Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

2

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

3

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

4

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

5

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

6

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

7

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

8

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

9

Sustainable development with clean coal  

SciTech Connect (OSTI)

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

10

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

11

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

12

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

13

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

14

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

15

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

16

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

17

Utility Generation and Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

18

4th Annual Clean Coal  

E-Print Network [OSTI]

Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

Ferriter John P

19

Clean Coal Incentive Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

20

Repowering with clean coal technologies  

SciTech Connect (OSTI)

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Clean Coal Program Research Activities  

SciTech Connect (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

22

The Political Economy of Clean Coal .  

E-Print Network [OSTI]

??This dissertation investigates the nature of the political economy of Clean Coal. It begins by reviewing the literature of global warming and the current usage… (more)

Wu, Hao Howard

2010-01-01T23:59:59.000Z

23

Clean coal technology programs: program update 2006  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

NONE

2006-09-15T23:59:59.000Z

24

Clean Coal Technology Programs: Program Update 2009  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

25

Secretary of Energy and Rep. Chabot Highlight Clean Coal and...  

Broader source: Energy.gov (indexed) [DOE]

and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen Research...

26

Clean Coal Technology Demonstration Program. Program update 1995  

SciTech Connect (OSTI)

This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

NONE

1996-04-01T23:59:59.000Z

27

FACT SHEET: Clean Coal University Research Awards and Project...  

Energy Savers [EERE]

FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's...

28

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network [OSTI]

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

Banerjee, Rangan

29

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents [OSTI]

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

30

Coal science for the clean use of coal  

SciTech Connect (OSTI)

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

31

Nel (2004), “Clean Coal Conversion Options using Fischer-Tropsch  

E-Print Network [OSTI]

facilities producing these products individually. There may be good strategic reasons to use clean coal

Andre ? P. Steynberg; Herman G. Nel

32

State perspectives on clean coal technology deployment  

SciTech Connect (OSTI)

State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

1997-12-31T23:59:59.000Z

33

APEC experts` group on clean coal technology  

SciTech Connect (OSTI)

The proceedings of the Asia-Pacific Economic Cooperation (APEC) Expert`s Group on Clean Coal Technology`s Technical Seminar held in Jakarta, Indonesia, from October 10-13, 1994 are presented. A total of 28 papers were presented at the seminar. These papers addressed issues of relevance to APEC member economies associated with the application of clean coal technologies (CCTs) and created a forum where information and ideas about CCTs and their application in the Asia-Pacific Region could be exchanged. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1994-12-31T23:59:59.000Z

34

advanced coal cleaning: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 4th Annual Clean Coal CiteSeer Summary: Proceedings he emphasis of the Fourth Clean Coal Technology...

35

EIS-0146: Programmatic for Clean Coal Technology Demonstration Program  

Broader source: Energy.gov [DOE]

This programmatic environmental impact statement assesses the environmental impacts of continuing the Clean Coal Technology Demonstration Program involving the selection, for cost-shared federal funding, of one or more clean coal projects proposed by the private sector.

36

Clean coal. U.S.-China cooperation in energy security  

SciTech Connect (OSTI)

This work discusses how coal fits into the strategies of the USA and China to attain energy security while avoiding adverse environmental impacts. It begins by describing China's policy choices for clean coal, before discussing the implications of a clean coal strategy for China. The U.S. choices in a coal-based strategy of energy security is then covered. Finally, a joint US-China clean coal strategy, including the technology sharing option, is discussed.

Wendt, D.

2008-05-15T23:59:59.000Z

37

Clean coal technology: Export finance programs  

SciTech Connect (OSTI)

Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

Not Available

1993-09-30T23:59:59.000Z

38

Evolving performance characteristics of clean coal technologies  

SciTech Connect (OSTI)

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

39

Stimulating Investment in Renewable Resources and Clean Coal Technology through a Carbon Tax:  

E-Print Network [OSTI]

three tax rates. The substitution of clean coal technology for standard coal, which seems promising for

Nellie Zhao; Servia Rindfleish; Jay Foley; Jelena Pesic

40

Regional Effort to Deploy Clean Coal Technologies  

SciTech Connect (OSTI)

The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

2009-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Clean coal technology. Coal utilisation by-products  

SciTech Connect (OSTI)

The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

NONE

2006-08-15T23:59:59.000Z

42

Clean coal: Global opportunities for small businesses  

SciTech Connect (OSTI)

The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

NONE

1998-01-01T23:59:59.000Z

43

Clean Coal Technology Programs: Program Update 2007  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashingtonClean CoalFE-0514

44

Healy Clean Coal Project: A DOE Assessment  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

45

Clean and Secure Energy from Coal  

SciTech Connect (OSTI)

The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: • Oxy-Coal Combustion – To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. • High-Pressure, Entrained-Flow Coal Gasification – To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. • Chemical Looping Combustion (CLC) – To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. • Underground Coal Thermal Treatment – To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. • Mercury Control – To understand the effect of oxy-firing on the fate of mercury. • Environmental, Legal, and Policy Issues – To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. • Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility – To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

2014-08-31T23:59:59.000Z

46

The Healy clean coal project: An overview  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the US Department of Energy under Round III of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is scheduled to be completed in August of 1997, with startup activity concluding in December of 1997. Demonstration, testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of NOx, SO{sub 2} and particulates from this 50 megawatt plant are expected to be significantly lower than current standards. The project status, its participants, a description of the technology to be demonstrated, and the operational and performance goals of this project are presented.

Olson, J.B.; McCrohan, D.V. [Alaska Industrial Development and Export Authority, Anchorage, AK (United States)

1997-12-31T23:59:59.000Z

47

Introduction of clean coal technology in Japan  

SciTech Connect (OSTI)

Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

Takashi Kiga [Japan Coal Energy Center (JCOAL), Tokyo (Japan). R and D Department

2008-01-15T23:59:59.000Z

48

Environmental issues affecting clean coal technology deployment  

SciTech Connect (OSTI)

The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

1997-12-31T23:59:59.000Z

49

Sandia National Laboratories: Clean Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacility CentralCerium

50

PFBC presents its clean coal credentials  

SciTech Connect (OSTI)

Pressurized fluidized-bed combustion (PFBC) combined cycle deserves as much consideration as integrated gasification combined cycle as a foundation technology for advanced, clean coal-fired power generation. Although corporate issues and low natural gas prices stalled PFBC development for a time, technology at full scale has proved quite worthy in several respects in Europe and Japan over the past 10 years. The article describes how the PFBC system power cycle works, describes its competitive features and reports progress on development. 4 figs.

Makansi, J. [Pearl Street Inc. (United States)

2005-12-01T23:59:59.000Z

51

Climate VISION: Events - Advanced Clean Coal Workshop  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvanced Clean Coal

52

The 1986-93 Clean Coal Technology Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry...

53

The foul side of 'clean coal'  

SciTech Connect (OSTI)

As power plants face new air pollution control, ash piles and their environmental threats are poised to grow. Recent studies have shown that carcinogens and other contaminants in piles of waste ash from coal-fired power plants can leach into water supplies at concentrations exceeding drinking water standards. Last year an ash dam broke at the 55-year old power plant in Kingston, TN, destroying homes and rising doubts about clean coal. Despite the huge amounts of ash generated in the USA (131 mtons per year) no federal regulations control the fate of ash from coal-fired plants. 56% of this is not used in products such as concrete. The EPA has found proof of water contamination from many operating ash sites which are wet impoundments, ponds or reservoirs of some sort. Several member of Congress have show support for new ash-handling requirements and an inventory of waste sites. Meanwhile, the Kingston disaster may well drive utilities to consider dry handling. 3 photos.

Johnson, J.

2009-02-15T23:59:59.000Z

54

THE 3R ANTHRACITE CLEAN COAL TECHNOLOGY Economical Conversion of Browncoal to Anthracite Type Clean  

E-Print Network [OSTI]

pac i ties. The 3R An thra cite Clean Coal end prod uct and tech nol ogy may ad van ta geously be in

Edward Someus

55

affecting clean coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

affecting clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CONSORTIUM FOR CLEAN COAL...

56

annual clean coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

annual clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 4th Annual Clean Coal CiteSeer...

57

advanced clean coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 4th Annual Clean Coal CiteSeer Summary:...

58

Clean Coal Technology Programs: Completed Projects (Volume 2)  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2003-12-01T23:59:59.000Z

59

Clean Coal Technology Programs: Program Update 2003 (Volume 1)  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2003-12-01T23:59:59.000Z

60

Modified approaches for high pressure filtration of fine clean coal  

SciTech Connect (OSTI)

Removal of moisture from fine (minus 28 mesh) clean coal to 20% or lower level is difficult using the conventional vacuum dewatering technique. High pressure filtration technique provides an avenue for obtaining low moisture in fine clean coal. This paper describes a couple of novel approaches for dewatering of fine clean coal using pressure filtration which provides much lower moisture in fine clean coal than that obtained using conventional pressure filter. The approaches involve (a) split stream dewatering and (b) addition of paper pulp to the coal slurry. For Pittsburgh No. 8 coal slurry, split stream dewatering at 400 mesh provided filter cake containing 12.9% moisture compared to 24.9% obtained on the feed material. The addition of paper pulp to the slurry provided filter cake containing about 17% moisture.

Yang, J.; Groppo, J.G.; Parekh, B.K. [Center for Applied Energy Research, Lexington, KY (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Construction Begins on First-of-its-Kind Advanced Clean Coal...  

Office of Environmental Management (EM)

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility...

62

Milliken Clean Coal Demonstration Project: A DOE Assessment  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage.

National Energy Technology Laboratory

2001-08-15T23:59:59.000Z

63

The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market  

E-Print Network [OSTI]

administration would back clean-coal technology developmentwould pursue clean-coal technology rather than emissions

Kahn, Shulamit; Knittel, Christopher R.

2003-01-01T23:59:59.000Z

64

APEC experts` group on clean coal technology  

SciTech Connect (OSTI)

These proceedings are the result of a Technical Seminar of the APEC Experts Group on Clean Coal Technology, held in Thailand, September 6-10, 1993. The National Energy Policy Council of Thailand requested the seminar in response to growing public, government and private sector environmental concerns related to increased use of lignite for electricity generation in Thailand. The core of the seminar was a two-day series of 25 technical papers contained in these proceedings. The goals were: (1) to inform government officials and electric utility managers on the range of CCTs, their commercial status, environmental performance, and suitability for various types of coal, including lignite; and (2) to hold a public seminar to inform the public about the same issues set in the context of energy policy concerns that were articulated by the National Energy Policy Council. Sixty people participated in the technical seminar held in Chiang Mai, and approximately 170 people attended the public seminar in Bangkok, Thailand. All papers have been abstracted and indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1993-12-31T23:59:59.000Z

65

The development of Clean Coal Technology in China  

SciTech Connect (OSTI)

The resource conditions and energy structures of China determine that coal will continue to play a key role in the development of the electrical power industry in the coming years, thus it is necessary to develop clean coal technology in order to control the high consumption rate of energy and to control serious pollution. Clean coal technology focuses on improving the utilization rate of energy and on the control and reduction of emissions. Considering the condition of China, PC-FGD, supercritical units, CFBC, IGCC and PFBC-CC can be applied and developed under different conditions and in different periods with these technologies developing simultaneously and helping each other forward to improve clean coal technologies. China has broad development prospects and a large market for clean coal technologies. The authors hope to strengthen international exchange and cooperation in this field for the development of CCTs markets in China.

Jie, Z.; Chu, Z.X. [North China Electrical Power Design Inst., Beijing (China)

1996-10-01T23:59:59.000Z

66

Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project  

SciTech Connect (OSTI)

This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

Not Available

1994-01-01T23:59:59.000Z

67

Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)  

Broader source: Energy.gov [DOE]

This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

68

appalachian clean coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

appalachian clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 1 INTRODUCTION Appalachian coal...

69

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

70

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect (OSTI)

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

71

EIS-0186: Proposed Healy Clean Coal Project, Healy, AK  

Broader source: Energy.gov [DOE]

This environmental impact statement analyzes two proposed technologies. Under the Department of Energy's third solicitation of the Clean Coal Technology Program, the Alaska Industrial Development and Export Authority conceived, designed, and proposed the Healy Clean Coal Project. The project, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide, oxides of nitrogen, and particulate matter. DOE prepared this statement to analyze potential impacts of their potential support for this project.

72

The development of clean coal technology in the United States  

SciTech Connect (OSTI)

The United States has made a $5-billion commitment, to be shared by the government and the private sector, to the development of a new generation of clean-coal technologies. Because the nation has a resource imperative to develop domestic coal supplies and a strong commitment to environmental protection, it seems that clean coal technologies are the preferred solution for power generation needs in the United States in the medium-term. The lessons learned during this demonstration program could have important implications for technology development and deployment in other countries. The purpose of this paper is to discuss some of the aspects of the US Clean Coal Technology (CCT) demonstration program that could be relevant to other countries. 2 refs., 8 tabs.

Streets, D.G.

1989-01-01T23:59:59.000Z

73

Sixth clean coal technology conference: Proceedings. Volume 1: Policy papers  

SciTech Connect (OSTI)

The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 1 contains 38 papers arranged under the following topical sections: International business forum branch; Keynote session; Identification of the issues; CCTs--Providing for unprecedented environmental concerns; Domestic competitive pressures for CCTs; Financing challenges for CCTs; New markets for CCTs; Clean coal for the 21st century: What will it take? Conclusions and recommendations. The clean coal technologies discussed include advanced pulverized coal-fired boilers, atmospheric fluidized-bed combustion (FBC), pressurized FBC, integrated gasification combined-cycle systems, pressurized pulverized coal combustion, integrated gasification fuel cell systems, and magnetohydrodynamic power generation.

NONE

1998-12-01T23:59:59.000Z

74

ULTRA CLEAN COAL PRODUCTION USING DENSE MEDIUM SEPARATION FOR THE SILICON MARKET.  

E-Print Network [OSTI]

??The production of high quality silicon requires the use of ultraclean coal containing less than 1.5% ash. The magnetite used to clean the coal in… (more)

Amini, Seyed Hassan

2014-01-01T23:59:59.000Z

75

Second annual clean coal technology conference: Proceedings. Volume 1  

SciTech Connect (OSTI)

The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately.

Not Available

1993-09-09T23:59:59.000Z

76

Sixth clean coal technology conference: Proceedings. Volume 2: Technical papers  

SciTech Connect (OSTI)

The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 2 contains 28 papers related to fluidized-bed combustion, coal gasification for combined cycle power plants, the Liquid Phase Methanol Process, use of coal in iron making, air pollution control of nitrogen oxides, coke making, and hot gas cleanup.

NONE

1998-12-01T23:59:59.000Z

77

Analysis of chemical coal cleaning processes. Final report  

SciTech Connect (OSTI)

Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

Not Available

1980-06-01T23:59:59.000Z

78

New Clean Coal Cycle Optimized Using Pinch Technology  

E-Print Network [OSTI]

NEW CLEAN COAL CYCLE OPTIMIZED USING PINCH TECHNOLOGY A. P. ROSSITER, Linnhoff March I 0'00 ' nc., Houston, TX J. J. NNELL, The M. W. Kellogg Company, Houston, TX High thermal efficiency and low levels of environmental emissions...~en incorporated in the present des1gn, some of them could be of use in later generations of the process. CONCLUSIONS The hybrid cycle is a very promising new clean coal power plant technology. Its benefits include: ? Very low NO and SOx emission levels...

Rossiter, A. P.; O'Donnell, J. J.

79

Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same  

DOE Patents [OSTI]

A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

Burnet, G.; Gokhale, A.J.

1990-07-10T23:59:59.000Z

80

Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same  

DOE Patents [OSTI]

A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

1990-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Pulverization Induced Charge: In-Line Dry Coal Cleaning  

SciTech Connect (OSTI)

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to boilers in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

Schaefer, J.L.; Stencel, J.M.

1997-05-13T23:59:59.000Z

82

PULVERIZATION INDUCED CHARGE: IN-LINE DRY COAL CLEANING  

SciTech Connect (OSTI)

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

JOHN M. STENCEL

1998-07-01T23:59:59.000Z

83

Pulverization Induced Charge: In-Line Dry Coal Cleaning  

SciTech Connect (OSTI)

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

John M. Stencel

1998-05-26T23:59:59.000Z

84

Pulverization Induced Charge: In-Line Dry Coal Cleaning  

SciTech Connect (OSTI)

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

John M. Stencel

1998-01-21T23:59:59.000Z

85

Clean Coal Technology Demonstration Program. Program update 1994  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

NONE

1995-04-01T23:59:59.000Z

86

Studies on design of a process for organo-refining of coal to obtain super clean coal  

SciTech Connect (OSTI)

Organo-refining of coal results in refining the coal to obtain super clean coal and residual coal. Super clean coal may be used to obtain value added chemicals, products, and cleaner fuels from coal. In the present work, studies on the design of a semicontinuous process for organo-refining of one ton of coal have been made. The results are reported. This is only a cursory attempt for the design, and further studies may be required for designing this process for use in the development of a scaled-up process of organo-refining of coal.

