREVA NP, an AREVA and Siemens Company, 1345 Ridgeland Parkway, Suite 130 (United States)

2006-07-01T23:59:59.000Z

382

Pre-orbital criticality safety for the NEPSTP mission  

SciTech Connect

In December 1991, the Strategic Defense Initiative Organization (SDIO) proposed investigating whether launching a Russian Topaz-II space nuclear power system could be done safely and within budget constraints. Functional safety requirements developed for the US Topaz mission mandated that the reactor remain subcritical when immersed in water. Topaz-II is an epithermal, enriched-uranium-fueled, NaK- (liquid metal alloy with 22% sodium and 78% potassium) cooled, and zirconium hydride-moderated reactor. A radial beryllium reflector containing 12 rotatable control drums surrounds the core. The authors prepared a computer model of the Topaz reactor that explicitly represented all major reactor components. Initial analyses indicated that in several water-immersion scenarios, the reactor would not remain subcritical. After additional calculations, modifications were proposed that would assure subcriticality under such conditions. This paper describes the analyses and the proposed modifications.

Sapir, J.; Pelowitz, D.; Streetman, J.R. [Los Alamos National Lab., NM (United States); Glushkov, Y.S.; Ponomarev-Stepnoi, N.N.; Kompanietz, G.V.; Lobynstev, V.A. [Kurchatov Inst., Moscow (Russian Federation)

1993-11-01T23:59:59.000Z

383

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect

The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

Not Available

1991-04-01T23:59:59.000Z

384

Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1) Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1) The Department of Energy (DOE) has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as Specific Administrative Controls (see HSS CRAD 64-32). The following provides a set of criteria and typical activities with representative lines of inquiry to assess criticality control implementation as an integral part of the review of the core functions and implementation of integrated safety management.

385

Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant Supplemental Volume Table of Contents Foreword ...................................................................................................................................................... iii Acronyms ...................................................................................................................................................... v

386

A critical review of world jet transport safety  

E-Print Network (OSTI)

This thesis is intended to serve as a comprehensive introduction to world jet transport safety and aviation fire safety. Divided into six sections, this thesis contains: 1) a statistical review of overall levels of safety ...

Achtmann, Eric D.

1995-01-01T23:59:59.000Z

387

Criticality safety considerations for MSRE fuel drain tank uranium aggregation  

SciTech Connect

This paper presents the results of a preliminary criticality safety study of some potential effects of uranium reduction and aggregation in the Molten Salt Reactor Experiment (MSRE) fuel drain tanks (FDTs) during salt removal operations. Since the salt was transferred to the FDTs in 1969, radiological and chemical reactions have been converting the uranium and fluorine in the salt to UF{sub 6} and free fluorine. Significant amounts of uranium (at least 3 kg) and fluorine have migrated out of the FDTs and into the off-gas system (OGS) and the auxiliary charcoal bed (ACB). The loss of uranium and fluorine from the salt changes the chemical properties of the salt sufficiently to possibly allow the reduction of the UF{sub 4} in the salt to uranium metal as the salt is remelted prior to removal. It has been postulated that up to 9 kg of the maximum 19.4 kg of uranium in one FDT could be reduced to metal and concentrated. This study shows that criticality becomes a concern when more than 5 kg of uranium concentrates to over 8 wt% of the salt in a favorable geometry.

Hollenbach, D.F.; Hopper, C.M. [Oak Ridge National Lab., TN (United States). Computational Physics and Engineering Div.

1997-03-01T23:59:59.000Z

388

DOE Cites Washington TRU Solutions for Nuclear Safety Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington TRU Solutions for Nuclear Safety Violations Washington TRU Solutions for Nuclear Safety Violations DOE Cites Washington TRU Solutions for Nuclear Safety Violations December 22, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Washington TRU Solutions (WTS) that it will fine the company $192,500 for violations of the department's nuclear safety requirements. The Preliminary Notice of Violation (PNOV) issued today cites a number of deficiencies that led to a series of low-level plutonium uptakes by workers at a WTS mobile facility (MOVER) stationed at the Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. The violations reflected WTS' limited understanding of the design and operational limitations of the MOVER facility, a portable waste processing facility designed to be

389

Development of the Nuclear Safety Information Dashboard - September 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of the Nuclear Safety Information Dashboard - September Development of the Nuclear Safety Information Dashboard - September 2012 Development of the Nuclear Safety Information Dashboard - September 2012 September 2012 A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria. The sum of the severity-weighted factors for the sixty-five ORPS Reporting Criteria equals 100%. Paired pairing is an analytical tool used to determine weighted factors. A team evaluated pairs of ORPS reporting criteria and concurred on the relative importance of each pair. Each ORPS reporting criterion in a group was compared with one other ORPS reporting

390

Development of the Nuclear Safety Information Dashboard - September 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of the Nuclear Safety Information Dashboard - September Development of the Nuclear Safety Information Dashboard - September 2012 Development of the Nuclear Safety Information Dashboard - September 2012 September 2012 A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria. The sum of the severity-weighted factors for the sixty-five ORPS Reporting Criteria equals 100%. Paired pairing is an analytical tool used to determine weighted factors. A team evaluated pairs of ORPS reporting criteria and concurred on the relative importance of each pair. Each ORPS reporting criterion in a group was compared with one other ORPS reporting

391

FAQS Job Task Analyses - Nuclear Explosive Safety Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Explosive Safety Study FAQS Nuclear Explosive Safety Study FAQS STEP 1: Job Task Analysis for Tasks Task (and Number) Source Importance Frequency (1) Serves as a member or chair of the NESSG. FAQS Duties and Responsibilities Paragraph A 5 3 (2) Provides guidance on and interpretation of nuclear explosive safety (NES) requirements and policy. FAQS Duties and Responsibilities Paragraph B 5 4 (3) Drafts policy directives for the DOE/NNSA, Nuclear Explosive Safety Operations Branch (NESB) and reviews DOE/NNSA policies on NES. FAQS Duties and Responsibilities Paragraph D 5 3 (4) Provides instruction and guidance regarding NES to individuals assigned NES responsibilities. FAQS Duties and Responsibilities Paragraph E 5 3-4 (5) Monitors ongoing NEOs to ensure compliance with NES standards and

392

Exelon Statement Regarding Nuclear Safety and 10 CFR 810  

Energy.gov (U.S. Department of Energy (DOE))

Exelon respectfully submits that the existing 810 rule, as currently interpreted, and the proposed revised rule, both work as deterrents to improving safety in nuclear operations around the world.

393

DOE Cites Fluor Fernald Inc. for Nuclear Safety Violations  

Energy.gov (U.S. Department of Energy (DOE))

Washington, D.C. - The Department of Energy (DOE) today notified Fluor Fernald, Inc. (Fluor Fernald) that it will fine the company $33,000 for violations of the department's nuclear safety...

394

10 CFR Part 830, Nuclear Safety Management  

NLE Websites -- All DOE Office Websites (Extended Search)

construction such as environmental restoration activities, decontamination and decommissioning activities, specific nuclear explosives operations, or transition...

395

American National Standard ANSI/ANS-8.15-1983: Nuclear criticality control of special actinide elements  

SciTech Connect

The American National Standard, `Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors` ANSI/ANS-8.1- 1983 provides guidance for the nuclides [sup 233]U, [sup 235]U, and [sup 239]Pu These three nuclides are of primary interest in out-of-reactor criticality safety since they are the most commonly encountered in the vast majority of operations. However, some operations can involve nuclides other than `U, `U, and `Pu in sufficient quantities that their effect on criticality safety could be of concern. The American National Standard, `Nuclear Criticality Control of Special Actinide Elements` ANSI/ANS-8.`15-1983 (Ref 2), provides guidance for fifteen such nuclides.

Brewer, R.W. [Los Alamos National Lab., NM (United States); Pruvost, N.L. [Galaxy Computer Services, Inc. (United States); Rombough, C.T. [CTR Technical Services (United States)

1996-12-31T23:59:59.000Z

396

Criticality Risks During Transportation of Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies.

2006-12-14T23:59:59.000Z

397

The Criticality Safety Information Resource Center at Los Alamos National Laboratory  

SciTech Connect

The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists` logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community.