Sharma, C.S.; Sharma, D.K. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

1999-08-01T23:59:59.000Z

87

Clean Coal Technology Demonstration Program: Program Update 2000  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2001-04-01T23:59:59.000Z

88

Clean Coal Technology Demonstration Program: Program Update 1999  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2000-04-01T23:59:59.000Z

89

Fossil energy, clean coal technology, and FutureGen  

SciTech Connect (OSTI)

Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

Sarkus, T.A.

2008-07-15T23:59:59.000Z

90

The reduced environmental liability of clean coal technologies  

SciTech Connect (OSTI)

In this paper the authors will discuss the waste stream minimization that future commercially operated clean coal technologies can effect. They will explore the ability of these now-beginning-to-mature technologies to reduce those aspects of the emission streams that have greatest potential for what the authors term as environmental liability. Environmental liability is manifested in a variety of forms. There are both current liabilities and future liabilities. In addition, uncertainties may reside in future anticipated regulatory compliance and the costs of such compliance. Exposure to liability translates into perceived risk which creates an air of uncertainty to the power industry and its lenders who provide the capital to build new power plants. In the context of electric power generation, newer, high efficiency power generation technologies developed in the course of the Clean Coal Technology Program of the US Department of Energy result in reduced waste stream emissions when compared against more aging conventional combustion technologies. This paper will discuss how the introduction of new clean coal technologies will help balance the conflict between adverse environmental impact and the global demand for increased energy. The authors will discuss how clean coal technologies will facilitate compliance with future air standards that may otherwise expose power producers to modification and cleanup costs, noncompliance penalties, or premature shut down.

Leslie, A.C.D. [Energetics, Inc., Columbia, MD (United States); McMillen, M. [Energetics, Inc., Washington, DC (United States)

1997-08-01T23:59:59.000Z

91

Clean Coal Technology Demonstration Program: Program Update 2001  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

Assistant Secretary for Fossil Energy

2002-07-30T23:59:59.000Z

92

Clean Coal Technology Demonstration Program: Program Update 1998  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

1999-03-01T23:59:59.000Z

93

To continue the development of WISER's globally recognized program in Clean Coal Technology at Illinois  

E-Print Network [OSTI]

Vision To continue the development of WISER's globally recognized program in Clean Coal Technology renewable energy. Goal The goals of the WISER Clean Coal Technology Program are to: · Obtain the optimum stream Strengths The strengths of the WISER Clean Coal Technology program include a strong

Heller, Barbara

94

Ash reduction in clean coal spiral product circuits  

SciTech Connect (OSTI)

The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

Brodzik, P.

2007-04-15T23:59:59.000Z

95

American Clean Coal Fuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstomAmedee GeothermalCoal Fuels

96

Clean Coal Research | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical Officerof Energy Clean Cities

97

Illinois SB 1987: the Clean Coal Portfolio Standard Law  

SciTech Connect (OSTI)

On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants that capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.

NONE

2009-01-15T23:59:59.000Z

98

PROSPECTS FOR CLEAN COAL TECHNOLOGIES.... 1  

E-Print Network [OSTI]

coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Energy use, critical to economic growth, is growing quickly in many regions of the world. Much of this increased demand can be met by coal with technologies that achieve environmental goals while keeping the cost per unit of energy competitive. Private sector experience and results from the CCT Demonstration Program are providing information on economic, environmental, and market issues that will enable conclusions to be drawn about the competitiveness of the CCTs domestically and internationally., The industry/government partnership, cemented over the past 11 years, is

Vicente Solano Arrieia

99

Clean Coal Power Initiative | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu IssuesClean AirMajor

100

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than 8 billion in loan guarantees for two new...

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coal: world energy security. The Clearwater clean coal conference  

SciTech Connect (OSTI)

Topics covered include: oxy-fuel (overview, demonstrations, experimental studies, burner developments, emissions, fundamental and advanced concepts); post-combustion CO{sub 2} capture; coal conversion to chemicals and fuels; advanced materials; hydrogen production from opportunity fuels; mercury abatement options for power plants; and carbon capture and storage in volume 1. Subjects covered in volume 2 include: advanced modelling; advanced concepts for emission control; gasification technology; biomass; low NOx technology; computer simulations; multi emissions control; chemical looping; and options for improving efficiency and reducing emissions.

Sakkestad, B. (ed.)

2009-07-01T23:59:59.000Z

102

Chemicals to help coal come clean  

SciTech Connect (OSTI)

Scrubbing methods to capture carbon from power plants are advancing to the demonstration phase. The article gives an update of projects around the world, and the goals and cost of CCS projects. BASF, together with RWE Power and Linde, are working to ensure state of the art integration of the carbon-capture process into a power plant to minimize the penalty in electrical output. A pilot project will test new solvents in an 'advanced amine' system at RWE's power station in Niederaussem, Germany. A pilot unit will soon capture CO{sub 2} from a coal-fired plant of Dow's in South Charleston, WV, USA and Dow has also agreed to build an amines demonstration facility in Belchatow, Poland. Other projects in the USA and Canada are reported. 1 fig.

Thayer, A.M.

2009-07-13T23:59:59.000Z

103

Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals  

SciTech Connect (OSTI)

The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

2009-07-01T23:59:59.000Z

104

DEVELOPMENT OF A NOVEL FINE COAL CLEANING SYSTEM  

SciTech Connect (OSTI)

The goal of the proposed project was to develop a novel fine coal separator having the ability to clean 1 mm x 0 size coal in a single processing unit. The novel fine coal separator, named as EG(Enhanced Gravity) Float Cell, utilizes a centrifugal field to clean 1 mm x 250 micron size coal, whereas a flotation environment to clean minus 250 micron coal size fraction. Unlike a conventional enhanced gravity concentrator, which rotates to produce a centrifugal field requiring more energy, the EG Float Cell is fed with a tangential feed slurry to generate an enhanced gravity field without any rotating part. A prototype EG Float Cell unit having a maximum diameter of 60 cm (24 inch) was fabricated during the first-half of the project period followed by a series of exploratory tests to make suitable design modification. Test data indicated that there was a significant concentration of coarse heavy materials in the coarse tailings discharge of the EG Float Cell. The increase in weight (%) of 1 mm x 250 micron (16 x 60 mesh) size fraction from 48.9% in the feed to 72.2% in the coarse tailings discharge and the corresponding increase in the ash content from 56.9% to 87.0% is indicative of the effectiveness of the enhanced gravity section of the EG Float Cell. However, the performance of the flotation section needs to be improved. Some of the possible design modifications may include more effective air sparging system for the flotation section to produce finer bubbles and a better wash water distributor.

Manoj K. Mohanty

2005-06-01T23:59:59.000Z

105

Fine coal cleaning via the micro-mag process  

DOE Patents [OSTI]

A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

Klima, Mark S. (Finleyville, PA); Maronde, Carl P. (McMurray, PA); Killmeyer, Richard P. (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

106

Investing in Clean, Safe Nuclear Energy  

ScienceCinema (OSTI)

President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

President Obama

2010-09-01T23:59:59.000Z

107

Investing in Clean, Safe Nuclear Energy  

SciTech Connect (OSTI)

President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

President Obama

2010-02-16T23:59:59.000Z

108

Clean Coal Technology Demonstration Program: Program update 1993  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

Not Available

1994-03-01T23:59:59.000Z

109

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect (OSTI)

The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

1997-04-25T23:59:59.000Z

110

Applying clean coal technologies in the Asian Pacific Basin  

SciTech Connect (OSTI)

The United States is well positioned to play an expanding role in meeting the energy-technology demands of the Asian Pacific Basin (APB). The US Clean Coal Technology (CCT) Demonstration Program, spearheaded, stewarded, and managed by the US Department of Energy in full partnership with US industry, provides a proving ground for innovative coal-related technologies. Its precombustion, combustion, postcombustion, and conversion technologies, once tested and proven at the demonstration level, are expected to be applicable to coal-burning facilities in the APB (and elsewhere), in both the utility and industrial sectors. These technologies and concepts are expected to allow for increased utilization of the vast coal and lignite resources in the APB in an efficient, economic, and environmentally acceptable manner. They also could provide the opportunity for increased sales of US coals. Specific, potential applications in the APB will be presented, highlighting possibilities in Indonesia, Japan, the Peoples' Republic of China, South Korea, Taiwan, and Thailand. 4 refs., 1 tab.

Gillette, J.L.; Szpunar, C.B.; Surles, T.G.

1990-01-01T23:59:59.000Z

111

Research and development of CWM technology toward clean coal use  

SciTech Connect (OSTI)

In this chapter, three subjects were presented from among our technical efforts to develop clean coal applications to improve environmental quality. The three subjects are briefly summarized as follows: development of technology aimed at producing and utilizing exclusively low ash CWM; development of technology to produce CWM from various pond coals; development of technology to upgrade LRC and utilize CWM for both a boiler fuel and a gasification feedstock. We are fully convinced that the first and second of the above technologies have reached the level of practical use through demonstration tests. As to the third, we have almost finished a 10 kg/h coal slurry bench-scale test and have a plan to construct an upgrading pilot plant of 350 kg/h which will be completed in the fall 1994. We will hopefully establish upgrading technology through pilot-scale demonstration testing in 1995. With this technology, not just utilization of LRCs will be expanded, but also highly efficient use of coal will be accelerated. Thus, C0{sub 2} emission will also be strongly reduced. In ending, we would like to stress our efforts on research and development of environmentally friendly technologies as well as COM and CWM technologies based on bituminous and steaming coals.

Shibata, Kazuhiro

1993-12-31T23:59:59.000Z

112

Clean coal technology demonstration program: Program update 1996-97  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

NONE

1997-10-01T23:59:59.000Z

113

Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan  

SciTech Connect (OSTI)

This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

Not Available

1994-06-14T23:59:59.000Z

114

Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report  

SciTech Connect (OSTI)

The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

NONE

1995-12-01T23:59:59.000Z

115

Regional trends in the take-up of clean coal technologies  

SciTech Connect (OSTI)

Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

1997-12-31T23:59:59.000Z

116

Clean coal technology deployment: From today into the next millennium  

SciTech Connect (OSTI)

The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are all affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.

Papay, L.T.; Trocki, L.K.; McKinsey, R.R. [Bechtel Technology and Consulting, San Francisco, CA (United States)

1997-12-31T23:59:59.000Z

117

International prospects for clean coal technologies (Focus on Asia)  

SciTech Connect (OSTI)

The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

Gallaspy, D.T. [Southern Energy, Inc., Atlanta, GA (United States)

1997-12-31T23:59:59.000Z

118

E-Print Network 3.0 - advanced slagging coal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reductions... technologies such as clean coal, natural gas, nuclear, hydro, wind, and solar photovoltaic technologies... -firing switchgrass and coal in existing coal fired...

119

Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific  

SciTech Connect (OSTI)

The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT's. However, there appears to be potential for introduction of CCT's in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT's introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT's in a number of countries.

Johnson, C.J.; Long, S.

1991-11-22T23:59:59.000Z

120

Development and applications of clean coal fluidized bed technology  

SciTech Connect (OSTI)

Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

2006-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Jute fiber composites from coal, super clean coal, and petroleum vacuum residue-modified phenolic resin  

SciTech Connect (OSTI)

Jute fiber composites were prepared with novolac and coal, phenolated-oxidized super clean coal (POS), petroleum vacuum residue (XVR)-modified phenol-formaldehyde (novolac) resin. Five different type of resins, i.e., coal, POS, and XVR-modified resins were used by replacing (10% to 50%) with coal, POS, and XVR. The composites thus prepared have been characterized by tensile strength, hardness, thermogravimetric analysis (TGA), Fourier-transfer infrared (FT-IR), water absorption, steam absorption, and thickness swelling studies. Twenty percent POS-modified novolac composites showed almost the same tensile strength as that of pure novolac composites. After 30% POS incorporation, the tensile strength decreased to 25.84MPa from 33.96MPa in the case of pure novolac resin composites. However, after 50% POS incorporation, the percent retention of tensile strength was appreciable, i.e., 50.80% retention of tensile strength to that of pure novolac jute composites. The tensile strength of coal and XVR-rnodified composites showed a trend similar to that shown by POS-modified novolac resin composites. However, composites prepared from coal and XVR-modified resin with 50% phenol replacement showed 25.4% and 42% tensile strength retention, respectively, compared to that of pure novolac jute composites. It was found that the hardness of the modified composites slightly decreased with an increase in coal, POS, and XVR incorporation in the resin. The XVR-modified composites showed comparatively lower steam absorption than did coal or POS-modified composites. The thermal stability of the POS-modified composites was the highest among the composites studied. The detailed results obtained are being reported.

Ahmaruzzaman, M.; Sharma, D.K. [Indian Institute of Technology, New Delhi (India). Center of Energy Studies

2005-07-01T23:59:59.000Z

122

Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind  

E-Print Network [OSTI]

from renewables (wind power, solar power, hydropower, geothermal, ocean wave & tidal power, biomass energy resources (coal 43%, natural gas 19%, oil 6%, cogeneration 7%); ~21% by nuclear fission power the Moon. #12;ADVANTAGES OF FUSION · Abundant Supply of Fuel (deuterium and tritium) · No Risk of Nuclear

Chen, Yang-Yuan

123

The Mesaba Energy Project: Clean Coal Power Initiative, Round 2  

SciTech Connect (OSTI)

The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.

Stone, Richard; Gray, Gordon; Evans, Robert

2014-07-31T23:59:59.000Z

124

Clean coal reference plants: Atmospheric CFB. Topical report, Task 1  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

1992-06-01T23:59:59.000Z

125

Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program  

SciTech Connect (OSTI)

One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

Not Available

1994-05-01T23:59:59.000Z

126

Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal?  

E-Print Network [OSTI]

of alternative energy and give two advantages and two disadvantages of each. a. Solar Energy- 1.Advantages i. Advantages a. Completely clean source of energy b. Inexpensive c. Relatively durable b. Disadvantages a. Aesthetically unattractive b. Affects bat and bird populations c. Geothermal Energy- 1. Advantages i. Gives off

Bowen, James D.

127

SciTech Connect: "clean coal"  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsisSchedules SchedulesSciPyaerogels"clean

128

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program  

SciTech Connect (OSTI)

The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

1991-12-31T23:59:59.000Z

129

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program  

SciTech Connect (OSTI)

The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

1991-01-01T23:59:59.000Z

130

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

131

Integrated production/use of ultra low-ash coal, premium liquids and clean char  

SciTech Connect (OSTI)

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-01-01T23:59:59.000Z

132

5. annual clean coal technology conference: powering the next millennium. Volume 2  

SciTech Connect (OSTI)

The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

NONE

1997-06-01T23:59:59.000Z

133

EIS-0280: Proposed Clean Power from Integrated Coal/Ore Reduction Project (CPICOR) at Vineyard, Utah  

Broader source: Energy.gov [DOE]

This EIS assesses the potential environmental and human health impacts of a proposed project under the Clean Coal Technology Program that would integrate the production of molten iron for steelmaking with the production of electricity.

134

Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching  

SciTech Connect (OSTI)

Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

1997-12-31T23:59:59.000Z

135

Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization  

DOE Patents [OSTI]

Pretreatment of coal by devolatization at temperatures ranging from about 420.degree. C. to about 450.degree. C. for from about 10 minutes to about 30 minutes before leaching with molten caustic leads to a significant reduction in carbonate formation, greatly reducing the cost of cleaning coal on a per ton basis.

Chriswell, Colin D. (Slater, IA); Kaushik, Surender M. (Socorro, NM); Shah, Navin D. (Houston, TX); Markuszewski, Richard (Ames, IA)

1989-08-22T23:59:59.000Z

136

Report to the United States Congress clean coal technology export markets and financing mechanisms  

SciTech Connect (OSTI)

This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

Not Available

1994-05-01T23:59:59.000Z

137

Passamaquoddy Innovative Clean Coal Technology Program: Public design report  

SciTech Connect (OSTI)

The Passamaquoddy Technology Recovery Scrubber{trademark} was conceived and developed specifically to address two problems experienced by the Dragon cement plant; meeting increasingly stringent gas emission limits for sulfur dioxide, and disposing of kiln dust, containing alkali oxides, which had to be wasted in order to avoid kiln operating and product quality problems. The idea involved making the kiln dust into a slurry in order to leach out the species (primarily potassium and sulfur) which rendered it unacceptable for return to kiln feed. This slurry, the liquid part of which is an alkaline solution, acts as a scrubbing reagent for SO{sub 2} in the flue gas while CO{sub 2} in the gas serves to precipitate soluble calcium and release sulfate for combination with the potassium. The effect of the process is to scrub SO{sub 2} from kiln flue gas, extract the volatile species from the dust allowing it to be returned to the kiln, and yield a leachate comprising potassium sulfate which can be crystallized (using heat recovered from the flue gas) and sold as fertilizer. Apart from widespread application in the cement industry, it was evident that, if the process could be demonstrated, its potential would extend to any plant burning fossil fuel where an alkaline waste either occurs intrinsically or can be juxtaposed. Obvious candidates appeared to include the pulp and paper industry and waste incineration. The chemistry was proved in a 1/100th scale pilot plant using actual kiln dust and a slip stream of kiln gas. A full scale demonstration installation was commissioned in 1989 by CDN (USA), the owners of the Dragon plant with the financial support of the US Department of Energy under its innovative Clean Coal Technology Program.