Henderson, B.D.; Meade, R.A. [Los Alamos National Lab., NM (United States); Pruvost, N.L. [Galaxy Computer Services, Inc., Santa Fe, NM (United States)

1997-05-01T23:59:59.000Z

398

Welding and Fabrication Critical Factors for New Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Welding and fabrication processes employed for manufacture of critical nuclear power plant components may adversely affect material performance and can potentially increase susceptibility to known degradation mechanisms. This report identifies important welding and fabrication processes for specific materials, assesses their effects on potential degradation mechanisms, and identifies process enhancements that can improve long-term asset management of new nuclear plant components.

2009-12-08T23:59:59.000Z

399

Safety Oversight of Decommissioning Activities at DOE Nuclear Sites  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

2008-01-15T23:59:59.000Z

400

Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant  

Science Conference Proceedings (OSTI)

Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Preliminary nuclear safety assessment of the NEPST (Topaz II) space reactor program  

SciTech Connect

The United States (US) Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary nuclear safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary nuclear safety assessment included a number of deterministic analyses, such as; neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, an analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment to date, it appears that it will be possible to safely launch the Topaz II system in the US with a modification to preclude water flooded criticality. A full scale safety program is now underway.

Marshall, A.C.

1993-01-01T23:59:59.000Z

402

Nuclear Safety News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliance, LLC. News & Blog Blog Archive News Archive Program Highlights Enforcement News Organizational Chart Office of Health and Safety Office of Environmental Protection,...

403

THE IMPACT OF THE GLOBAL NUCLEAR SAFETY REGIME IN BRAZIL  

SciTech Connect

A turning point of the world nuclear industry with respect to safety occurred due to the accident at Chernobyl, in 1986. A side from the tragic personal losses and the enormous financial damage, the Chernobyl accident has literally demonstrated that ''a nuclear accident anywhere is an accident everywhere''. The impact was felt immediately by the nuclear industry, with plant cancellations (e.g. Austria), elimination of national programs (e.g. Italy) and general construction delays. However, the reaction of the nuclear industry was equally immediate, which led to the proposal and establishment of a Global Nuclear Safety Regime. This regime is composed of biding international safety conventions, globally accepted safety standard, and a voluntary peer review system. In a previous work, the author has presented in detail the components of this Regime, and briefly discussed its impact in the Brazilian nuclear power organizations, including the Regulatory Body. This work, on the opposite, briefly reviews the Global Nuclear Safety Regime, and concentrates in detail in the discussion of its impact in Brazil, showing how it has produced some changes, and where the peer pressure regime has failed to produce real results.

Almeida, C.

2004-10-06T23:59:59.000Z

404

Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area  

SciTech Connect

A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

Slate, Lawrence J; Taylor, Joseph Todd

2000-08-01T23:59:59.000Z

405

Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area  

SciTech Connect

A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

Slate, L.J.; Taylor, J.T.

2000-08-31T23:59:59.000Z

406

THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER (RSICC) - A RESOURCE FOR COMPUTATIONAL TOOLS FOR NUCLEAR APPLICATIONS  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC), which has been in existence since 1963, is the principal source and repository in the United States for computational tools for nuclear applications. RSICC collects, organizes, evaluates and distributes nuclear software and data involving the transport of neutral and charged particle radiation, and shielding and protection from radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste. RSICC serves over 12,000 scientists and engineers from 94 countries. RSICC software provides in-depth coverage of radiation related topics: the physics of the interaction of radiation with matter, radiation production and sources, criticality safety, radiation protection and shielding, radiation detectors and measurements, shielding materials properties, radiation waste management, atmospheric dispersion and environmental dose, medical applications, macro- and micro-dosimetry calculations.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

407

Environment, Safety & Health | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering...

408

A Look Back at the Nuclear Safety Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nuclear facilities. That is why, in response to the March accident at the Fukushima Daiichi nuclear complex, the Department hosted a Nuclear Safety Workshop to bring...

409

A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)  

SciTech Connect

Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

Morris, Tommy J. [Los Alamos National Laboratory

2012-07-05T23:59:59.000Z

410

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

411

Department of Energy Office of Nuclear Safety and Environmental Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Office of Nuclear Safety and Environmental Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS All new construction required to follow the provisions of Department of Energy (DOE) Order 420. lB, Facility Safety, must comply with national consensus industry standards and the model building codes applicable for the state or region in which the facility is located. Certain individuals in the fire community requested

412

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and

413

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

414

Seminar in Critical Inquiry Twenty-first Century Nuclear Systems  

Science Conference Proceedings (OSTI)

Critical Inquiry, has not only been successful in increasing university student retention rate but also in improving student academic performance beyond the initial year of transition into the University. The seminar course herein reviewed is a balanced combination of student personal and academic skill development combined with a solid background in modern nuclear systems. It is a valid premise to assume that entering students as well as stakeholders of the general public demonstrate equal levels of capability. Nuclear systems is designed to give a broad and basic knowledge of nuclear power, medical, industrial, research, and military systems (nuclear systems) in 20-25 hours.