Not Available

1993-08-01T23:59:59.000Z

138

Coal Cleaning Using Resonance Disintegration for Mercury and Sulfur Reduction Prior to Combustion  

SciTech Connect (OSTI)

Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

Andrew Lucero

2005-04-01T23:59:59.000Z

139

2005 clean coal and power conference. Conference proceedings  

SciTech Connect (OSTI)

The theme of the conference was 'The paradox: today's coal technologies versus tomorrow's promise'. The sessions covered: today's technologies, tomorrow's potential; economic stability; energy security; transition to sustainable energy future; new coal power technologies leading to zero emission coal; existing power plants - improved performance through use of new technology; and carbon capture and storage R & D - challenges and opportunities. Some of the papers only consist of the viewgraphs/overheads.

NONE

2005-07-01T23:59:59.000Z

140

Applications of micellar enzymology to clean coal technology. Tenth quarterly report  

SciTech Connect (OSTI)

Full implementation of coal fuel sources will require more effective methods of providing ``clean coal`` as a fuel source. Methods must be developed to reduce the sulfur content of coal which significantly contributes to environmental pollution. This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

Walsh, C.T.

1992-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996  

SciTech Connect (OSTI)

The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

NONE

1996-05-23T23:59:59.000Z

142

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future  

E-Print Network [OSTI]

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, Clean Energy Can Deliver More Energy than Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 America Has Enormous Clean Energy Potential . . . . . . . . . . . . . . . . 22

Laughlin, Robert B.

143

EIS-0357- Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Broader source: Energy.gov [DOE]

This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

144

Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act  

SciTech Connect (OSTI)

Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

Busse, M.R.; Keohane, N.O. [University of California Berkeley, Berkeley, CA (United States)

2007-01-01T23:59:59.000Z

145

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation  

SciTech Connect (OSTI)

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

Jiang, C.

1993-12-31T23:59:59.000Z

146

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01T23:59:59.000Z

147

Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report  

SciTech Connect (OSTI)

The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

Johnson, C.J.; Long, S.

1991-11-22T23:59:59.000Z

148

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

149

Clean Coal and Power Conference | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu IssuesClean AirMajorClean

150

Coal and nuclear power: Illinois' energy future  

SciTech Connect (OSTI)

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

151

Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program  

SciTech Connect (OSTI)

The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

2014-08-15T23:59:59.000Z

152

POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING  

SciTech Connect (OSTI)

Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would suffer from low throughput capacities and high maintenance requirements. In general, surface area-based separators (e.g., shaking tables, magnetic drum separator, electrodynamic separator, etc.) have lower throughput capacities than volume-based separators (e.g., flotation cell, dense-medium bath, cyclones, etc.) by an order of magnitude. Furthermore, the electrodes of the laboratory unit need to be cleaned frequently, creating a high maintenance requirement if it is scaled-up to a commercial unit. The bench-scale continuous TES unit developed at NETL, on the other hand, separates positively and negatively charged particles by splitting the gaseous stream containing these particles in an electric field by means of a flow splitter, so that the oppositely charged particles can be directed into different compartments. This device is fundamentally different from the laboratory unit in that the former is a surface area-based separator, while the latter is a volume-based separator. The bench-scale unit is referred to as an entrained flow separator by the in-house researchers at NETL. Thus, the entrained flow TES unit is a significant improvement over the laboratory unit with regard to throughput capacity. In the present work, the entrained flow separator concept will be utilized for developing a proof-of concept (POC) separator that can be scaled-up to commercial size units. To accomplish this, it is necessary to develop a bench-scale separator that can achieve high Btu recoveries while maintaining the high degree of separation efficiencies. It is the objective of the present investigation to develop an efficient separator by studying the mechanisms of triboelectrification and investigating better ways of separating the charged particles. An important criterion for developing efficient separators is that they not only provide high separation efficiencies but also have high throughput capacities, which are essential ingredients for successful commercialization.

R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

2001-04-30T23:59:59.000Z

153

Environmental trends in Asia are accelerating the introduction of clean coal technologies and natural gas  

SciTech Connect (OSTI)

This paper examines the changing energy mix for Asia to 2020, and impacts of increased coal consumption on Asia`s share of world SO{sub 2} and CO{sub 2} emissions. Stricter SO{sub 2} emissions laws are summarized for eight Asian economies along with implications for fuel and technology choices. The paper compares the economics of different technologies for coal and natural gas in 1997 and in 2007. Trends toward introducing clean coal technologies and the use of natural gas will accelerate in response to tighter environmental standards by 2000. The most important coal conversion technology for Asia, particularly China, in the long term is likely to be integrated gasification combined-cycle (IGCC), but only under the assumption of multiple products.

Johnson, C.J.

1997-09-01T23:59:59.000Z

154

An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies  

SciTech Connect (OSTI)

This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

1997-12-31T23:59:59.000Z

155

How can environmental regulations promote clean coal technology adoption in APEC developing economies?  

SciTech Connect (OSTI)

The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target the recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.

NONE

2007-11-15T23:59:59.000Z

156

Clean Coal Technology - From Research to Reality | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment ofPublishes 2014 Vehicle11Clean

157

Energy Secretary Moniz Visits Clean Coal Facility in Mississippi |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District |Department of Energy Visits Clean

158

Clean Coal Technology Demonstration Program | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPointChristinaClay Sell Sworn in as DeputyClean

159

The Clean Coal Technology Demonstration Program is a $5-billion national  

E-Print Network [OSTI]

commitment, cost-shared by the Government and the private sector, to demonstrate economic and environmentally sound methods for using our Nation's most abundant energy resource. The Program will foster the energy efficient use of the Nation's vast coal resource base. By doing so, the Program will contribute significantly to the long-term energy security of the United States, will further the Nation's objectives for a cleaner environment, and will improve its competitive standing in the international energy market. The first three Clean Coal Technology solicitations were issued in 1986, 1988,

unknown authors

160

Overview of the potential for clean coal technology in the Asia-Pacific region  

SciTech Connect (OSTI)

The Asia-Pacific economies consume substantial amounts of coal for electricity generation and are potential important markets for clean coal technologies (CCTs). CCTs are defined as those technologies that can substantially reduce emissions of SO{sub 2} and NO{sub x} resulting from the combustion of coal and lignite in electricity generating power plants. The rate of introduction of CCTs into Asia-Pacific economies varies widely and is broadly related to the level of economic development and environmental problems resulting from coal burning in individual economies. An overview is presented of the trends in electricity generation in the Asia-Pacific region and estimates of the market for CCTs in electricity generation plants to 2010. There are other important markets for CCTs, such as in the iron and steel industry, that are not covered. Governments in all coal-consuming Asia-Pacific economies are examining options for maintaining high levels of economic growth and reducing environmental impacts associated with increased energy consumption. There is a correlation between the expansion in economic activity, commonly measured as the gross domestic product (GDP), and the growth in electricity consumption. In low-income economies the growth rate of electricity consumption usually exceeds the growth rate of GDP. However, in higher income, mature economies (such as Japan) the increase in electricity consumption is often substantially lower than the GDP growth rate. The expansion in coal consumption for electricity generation is the dominant factor in the large increase in coal consumption. Without effective control measures, the projected increase in coal consumption will have a serious impact on environmental quality in many countries in the region. Therefore, there is a need to develop sound policies and strategies at both national and regional levels to reduce the negative environmental effects of increased coal use in Asia.

Johnson, C.J.; Binsheng Li

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers  

SciTech Connect (OSTI)

The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

NONE

2005-05-01T23:59:59.000Z

162

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

163

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-12-31T23:59:59.000Z

164

EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)  

Broader source: Energy.gov [DOE]

The proposed project, selected under DOE’s Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

165

Appalachian Clean Coal Technology Consortium: Technical progress report, October 1--December 31, 1995  

SciTech Connect (OSTI)

In the dewatering project, two different approaches are taken. One approach involves displacing the water on the surface of coal by a hydrophobic substance that can be readily recovered and recycled. This novel concept, referred to as the Hydrophobic Dewatering (HD) process, is based on improved understanding of the surface chemistry of dewatering. The other approach is to use disposable dewatering substances in mechanical dewatering. The objectives of the proposed work are (1) to test the HD process on a variety of coals from the Appalachian coal fields, and (2) to identify suitable dewatering reagents that would enable mechanical dewatering to reduce the moisture to the levels satisfactory to electrical utilities and other coal users. The objective of the spiral separation project is to use computer modeling to develop better, more efficient spiral designs for coal cleaning. The fully-developed model will predict spiral performance based on variations in spiral profile, flow rate, and pitch. Specific goals are to: (1) design spirals capable of making separations at a specific gravity of 1.5, and (2) broaden the size range at which spirals make effective separations.

NONE

1996-04-23T23:59:59.000Z

166

Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

Blasing, T.J.; Miller, R.L.; McCold, L.N.

1993-11-01T23:59:59.000Z

167

Comprehensive report to Congress: Proposals received in response to the Clean Coal Technology V Program Opportunity Notice  

SciTech Connect (OSTI)

This report is a comprehensive overview of all proposals received and the projects that were selected in response to the Program Opportunity Notice (PON) for the Clean Coal Technology V (CCT-V) Demonstration Projects (solicitation number DE-PS01-92FE62647). The Department of Energy (DOE) issued the solicitation on July 6, 1992. Through this PON, DOE solicited proposals to conduct cost-shared Clean Coal Technology (CCT) projects that advance significantly the efficiency and environmental performance of coal-using technologies and that are applicable to either new or existing facilities.

Not Available

1993-06-01T23:59:59.000Z

168

Application of Derrick Corporation's stack sizer technology for slimes reduction in 6 inch clean coal hydrocyclone circuits  

SciTech Connect (OSTI)

The article discusses the successful introduction of Derrick Corporation's Stack Sizer technology for removing minus 200 mesh slimes from 6-inch coal hydrocyclone underflow prior to froth flotation or dewatering by screen bowl centrifuges. In 2006, the James River Coal Company selected the Stack Sizer fitted with Derrick 150 micron and 100 micron urethane screen panels for removal of the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits. After this application proved successful, Derrick Corporation introduced new 75 micron urethane screen panels for use on the Stack Sizer. Evaluation of feed slurry to flotation cells and screen bowl centrifuges showed significant amounts of minus 75 micron that could potentially be removed by efficient screening technology. Removal of the minus 75 micron fraction was sought to reduce ash and moisture content of the final clean coal product. Full-scale lab tests confirmed that the Stack Sizer fitted with Derrick 75 micron urethane screen panels consistently reduced the minus 75 micron percentage in coal slurry from 6-inch clean coal hydrocyclone underflow that is approximately 15 to 20% solid by-weight and 30 to 60% minus 75 micron to a clean coal fraction that is approximately 13 to 16% minus 75 micron. As a result total ash is reduced from approximately 36 to 38% in the hydrocyclone underflow to 14 to 16% in the oversize product fraction form the Stack Sizers. 1 fig., 2 tabs., 5 photos.

Brodzik, P.

2009-04-15T23:59:59.000Z

169

Combining Nuclear Power With Coal-to-Gasoline Conversion  

SciTech Connect (OSTI)

With coal representing 95% and oil only 2.5% of the US fossil fuel reserves and with the abundant nuclear fuel reserves in the US, such combined plants should be built in the near future. (authors)

Hamel, H.J.; Jaeger, Walter; Termuehlen, Heinz

2006-07-01T23:59:59.000Z

170

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

171

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

172

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect (OSTI)

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

Not Available

1992-03-01T23:59:59.000Z

173

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-06-01T23:59:59.000Z

174

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-11T23:59:59.000Z

175

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-01-01T23:59:59.000Z

176

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-10T23:59:59.000Z

177

Fact Sheet: Clean Coal Technology Ushers In New Era in Energy | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxideof Energy Clean Coal Technology Ushers

178

PROSPECTS FOR CO-FIRING OF CLEAN COAL AND CREOSOTE-TREATED WASTE WOOD AT SMALL-SCALE POWER STATIONS  

E-Print Network [OSTI]

If a small-scale clean coal fu eled power plant is co-fu eled with 5 % of cre o-sote-treated used-up sleeper wood, the de con tam i na tion by carbonisation at 500 °C in an in di rectly heated ro tary kiln with the di am e ter 1.7 m and ef fec-tive length 10 m can be real ised. It should be in cluded in the “3R Clean Coal Carbonisation Plant ” sys tem, which pro cesses coal. It will im prove the heat bal ance of the sys tem, since the carbonisation of wood will de liver a lot of high caloricity pyroligneous vapour to the joint fur nace of the “3R Clean Coal Carbonisation Plant”. Pine wood sleeper sap wood con tains 0.25 % of sul phur, but the av er age pine sleeper wood (sap wood and heart wood) 0.05% of sul phur. Most of the sul phur is lost with the pyroligneous vapour and burned in the fur nace. Since the “3R Clean Coal Carbonisation Plant ” is equipped with a flue gases clean ing sys tem, the SO2 emis sion level will not ex-ceed 5 mg/m 3. The char coal of the sap wood por tion of sleep ers and that of the av er age sleeper wood will con tain 0.22 % and 0.035 % of sul phur, re spec-tively. The in crease of the carbonisation tem per a ture does not sub stan tially de crease the sul phur con tent in char coal, al though it is suf fi ciently low, and the char coal can be co-fired with clean coal. The con sid ered pro cess is suit-able for small power plants, if the bio mass in put in the com mon en ergy bal-ance is 5 to 10%. If the mean dis tance of sleep ers trans por ta tion for Cen tral and East ern Eu-rope is es ti mated not to ex ceed 200 km, the co-com bus tion of clean coal and carbonised sleep ers would be an ac cept able op tion from the en vi ron men tal and eco nomic points of view.

Janis Zandersons; Aivars Zhurinsh; Edward Someus

179

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

180

Applying environmental externalities to US Clean Coal Technologies for Asia. [Including external environmental costs  

SciTech Connect (OSTI)

The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions.

Szpunar, C.B.; Gillette, J.L.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

182

Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8  

SciTech Connect (OSTI)

Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

1991-02-01T23:59:59.000Z

183

Clean-up of Nuclear Licensed Facility 57  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: In the early sixties a radiochemistry laboratory dedicated to Research and Development was built at the French Atomic Energy Commission's centre at Fontenay aux Roses (CEA-FAR); it was named Building 18. More buildings were added during the decade: Building 54, storehouses and offices and Building 91, a hall and laboratories for chemical engineering research into natural and depleted uranium. These three buildings together constitute NLF57. Construction work took place between 1959 and 1962 and the buildings entered operation in 1961. The research and development programs performed in NLF57 involved spent fuel reprocessing studies, waste treatment processes and studies and production of transuranic elements with the related analytical methods development. The research and development program ended on 30 June 1995. The NLF57 clean-up program was launched to reduce the nuclear and conventional hazards and minimise HLW and MLW production during the dismantling work. The clean-up work was divided into categories by type to facilitate its organisation: treatment and removal of nuclear material, removal of radioactive sources, treatment and removal of organic and aqueous effluents, treatment and removal of solid waste, pumping out of the PETRUS tank, flushing and decontamination of the tanks and clean-up of buildings. (authors)

Jeanjacques, Michel; Bremond, Marie Pierre; Marchand, Carole; Poyau, Cecile; Viallefont, Cecile; Gautier, Laurent; Masure, Frederic [CEA, DANS-DRSN-SAFAR (France)

2007-07-01T23:59:59.000Z

184

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

185

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

186

THE 3R ANTHRACITE CLEAN COAL TECHNOLOGY Economical Conversion of Browncoal to Anthracite Type Clean Coal by Low Temperature Carbonization Pre-Treatment Process  

E-Print Network [OSTI]

The pre ven tive pre-treat ment of low grade solid fu els is safer, faster, better, and less costly vs. the “end-of-the-pipe ” post treat ment so lu tions. The “3R ” (Re cy cle-Re duce-Re use) in te grated en vi ron-ment con trol tech nol ogy pro vides pre ven tive pre-treat ment of low grade solid fu els, such as brown coal and con tam i nated solid fu els to achieve high grade cleansed fu els with an thra cite and coke com-pa ra ble qual ity. The goal of the 3R tech nol ogy is to pro vide cost ef fi cient and en vi ron men tally sus-tain able so lu tions by pre ven tive pre-treat ment means for ex tended op er a tions of the solid fuel com-bus tion power plants with ca pac ity up to 300 MWe power ca pac i ties. The 3R An thra cite Clean Coal end prod uct and tech nol ogy may ad van ta geously be in te grated to the oxyfuel – oxy-fir ing, Fos ter Wheeler an thra cite arc-fired util ity type boiler and Heat Pipe Re former tech nol o gies in com bi na tion with CO2 cap ture and stor age pro grams. The 3R tech nol ogy is pat ented orig i nal so lu tion. Ad van tages. Feedstock flex i bil ity: ap pli ca tion of pre-treated multi fu els from wider fuel se lec tion and avail abil ity. Im proved burn ing ef fi ciency. Tech nol ogy flex i bil ity: ef fi cient and ad van ta geous inter-link to proven boiler tech nol o gies, such as oxyfuel and arc-fired boil ers. Near zero pol lut ants for haz ard ous-air-pol lut ants: pre ven tive sep a ra tion of halo gens and heavy met als into small vol ume streams prior uti li za tion of cleansed fu els. ?97 % or ganic sul phur re moval achieved by the 3R ther-

Edward Someus

187

Task 1.13 - Data Collection and Database Development for Clean Coal Technology By-Product Characteristics and Management Practices  

SciTech Connect (OSTI)

U.S. Department of Energy Federal Energy Technology Center-Morgantown (DOE FETC) efforts in the areas of fossil fuels and clean coal technology (CCT) have included involvement with both conventional and advanced process coal conversion by-products. In 1993, DOE submitted a Report to Congress on "Barriers to the Increased Utilization of Coal Combustion Desulfurization Byproducts by Governmental and Commercial Sectors" that provided an outline of activities to remove the barriers identified in the report. DOE charged itself with participation in this process, and the work proposed in this document facilitates DOE's response to its own recommendations for action. The work reflects DOE's commitment to the coal combustion by-product (CCB) industry, to the advancement of clean coal technology, and to cooperation with other government agencies. Information from DOE projects and commercial endeavors in fluidized-bed combustion (FBC) and coal gasification is the focus of this task. The primary goal is to provide an easily accessible compilation of characterization information on the by-products from these processes to government agencies and industry to facilitate sound regulatory and management decisions. Additional written documentation will facilitate the preparation of an updated final version of background information collected for DOE in preparation of the Report to Congress on barriers to CCB utilization.