LeMone, D. V.

2002-02-25T23:59:59.000Z

415

Review of the international conference on nuclear criticality-issues, discussions, and challenges  

SciTech Connect

The Fifth International Conference on Nuclear Criticality Safety (ICNC`95) was held September 17-22, 1995, in Albuquerque, New Mexico, USA. Organization and support for the conference was provided by the Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), the University of New Mexico, and the Organization for Economic Cooperation and Development (OECD). This conference traces its history back to 1981 when a group of select criticality safety specialists (mostly experimentalists) from France, Germany, Japan, the United Kingdom, and the United States participated in a small conference at LANL in the United States. The motivation for the conference had been provided by Dr. J. C. Manaranche of France who had asked D. Smith and G. E. Whitesides of the United States if it would be possible for the French experimentalists to be able to visit the experimental facilities at LANL. This first conference was followed by a similar conference held in Dijon, France, in 1993. Then in 1987 the conference was hosted by the Japanese and opened to much wider participation by criticality safety specialists involved in experiments, methods development and analysis, and operations. With the 1987 conference in Japan and the fourth conference (ICNC`91) held in the United Kingdom, the interest and international participation by the criticality safety community has grown rapidly. With this background, the occasion of ICNC`95 was one of much expectation.

Parks, C.V.; Whitesides, G.E.

1995-12-31T23:59:59.000Z

416

Aerospace nuclear safety: An introduction and historical overview  

SciTech Connect

This paper provides an introduction and overview on the topical area of aerospace nuclear safety. Emphasis is on the history of the use of nuclear power sources in space, operational experience with these nuclear sources, a review of previous accidents associated with both U.S. and Russian launches, and the safety issues associated with the entire life cycle of space reactors. There are several potential missions to include near earth orbit, orbit-raising, lunar bases, and propulsion to such solar system locations as Mars, which are suitable for the use of space reactors. The process by which approval is obtained to launch these nuclear materials to space is also presented as well as the role of nuclear safety policy and requirements in a space program using nuclear power sources. Important differences in safety concerns for the Radioisotope Thermoelectric Generators (RTGs) now used, and space reactors are presented. The role and purpose of independent safety evaluation and assessment in ensuring safe launch and operation is also discussed. In summary, this paper provides the requisite framework in this topical area for the remaining papers of this session.

Lee, J.H.; Buden, D.

1994-04-01T23:59:59.000Z

417

Safety - Vulnerability Assessment Team - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety VAT Projects Introducing the VAT Adversarial Vulnerability Assessments Safety Tags & Product Counterfeiting Election Security Spoofing GPS Defeating Existing Tamper-Indicating Seals Specialty Field Tools & Sampling Tools Insider Threat Mitigation Drug Testing Security Microprocessor Prototypes The Journal of Physical Security Vulnerability Assessments Vulnerability Assessments Insanely Fast µProcessor Shop Insanely Fast µProcessor Shop Seals About Seals Applications of Seals Common Myths about Tamper Indicating Seals Definitions Findings and Lessons Learned New Seals Types of Seals Seals References Selected VAT Papers Selected VAT Papers Selected Invited Talks Self-Assessment Survey Security Maxims Devil's Dictionary of Security Terms Argonne's VAT (brochure)

418

Energy Department and Catholic University Improve Safety of Nuclear Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Catholic University Improve Safety of Nuclear Catholic University Improve Safety of Nuclear Waste Energy Department and Catholic University Improve Safety of Nuclear Waste January 30, 2013 - 12:51pm Addthis Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. David Sheeley David Sheeley Editor/Writer What does this project do? Hanford treats and immobilizes significant quantities of legacy nuclear waste left from the manufacture of plutonium during World War II and the Cold War. Secretary Steven Chu recently visited Catholic University's Vitreous