Debra F. Pflughoeft-Hassett

1998-02-01T23:59:59.000Z

188

Comparative analyses for selected clean coal technologies in the international marketplace  

SciTech Connect (OSTI)

Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

Szpunar, C.B.; Gillette, J.L.

1990-07-01T23:59:59.000Z

189

Stimulating Investment in Renewable Resources and Clean Coal Technology through a Carbon Tax:  

E-Print Network [OSTI]

Energy supply and demand in China and India will be of premier importance to both nations in upcoming years. Both nations have ambitious goals for development, involving the expansion of the electricity supply to rural regions, as well as an increase in GDP, which will be accompanied by an increased demand for energy. The current distribution of electrical energy supply in each nation raises many concerns about sustainability and environmental viability. Electricity generation in both China and India relies heavily on coal, which raises environmental concern. Although there are likely to be severe consequences for continuing with the current energy mixes in China and India, there is also considerable resistance to change related to the generating cost of renewable energy supplies as well as the initial capital investment involved in changing infrastructures. Because mitigating environmental damages and social costs associated with CO2 emissions is not immediately economically beneficial on its own, the possibility of a tax on CO2 is introduced at three rates which serves to both internalize the costs associated with carbon emissions and motivate the restructuring of the energy distributions in India and China with more supply being met by renewables. An optimization routine based on Monte Carlo sampling was written and applied to this problem of determining optimal energy mixes for India and China based on the three tax rates. The substitution of clean coal technology for standard coal, which seems promising for both countries, is also investigated using the same optimization routine. Projections of electrical energy demand in 2030 were used as reference points for the investigation.

Nellie Zhao; Servia Rindfleish; Jay Foley; Jelena Pesic

190

Clean Coal Technology: Region 3 Market Description, Mid-Atlantic. Summary  

SciTech Connect (OSTI)

The Region 3 Market Description summary provides information that can be used in developing an understanding of the potential markets for clean coal technologies (CCTs) in the Mid-Atlantic Region. This region (which geographically is Federal Region 3) consists of the District of Columbia and the following five states: Delaware, Virginia, Maryland, West Virginia, Pennsylvania. In order to understand the potential market, a description is provided of the region`s energy use, power generation capacity, and potential growth. Highlights of state government activities that could have a bearing on commercial deployment of CCTs are also presented. The potential markets characterized in this summary center on electric power generation by investor-owned, cooperative, and municipal electric utilities and involve planned new capacity additions and actions taken by utilities to comply with Phases I and II of the Clean Air Act Amendments (CAAA) of 1990. Regulations, policies, utility business strategies, and organizational changes that could impact the role of CCTs as a utility option are identified and discussed. The information used to develop the Region 3 Market Description is based mainly on an extensive review of plans and annual reports of 17 investor-owned, cooperative, and municipal electric utilities and public information on strategies and actions for complying with the CAAA of 1990.

Not Available

1993-09-01T23:59:59.000Z

191

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

192

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

Phadke, Amol

2008-01-01T23:59:59.000Z

193

Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, September 1, 1991--November 30, 1991  

SciTech Connect (OSTI)

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-12-31T23:59:59.000Z

194

Management of solid wastes from the Limestone Injection Dry Scrubbing (LIDS) clean coal technology. Final report  

SciTech Connect (OSTI)

The objectives of this project were to characterize by-products from a pilot Limestone Injection Dry Scrubbing (LIDS) process and to develop processes directed toward the safe and economic use or disposal of these wastes. Because LIDS is a developing Clean Coal technology, a database of chemical and physical characteristics of the by-product was first developed. During the course of this project, it was found that the waste alone did not form high-strength products sufficient for use in construction and engineering applications. Therefore, the project was redirected to evaluate the by-product as a soil-cement and Portland cement raw material, agricultural liming agent, backfill/landfill material component, and mine reclamation/neutralizing agent. Based on these evaluations, the most viable uses for the LIDS byproduct include use in mine reclamation or as a neutralization agent. If soluble sulfites can be minimized by avoiding a dolomitic LIDS reagent, use as an agricultural liming agent has promise. Interest from an Ohio utility in the LIDS process suggests possible application of results at the demonstration or commercial stages.

Musiol, W.F. Jr.; Czuczwa, J.M.

1993-03-01T23:59:59.000Z

195

Report to Congress: Expressions of interest in commercial clean coal technology projects in foreign countries  

SciTech Connect (OSTI)

This report was prepared in response to the guidance provided by the Congress in the course of the Fiscal Year 1995 appropriations process for the Department of Energy`s (DOE) Office of Fossil Energy (FE). As described in detail below, DOE was directed to make the international dissemination of Clean Coal Technologies (CCTs) an integral part of its policy to reduce greenhouse gas emissions in developing countries. Congress directed DOE to solicit ``Statements of Interest`` in commercial projects employing CCTs in countries projected to have significant growth in greenhouse gas emissions. Additionally, DOE was asked to submit to the Congress a report that analyzes the information contained in the Statements of Interest, and that identifies the extent to which various types of Federal incentives would accelerate the commercial availability of these technologies in an international context. In response to DOE`s solicitation of 18 November 1994, 77 Statements of Interest were received from 33 companies, as well as five additional materials. The contents of these submittals, including the requested Federal incentives, the CCTs proposed, the possible host countries, and the environmental aspects of the Statements of Interest, are described and analyzed in the chapters that follow.

NONE

1995-06-01T23:59:59.000Z

196

Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996  

SciTech Connect (OSTI)

New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

NONE

1998-05-01T23:59:59.000Z

197

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

198

Micro-agglomerate flotation for deep cleaning of coal. Quarterly technical progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

The development, of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 mm) needed to achieve adequate liberation of the mineral matter from the coal matrix. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. This project is concerned with a hydrid process, micro-agglomerate flotation, which is a combination of oil agglomeration and froth flotation.

Chander, S.; Hogg, R.

1995-07-01T23:59:59.000Z

199

Elements of environmental concern in the 1990 Clean Air Act Amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region  

SciTech Connect (OSTI)

The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e., Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous US, they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

200

Elements of environmental concern in the 1990 Clean Air Act amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region  

SciTech Connect (OSTI)

The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e. Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous U.S., they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

{open_quotes}Methods for the determination of the Clean Air Act Title III metallic HAPS in coal  

SciTech Connect (OSTI)

The Clean Air Act was amended in 1990 and additional requirements were added to Title III {open_quotes}Air Toxics.{close_quotes} Title III identified one hundred eighty-nine hazardous air pollutants (HAPS) and Congress directed the EPA to study the effects of emissions of these HAPS on public health and the environment. EPA is to report to Congress in the fall of 1995 concerning their findings and make recommendations regarding fossil fuel fired combustion units. The outcome of the EPA recommendations will be of great interest to coal producers and users. Of the one hundred eighty-nine listed HAPS, eleven are trace metals found in coal. The producers and users may be required to analyze coal for these HAPS, to determine if selective mining and/or beneficiation can lower their occurrence, to determine their fate in the combustion process, etc. Indeed many coal companies have begun to study their reserves to aid the EPA investigation. Currently there are no EPA promulgated test methodologies for these elements in coal. Moreover, the American Society for Testing Materials (ASTM) does not provide standards for the analyses of all of the eleven HAPS either. In view of this lack of standardized analytical protocols the commercial laboratory is left with finding the best methods for meeting these analytical needs. This paper describes how Standard Laboratories, Inc. as a whole and particularly its Environmental Laboratory Division has met this need.

Snider, J. [Standard Laboratories, Inc., Evansville, IN (United States)

1995-08-01T23:59:59.000Z

202

Stabilization of coal cleaning wastes. Fossil Energy Program. Technical progress report, 1 April 1985-30 June 1985  

SciTech Connect (OSTI)

This report describes research work in progress on the stabilization of waste from the mining and cleaning of coal. A survey of the literature in the area of coal refuse processing has been conducted using computerized searches of the Energy Data Base and Chemical Abstracts as well as manual scanning of the Chemical Abstracts, NTIS and Energy Research Abstracts. Relevant data from these sources are being assimilated to augment the present research efforts. The coal refuse material to be studied has been analyzed for major elements, Si, Al, Fe and Ca, using atomic absorption. Qualitative information on the mineralogy of the refuse has been obtained using x-ray diffraction. Small scale pelletization and sintering tests have been conducted on the coal refuse which had been ground to different levels of fineness. Water was used as a binding agent and, in the case of coarse refuse, fly ash was added in order to form pellets. The coal refuse had to be ground to about minus 30 mesh particle size to obtain intact pellets after sintering. A laboratory fixed bed reactor system has been designed and built for processing green pellets to simulate the treatment occurring in a traveling grate furnace. The reactor is heated electrically and sequentially exposes samples to drying, ignition, combustion, tempering and cooling. 12 refs., 4 figs., 6 tabs.

Burnet, G.; Gokhale, A.

1985-07-01T23:59:59.000Z

203

Comparison of House and Senate Clean Energy Deployment Administration (CEDA) provisions  

E-Print Network [OSTI]

, and manufacturing technologies. Nuclear power and coal are eligible under the definition of "clean energy- Nuclear and Advanced Technologies of the American Clean Energy and Security Act (H.R. 2454) in the House makes the stabilization of greenhouse gases an option, by defining "clean energy technologies

Laughlin, Robert B.

204

17th DOE nuclear air cleaning conference: proceedings. Volume 2  

SciTech Connect (OSTI)

Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

First, M.W. (ed.)

1983-02-01T23:59:59.000Z

205

Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product  

SciTech Connect (OSTI)

For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

2000-07-01T23:59:59.000Z

206

Process for clean-burning fuel from low-rank coal  

DOE Patents [OSTI]

A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

1994-01-01T23:59:59.000Z

207

Joint United States and People`s Republic of China clean coal activities. Annual report, April 1994--December 1995  

SciTech Connect (OSTI)

The United States Department of Energy (U.S. DOE) and the Ministry of Coal Industry of the People`s Republic of China (China) signed a protocol in the field of fossil energy research and development in April 1985. An annex to this agreement, Annex IX, was signed in April 1994 for cooperation between the U.S. DOE and China`s State Science and Technology Commission (SSTC) in the area of clean coal utilization. Article III of Annex IX requires the United States and China jointly to prepare an annual report i describing the work performed and results achieved. This report, in compliance with Article III, is a description of the activities conducted under Annex IX during the period from April 1994 through December 1995. The report also contains the plans for future activities for the next 12 months, or through December 1996.

NONE

1996-06-01T23:59:59.000Z

208

Clean coal technology using process integration : a focus on the IGCC.  

E-Print Network [OSTI]

?? The integrated gasification combined cycle (IGCC) is the most environmentally friendly coal-fired power generation technology that offers near zero green house gas emissions. This… (more)

Madzivhandila, Vhutshilo

2011-01-01T23:59:59.000Z

209

The Diffusion of Clean Coal Combustion Technologies for Power Plants in China.  

E-Print Network [OSTI]

??China’s energy structure is characterized by a striking dominance of coal. This situation is not expected to change in a foreseeable future and causes serious… (more)

Liu, Liguang

2005-01-01T23:59:59.000Z

210

Clean-coal technology by-products used in a highway embankment stabilization demonstration project. Master's thesis  

SciTech Connect (OSTI)

Clean-coal technology by-products are used in a highway embankment demonstration project. This research chronicles the procedures used in the process and analyzes the stability of a repaired highway embankment. The reconstructed slope is analyzed using an Intelligent Discussion Support System that was developed from a slope stability program. Water quality studies are performed and an instrumentation plan is suggested. The calculated factors of safety and the observed embankment performance give indications that the field demonstration project was a success. Long-term monitoring will be the best barometer for determining embankment gross movement and the future of FGD by-products as a stabilizing material.

Nodjomian, S.M.

1994-01-01T23:59:59.000Z

211

Coal in the Northern Rocky Mountains and Great Plains Region -- Clean, compliant, and available  

SciTech Connect (OSTI)

The Northern Rocky Mountains and Great Plains region produced over 340 million short tons of coal in 1997, approximately 30 percent of the nation`s total coal production. Coals from this region are shipped to 26 states in the western, midwest, southern, and eastern US and production is projected to increase to 415 million short tons by 2015; the projected increase will be utilized primarily for production of electric power. The coals are economically attractive because they can be produced by surface mining, and do not require costly beneficiation to be compliant with emission standards. The coals are compliant because their chemical composition was influenced by tectonic settings of the coal basins and provenance of the sediments entering the basins. Tectonics during the Paleocene also influenced rates of precipitation and depositional systems. These factors, in concert, controlled the amount, distribution, and levels of sulfur, ash, and trace elements of environmental concern in the region`s coals. The emphasis of this paper is on the chemistry of these thick, high-quality coals and the geologic controls that resulted in their accumulation.

Stricker, G.D.; Ellis, M.S.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

212

Utilization ROLE OF COAL COMBUSTION  

E-Print Network [OSTI]

, materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

Wisconsin-Milwaukee, University of

213

Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994  

SciTech Connect (OSTI)

A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

NONE

1995-04-01T23:59:59.000Z

214

Advanced Resin Cleaning System (ARCS) at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

Steam generation system in-core components can undergo serious material degradation by a variety of corrosion-related phenomena. These phenomena are largely controlled by boiler water (i.e. reactor water) chemistry which is strongly impacted by the performance of the condensate system mixed bed ion exchange units. In Boiling Water Reactors (BWR), the mixed bed ion exchange units not only provide protection from ionic contaminants, but also remove insoluble corrosion products by filtration/adsorption. These insoluble corrosion products removed by the ion exchange units must then be periodically cleaned from the resin bed by some process external to the BWR primary water loop. A unique resin cleaning process called the {open_quotes}Advanced Resin Cleaning System{close_quotes} (ARCS) was developed in the late 1980`s by members of CENTEC-XXI, located in Santa Clara, CA. This system, which has been successfully operated for several years at a Pressurized Water Reactor is highly efficient for removal of both insoluble corrosion products and anion/cation resin fines, and generates significantly less waste water than other cleaning methods. The ARCS was considered the most attractive method for meeting the demanding and costly resin cleaning needs of a BWR. A {open_quotes}Tailored Collaboration{close_quotes} project was initiated between EPRI, Entergy Operations (Grand Gulf Station), and CENTEC-XXI to demonstrate the {open_quotes}Advanced Resin Cleaning System{close_quotes} in a BWR.

Asay, R.H.; Earls, J.E.; Naughton, M.D. [Centec 21, Inc., Santa Clara, CA (United States)

1996-10-01T23:59:59.000Z

215

baepgig-clean | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Kentucky Pioneer IGCC...

216

Process for clean-burning fuel from low-rank coal  

DOE Patents [OSTI]

A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

Merriam, N.W.; Sethi, V.; Brecher, L.E.

1994-06-21T23:59:59.000Z

217

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

1996-10-30T23:59:59.000Z

218

Partnerships for Clean Development and Climate: Business and Technology Cooperation Benefits  

E-Print Network [OSTI]

on renewable energy and clean coal development, is a coreentrepreneurs in India. The Clean Coal Business Development

Sathaye, Jayant A.; Price, Lynn; Kumar, Satish; de la Rue du Can, Stephane; Warfield, Corina; Padmanabhan, S.

2006-01-01T23:59:59.000Z

219

Panel discussion: The Clean Air Act: It`s impact on the coal testing industry The act itself: A summary and overview  

SciTech Connect (OSTI)

The Clean Air Act was first enacted in 1970. It was re-enacted in both 1977 and 1991. The original act covered air quality standards (NAAQS) for SO{sub 2}, NO{sub x}, CO and O{sub 3}. Pb was added in 1978 by court order and particulate matter (TSP) was added in 1987. A discussion of the impact of the Clean Air Act on the coal industry is presented.

King, R.

1995-08-01T23:59:59.000Z

220

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons  

Broader source: Energy.gov [DOE]

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Potential growth of nuclear and coal electricity generation in the US  

SciTech Connect (OSTI)

Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs.

Bloomster, C.H.; Merrill, E.T.

1989-08-01T23:59:59.000Z

222

Twenty-first DOE/NRC nuclear air-cleaning conference  

SciTech Connect (OSTI)

The Twenty-First Department of Energy/Nuclear Regulatory Commission Nuclear Air-Cleaning Conference was held August 12-16, 1990, in San Diego, California. A total of 232 air-cleaning specialists attended the conference. The United States and 14 foreign countries were represented, and the specialists were affiliated with government agencies, educational institutions, and the nuclear industry. Several major topics were discussed during the conference, including development and use of industry codes and standards; chemical processing off-gas cleaning; particulate filter developments, including filter testing and filter response to physical stress; development of adsorbents, including laboratory testing and in-place testing; incineration and vitrification; containment venting; reactor operations, including design and modeling; and measurement systems capable of verifying safe operation. The conference continued to provide a forum for direct and efficient interchange of technical and philosophical information among the participants. The high level of foreign participation and interest continues, as evidenced by over one half of the papers being sponsored by foreign interests, and one quarter of the attendees being from outside the United States. Further evidence of international interest was seen in a plenary session devoted to nuclear air-cleaning programs in nine different countries. A common concern throughout many of the sessions was the development of meaningful standards, their implementation for existing air-cleaning system, and the use of these standards by regulatory agencies. 13 refs., 2 tabs.

Bellamy, R.R. [Nuclear Regulatory Commission, Washington, DC (United States); Moeller, D.W.; First, M.W. [Harvard Univ., Cambridge, MA (United States)

1991-01-01T23:59:59.000Z

223

Twenty-third DOE/NRC nuclear air cleaning and treatment conference  

SciTech Connect (OSTI)

The Twenty-Third Department of Energy/Nuclear Regulatory Commission (DOE/NRC) nuclear Air-Cleaning and Treatment Conference was held July 25-28, 1994, in Buffalo, New York. The conference was also sponsored by the Harvard Air-Cleaning Laboratory and the Internation Society of Nuclear Air Treatment Technologies, a nonprofit organization founded to promote technology transfer in the nuclear air-cleaning and treatment area. A total of 192 air-cleaning specialists attended the conference. The United States and 11 foreign countries were represented. The specialists are affiliated with all aspects of the nuclear industry, including government agencies, educational institutions, utilities, architect-engineers, equipment suppliers, and consultants. The high level of international interests is evident from the 40% of papers sponsored by foreign interests. More than 20% of the attendees as well as several members of the Program Committee were from outside the United States. Major topics discussed at this conference included nuclear air-cleaning codes and standards, waste disposal, particulate filter developments (including testing and performance under stress and after aging), sampling and monitoring of process and effluent streams, off-gasses from fuel reprocessing, adsorbents and adsorption, accident control and analysis, and revised source terms for power-plant accidents. A highlight of the conference concerned operations a at the DOE facility at West Valley, New York, where construction is under way to solidify radioactive waste. A recurrent theme throughout the sessions was that, in spite of the large number of guidance documents available in the form of regulations, codes, standards, and directives, multiple difficulties arise when all are invoked simultaneously. Gas processing needs, rather than controls for civilian power plants, will provide the principal challenge during the next decade for the air-cleaning specialists of the world. 15 refs.

Bellamy, R.R.; Hayes, J.J.; First, M.W.

1995-01-01T23:59:59.000Z

224

Development of the Ultra-Clean Dry Cleanup Process for Coal-Based Syngases  

SciTech Connect (OSTI)

The Siemens Westinghouse Power Corporation (SWPC) has proposed a novel scheme for polishing sulfur species, halides, and particulate from syngas to meet stringent cleaning requirements, the ''Ultra-Clean syngas polishing process.'' The overall development objective for this syngas polishing process is to economically achieve the most stringent cleanup requirements for sulfur species, halide species and particulate expected for chemical and fuel synthesis applications (total sulfur species < 60 ppbv, halides < 10 ppbv, and particulate < 0.1 ppmw). A Base Program was conducted to produce ground-work, laboratory test data and process evaluations for a conceptual feasibility assessment of this novel syngas cleaning process. Laboratory testing focused on the identification of suitable sulfur and halide sorbents and operating temperatures for the process. This small-scale laboratory testing was also performed to provide evidence of the capability of the process to reach its stringent syngas cleaning goals. Process evaluations were performed in the Base Program to identify process alternatives, to devise process flow schemes, and to estimate process material & energy balances, process performance, and process costs. While the work has focused on sulfur, halide, and particulate control, considerations of ammonia, and mercury control have also been included.

Newby, R.A.; Slimane, R.B.; Lau, F.S.; Jain, S.C.

2002-09-20T23:59:59.000Z

225

Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines  

SciTech Connect (OSTI)

This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

Barthelemy, N.M.; Lynn, S.

1991-07-01T23:59:59.000Z

226

A centurial history of technological change and learning curves or pulverized coal-fired utility boilers  

E-Print Network [OSTI]

International Energy Agency’s Clean Coal Centre CoalPower5Press; 2002. [25] IEA Clean Coal Centre. CoalPower5 (CD-from fossil fuels. In: IEA clean coal conference, Sardinia,

Yeh, Sonia; Rubin, Edward S.

2007-01-01T23:59:59.000Z

227

PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II  

SciTech Connect (OSTI)

For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

Unknown

2002-02-08T23:59:59.000Z

228

Proceedings of the 21st DOE/NRC nuclear air cleaning conference; Volume 2, Sessions 9--16  

SciTech Connect (OSTI)

The 21st meeting of the Department of Energy/Nuclear Regulatory Commission (DOE/NRC) Nuclear Air Cleaning Conference was held in San Diego, CA on August 13--16, 1990. The proceedings have been published as a two volume set. Volume 2 contains sessions covering adsorbents, nuclear codes and standards, modelling, filters, safety, containment venting and a review of nuclear air cleaning programs around the world. Also included is the list of attendees and an index of authors and speakers. (MHB)

First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

1991-02-01T23:59:59.000Z

229

Illinois Clean Coal Institute 2005 annual report. Final technical report for the period September 1st, 2004, through August 31, 2005 on projects funded by the Illinois Department of Commerce and Economic Opportunity  

SciTech Connect (OSTI)

This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.

NONE

2005-11-08T23:59:59.000Z

230

International Experts on Clean Coal, Carbon Capture Technologies to Meet at  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJune 20,Among States inSelectedPittsburgh Coal

231

apec coal flow: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

232

alkaline coal ash: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

233

Method for cleaning solution used in nuclear fuel reprocessing  

DOE Patents [OSTI]

Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

1980-12-17T23:59:59.000Z

234

Composition and chemistry of particulates from the Tidd Clean Coal Demonstration Plant pressurized fluidized bed combustor, cyclone, and filter vessel  

SciTech Connect (OSTI)

In a Pressurized Fluidized Bed Combustion (PFBC)/cyclone/filter system ground coal and sorbent are injected as pastes into the PFBC bed; the hot gases and entrained fine particles of ash and calcined or reacted sorbent are passed through a cyclone (which removes the larger entrained particles); and the very-fine particles that remain are then filtered out, so that the cleaned hot gas can be sent through a non-ruggedized hot-gas turbine. The 70 MWe Tidd PFBC Demonstration Plant in Brilliant, Ohio was completed in late 1990. The initial design utilized seven strings of primary and secondary cyclones to remove 98% of the particulate matter. However, the Plant also included a pressurized filter vessel, placed between the primary and secondary cyclones of one of the seven strings. Coal and dolomitic limestone (i.e, SO{sub 2} sorbent) of various nominal sizes ranging from 12 to 18 mesh were injected into the combustor operating at about 10 atm pressure and 925{degree}C. The cyclone removed elutriated particles larger than about 0.025 mm, and particles larger than ca. 0.0005 mm were filtered at about 750{degree}C by ceramic candle filters. Thus, the chemical reaction times and temperatures, masses of material, particle-size distributions, and chemical compositions were substantially different for particulates removed from the bed drain, the cyclone drain, and the filter unit. Accordingly, we have measured the particle-size distributions and concentrations of calcium, magnesium, sulfur, silicon, and aluminum for material taken from the three units, and also determined the chemical formulas and predominant crystalline forms of the calcium and magnesium sulfate compounds formed. The latter information is particularly novel for the filter-cake material, from which we isolated the ``new`` compound Mg{sub 2}Ca(SO{sub 4}){sub 3}.

Smith, D.H.; Grimm, U.; Haddad, G.

1995-12-31T23:59:59.000Z

235

IGCC repowering project clean coal II project public design report. Annual report, October 1992--September 1993  

SciTech Connect (OSTI)

Combustion Engineering, Inc. (CE) is participating in a $270 million coal gasification combined cycle repowering project that was designed to provide a nominal 60 MW of electricity to City, Water, Light and Power (CWL&P) in Springfield, Illinois. The Integrated Gasification Combined Cycle (IGCC) system consists of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-BTU gas; and all necessary coal handling equipment, The project is currently completing the second budget period of five. The major activities to date are: (1) Establishment of a design, cost, and schedule for the project; (2) Establishment of financial commitments; (3) Acquire design and modeling data; (4) Establishment of an approved for design (AFD) engineering package; (5) Development of a detailed cost estimate; (6) Resolution of project business issues; (7) CWL&P renewal and replacement activities; and (8) Application for environmental air permits. A Project Management Plan was generated, The conceptual design of the plant was completed and a cost and schedule baseline for the project was established in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities were accomplished, including the Air Permit Application, completion of the National Environmental Policy Act process, and the draft Environmental Monitoring Plan. At the end of 1992 the DOE requested that Duke Engineering and Services Inc., (DESI) be used to complete the balance of plant cost estimate. DESI was retained to do this work, DESI completed the material take off estimate and included operations, maintenance, and startup in the estimate.

NONE

1993-10-01T23:59:59.000Z

236

Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +  

E-Print Network [OSTI]

pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

Zevenhoven, Ron

237

POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. First quarterly technical progress report, September 27, 1995--December 31, 1995  

SciTech Connect (OSTI)

The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. During the past quarter, a number of project tasks have been initiated. All documents required for project startup (i.e., work plans, management plans, etc.) have been submitted to DOE for approval. A bench-scale TES unit and an apparatus for studying tribocharging mechanisms have been designed and are currently being fabricated. One of the three coal samples to be used for bench-scale testing has been acquired.

Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

1995-12-31T23:59:59.000Z

238

air cleaning: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

239

air cleaning issues: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

240

Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctionalPortal BuildingProject |

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctionalPortal BuildingProject

242

SciTech Connect: The Mesaba Energy Project: Clean Coal Power Initiative,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Cawith EXO-200 SearchGalaxyFaster,Round 2 The

243

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

SciTech Connect (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

244

Precipitation of jarosite-type double salts from spent acid solutions from a chemical coal cleaning process  

SciTech Connect (OSTI)

The precipitation of jarosite compounds to remove Na, K, Fe, and SO{sub 4}{sup 2{minus}} impurities from spent acid solutions from a chemical coal cleaning process was studied. Simple heating of model solutions containing Fe{sub 2}(SO{sub 4}){sub 3}, Na{sub 2}SO{sub 4}, and K{sub 2}SO{sub 4} caused jarosite (KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) to form preferentially to natrojarosite (NaFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}). Virtually all of the K, about 90% of the Fe, and about 30% of the SO{sub 4}{sup 2{minus}} could be precipitated from those solutions at 95{degree}C, while little or no Na was removed. However, simple heating of model solutions containing only Fe{sub 2}(SO{sub 4}){sub 3} and Na{sub 2}SO{sub 4} up to 95{degree}C for {le}12 hours produced low yields of jarosite compounds, and the Fe concentration in the solution had to be increased to avoid the formation of undesirable Fe compounds. Precipitate yields could be increased dramatically in model solutions of Na{sub 2}SO{sub 4}/Fe{sub 2}(SO{sub 4}){sub 3} containing excess Fe by using either CaCO{sub 3}, Ca(OH){sub 2}, or ZnO to neutralize H{sub 2}SO{sub 4} released during hydrolysis of the Fe{sub 2}(SO{sub 4}){sub 3} and during the precipitation reactions. Results obtained from the studies with model solutions were applied to spent acids produced during laboratory countercurrent washing of coal which had been leached with a molten NaOH/KOH mixture. Results indicated that jarosite compounds can be precipitated effectively from spent acid solutions by heating for 6 hours at 80{degree}C while maintaining a pH of about 1.5 using CaCO{sub 3}.

Norton, G.

1990-09-21T23:59:59.000Z

245

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

1975, p. 48. "Clean Energy from Coal Technology," Office ofClean Ways to Burn Coal Estimated Busbar Power Costs for Coal-Electric TechnologiesClean Fuels from Coal," Cochran, N. P. , Office of Science and Technology,

Ferrell, G.C.

2010-01-01T23:59:59.000Z

246

Study of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coal  

E-Print Network [OSTI]

gas emissions from coal-fired power plants has led to renewed interest in gasification as a clean-coal with the Canada's Clean Coal Technology Roadmap [2] and CO2 Capture and Storage Technology Roadmap [3], clean coal

Spiteri, Raymond J.

247

Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report  

SciTech Connect (OSTI)

This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

1989-08-28T23:59:59.000Z

248

Illinois Coal Development Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

249

ccpi-multi-product-coal | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Advanced Multi-Product...

250

advanced coal-combustion technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

251

advanced coal-combustion technologies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

252

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, September 1995--December 1995  

SciTech Connect (OSTI)

This fifth quarterly report describes work done during the fifth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with the university on this project is Mill Service, Inc. This report describes the activities of the project team during the reporting period. The principal work has focussed upon completing laboratory evaluation of samples produced during Phase 1, preparing reports and presentations, and seeking environmental approvals and variances to permits that will allow the field work to proceed. The compressive strength of prepared concretes is described.

NONE

1996-03-01T23:59:59.000Z

253

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

254

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

255

AEO 2015 Electricity, Coal, Nuclear and Renewables Preliminary Results  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue

256

Is clean coal feasible?  

SciTech Connect (OSTI)

Carbon capture and storage is being examined as way towards a cleaner energy future. Short communication.

Tucker, P.

2007-11-15T23:59:59.000Z

257

FE Clean Coal News  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCity ofAugust 31, 2012 MethaneRSS June

258

Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure  

DOE Patents [OSTI]

This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

Sapienza, R.S.; Slegeir, W.A.R.

1983-09-30T23:59:59.000Z

259

Characteristics of American coals in relation to their conversion into clean-energy fuels. Final report. [1150 samples of US coals  

SciTech Connect (OSTI)

To further characterize the Nation's coals, the Penn State Coal Sample Bank and Data Base were expanded to include a total of 1150 coal samples. The Sample Bank includes full-seam channel samples as well as samples of lithotypes, seam benches, and sub-seam sections. To the extent feasible and appropriate basic compositional data were generated for each sample and validated and computerized. These data include: proximate analysis, ultimate analysis, sulfur forms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. During the contract period more than 5000 samples were prepared and distributed. A theoretical and experimental study of the pyrolysis of coal has been completed. The reactivity of chars, produced from all ranks of American coals, has been studied with regard to reactivity to air, CO/sub 2/, H/sub 2/ and steam. Another area research has concerned the catalytic effect of minerals and various cations on the gasification processes. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported here. The products of this research can be found in 23 DOE Technical Research Reports and 49 published papers. As another mechanism of technology transfer, the results have been conveyed via more than 70 papers presented at a variety of scientific meetings. References to all of these are contained in this report.

Spackman, W.; Davis, A.; Walker, P.L.; Lovell, H.L.; Vastola, F.J.; Given, P.H.; Suhr, N.H.; Jenkins, R.G.

1982-06-01T23:59:59.000Z

260

A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report  

SciTech Connect (OSTI)

This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

Not Available

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 9, October 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by March, 1997. During Quarter 9 (October--December, 1995), parametric and optimization testing was completed for the Taggart, Sunnyside, and Indiana VII coal using a 12-inch Microcel{trademark} flotation column. The detailed design of the 2-t/hr PDU grinding, flotation, and dewatering circuits neared completion with the specification of the major pieces of capital equipment to be purchased for these areas. Selective agglomeration test work investigated the properties of various industrial grades of heptane for use during bench- and PDU-scale testing. It was decided to use a hydrotreated grade of commercial heptane due to its low cost and low concentration of aromatic compounds. The final Subtask 6.4 CWF Formulation Studies Test Plan was issued. A draft version of the Subtask 6.5 Preliminary Design and Test Plan Report was also issued, discussing the progress made in the design of the bench-scale selective agglomeration unit. PDU construction work moved forward through the issuing of 26 request for quotations and 21 award packages for capital equipment.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C. [AMAX Research and Development Center, Golden, CO (United States)

1995-01-25T23:59:59.000Z

262

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

IISolvent Refining for Clean Coal Combustion,1I Walk, R. ,of Equipment (Percent of Clean Coal Produced) Year Type Jigs$1.50-$2.00 per ton of clean coal. In comparison, the cost

Ferrell, G.C.