419

Criticality safety criteria for the handling, storage, and transportation of LWR fuel outside reactors: ANS-8.17-1984  

SciTech Connect

The potential for criticality accidents during the handling, storage, and transportation of fuel for nuclear reactors represents a health and safety risk to personnel involved in these activities, as well as to the general public. Appropriate design of equipment and facilities, handling procedures, and personnel training can minimize this risk. Even though the focus of the American National Standard, `Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors,` ANSI/ANS-8.1-1983, is general criteria for the ensurance of criticality safety, ANS-8.17-1984, provides additional guidance applicable to handling, storage, and transportation of light-water- reactor (LWR) nuclear fuel units in any phase of the fuel cycle outside the reactor core. ANS-8.17 had its origin in the late 1970s when a work group consisting of representatives from private industry, personnel from government contractor facilities, and scientists and engineers from the national laboratories was established. The work of this group resulted in the issuance of ANSI/ANS-8.17 in January 1984. This document provides a discussion of this standard.

Whitesides, G.E.

1996-09-01T23:59:59.000Z

420

Qualification of Siemens Power Corporation TELEPERM XS Safety System: Compliance with EPRI TR-107330 "Generic Requirements Specifica tion for Qualifying a Commercially Available PLC for Safety-Related Applications in Nuclear Power Plants"  

Science Conference Proceedings (OSTI)

As its nuclear power plants age, the electric power industry is focusing on the development of cost-effective replacement systems for obsolete instrumentation, control, and safety systems. This report describes the generic qualification of a platform for safety-related applications that incorporates programmable logic controllers (PLCs), a technology with an excellent track record in non-nuclear applications for critical control and safety functions.

1999-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear criticality safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An impact analysis method for safety-critical user interface design  

Science Conference Proceedings (OSTI)

We describe a method of assessing the implications for human error on user interface design of safety-critical systems. In previous work we have proposed a taxonomy of influencing factors that contribute to error. In this article, components of the taxonomy ... Keywords: Bayesian belief networks, human error, safety-critical, scenario-based casual analysis

Julia Galliers; Alistair Sutcliffe; Shailey Minocha

1999-12-01T23:59:59.000Z

422

Nuclear safety | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

to prevent nuclear and radiation accidents or to limit their consequences. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

423

Criticality Safety Information Meeting for the Hanford Plutonium Finihsing Plant, May 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

2-05-14 2-05-14 Site: DOE-Richland Operations Office Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Criticality Safety Information Meeting for the Plutonium Finishing Plant Dates of Activity : May 14, 2012 Report Preparer: Ivon Fergus Activity Description/Purpose: The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted a criticality safety information meeting with Hanford site criticality safety engineers on May 14, 2012, to discuss criticality safety issues and experiences principally with respect to the Decontamination and Decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP). These discussions also included aspects of Non-

424

Criticality Safety Information Meeting for the Hanford Plutonium Finihsing Plant, May 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-05-14 2-05-14 Site: DOE-Richland Operations Office Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Criticality Safety Information Meeting for the Plutonium Finishing Plant Dates of Activity : May 14, 2012 Report Preparer: Ivon Fergus Activity Description/Purpose: The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted a criticality safety information meeting with Hanford site criticality safety engineers on May 14, 2012, to discuss criticality safety issues and experiences principally with respect to the Decontamination and Decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP). These discussions also included aspects of Non-

425

Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada National Security Site Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope.................................................................................................................................................. 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

426

Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada National Security Site Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope.................................................................................................................................................. 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

427

Western University Nuclear Radiation Safety Inspection Checklist  

E-Print Network (OSTI)

of Understanding (MOU) between USACE and the Nuclear Regulatory Commission (NRC) dated July 5, 2001, and subject for interagency consultation if the decommissioning criteria at 10 CFR Section 20.1402 are determined, resulting from the disposal of radiologically contaminated waste from the nearby Apollo Nuclear Fuel

Sinnamon, Gordon J.

428

Nuclear safety criteria and specifications for space nuclear reactors  

SciTech Connect

The purpose of this document is to define safety criteria which must be met to implement US safety policy for space fission reactors. These criteria provide the bases for decisions on the acceptability of specific mission and reactor design proposals. (JDH)

1982-08-01T23:59:59.000Z

429

Criticality Risks During Transportation of Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was pu...

2008-12-10T23:59:59.000Z

430

Safety/safeguards interactions during safety-related emergencies at Nuclear Power Reactor Facilities  

Science Conference Proceedings (OSTI)

This report contains an analysis of the safety/safeguards interactions that could occur during safety-related emergencies at licensed nuclear power reactors, and the extent to which these interactions are addressed in existing or proposed NRC guidance. The safety/safeguards interaction during a series of postulated emergencies was systematically examined to identify any potential performance deficiencies or conflicts between the Operations (safety) and Security (safeguards) organizations. This examination included the impacts of coordination with off-site emergency response personnel. Duties, responsibilities, optimal methods, and procedural actions inherent in these interactions were explored.

Moul, D.A.; Pilgrim, M.K.; Schweizer, R.L.; McEwen, J.E. Jr.

1985-03-01T23:59:59.000Z

431

CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS  

Science Conference Proceedings (OSTI)

High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

Stephens, K; Davoud Eghbali, D; Michelle Abney, M

2008-01-15T23:59:59.000Z

432

Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facts and Lessons of the Fukushima Nuclear Accident and Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints September 19, 2012 Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company Topics Covered: How Tsunami Struck Fukushima Sites Tsunami Height Estimation How we responded in the Recovery Process Safety Improvement and Further Enhancement of Nuclear Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints More Documents & Publications January2005 NNSANews Meeting Materials: June 15, 2011

433

Aerospace nuclear safety report for August 1967  

SciTech Connect

The AEC Safety Branch advised that the present outlook for a potential mission using four modified SNAP-3 type generators is rather negative. Drop tests of four SNAP-19 intact reentry heat source capsules were conducted at the Tonopah Test Range. A preliminary GE SNAP-27 safety analysis was reviewed. Three arc tunnel tests were conducted at low heat fluxes. Debris were collected on downrange impactors from all tests. The rapid helium depressurization test on fuel microspheres was conducted by Battelle; preliminary examination of the fuel revealed no obvious change in microsphere characteristics.

Illing, R.G. (comp.)

1967-09-01T23:59:59.000Z

434

Effects of introducing collaborative technology on communications in a distributed safety-critical system  

Science Conference Proceedings (OSTI)

Communication and collaborative decision-making are critical activities in safety-critical systems such as marine transportation. As a result, new group technologies have been introduced to enhance communication and decision-making in these settings. ... Keywords: Automation, Case study, Communication, Decision support systems, Group decision support systems, Group support systems, Lean media, Marine transportation, Rich technology environment, Safety-critical system, Saint Lawrence Seaway, Technology impact, Technology introduction, Vessel traffic systems

Sudhendar Hanumantharao; Martha Grabowski

2006-08-01T23:59:59.000Z

435

DOE-STD-1173-2003; Criticality Safety Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

73-2003 73-2003 December 2003 DOE STANDARD CRITICALITY SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1173-2003 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1173-2003

436

Guidance for identifying, reporting and tracking nuclear safety noncompliances  

SciTech Connect

This document provides Department of Energy (DOE) contractors, subcontractors and suppliers with guidance in the effective use of DOE`s Price-Anderson nuclear safety Noncompliance Tracking System (NTS). Prompt contractor identification, reporting to DOE, and correction of nuclear safety noncompliances provides DOE with a basis to exercise enforcement discretion to mitigate civil penalties, and suspend the issuance of Notices of Violation for certain violations. Use of this reporting methodology is elective by contractors; however, this methodology is intended to reflect DOE`s philosophy on effective identification and reporting of nuclear safety noncompliances. To the extent that these expectations are met for particular noncompliances, DOE intends to appropriately exercise its enforcement discretion in considering whether, and to what extent, to undertake enforcement action.

NONE

1995-12-01T23:59:59.000Z

437

Generic Qualification of the Triconex Corporation TRICON Triple Modular Redundant Programmable Logic Controller System for Safety-Re lated Applications in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

As its nuclear power plants age, the electric power industry is focusing on the development of cost-effective replacement systems for obsolete instrumentation, control, and safety systems. This report describes the generic qualification of a platform for safety-related applications that incorporates triple modular redundant (TMR) programmable logic controllers (PLCs), a technology with an excellent track record in non-