2010-01-01T23:59:59.000Z

263

Structural characteristics and gasification reactivity of chars prepared from K{sub 2}CO{sub 3} mixed HyperCoals and coals  

SciTech Connect (OSTI)

HyperCoal is a clean coal with mineral matter content <0.05 wt %. Oaky Creek (C = 82%), and Pasir (C = 68%) coals were subjected to solvent extraction method to prepare Oaky Creek HyperCoal, and Pasir HyperCoal. Experiments were carried out to compare the gasification reactivity of HyperCoals and parent raw coals with 20, 40, 50 and 60% K{sub 2}CO{sub 3} as a catalyst at 600, 650, 700, and 775{sup o}C with steam. Gasification rates of coals and HyperCoals were strongly influenced by the temperature and catalyst loading. Catalytic steam gasification of HyperCoal chars was found to be chemical reaction controlled in the 600-700{sup o}C temperature range for all catalyst loadings. Gasification rates of HyperCoal chars were found to be always higher than parent coals at any given temperature for all catalyst loadings. However, X-ray diffraction results showed that the microstructures of chars prepared from coals and HyperCoals were similar. Results from nuclear magnetic resonance spectroscopy show no significant difference between the chemical compositions of the chars. Significant differences were observed from scanning electron microscopy images, which showed that the chars from HyperCoals had coral-reef like structures whereas dense chars were observed for coals. 26 refs., 8 figs., 2 tabs.

Atul Sharma; Hiroyuki Kawashima; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-04-15T23:59:59.000Z

264

Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426  

SciTech Connect (OSTI)

The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

2012-07-01T23:59:59.000Z

265

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quartery report, August 1994--November 1994  

SciTech Connect (OSTI)

This first quarterly report describes work during the first three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSO and the Center for Hazardous Materials Research (CHMR)). The report states the goals of the project - both general and specific - and then describes the activities of the project team during the reporting period. All of this work has been organizational and developmental in nature. No data has yet been collected. Technical details and data will appear for the first time in the second quarterly report and be the major topic of subsequent reports.

NONE

1994-12-01T23:59:59.000Z

266

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-02-03T23:59:59.000Z

267

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

268

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-02-03T23:59:59.000Z

269

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

270

A comparison study of column flotation technologies for cleaning Illinois coal. Technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

The objectives of this research project are to optimize the performance of six commercially available column technologies for the treatment of Illinois Basin coal fines and to compare their performance on the basis of the recovery-grade curve and column throughput capacity. A statistically-designed experimental program will be conducted to optimize the critical operating performance values of each flotation column. The operating values suggested by the vendor will be used as the center point of the design. The ultimate recovery-grade curve and-the maximum throughput capacity for each column will be determined by conducting further tests using the optimum operating parameter values. During this reporting period, the flotation columns that were not already present were purchased and received. Installation of all the flotation columns was completed with the exception of the Packed-Column which is presently being mounted. A total of 25 fifty-five gallon drums of Illinois No. 5 flotation feed coal ({minus}100 mesh) was collected at a local preparation plant to be used as the feed for the comparison tests. A complete characterization of this coal sample will be conducted during the next reporting period.

Honaker, R.Q.; Paul, B.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

1993-12-31T23:59:59.000Z

271

A comparison study of column flotation technologies for cleaning Illinois coal. [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect (OSTI)

The objectives of this research project are to optimize the performance of six commercially available column technologies for the treatment of Illinois Basin coal fines and to compare their performance on the basis of the recovery-grade curve and column throughput capacity. A statistically-designed, experimental program will be conducted to optimize the critical operating performance values of each flotation column. During the previous reporting period, construction and installation of the six flotation columns were completed. The flotation feed sample that will be used for the tests in this investigation was collected from a coal preparation plant treating the Illinois No. 5 seam coal. During this reporting period, the flotation feed sample was characterized on a size-by-size basis for its ash, total sulfur, and BTU content. A release analysis was also conducted to obtain the best possible recovery versus product grade curve that can be achieved by a froth flotation process for the treatment of the Illinois No. 5 flotation feed sample. Experiments were initiated on the Jameson Cell. The preliminary results indicate that the Jameson Cell achieves a separation performance that is close to the release data. The experimental program on the Jameson Cell and the other flotation technologies will be performed during the next reporting period.

Honaker, R.Q.; Paul, B.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

1994-06-01T23:59:59.000Z

272

EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas...  

Office of Environmental Management (EM)

Clean Energy, LLC for the proposed Texas Clean Energy Project. The Project would use coal-based integrated gasification combined-cycle technology to generate electricity and...

273

adopt clean technologies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

then his personal information must Walden, Eric 10 Energy Systems Engineering 1 Clean Coal Technologies Renewable Energy Websites Summary: Energy Systems Engineering 1 Clean...

274

abundant efficient clean: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Websites Summary: for India & US) workshop--December 8, 2012. Clean Coal Technology Projects updates on Consortium for Clean4th International Symposium on...

275

Effects of welding fumes on nuclear air cleaning system carbon adsorber banks  

SciTech Connect (OSTI)

Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

Roberson, P.W. [Duke Power Company, Huntersville, NC (United States)

1997-08-01T23:59:59.000Z

276

CE IGCC repowering project: Clean Coal II Project. Annual report, 1 January, 1992--31 December, 1992  

SciTech Connect (OSTI)

CE is participating in a $270 million coal gasification combined cycle repowering project that will provide a nominal 60 MW of electricity to City, Water, light and Power (CWL and P) in Springfield, Illinois. The IGCC system will consist of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-Btu gas: and all necessary coal handling equipment. The project is currently in the second budget period of five. The major activities during this budgeted period are: Establishment of an approved for design (AFD) engineering package; development of a detailed cost estimate; resolution of project business issues; CWL and P renewal and replacement activities; and application for environmental air permits. The Project Management Plan was updated. The conceptual design of the plant was completed and a cost and schedule baseline for the project was established previously in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities are continuing. At the end of 1992 the major activities remaining for Budget Period two is to finish the cost estimate and complete the Continuation Request Documents.

Not Available

1993-12-01T23:59:59.000Z

277

The Governance of Clean Development Working Paper 015 July 2011  

E-Print Network [OSTI]

has been redefined as a `clean coal' power plant following a World Bank loan of $3 billion in April of climate change mitigation and emerging stakeholders in renewable generation. Key words: clean coal

Watson, Andrew

278

Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994  

SciTech Connect (OSTI)

Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

NONE

1994-12-31T23:59:59.000Z

279

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

280

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect (OSTI)

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

282

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

283

Update report on the performance of 400 megawatt and larger nuclear and coal-fired generating units. Performance through 1977  

SciTech Connect (OSTI)

Forty-seven nuclear generating units and 125 coal-fired generating plants that have had at least one full year of commercial operation are covered in this report. Their performances are evaluated using the capacity factor, availability factor, equivalent availability, and forced outage rate. The data are arranged by state and utility. (DLC)

None

1981-01-01T23:59:59.000Z

284

The Asia-Pacific coal technology conference  

SciTech Connect (OSTI)

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

285

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995  

SciTech Connect (OSTI)

This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

NONE

1995-03-01T23:59:59.000Z

286

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, May 1995--August 1995  

SciTech Connect (OSTI)

This fourth quarterly report describes work done during the fourth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quote} Participating with the university on this project are Dravo Lime Company, Mill Service, Inc., and the Center for Hazardous Materials Research. This report describes the activities of the project team during the reporting period. The principal work has focussed upon the production of six sets of samples with high water content for solidification testing and the mixing of five dry samples for solidification testing by the Proctor method. Twenty-eight day compressive strengths are reported for five of the six sets of samples with high water content. The report also discusses completion of the format of the database and the inclusion in it of all data collected to date. Special reports presented during the quarter include the Continuation Application, a News Release, and modification to the Test Plan. Work is progressing on the NEPA report and the Topical Report. The activity on the project during the fourth quarter of Phase one, as presented in the following sections, has fallen into six major areas: (1) Completion of by-product evaluations, (2) Completion of analyses of six wastes, (3) Initiation of eleven solidification tests, (4) Continued extraction and extract analysis of solidified samples, (5) Development of the database, and (6) Production of reports.

NONE

1995-11-01T23:59:59.000Z

287

A comparison study of column flotation technologies for cleaning Illinois coal. Technical report, March 1, 1994--May 31, 1994  

SciTech Connect (OSTI)

The objectives of this research project are to optimize the performance of six commercially available column technologies for the treatment of Illinois Basin coal fines and to compare their performance on the basis of the recovery-grade curve and column throughput capacity. During the previous reporting period, characterization of an Illinois No. S flotation feed sample was completed and tests on the Jameson Cell were initiated. During this reporting period, parametric studies using a Box-Behnken test design were conducted on the Jameson Cell, Packed-Column, and the Microcel. The results obtained from all three flotation technologies compared well with release analysis data. Excellent ash rejections of more than 85% were achieved by each flotation technology. However, for the test conditions used in this investigation, relatively low combustible recovery values were obtained from the Jameson Cell and the Packed-Column due to carrying capacity limitations. During the next reporting period, lower feed rates will be tested for these two technologies in an effort to improve recovery. Empirical models developed from the parametric studies will be used to predict the optimum operating parameter values. These optimum values will be used to obtain the best possible separation efficiency and maximum throughput for each flotation technology.

Honaker, R.Q.; Paul, B.C.

1994-09-01T23:59:59.000Z

288

EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH  

E-Print Network [OSTI]

Triaxial TestsTests Direct Shear TestsDirect Shear Tests Clean and Coal Dust Fouled Ballast BehaviorClean1 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH for Laboratory StudyFouling Mechanism / Need for Laboratory Study Mechanical Properties of Coal Dust

Barkan, Christopher P.L.

289

Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report  

SciTech Connect (OSTI)

The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

Hsu, F.E.

1995-08-01T23:59:59.000Z

290

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

291

An SAIC Report Prepared for The Indiana Center for Coal Technology  

E-Print Network [OSTI]

....................................................................................................................... 15 1.6.2 Implement advanced clean coal technologies for production of energy products ........ 15

Fernández-Juricic, Esteban

292

advanced pressurized coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

293

advanced direct coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

294

advanced physical coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

295

advanced fine coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

296

acceptable coal utilization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CONSORTIUM FOR CLEAN COAL UTILIZATION Materials Science Websites Summary: CONSORTIUM FOR CLEAN COAL...

297

advanced coal utilization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CONSORTIUM FOR CLEAN COAL UTILIZATION Materials Science Websites Summary: CONSORTIUM FOR CLEAN COAL...

298

annual coal preparation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 4th Annual Clean Coal CiteSeer Summary: Proceedings he emphasis of the Fourth Clean Coal Technology...

299

advanced coal preparation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 15 1.6.2 Implement advanced clean coal technologies for production of energy products ... 15 An SAIC Report Prepared...

300

NETL Coal to Hydrogen Program National Energy Technology Laboratory  

E-Print Network [OSTI]

/Hydrogen Production CCPI Technology Demonstrations (50/50) · Clear Skies · Reduced Carbon Intensity Clean Coal

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Keeping condensers clean  

SciTech Connect (OSTI)

The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

Wicker, K.

2006-04-15T23:59:59.000Z

302

Department of Energy Announces Third Grant for U.S.-China Clean...  

Energy Savers [EERE]

by the University of Michigan to advance technologies for clean vehicles and one led by West Virginia University to focus on the next generation of clean coal technologies,...

303

Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar  

SciTech Connect (OSTI)

Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

NONE

2005-07-01T23:59:59.000Z

304

advanced coal conversion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the coal plant is transmitted over the transmission lines, Phadke, Amol 2008-01-01 7 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

305

Clean Coal Diesel Demonstration Project  

E-Print Network [OSTI]

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The view and opinions of authors expressed therein do not necessarily state or reflect those of the United States

A Doe Assessment

2007-01-01T23:59:59.000Z

306

Clean Energy Jobs Plan Introduction  

E-Print Network [OSTI]

times as many jobs per dollar as gas, oil or coal. And dollars invested in clean energy tend to stayClean Energy Jobs Plan Introduction When I was governor, California was the world leader capacity. That has changed-- China is now the worlds top renewable energy producer, and Texas and Iowa

307

Integrated production/use of ultra low-ash coal, premium liquids and clean char. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect (OSTI)

The objective of this research is to invert the conventional scale of values for products of coal utilization processes by making coal chars (carbons) that, because of their unique properties, are the most valuable materials in the product slate. A unique type of coal-derived carbon studied in this project is oxidized activated coal char having both adsorptive and catalyst properties. Major program elements were (a) preparation and characterization of materials (b) characterization of carbons and catalyst testing (c) completion of diesel engine testing of low-ash coal and (d) initiation of a two-year adsorption study. Materials prepared were (a) two low-ash coal samples one via ChemCoal processing of IBC-109 and the other by acid dissolution of IBC-109`s mineral matter, (b) coal char (MG char), (c) activated low-ash carbon (AC), (d) oxidized activated carbon (OAC). Amoco continued its support with state-of-the art analytical capabilities and development of catalyst testing procedures. Diesel engine tests were made with low ash coal dispersed in diesel fuel at solid loadings of 20% and 35%. The slurry was successfully burned in cylinder 2 of a two-cylinder diesel engine, after modifications of the engine`s fuel injection system. The higher speed proved to be more favorable but the slurry burned with a slightly improved thermal and combustion efficiency at both speeds with respect to diesel fuel alone. Adsorption studies included preparation of seven base-line carbon samples and their characterization, including their N{sub 2} BET surface areas and apparent densities. Paranitrophenol (PNP) adsorption isotherms were determined for the six controls. Oxidation of carbon with nitric acid decreases activated carbon`s PNP adsorption capacity while air oxidation increases adsorption capacity.

Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Snoeyink, V.L.; Feizoulof, C.; Assanis; Syrimis, M. [Illinois Univ., Urbana (United States); Fatemi, S.M. [Amoco, Naperville, IL (United States)

1992-12-31T23:59:59.000Z

308

ccpi-multi-product-coal | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean CoalCoal-Biomass1 Industrial Carbon

309

advanced multi-product coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

310

Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

NONE

1995-12-31T23:59:59.000Z

311

Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

NONE

1996-10-01T23:59:59.000Z

313

Non-intrusive measurement of particle charge: Electrostatic dry coal cleaning. Technical progress report No. 11, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

As has been previously reported, the charge measurement portion of this project has been broadened to include direct measurement techniques which yield an average particle charge per unit mass. These methods, which now include current measurements from the charging loop, an electrolytic collection solution and a Faraday cage have been employed to expand the charge measurement capabilities over those that were originally developed using the PDPA. The effects of gas velocity, humidity and temperature as well as particle size on charge was evaluated for different coals and silica. The charge accumulated on silica particles was linearly dependent on their velocity in the tribocharger for the velocities and mass loadings which were investigated. For coals, a linear increase in charge occurred over a more limited velocity range. Transport gas humidity had a much stronger effect on the charge established on silica particles than on coal particles.

Not Available

1994-06-01T23:59:59.000Z

314

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

NONE

1992-12-31T23:59:59.000Z

315

FACT SHEET: U.S.-China Clean Energy Cooperation Announcements  

Broader source: Energy.gov (indexed) [DOE]

years in each of the three areas of the Center's work: buildings energy efficiency, clean coal and clean vehicles. An official CERC logo was unveiled and the website was launched...

316

advancing clean energy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

build a miniature sun on earth? NIF-0205-10343 P8481 14 Energy Systems Engineering 1 Clean Coal Technologies Renewable Energy Websites Summary: Energy Systems Engineering 1 Clean...

317

Role of coal in the world and Asia  

SciTech Connect (OSTI)

This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

Johnson, C.J.; Li, B.

1994-10-01T23:59:59.000Z

318

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

319

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

320

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

322

Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant  

E-Print Network [OSTI]

The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of...

Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

2013-01-01T23:59:59.000Z

323

4th International Symposium on Energy & Environment: ACCESS Abundant Clean Cost-effective Energy Systems for Sustainability  

E-Print Network [OSTI]

for India & US) workshop--December 8, 2012. Clean Coal Technology Projects updates on Consortium for Clean Coal Utilization activities. Discussion on future activities and multi-country efforts in R

Subramanian, Venkat

324

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network [OSTI]

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

325

LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS  

E-Print Network [OSTI]

conventional and clean coal technologies. This project was primarily directed toward developing concrete, mineralogical, and microstructural properties. A clean coal ash is defined as the ash derived from SO2 control technologies. Based on these properties, two sources of both conventional and clean coal ashes were selected

Wisconsin-Milwaukee, University of

326

Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980  

SciTech Connect (OSTI)

The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.

Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

1980-08-29T23:59:59.000Z

327

COAL LIQUEFACTION STUDIES USING PHOSPHORIC ACID AT MODERATE TEMPERATURES AND PRESSURES  

E-Print Network [OSTI]

1976. Cox, John 1. , urCatalysts for Coal Conversion", fromUiClean Fuels from Coal", IGT Symposium, Sept. 10-14, 1974.Derived from Solvent Refined Coal Conversion Products", SRI

McLean, J.B.

2010-01-01T23:59:59.000Z

328

Selective flotation of inorganic sulfides from coal  

DOE Patents [OSTI]

Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

Miller, K.J.; Wen, Wu-Wey

1988-05-31T23:59:59.000Z

329

Selective flotation of inorganic sulfides from coal  

DOE Patents [OSTI]

Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

Miller, Kenneth J. (Floreffe, PA); Wen, Wu-Wey (Murrysville, PA)

1989-01-01T23:59:59.000Z

330

Coal in China  

SciTech Connect (OSTI)

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

331

Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler  

SciTech Connect (OSTI)

This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

Not Available

1990-09-01T23:59:59.000Z

332

Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant  

E-Print Network [OSTI]

The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

333

Inside this Issue Clean Sweep 1  

E-Print Network [OSTI]

(coal, aggregate, ore, etc.) are involved in commercial transactions where current weighing technologyInside this Issue Page Clean Sweep 1 This Month in History 1 Calendar 2 This Month in History on page 4) 1 Volume 2 Issue 5 August 29, 2011 Clean Sweep By John Barton Vast amounts of bulk materials

Perkins, Richard A.

334

advanced coal processes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

335

arc coal process: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the system in figure 1 as an M equidistant receiver Paris-Sud XI, Universit de 8 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

336

Coal-oil slurry preparation  

DOE Patents [OSTI]

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

337

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network [OSTI]

in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

338

Coal: the cornerstone of America's energy future  

SciTech Connect (OSTI)

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

339

CSEM WP 118 The Impact of the Clean Air Act Amendments of 1990  

E-Print Network [OSTI]

CSEM WP 118 The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market at Davis, crknittel@ucdavis.edu. #12;2 The Impact of the Clean Air Act Amendments of 1990 on Electric

California at Berkeley. University of

340

Non-intrusive measurement of particle charge: Electrostatic dry coal cleaning. Technical progress report No. 8, April 1, 1993--June 30, 1993  

SciTech Connect (OSTI)

As we reported in the Technical Progress Report No. 7, there are surges of electric current in the charging loop during triboelectrification of all particles. A high speed data acquisition and analysis system was developed to monitor and record the current pattern. There is no known report on such charge-discharge surges in the literature. The mechanism for it is yet to be understood. The on-line computerized electric current measurement also leads to an observation of charging effects as a function of particle feeding rate. It is shown that feed rate greatly alters particle charge. Such an effect is mostly overlooked by researchers and it could have a important role in process design where the feed rate would be maximized. The initial results for coal and mineral particles demonstrated that the average charge was lower when the feed rate was increased. Further investigation is scheduled to identify potential controlling factors, eg, the solid volume fraction and particle number density could be important process factors. The study of charging velocity and particle size was continued. It was found that particle charge was linearly dependent on the charging velocity for all samples investigated. However, the slope of this linear dependence varied for particles having different diameters. In addition, the charge-velocity relationships were dependent on feeding rates. Hence, the data discussed below include these interrelationships.

Not Available

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CLEAN(ING) COAL: THE ENTHYMEMATIC QUALITIES OF IMAGES, EDITING AND COLOR IN CLEAN COAL ADVERTISING.  

E-Print Network [OSTI]

??Energy advertisements in the United States have increased in both prominence and political importance in recent years. The increasing pressure of environmental concerns requires energy… (more)

Struth, Matthew Steven

2014-01-01T23:59:59.000Z

342

Clean Cities  

Broader source: Energy.gov [DOE]

Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

343

Energy and environmental research emphasizing low-rank coal: Task 3.4 -- Hot-gas cleaning. Topical report (includes semiannual report for January--June 1995)  

SciTech Connect (OSTI)

This report summarizes the accomplishments of three subtasks completed in support of the current and future hot-gas cleanup activities at the Energy and Environmental Research Center (EERC). The overall objective of the EERC hot-gas cleanup task is to develop reliable methods to remove particulate matter from high-temperature, high-pressure gas streams produced from coal combustion and/or gasification. Near-term task objectives include (1) design, fabrication, and assembly of a high-temperature, high-pressure bench-scale filter vessel; (2) design, fabrication, and assembly of a high-temperature, high-pressure sampling train; and (3) the preliminary design of a pilot-scale high-temperature, high-pressure filter vessel and support systems. Bench-scale hot-gas filter research will be performed with the pressurized fluid-bed reactor (PFBR) or the continuous fluid-bed reactor (CFBR) and a hot-gas filter vessel. The objectives of future work with the bench-scale system will be to determine particulate and vapor-phase alkali degradation of candidate ceramic filter structures as well as filter performance relative to particulate collection efficiency, differential pressure, and filter cleanability. Construction of the high-temperature, high-pressure sampling system was intended to support bench- and pilot-scale activities with respect to conventional particulate sampling (total mass and particle-size distribution) and hazardous air pollutant (HAP) sampling. Finally, pilot-scale tests will be performed to evaluate filter performance and determine alkali corrosion of ceramic materials with a hot-gas filter vessel attached to the EERC Transport Reactor Development Unit (TRDU).

Weber, G.F.; Swanson, M.L.

1995-06-01T23:59:59.000Z

344

Nuclear Power  

E-Print Network [OSTI]

of electrical grid system on the other hand. Clean coal is a secure source for long term. However the deployment of clean technologies and industrial implementation of CO2 capture have to be waited for quite a long time. One of possible option for clean... of renewable sources is one, but not the only solution due to the low energy density, large land demand on the one hand, and immaturity of some technologies and operating limitations of electrical grid system on the other hand. Clean coal is a secure source...

345

Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant  

E-Print Network [OSTI]

The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of the aerodynamic resistance of a model of the vertical iodine air filter is completed. The comparative analysis of the technical characteristics of the vertical and horizontal iodine air filters is also made.

I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

2013-02-18T23:59:59.000Z

346

Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology  

SciTech Connect (OSTI)

The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

Shiquan Tao

2006-12-31T23:59:59.000Z

347

There is the poten-tial for 30 new [nuclear  

E-Print Network [OSTI]

; development of the Center for Clean Coal Research and recruitment of two new faculty members; and develop

Morgan, Stephen L.

348

Conventional coal preparation in the United States  

SciTech Connect (OSTI)

Processing of bituminous and anthracite coal is widely practiced in the United States and, as mentioned earlier, about 80 percent of the production of these coals is processed as clean coal in preparation plants. Subbituminous coal is not widely processed, primarily because these low rank raw coals are low in sulfur (0.5 to 1.0 percent) and relatively low in ash (8 to 15 percent). They are also relatively low in heat content due to their high inherent moisture. Lignite coals, to the best of the authors{close_quote} knowledge, are not presently being processed in Conventional Coal Preparation plants. This is due to their unstable nature and putting them in water in a coal preparation plant is likely to cause severe degradation in particle size and add to their already high inherent moisture content. The following are the benefits of clean coal processing: produces a uniform product which can be utilized more efficiently; produces a higher quality product which results in higher efficiency at the power station or the steel mill; reduces sulfur dioxide and other adverse stack emissions during coal firing which is a very important environmental consideration; reduces ash or slag handling costs by the user; reduces shipping costs; and reduces handling and storage costs. Processing any stable raw coal in a coal preparation plant will always produce a higher grade product which is a more efficient and a more environmentally acceptable fuel for use at power stations, steel mills, home heating or industrial boilers.

Beck, M.K.; Taylor, B.

1993-12-31T23:59:59.000Z

349

The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta.  

E-Print Network [OSTI]

??The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This… (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

350

Fine Anthracite Coal Washing Using Spirals  

SciTech Connect (OSTI)

The spiral performed well in cleaning the coarse 8 x 16 mesh size fraction, as demonstrated by the Ep ranging from 0.091 to 0.177. This is in line with typical spiral performance. In addition, the presence of the coarser size fraction did not significantly affect spiral performance on the typical 16 x 100 mesh fraction, in which the Ep ranged from 0.144 to 0.250. Changes in solids concentration and flow rate did not show a clear correlation with spiral performance. However, for difficult-to-clean coals with high near-gravity material, such as this anthracite, a single-stage spiral cleaning such a wide size fraction may not be able to achieve the clean coal ash and yield specifications required. In the first place, while the performance of the spiral on the coarse 8 x 16 mesh fraction is good with regard to Ep, the cutpoints (SG50s) are high (1.87 to 1.92), which may result in a clean coal with a higher-than-desired ash content. And second, the combination of the spiral's higher overall cutpoint (1.80) with the high near-gravity anthracite results in significant misplaced material that increases the clean coal ash error. In a case such as this, one solution may be to reclean the clean coal and middlings from the first-stage spiral in a second stage spiral.

R.P. Killmeyer; P.H. Zandhuis; M.V. Ciocco; W. Weldon; T. West; D. Petrunak

2001-05-31T23:59:59.000Z

351

Toward zero emissions from coal in China Robert H. Williams  

E-Print Network [OSTI]

is a strong candidate for becoming the "third" clean energy carrier for China. Evolving a coal-based energyToward zero emissions from coal in China Robert H. Williams Princeton Environmental Institute, Room (CO2) emissions. A coal energy system for China is proposed that could ultimately be characterized

352

New developments in coal briquetting technology  

SciTech Connect (OSTI)

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

353

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-Print Network [OSTI]

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antinodes of the acoustic waves are positioned. Finally, we completed the comparative analysis of the theoretical calculations with the experimental results, obtained for the cases of: 1) the experimental aerodynamic modeling of physical processes of the absorbed radioactive chemical elements and their isotopes distribution in the IAF; and 2) the gamma-activation spectroscopy analysis of the absorbed radioactive chemical elements and their isotopes distribution in the IAF. We made the innovative propositions on the necessary technical modifications with the purpose to improve the IAF technical characteristics and increase its operational time at the nuclear power plant (NPP), going from the completed precise characterization of the IAF parameters at the long term operation.

Oleg P. Ledenyov; Ivan M. Neklyudov

2013-06-14T23:59:59.000Z

354

Nuclear Nonproliferation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Nonproliferation As more countries embrace nuclear power as a cost-effective and clean alternative to fossil fuels, the need exists to ensure that the nuclear fuel cycle is...

355

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes  

SciTech Connect (OSTI)

The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

Doyle, F.M.

1992-01-01T23:59:59.000Z

356

CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...  

Open Energy Info (EERE)

| NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

357

Clean Coal Technology: Environmental Solution or Greenwashing?.  

E-Print Network [OSTI]

??The same people most negatively affected by environmental injustices are also most vulnerable to deceptive environmental advertising, or greenwashing. Accordingly, the false marketing of corporate… (more)

Winston, Laurie E.

2009-01-01T23:59:59.000Z

358

Cleaning Up Coal | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical Officerof Energy

359

Through its Clean Coal Research Program, FE  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th , 2007 AnthonyDepartment ofits inception

360

FE Clean Coal News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCity ofAugust 31, 2012 MethaneRSS

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

FE Clean Coal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14, 2011 CX-007068:3, 2011January 29,

362

FE Clean Coal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14, 2011 CX-007068:3, 2011January

363

FE Clean Coal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14, 2011 CX-007068:3, 2011JanuaryJuly

364

FE Clean Coal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14, 2011 CX-007068:3,

365

FE Clean Coal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14, 2011 CX-007068:3,August 9, 2011

366

FE Clean Coal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14, 2011 CX-007068:3,August 9,

367

FE Clean Coal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14, 2011 CX-007068:3,August 9,May 13,

368

FE Clean Coal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14, 2011 CX-007068:3,August 9,May

369

Large-Eddy Simulation of Pulverized Coal Jet Flame -Effect of Oxygen Concentration on NOx formation  

E-Print Network [OSTI]

than those by using other fossil fuels [1]. It is therefore important to develop clean coal technology for pulverized coal fired power plants, in order to control such emissions and to reduce the environmental impact. Regarding the reduction...

Muto, Masaya; Watanabe, Hiroaki; Kurose, Ryoichi; Komori, Satoru; Balusamy, Saravanan; Hochgreb, Simone

2015-01-01T23:59:59.000Z

370

Upgrading low-rank coals using the liquids from coal (LFC) process  

SciTech Connect (OSTI)

Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

Nickell, R.E.; Hoften, S.A. van

1993-12-31T23:59:59.000Z

371

Clean Cities Internships  

Broader source: Energy.gov [DOE]

Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

372

Performance and risks of advanced pulverized-coal plants  

SciTech Connect (OSTI)

This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

Nalbandian, H. [IEA Clean Coal Centre, London (United Kingdom)

2009-07-01T23:59:59.000Z

373

Computational Fluid Dynamics (cfd) Modeling of a Laboratory Scale Coal Gasifier.  

E-Print Network [OSTI]

?? Furthering gasification technology is an essential part of advancing clean coal technologies. In order to seek insight into the appropriate operations for the formation… (more)

Schultheiss, Kiel S

2013-01-01T23:59:59.000Z

374

E-Print Network 3.0 - australian coal industry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization 27 Dr. David Kemp Australian Minister of Summary: - Southern StatesThailand - sustainable industry development - Southern StatesBrazil - clean coal power......

375

E-Print Network 3.0 - advanced coal combustor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ash, boiler slag, and flue gas desulfurization (FGD) by-products from advanced clean coal technology... combustors. This paper briefly ... Source: Wisconsin-Milwaukee,...

376

An efficient process for recovery of fine coal from tailings of coal washing plants  

SciTech Connect (OSTI)

Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H. [Dokuz Eylul University, Izmir (Turkey). Dept. for Mining Engineering

2008-07-01T23:59:59.000Z

377

The Governance of Clean Development Working Paper 006 June 2010  

E-Print Network [OSTI]

to a clean energy transition but faces complex energy decisions. This paper identifies the key decision Renewable Energy Technologies, while not moving themselves to dependence on clean energy. The article trajectory Key words: Botswana, Renewable Energy, Coal, Governance. About the author: School of International

Matthews, Adrian

378

Coal: Energy for the future  

SciTech Connect (OSTI)

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

NONE

1995-05-01T23:59:59.000Z

379

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

380

Pelletization of fine coals. Final report  

SciTech Connect (OSTI)

Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

Sastry, K.V.S.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE  

SciTech Connect (OSTI)

The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

B.K. PAREKH; D. TAO; J.G. GROPPO

1998-02-03T23:59:59.000Z

382

On the structurization of coal dust precipitations and their influence on aerodynamic resistance by granulated mediums in air filters at nuclear power plants  

E-Print Network [OSTI]

The processes of structurization of dust precipitations in granulated filtering mediums, formed by the monolithic glass spherical granules with the diameters of 2mm and 3mm, are re-searched. The distinctions between the distributions of filtered coal dust masses in the air filters with cylindrical granules and the air filters with spherical granules, are found. The influences by the filtered dust masses on the air resistance of both the air filters with the cylindrical granules and the air filters with the spherical granules are described. The conclusions on a possibility of the use of various chemical adsorbents with different geometric forms and volumetric dimensions to improve the filtering properties of granulated filtering mediums in air filters at nuclear power plants are formulated.

Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

2012-01-01T23:59:59.000Z

383

On the structurization of coal dust precipitations and their influence on aerodynamic resistance by granulated mediums in air filters at nuclear power plants  

E-Print Network [OSTI]

The processes of structurization of dust precipitations in granulated filtering mediums, formed by the monolithic glass spherical granules with the diameters of 2mm and 3mm, are re-searched. The distinctions between the distributions of filtered coal dust masses in the air filters with cylindrical granules and the air filters with spherical granules, are found. The influences by the filtered dust masses on the air resistance of both the air filters with the cylindrical granules and the air filters with the spherical granules are described. The conclusions on a possibility of the use of various chemical adsorbents with different geometric forms and volumetric dimensions to improve the filtering properties of granulated filtering mediums in air filters at nuclear power plants are formulated.

I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

2012-07-02T23:59:59.000Z

384

Assessment of coal bed gas prospects  

SciTech Connect (OSTI)

Coal bed gas is an often overlooked source of clean, methane-rich, H{sub 2}S-free natural gas. The economic development of coal bed gas requires a knowledge of coal gas reservoir characteristics and certain necessary departures from conventional evaluation, drilling, completion, and production practices. In many ways coal seam reservoirs are truly unconventional. Most coals sufficient rank have generated large volumes of gas that may be retained depth in varying amounts through adsorption. Coal gas production can take place only when the reservoir pressure is reduced sufficiently to allow the gas to desorb. Gas flow to the well bore takes place through a hierarchy of natural fractures, not the relatively impermeable coal matrix. Economic production is dependent upon critical factors intrinsic to the reservoir, including coal petrology, gas content, internal formation stratigraphy, fracture distribution, hydrogeology, in situ stress conditions, initial reservoir pressure and pressure regime, and the presence or absence of a {open_quote}free{close_quotes} gas saturation. Further, the coal bed reservoir is readily subject to formation damage through improper drilling, completion, or production techniques. This presentation will review the data types critical to the assessment of any coal seam gas prospect, suggest an outline method for screening such prospects, and point out some possible pitfalls to be considered in any coal bed gas development project.

Moore, T.R. [Phillips Petroleum Co., Bartlesville, OK (United States)

1996-12-31T23:59:59.000Z

385

Coal: America's energy future. Volume I  

SciTech Connect (OSTI)

Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

NONE

2006-03-15T23:59:59.000Z

386

Evaluation of coal minerals and metal residues as coal-liquefaction catalysts. Final report  

SciTech Connect (OSTI)

The catalytic activity of various minerals, metallic wastes, and transition metals was investigated in the liquefaction of various coals. The effects of coal type, process variables, coal cleaning, catalyst addition mode, solvent quality, and solvent modification on coal conversion and oil production were also studied. Coal conversion and oil production improved significantly by the addition of pyrite, reduced pyrite, speculite, red mud, flue dust, zinc sulfide, and various transition metal compounds. Impregnation and molecular dispersion of iron gave higher oil production than particulate incorporation of iron. However, the mode of molybdenum addition was inconsequential. Oil production increased considerably both by adding a stoichiometric mixture of iron oxide and pyrite and by simultaneous impregnation of coal with iron and molybdenum. Hydrogenation activity of disposable catalysts decreased sharply in the presence of nitrogen compounds. The removal of heteroatoms from process solvent improved thermal as well as catalytic coal liquefaction. The improvement in oil production was very dramatic with a catalyst.

Garg, D.; Givens, E. N.; Schweighardt, F. K.; Tarrer, A. R.; Guin, J. A.; Curtis, C. W.; Huang, W. J.; Shridharani, K.; Clinton, J. H.

1982-02-01T23:59:59.000Z

387

Advanced Coal Conversion Process Demonstration. Technical progress report, April 1, 1993--June 30, 1993  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1993, through June 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

Not Available

1994-03-01T23:59:59.000Z

388

Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

Not Available

1994-03-01T23:59:59.000Z

389

Advanced Coal Conversion Process Demonstration. Technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through May 31, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

Not Available

1994-03-01T23:59:59.000Z

390

Coal combustion products (CCPs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, EEREClosureHighforCoal

391

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

392

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Energy Savers [EERE]

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

393

Group effects on fuel NOx emissisons from coal  

E-Print Network [OSTI]

are significant, especially in the context of a steadily increasing energy consumption. Such explosive growth brings fresh urgency to the search for clean coal technologies that could help resolve the historical conflict between the environmental protection...

Vadakkath, Anand Anakkara

1991-01-01T23:59:59.000Z

394

DOE/EA-1498: Advanced Coal Utilization Byproduct Beneficiation...  

Broader source: Energy.gov (indexed) [DOE]

(fax) (412) 386-4512 lorenzi@netl.doe.gov Janice.Bell@NETL.DOE.GOV Abstract: The Clean Coal Power Initiative (CCPI) is a cost-shared partnership between the U.S. Department of...

395

POC-scale testing of an advanced fine coal dewatering equipment/technique  

SciTech Connect (OSTI)

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

1995-11-01T23:59:59.000Z

396

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network [OSTI]

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

397

Y-12 cleaning technology licensed by Knoxville engineering firm...  

National Nuclear Security Administration (NNSA)

cleaning technology licensed by Knoxville engineering firm | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

398

Wabash River coal gasification repowering project: Public design report  

SciTech Connect (OSTI)

The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

NONE

1995-07-01T23:59:59.000Z

399

Clean Cities: Detroit Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities coalition Contact Information Sean Reed (Acting) 734-585-5720 x18 reed@cec-mi.org Coalition Website Clean Cities Coordinator Sean Reed (Acting) Sean Reed (Acting) is...

400

POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique  

SciTech Connect (OSTI)

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 ? March 31, 1998.

B. K. Karekh; D. Tao; J. G. Groppo

1998-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

402

Clean Cities Fact Sheet  

SciTech Connect (OSTI)

This is a routine revision of a general fact sheet that describes the Clean Cities partnership efforts and includes a list of Clean Cities coordinators.

Not Available

2005-09-01T23:59:59.000Z

403

CT Clean Energy Communities  

Broader source: Energy.gov [DOE]

The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

404

CT Clean Energy Communities  

Broader source: Energy.gov [DOE]

The Clean Energy Communities program, offered by the Clean Energy Finance and Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

405

Sixth annual coal preparation, utilization, and environmental control contractors conference  

SciTech Connect (OSTI)

A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

Not Available

1990-01-01T23:59:59.000Z

406

Coal supply and cost under technological and environmental uncertainty  

E-Print Network [OSTI]

Coal supply and cost under technological and environmental uncertainty Submitted in partial chapters. My conversations with Kurt Walzer at Clean Air Task Force and Rory McIlmoil at Coal Valley Wind Technology Laboratory. I did not complete this work alone. I had a lot of help along the way. I would like

407

Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C  

SciTech Connect (OSTI)

HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group, Energy Technology Research Institute

2008-11-15T23:59:59.000Z

408

Case-study of a coal gasification-based energy supply system for China  

E-Print Network [OSTI]

Case-study of a coal gasification-based energy supply system for China Zheng Hongtao Department Engineering, Tsinghua University, 100084 Beijing, China ``Syngas city'' (SC) is a concept for a coal clean fuels derived via coal gasification. Emissions of air pollutants in the SC scenario are compared

409

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

410

Some use the word "renaissance;" others are more cautious in their optimism. Some critics have become supporters; others  

E-Print Network [OSTI]

for new nuclear thinking. Along with conservation, renewables, a smart grid, and clean coal, nuclear power

411

Health effects of coal technologies: research needs  

SciTech Connect (OSTI)

In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

Not Available

1980-09-01T23:59:59.000Z

412

Outlook and Challenges for Chinese Coal  

SciTech Connect (OSTI)

China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

2008-06-20T23:59:59.000Z

413

Coal industry annual 1994  

SciTech Connect (OSTI)

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

414

The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal  

SciTech Connect (OSTI)

This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

Zauderer, B.; Fleming, E.S.

1991-08-30T23:59:59.000Z

415

ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis  

E-Print Network [OSTI]

technologies for clean utilization of fuels. This 1 MW (thermal) facility is located on the campus. Goals · Develop and test clean technologies for pollution control and carbon Algae production using Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization· Be a resource

Subramanian, Venkat

416

E-Print Network 3.0 - air cleaning conference Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(WTERT) Collection: Renewable Energy 49 By-Products Utilization Summary: CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Rafat Siddique... CANMET...

417

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect (OSTI)

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

418

Synthetic fuel production by indirect coal liquefaction  

E-Print Network [OSTI]

Synthetic fuel production by indirect coal liquefaction Eric D. Larson Princeton Environmental@princeton.edu Ren Tingjin Department of Thermal Engineering, Tsinghua University, 100084 Beijing, China This paper reports detailed process designs and cost assessments for production of clean liquid fuels (methanol

419

Energy Policy Act transportation rate study: Interim report on coal transportation  

SciTech Connect (OSTI)

The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

NONE

1995-10-01T23:59:59.000Z

420

Development of a Coal Quality Expert  

SciTech Connect (OSTI)

ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also, some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

None

1998-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Preparation for upgrading western subbituminous coal  

SciTech Connect (OSTI)

The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

1990-11-01T23:59:59.000Z

422

Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993  

SciTech Connect (OSTI)

This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

Hoffman, G.P. [ed.

1994-07-01T23:59:59.000Z

423

U.S. zero emission coal alliance techology  

SciTech Connect (OSTI)

For coal to maintain its major role in supplying the world's energy, eventually all emissions to the atmosphere must be eliminated. Not only must conventional pollutants, like sulfur compounds and dust particles be kept out of the air, but also the far larger quantities of carbon dioxide that result from the combustion of carbon. We present a new technology for coal-based power that generates hydrogen from carbon and water, avoids emissions to the atmosphere, and disposes of the carbon dioxide as inert, solid mineral carbonates. Based on the available resources, coal power is sustainable for centuries. Our zero emission technology makes coal energy as clean as renewable energy.

Lackner, K. S. (Klaus S.); Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

424

Clean Energy Portfolio Goal  

Broader source: Energy.gov [DOE]

In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied...

425

What Is Clean Cities?  

SciTech Connect (OSTI)

This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2007-08-01T23:59:59.000Z

426

What Is Clean Cities?  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2008-04-01T23:59:59.000Z

427

What is Clean Cities?  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2008-09-01T23:59:59.000Z

428

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

429

Coal in court: Whitehaven, climate change and civil disobedience http://theconversation.com/coal-in-court-whitehaven-climate-change-and-civil-disobedience-15991[19/07/2013 2:37:22 PM  

E-Print Network [OSTI]

+ Energy Health + Medicine Politics + Society Science + Technology Election FactCheck Coal in courtCoal in court: Whitehaven, climate change and civil disobedience http://theconversation.com/coal Future Fellow working on a project entitled "Intellectual Property and Climate Change: Inventing Clean

Botea, Adi

430

Project Sponsors: Department of Energy Clean Energy Systems  

E-Print Network [OSTI]

Project Sponsors: Department of Energy Clean Energy Systems An Original Equipment Manufacturer (confidential) ADVANCED POWER & ENERGY PROGRAM www.apep.uci.edu RESULTS CO2 capture approaching 100 and in the gasifier in the case of a fuel such as coal). O2 purity typically greater than 95% is required to meet

Mease, Kenneth D.

431

Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

NONE

1997-05-01T23:59:59.000Z

432

Clean Cities: St. Louis Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis Clean Cities

433

Clean Cities: Tucson Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson Clean Cities

434

Clean Cities: Twin Cities Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson CleanTwin

435

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-Print Network [OSTI]

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

Ledenyov, Oleg P

2013-01-01T23:59:59.000Z

436

Cleaning on a Shoestring.  

E-Print Network [OSTI]

or copper object is cleaned, a thin coat of tung oil may be applied to give it a soft luster. 4 BUTCHER BLOCK Most butcher blocks are made of solid hard maple and are, therefore, relatively easy to care for. Clean when necessary with warm water..., but fortunately, it can be cleaned with water and a sponge. If a build up of soap scum occurs, add one teaspoon washing soda or packaged water softener to the cleaning solution. Nonabrasive cleaning powders may also be used. Be sure to remove all traces...

McCutcheon, Linda Flowers

1982-01-01T23:59:59.000Z

437

Upgrading low rank coal using the Koppelman Series C process  

SciTech Connect (OSTI)

Development of the K-Fuel technology began after the energy shortage of the early 1970s in the United States led energy producers to develop the huge deposits of low-sulfur coal in the Powder River Basin (PRB) of Wyoming. PRB coal is a subbituminous C coal containing about 30 wt % moisture and having heating values of about 18.6 megajoules/kg (8150 Btu/lb). PRB coal contains from 0.3 to 0.5 wt % sulfur, which is nearly all combined with the organic matrix in the coal. It is in much demand for boiler fuel because of the low-sulfur content and the low price. However, the low-heating value limits the markets for PRB coal to boilers specially designed for the high- moisture coal. Thus, the advantages of the low-sulfur content are not available to many potential customers having boilers that were designed for bituminous coal. This year about 250 million tons of coal is shipped from the Powder River Basin of Wyoming. The high- moisture content and, consequently, the low-heating value of this coal causes the transportation and combustion of the coal to be inefficient. When the moisture is removed and the heating value increased the same bundle of energy can be shipped using one- third less train loads. Also, the dried product can be burned much more efficiently in boiler systems. This increase in efficiency reduces the carbon dioxide emissions caused by use of the low-heating value coal. Also, the processing used to remove water and restructure the coal removes sulfur, nitrogen, mercury, and chlorides from the coal. This precombustion cleaning is much less costly than stack scrubbing. PRB coal, and other low-rank coals, tend to be highly reactive when freshly mined. These reactive coals must be mixed regularly (every week or two) when fresh, but become somewhat more stable after they have aged for several weeks. PRB coal is relatively dusty and subject to self-ignition compared to bituminous coals. When dried using conventional technology, PRB coal is even more dusty and more susceptible to spontaneous combustion than the raw coal. Also, PRB coal, if dried at low temperature, typically readsorbs about two- thirds of the moisture removed by drying. This readsorption of moisture releases the heat of adsorption of the water which is a major cause of self- heating of low-rank coals at low temperature.

Merriam, N.W., Western Research Institute

1998-01-01T23:59:59.000Z

438

Clean, premium-quality chars: Demineralized and carbon enriched. [Quarterly] technical report, March 1, 1993--May 31, 1993  

SciTech Connect (OSTI)

The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. There are two processing steps: physical cleaning of the coal and devolatilization under different environments to form chars. Two differents techniques were used, in-situ Diffuse Reflectance FTIR measurements and BTU measurements. Experiments were performed with coals IBC-101, 102, and 104 as received and after cleaning. DR-FTIR spectrums helped to explain the possible existing chemical bonds in the coal structure as well as their changes during drying and mild pyrolysis. Drying coal causes hydrogen bonds between water and coal to be broken. Liquids produced above 500{degrees}C are much higher in aromatic content, thus, effectively reducing the concentration of aliphatic groups in the overall liquid yield. BTU values of coals after methane treatment are higher than after helium treatment.

Smith, G.V.; Malhotra, V.M.; Wiltowski, T.; Myszka, E. [Southern Illinois Univ., Carbondale, IL (United States)

1993-09-01T23:59:59.000Z

439

Sensors & Measurement | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors & Measurement...

440

Coal and Coal-Biomass to Liquids FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock - EnergyCoal Fly Ash asCoaland

Note: This page contains sample records for the topic "nuclear clean coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA -Quarterly Coal Distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennesseeWashington- Coal

442

Strategic Center for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'!Stores Catalogof SVO ResearchCoal

443

Unconventional (borehole) Technologies for Gas Fuel Producing from Coal  

E-Print Network [OSTI]

The scheme discribtion of borehole thechnologies for coal fields utilization is cited in the report. The merits and shortages of the technologies are discussed. The several conclusions are expressed. Key words: borehole technology, coal seam, coalbed methane, recovery, comparision. Geotechnology is the method of raw fossil recovery through the surface boreholes. The raw fossil may be presented both liquid and gas or hard materials. The geotechnological methods have used since beginning of XX century. Conventional methods of coal mining permit to receive 7-9 % useful energy from coal in situ potential energy (calorific value of it). This energy effectiveness have calculated on the base of mining and transportation and processing of the coal [1]. Besides, capacity of labour during underground mining activity is not very high and is evaluated as 0.02-0.5 man-sheet per one ton of coal. The coal mining is accompanied high shake of extracted rock (in Russian coal fields as many as 25-27%). As much as 8-12 tones of clean air are given for one ton of the produced coal. The coefficient of fatal accidents in the coal mines ranges as 1.2-1.5 per 1 million tons of the coal recovery. Underground (mines) and surface (open pits) mining make negative influence on the environment.

Vasyuchkov Yu. F; Vasyuchkov M. Yu

444

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect (OSTI)

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

445

Operation of dry-cleaned and agglomerated precompaction system (DAPS)  

SciTech Connect (OSTI)

In order to reduce the manufacturing cost of coke, it is necessary to reduce mainly (1) the material cost and (2) operating cost. Both of these costs can be reduced by lowering the moisture of charging coal. Because dust generation increases with decreasing moisture of charging coal, however, the lower limit of charging coal moisture in the existing coke-oven equipment was about 5%, which yielded good results in coal moisture control (CMC) equipment. Nippon Steel has furthered the development of techniques for lowering the moisture of charging coal as far as possible in the existing coke ovens and has recently succeeded in developing a dry-cleaned and agglomerated precompaction system (DAPS) and incorporating this system in commercial production equipment. In this system, a coal preparation process is undertaken that involves separating coal fines, which cause dust generation, from dried charging coal and agglomerating them. The equipment incorporating this system was installed in the No. 3 and No. 4 coke batteries at Oita Works and brought into full-scale operation in September 1992. The equipment has since been operating smoothly.

Tanaka, Shigemi; Okanishi, Kazuya; Kikuchi, Akio; Yamamura, Yuichi

1997-12-31T23:59:59.000Z

446

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

447

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

448

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

449

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

450

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

451

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-11-08T23:59:59.000Z

452

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

453

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

SciTech Connect (OSTI)

Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

2005-12-01T23:59:59.000Z

454

Southeast Regional Clean Energy Policy Analysis (Revised)  

SciTech Connect (OSTI)

More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

McLaren, J.

2011-04-01T23:59:59.000Z

455

Development of an Advanced Fine Coal Suspension Dewatering Process  

SciTech Connect (OSTI)

With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation te