National Library of Energy BETA

Sample records for nuclear capacity-including japan

  1. Japan | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Japan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  2. United States -Japan Joint Nuclear Energy Action Plan | Department...

    Office of Environmental Management (EM)

    -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan have both...

  3. Advancing Civil Nuclear Cooperation with Japan

    Broader source: Energy.gov [DOE]

    In June, Deputy Secretary Daniel Poneman traveled to Japan for the third meeting of the Bilateral Commission on Civil Nuclear Cooperation, an initiative launched by President Obama in 2012.

  4. History of nuclear technology development in Japan

    SciTech Connect (OSTI)

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  5. Japan | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  6. Japan

    National Nuclear Security Administration (NNSA)

    by the Leaders of Japan and the United States on Contributions to Global Minimization of Nuclear Material http:nnsa.energy.govmediaroompressreleasesjapannss

  7. US-Japan_NuclearEnergyActionPlan.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-Japan_NuclearEnergyActionPlan.pdf US-Japan_NuclearEnergyActionPlan.pdf PDF icon US-Japan_NuclearEnergyActionPlan.pdf More Documents & Publications Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan

  8. Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan |

    Office of Environmental Management (EM)

    Department of Energy United States-Japan Joint Nuclear Energy Action Plan Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan PDF icon Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan More Documents & Publications United States -Japan Joint Nuclear Energy Action Plan US-Japan_NuclearEnergyActionPlan.pdf United States-Japan Joint Nuclear Energy Action Plan

  9. United States -Japan Joint Nuclear Energy Action Plan

    Broader source: Energy.gov (indexed) [DOE]

    -Japan Joint Nuclear Energy Action Plan 1. Introduction 1.1 Background and Objective President Bush of the U n i t e d States and Prime Minister Koizumi of Japan have both stated their strong support for the contribution of nuclear power to energy security and the global environment. Japan w a s the first nation to endorse President Bush's Global Nuclear Energy Partnership. During the June 29,2006 meeting between President Bush and Prime Minister Koizumi, "We discussed research and

  10. United States-Japan Joint Nuclear Energy Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    An outline on the United States and Japan's joint nuclear energy action plan. PDF icon United States-Japan Joint Nuclear Energy Action Plan More Documents & Publications Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan United States

  11. U.S-, Japan Exchange Best Practices on Nuclear Emergency Response...

    National Nuclear Security Administration (NNSA)

    S-, Japan Exchange Best Practices on Nuclear Emergency Response | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  12. Energy Deputy Secretary Poneman Co-Chairs Nuclear Meeting in Japan |

    Energy Savers [EERE]

    Department of Energy Co-Chairs Nuclear Meeting in Japan Energy Deputy Secretary Poneman Co-Chairs Nuclear Meeting in Japan June 13, 2014 - 8:01am Addthis News Media Contact 202-586-4940 TOKYO, Japan - U.S. Deputy Secretary of Energy Daniel Poneman and Japan's Deputy Minister for Foreign Affairs Shinsuke Sugiyama co-chaired the third meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation in Tokyo, Japan, this week. The meeting included participants from a wide range of

  13. United States and Japan Sign Joint Nuclear Energy Action Plan to Promote

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Cooperation | Department of Energy Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation April 25, 2007 - 12:36pm Addthis WASHINGTON, DC - United States Department of Energy Secretary Samuel W. Bodman and Japan's Ministers Akira Amari, Bunmei Ibuki, and Taro Aso, this week presented to U.S. President George W. Bush and Japanese Prime Minister Shinzo

  14. Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan

    Broader source: Energy.gov (indexed) [DOE]

    Sheet: United States-Japan Joint Nuclear Energy Action Plan The United States-Japan Joint Nuclear Energy Action Plan is intended to provide a framework for bilateral collaboration in nuclear energy. This Action Plan builds upon our significant, longstanding civilian nuclear cooperation, and will contribute to increasing energy security and managing nuclear waste, addressing nuclear nonproliferation and climate change, advancing goals put forth in President Bush's Global Nuclear Energy

  15. United States-Japan Nuclear Security Working Group | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  16. Factsheet: Second Meeting of the United States-Japan Bilateral Commission on Civil Nuclear Cooperation

    Broader source: Energy.gov [DOE]

    The second meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation was held on November 4, 2013 in Washington, D.C.

  17. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fast Reactor Technology; Fuel Cycle Technology;Simulation and Modeling; Small and Medium Reactors; Safeguards and Physical Protection and; Waste Management. The U.S. and Japan ...

  18. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  19. Secretary Chu to Join President Obama at Nuclear Security Summit in Seoul, Highlight Strong Partnership with Japan in Tokyo

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu will join President Barack Obama at the 2012 Nuclear Security Summit in Seoul. Following the summit, Secretary Chu will visit Tokyo to highlight the strong partnership between the United States and Japan.

  20. Department of Energy Hosts First Steering Committee Meeting on U.S.- Japan Joint Nuclear Energy Action Plan

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - U.S. Department of Energy Assistant Secretary for Nuclear Energy, Dennis R. Spurgeon, today hosted Director-General of Japan's Agency of Natural Resources and Energy, Harufumi...

  1. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  2. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    SciTech Connect (OSTI)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  3. United States-Japan Nuclear Security Working Group Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Fact Sheet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  4. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Energy Deputy Secretary Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima.

  5. FBIS report. Science and technology: Japan, May 7, 1996

    SciTech Connect (OSTI)

    1996-05-07

    ;Partial Contents: Japan: FH1 Aerospace Division Executive on UAV R&D; JapaN: MHI Delivers First F-2 Flight Test Model; Nuclear Technologies; Japan: Nuclear Material Research in Cross-Over Research Project; Japan: MITI To Subsidize Development of Cryptography; Defense Industries; Japan: JADI Announces FY96 Major Events Schedule; Japan: Rollout Ceremony Held for First OH-X Flight Test Model; and Japan: KHI Weapons Designer OH-X Development.

  6. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect (OSTI)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.

  7. Topics in nuclear power (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR POWER STATION; GAIN; JAPAN; NATURAL DISASTERS; NUCLEAR INDUSTRY; NUCLEAR POWER; NUCLEAR POWER PLANTS; PROBABILISTIC ESTIMATION; REACTOR ACCIDENTS; REACTOR MAINTENANCE;...

  8. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  9. Aerial Measuring System in Japan

    SciTech Connect (OSTI)

    Lyons, C., Colton, D. P.

    2012-05-01

    The U.S. Department of Energy National Nuclear Security Agencys Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring Systems mission beyond the borders of the US.

  10. Factsheet: Third Meeting of the U.S.-Japan Bilateral Commission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The third meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation was held on June 12, 2014 in Tokyo, with Japan's Deputy Minister for Foreign Affairs Shinsuke ...

  11. Factsheet: Third Meeting of the U.S.-Japan Bilateral Commission...

    Broader source: Energy.gov (indexed) [DOE]

    NEWS MEDIA CONTACT 202-586-4940 The third meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation was held on June 12, 2014 in Tokyo, with Japan's Deputy...

  12. Nuclear Regulatory Commission Handling of Beyond Design Basis Events for Nuclear Power Reactors

    Broader source: Energy.gov [DOE]

    Presenter: Bill Reckley, Chief, Policy and Support Branch, Japan Lessons-Learned Project Directorate, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission US Nuclear Regulatory Commission

  13. Fact Sheet: The Fourth Meeting of the U.S.-Japan Bilateral Commission on

    Office of Environmental Management (EM)

    Civil Nuclear Cooperation | Department of Energy Fact Sheet: The Fourth Meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation Fact Sheet: The Fourth Meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation November 6, 2015 - 1:56pm Addthis Fact Sheet: The Fourth Meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation News Media Contact: (202) 586-4940 The fourth meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear

  14. Fact Sheet: The Fourth Meeting of the U.S.-Japan Bilateral Commission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... collaboration in the area of high temperature reactor R&D on such topics as the ... (NRC) and the Nuclear Regulation Authority of Japan (NRA) informed as appropriate. ...

  15. Factsheet: Third Meeting of the U.S.-Japan Bilateral Commission on Civil

    Office of Environmental Management (EM)

    Nuclear Cooperation | Department of Energy Factsheet: Third Meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation Factsheet: Third Meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation June 13, 2014 - 7:48am Addthis NEWS MEDIA CONTACT 202-586-4940 The third meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation was held on June 12, 2014 in Tokyo, with Japan's Deputy Minister for Foreign Affairs Shinsuke Sugiyama and U.S. Deputy

  16. EM Boosts Efforts to Help Japan through Commission Work | Department of

    Office of Environmental Management (EM)

    Energy Boosts Efforts to Help Japan through Commission Work EM Boosts Efforts to Help Japan through Commission Work August 2, 2012 - 12:00pm Addthis TOKYO - EM continues to assist Japan as it recovers from a 2011 nuclear accident through a newly formed bilateral commission established to build on the close, collaborative relationship between the U.S. and Japan. Senior Advisor for Environmental Management David Huizenga and EM Office of Tank Waste Management Director Steve Schneider were

  17. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative on Advanced Nuclear Technologies

    Broader source: Energy.gov [DOE]

    Noting further that representatives of DOE's Office of Nuclear Energy, Science, and Technology and ANRE have identified common interests in innovative light water reactor technologies, including...

  18. Micro Materials Japan Inc | Open Energy Information

    Open Energy Info (EERE)

    Materials Japan Inc Jump to: navigation, search Name: Micro Materials Japan Inc Place: Omura, Nagasaki, Japan Zip: 856-0806 Product: Japanese manufacturer of high purity wafers and...

  19. Lithium Energy Japan | Open Energy Information

    Open Energy Info (EERE)

    Energy Japan Jump to: navigation, search Name: Lithium Energy Japan Place: Kyoto, Japan Zip: 6018520 Product: Kyoto-based developer, manufacturer and seller of large lithium-ion...

  20. Factsheet: Second Meeting of the United States-Japan Bilateral Commission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Civil Nuclear Cooperation | Department of Energy Factsheet: Second Meeting of the United States-Japan Bilateral Commission on Civil Nuclear Cooperation Factsheet: Second Meeting of the United States-Japan Bilateral Commission on Civil Nuclear Cooperation November 4, 2013 - 8:30pm Addthis News Media Contact (202) 586-4940 The second meeting of the U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation was held on November 4, 2013 in Washington, D.C, with U.S. Deputy Secretary of

  1. Ecosystem Japan Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ecosystem Japan Co Ltd Jump to: navigation, search Name: Ecosystem Japan Co Ltd Place: Tokyo, Tokyo, Japan Zip: 160-0002 Sector: Solar Product: Japan-based installer of solar...

  2. Sonix Japan Inc | Open Energy Information

    Open Energy Info (EERE)

    Sonix Japan Inc Jump to: navigation, search Name: Sonix Japan Inc Place: Japan Sector: Solar Product: Japan-based solar startup engaged in thin-film PV cell production. References:...

  3. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "For decades, we have worked in close partnership with Japan on nuclear issues, ranging from preventing the proliferation of nuclear weapons and confronting North Korea, to power ...

  4. SPD SEIS References for Appendix J | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    17. 462 NRC (U.S. Nuclear Regulatory Commission), 2012c, "Actions in Response to the Japan Nuclear Accident" (accessed May 9, 2012, http:www.nrc.govreactorsoperating...

  5. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative

    Broader source: Energy.gov [DOE]

    Sharing an interest in fostering advanced nuclear engineering and pursuing scientific research and development in the nuclear field; 

  6. Joint Statement by the Leaders of Japan and the United States on

    National Nuclear Security Administration (NNSA)

    Contributions to Global Minimization of Nuclear Material | National Nuclear Security Administration Leaders of Japan and the United States on Contributions to Global Minimization of Nuclear Material | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our

  7. Nuclear Energy Advisory Committee

    Broader source: Energy.gov (indexed) [DOE]

    ... aging of used nuclear fuel in storage (dry casks). ... fast reactors has been signed with France and Japan. ... the Air Force asked for SMRs to power air force bases. ...

  8. United States Nuclear Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Two nuclear weapons that the United States exploded over Japan ending World War II are not listed. These detonations were not "tests" in the sense that they were conducted to prove ...

  9. ORISE: DOE Secretary Chu honors ORAU employees for Japan crisis response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Secretary Chu honors ORAU employees for Japan crisis response FOR IMMEDIATE RELEASE Nov. 7, 2011 FY12-08 Sixteen ORAU employees received U.S. Department of Energy Secretarial Honor Awards for their work supporting the agency in responding to the Fukushima Daiichi nuclear reactor crisis in Japan. The awards were presented in Washington, D.C., by Energy Secretary Steven Chu. ORAU's team was honored alongside National Nuclear Security Administration employees and contractors who made up the

  10. Vector Japan Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Japan Co Ltd Jump to: navigation, search Name: Vector Japan Co Ltd Place: Tokyo, Japan Zip: 100-0011 Product: Japanese scrap silicon re-seller with availability of 15t per month....

  11. Canadian Solar Japan KK | Open Energy Information

    Open Energy Info (EERE)

    Japan KK Jump to: navigation, search Name: Canadian Solar Japan KK Place: Shinjuku-ku, Tokyo, Japan Zip: 160-0022 Sector: Solar Product: Tokyo-based subsidiary of Canadian Solar,...

  12. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo

    Office of Environmental Management (EM)

    American Center in Japan | Department of Energy Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan December 15, 2011 - 1:57pm Addthis Energy Deputy Secretary Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima. Excerpts and full text of remarks, as prepared for delivery, are below: "As two of the nations

  13. OCC | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home OCC OCC U.S-, Japan Exchange Best Practices on Nuclear Emergency Response Washington D.C.--The Department...

  14. Tokyo, Japan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tokyo, Japan: Energy Resources Jump to: navigation, search Name Tokyo, Japan Equivalent URI DBpedia GeoNames ID 1850147 Coordinates 35.61488, 139.5813 Show Map Loading map......

  15. US-Japan rare elements meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-Japan rare elements meeting US-Japan rare elements meeting US-Japan rare earth elements meeting PDF icon US-Japan rare elements meeting More Documents & Publications Microsoft...

  16. Superconducting magnet development in Japan

    SciTech Connect (OSTI)

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  17. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    SciTech Connect (OSTI)

    Miley, Harry

    2014-03-07

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  18. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    ScienceCinema (OSTI)

    Miley, Harry

    2014-06-12

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  19. 2010_Nuclear_Security_Joint_Statement.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    _Nuclear_Security_Joint_Statement.pdf 2010_Nuclear_Security_Joint_Statement.pdf PDF icon 2010_Nuclear_Security_Joint_Statement.pdf More Documents & Publications United States and France Sign Joint Statement on Civil Liability for Nuclear Damage US-Japan_NuclearEnergyActionPlan.pdf Before the Senate Armed Services Committee

  20. Examination of Risk Analysis Methods for MOX Land Transport in Japan

    SciTech Connect (OSTI)

    HOHNSTREITER, GLENN FREDRICK; PIERCE, JIM D.

    2003-04-01

    This report presents background information and methodology for a risk assessment of mixed oxide (MOX) reactor fuel transport in the nation of Japan to support their nuclear energy program. This work includes an extensive literature review, a review of other MOX activities worldwide, a survey of the statutory requirements for transporting nuclear materials, a discussion of risk assessment methodology, and calculation results for specific examples. Typical risk evaluations are given to provide guidance for later risk analyses specific to MOX fuel transport in Japan. This report also includes specific information that will be required for routes, cask types, accident-rate statistics, and population densities along specified routes, along with other detailed information needed for risk analysis studies pertinent to MOX transport in Japan. This information will be used in future specific risk studies.

  1. Yokkaichi, Japan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yokkaichi, Japan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 1848373 Coordinates 34.9651567, 136.6244847 Show Map Loading map......

  2. US-Japan Clean Energy Cooperation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japan Clean Energy Cooperation US-Japan Clean Energy Cooperation PDF icon US-Japan Clean Energy Cooperation.pdf More Documents & Publications Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable U.S.-Japan Joint Statement China CERC, U.S. India and Other international Agreements

  3. Transformer Efficiency Assessment - Okinawa, Japan

    SciTech Connect (OSTI)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-05-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  4. Transformer Efficiency Assessment - Okinawa, Japan

    SciTech Connect (OSTI)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-08-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  5. Transformer Efficiency Assessment - Okinawa, Japan

    SciTech Connect (OSTI)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-05-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of key transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturers factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCBs actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  6. United States-Japan Cooperation on Energy Security | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States-Japan Cooperation on Energy Security United States-Japan Cooperation on Energy Security January 9, 2007 - 9:59am Addthis The United States and Japan enjoy strong energy ...

  7. Japan Storage Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Storage Battery Co Ltd Jump to: navigation, search Name: Japan Storage Battery Co Ltd Place: Kyoto-shi, Kyoto, Japan Zip: 601-8520 Product: Japan Storage Battery offers full...

  8. U.S.-Japan Joint Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Japan Joint Statement U.S.-Japan Joint Statement U.S.-Japan Joint Statement prepared as part of the International Partnership for a Hydrogen Economy PDF icon usjapanstatementre...

  9. Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet)...

  10. Product Standards for Microwaves (Japan) | Open Energy Information

    Open Energy Info (EERE)

    Microwaves (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Microwaves (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts...

  11. Product Standards for Fluorescent Lighting (Japan) | Open Energy...

    Open Energy Info (EERE)

    Fluorescent Lighting (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Fluorescent Lighting (Japan) Focus Area: Appliances & Equipment...

  12. Product Standards for Air Conditioners (Japan) | Open Energy...

    Open Energy Info (EERE)

    Air Conditioners (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Air Conditioners (Japan) Focus Area: Appliances & Equipment Topics: Policy...

  13. Product Standards for Refrigerators (Japan) | Open Energy Information

    Open Energy Info (EERE)

    Refrigerators (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Refrigerators (Japan) Focus Area: Appliances & Equipment Topics: Policy...

  14. Datang Sino Japan Chifeng Renewable Power Corp | Open Energy...

    Open Energy Info (EERE)

    Japan Chifeng Renewable Power Corp Jump to: navigation, search Name: Datang Sino-Japan (Chifeng) Renewable Power Corp Place: Inner Mongolia Autonomous Region, China Product:...

  15. Japan International Cooperation Agency (JICA) | Open Energy Informatio...

    Open Energy Info (EERE)

    International Cooperation Agency (JICA) Jump to: navigation, search Logo: Japan International Cooperation Agency (JICA) Name: Japan International Cooperation Agency (JICA) Address:...

  16. Binhai Sino Japan Energy Management Corporation Tianjin | Open...

    Open Energy Info (EERE)

    Binhai Sino Japan Energy Management Corporation Tianjin Jump to: navigation, search Name: Binhai Sino-Japan Energy Management Corporation(Tianjin) Place: Tianjin Municipality,...

  17. Product Standards for Vending Equipment (Japan) | Open Energy...

    Open Energy Info (EERE)

    Vending Equipment (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Vending Equipment (Japan) Focus Area: Energy Efficiency Topics: Policy...

  18. Product Standards for Computers (Japan) | Open Energy Information

    Open Energy Info (EERE)

    Computers (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Computers (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts...

  19. Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy

    Energy Savers [EERE]

    Cooperation | Department of Energy on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Ministers and other senior officials representing the respective governmental agencies of China, France, Japan, Russia, and the United States met in Washington, D.C., on May 21, 2007 to address the prospects for international cooperation in peaceful uses of nuclear energy, including technical

  20. Physics in Collision 2009 -- Kobe, Japan

    ScienceCinema (OSTI)

    Dr. Yuji Yamazaki

    2010-01-08

    Dr. Yuji Yamazaki, a host of the Physics in Collision 2009 conference, and Dr. Thomas Muller, who will host the conference in 2010, talk about PIC 2009 in Kobe, Japan.

  1. Elevated Radioxenon Detected Remotely Following the Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Bowyer, Ted W.; Biegalski, Steven R.; Cooper, Matthew W.; Eslinger, Paul W.; Haas, Derek A.; Hayes, James C.; Miley, Harry S.; Strom, Daniel J.; Woods, Vincent T.

    2011-04-21

    We report on the first measurements of short-lived gaseous fission products detected outside of Japan following the Fukushima nuclear releases, which occurred after a 9.0 magnitude earthquake and tsunami on March 11, 2011.

  2. United States Nuclear Tests July 1945 through September 1992

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Two nuclear weapons that the United States exploded over Japan ending World War II are not listed. These detonations were not "tests" in the sense that they were conducted to prove ...

  3. UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER PLANTS

    Office of Scientific and Technical Information (OSTI)

    UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER PLANTS Y.J. Park and C.H. Hofmayer Brookhaven National Laboratory Upton, Long Island, New York 11973 J.F. Costello U.S. Nuclear Regulatory Commission Washington, D.C. 20555 ABSTRACT This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non- nuclear structures have been reviewed and summarized.

  4. Radioactive Waste Issues in Major Nuclear Incidents | Department of Energy

    Energy Savers [EERE]

    Radioactive Waste Issues in Major Nuclear Incidents Radioactive Waste Issues in Major Nuclear Incidents S.Y. Chen*, Illinois Institute of Technology Abstract: Large amounts of radioactive waste had been generated in major nuclear accidents such as the Chernobyl nuclear accident in Ukraine of 1986 and the recent Fukushima nuclear accident in Japan of 2011. The wastes were generated due to the accidental releases of radioactive materials that resulted in widespread contamination throughout the

  5. Utilization of LPG for vehicles in Japan

    SciTech Connect (OSTI)

    Kusakabe, M.; Makino, M.; Tokunoh, M.

    1988-01-01

    LPG demand for vehicles amounts to 1.8 MM tons annually, equivalent to about 11% of the total LPG consumption in Japan. The feature which dominates the demand of LPG as a vehicle fuel in Japan is the high penetration of LPG powered vehicles into taxi fleets. This has been made possible following the rationalization in the taxi business in the early 1960s. Today, three quarters of LPG vehicles, numbering some 235,000 while representing only about 1% of the total number of vehicles, account for nearly 93% of all taxicabs.

  6. Sabine Pass, LA Exports to Japan Liquefied Natural Gas (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Japan Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Japan Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  7. Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  8. Japan Solar Silicon Co Ltd JSS | Open Energy Information

    Open Energy Info (EERE)

    Solar Silicon Co Ltd JSS Jump to: navigation, search Name: Japan Solar Silicon Co Ltd (JSS) Place: Tokyo, Japan Sector: Solar Product: A JV company between Chisso, Nippon Mining...

  9. Social Acceptance of Geothermal Power Generation in Japan | Open...

    Open Energy Info (EERE)

    Power Generation in Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Social Acceptance of Geothermal Power Generation in Japan Abstract In...

  10. Secretary Chu Reaffirms Commitment to Energy Cooperation with Japan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Secretary Chu Reaffirms Commitment to Energy Cooperation with Japan Secretary Chu Reaffirms Commitment to Energy Cooperation with Japan September 13, 2011 - 11:33am Addthis Secretary Chu met with the Senior Vice Minister of Economy, Trade and Industry of Japan, Seishu Makino, during the APEC Ministerial Conference on Transportation and Energy, held September 13, 2011, in San Francisco. They reaffirmed the shared commitment of the United States and Japan to cooperate on a

  11. Building Clean Energy Partnerships With China and Japan | Department of

    Energy Savers [EERE]

    Energy Clean Energy Partnerships With China and Japan Building Clean Energy Partnerships With China and Japan November 15, 2010 - 12:54pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy This week (November 14th-19th), I will be traveling to China and Japan to meet with government officials, business leaders and others to discuss the opportunities for partnership in clean energy - partnerships that are important to America's economic competitiveness. China and Japan have made

  12. Microsoft Word - US_Japan_REE_agenda_ver7.doc

    Office of Environmental Management (EM)

    i,NationalInstituteofAdvancedIndustrialScienceandTechnology, Japan;CeriainAutomotiveCatalysts 12:30-1:30 Lunch ...

  13. IRM National Reference Series: Japan: An evaluation of government-sponsored energy conservation research and development

    SciTech Connect (OSTI)

    Howard, C.D.

    1987-07-01

    Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and are usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.

  14. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the worlds electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  15. Survey of ceramic machining in Japan

    SciTech Connect (OSTI)

    Bandyopadhyay, B.P.; Blau, P.J.

    1993-07-01

    This report is a compilation of four subcontract reports provided by B. P. Bandyopadhyay who, while a visiting professor at Toyohashi University in Japan, conducted a survey of ceramic machining technology in that country from January 1 through December 31, 1992. Various aspects of machining technology were surveyed: types of parts being produced, types of ceramic materials being used, the nature of current ceramic machining research and development, and types of machine tools. The four separate reports compiled here were originally provided in a narrative, chronological form, and some of the information has been reorganized into topical areas for this compilation. This report is organized into three sections: The first describes ten ceramic machining research and development organizations and provides a reference list of their current technical publications; the second, two major trade shows; and the third, several other products and commercial developments noted during the course of Bandyopadhyay`s stay in Japan. An Appendix lists key individuals who are currently conducting ceramic machining research in Japan.

  16. Global Nuclear Energy Partnership Triples in Size to 16 Members |

    Energy Savers [EERE]

    Department of Energy Triples in Size to 16 Members Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On to International Cooperation for Safe Expansion of Nuclear Energy Worldwide VIENNA, AUSTRIA - U.S. Secretary of Energy Samuel W. Bodman and senior international officials from 16 nations today agreed to increase international nuclear energy cooperation through the Global Nuclear Energy Partnership (GNEP). China, France, Japan,

  17. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect (OSTI)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  18. Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers

    SciTech Connect (OSTI)

    Forsberg, C.W.; Reich, W.J.; Rowan, W.J.

    1994-06-27

    Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.

  19. Overview of tritium activity in Japan | Department of Energy

    Office of Environmental Management (EM)

    tritium activity in Japan Overview of tritium activity in Japan Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Overview of tritium activity in Japan More Documents & Publications Tritium research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Percolation behavior of tritiated water into a soil packed bed Technological Assessment of Plasma Facing Components for DEMO Reactors

  20. United States, France and Japan Increase Cooperation on Sodium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In September 2007 China, France, Japan, Russia and the United States hosted the second GNEP Ministerial in Vienna, Austria where 35 countries and three intergovernmental ...

  1. SRS Environmental Bioassay Laboratory Support Aids Japan | Department of

    Energy Savers [EERE]

    Energy Environmental Bioassay Laboratory Support Aids Japan SRS Environmental Bioassay Laboratory Support Aids Japan August 10, 2011 - 12:00pm Addthis SRS Environmental Bioassay Laboratory Support Aids Japan Media Contacts Jim Giusti, DOE james-r.giusti@srs.gov 803-952-7697 Barbara Smoak, SRNS barbara.smoak@srs.gov 803-952-8060 AIKEN, SC- On March 11, 2011, an earthquake and a tsunami wave triggered a string of disasters in Japan that created an outpouring of relief efforts to assist the

  2. U.S.-Japan Workshop on Magnetic Reconnection draws participants...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Japan Workshop on Magnetic Reconnection draws participants from seven countries to Princeton University By John Greenwald May 29, 2012 Tweet Widget Google Plus One Share on...

  3. Slim Holes At International Geothermal Area, Japan (Combs, Et...

    Open Energy Info (EERE)

    International Geothermal Area, Japan (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At International Geothermal...

  4. Final Reports on the Top Runner Target Product Standards (Japan...

    Open Energy Info (EERE)

    Reports on the Top Runner Target Product Standards (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Final Reports on the Top Runner Target Product Standards...

  5. Bush Administration Moves Forward to Develop Next Generation Nuclear Energy

    Energy Savers [EERE]

    Systems | Department of Energy Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to

  6. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  7. Country Report on Building Energy Codes in Japan

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  8. Topics in nuclear power

    SciTech Connect (OSTI)

    Budnitz, Robert J.

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  9. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs Office of Science Nuclear Physics science-innovationassetsimagesicon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that ...

  10. Factsheet: Second Meeting of the United States-Japan Bilateral...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Washington, D.C, with U.S. Deputy Secretary of Energy Daniel B. Poneman and Japan's Deputy Minister for Foreign Affairs Shinsuke Sugiyama leading the discussions as Co-Chairs. ...

  11. CMI hosts EU, Japan to discuss global critical materials strategy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI hosts EU, Japan to discuss global critical materials strategy Submitted by mlthach on Wed, 09102014 - 18:00 Finding ways to ensure the planet's supply of rare earths and...

  12. Introduction of clean coal technology in Japan

    SciTech Connect (OSTI)

    Takashi Kiga

    2008-01-15

    Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

  13. Research and development on ocean thermal energy conversion in Japan

    SciTech Connect (OSTI)

    Uehara, H.

    1982-08-01

    The study of Ocean Thermal Energy Conversion (OTEC) in Japan has been conducted under the leadership of a team of the ''Sunshine Project'', a national new energy development project promoted by the Ministry of International Trade and Industries (MITI) since 1974. At present, two experimental OTEC power plants -Nauru's OTEC plant and Imari's OTEC plant are operating. In this paper, the review of research and development activity of these two OTEC plants in Japan is made.

  14. Robot Reworked to Analyze Radiation in Japan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robot Reworked to Analyze Radiation in Japan Robot Reworked to Analyze Radiation in Japan April 14, 2011 - 2:30pm Addthis A technician at Idaho National Laboratory demonstrates the modified TALON robot. A technician at Idaho National Laboratory demonstrates the modified TALON robot. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Sensors on the TALON robots provide visual, radiological survey, and/or mapping data about areas that are not

  15. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the subset of possible

  16. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  17. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  18. Nuclear Science

    Energy Savers [EERE]

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  19. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  20. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  1. Microsoft Word - 2011sr11_EBL-Japan.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, August 10, 2011 james-r.giusti@srs.gov Barbara Smoak, SRNS, (803) 952-8060 barbara.smoak@srs.gov SRS Environmental Bioassay Laboratory Support Aids Japan AIKEN, SC- On March 11, 2011, an earthquake and a tsunami wave triggered a string of disasters in Japan that created an outpouring of relief efforts to assist the Japanese people. The Savannah River Site's Environmental Bioassay Laboratory (EBL) was one U.S. asset that played a key role in the Department of Energy Consequence

  2. JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei

    SciTech Connect (OSTI)

    Papenbrock, Thomas

    2014-05-16

    The grant JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei (DOE DE?FG02?06ER41407) ran from 02/01/2006 thru 12/31/2013. JUSTIPEN is a venue for international collaboration between U.S.?based and Japanese scientists who share an interest in theory of rare isotopes. Since its inception JUSTIPEN has supported many visitors, fostered collaborations between physicists in the U.S. and Japan, and enabled them to deepen our understanding of exotic nuclei and their role in cosmos.

  3. Liquefied U.S. Natural Gas Exports by Vessel to Japan (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Japan (Million Cubic Feet) Liquefied U.S. Natural Gas Exports by Vessel to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,748 2,754 0 0...

  4. US & Japan TG 4 Activities of QA Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US & Japan TG 4 Activities of QA Forum US & Japan TG 4 Activities of QA Forum Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon...

  5. Price of Liquefied U.S. Natural Gas Exports by Vessel to Japan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price of Liquefied U.S. Natural Gas Exports by Vessel to Japan (Dollars per Thousand Cubic Feet) Price of Liquefied U.S. Natural Gas Exports by Vessel to Japan (Dollars per...

  6. Japan-Action Plan for Achieving a Low-Carbon Society | Open Energy...

    Open Energy Info (EERE)

    Japan-Action Plan for Achieving a Low-Carbon Society Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Japan-Action Plan for Achieving a Low-Carbon Society AgencyCompany...

  7. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS...

    Energy Savers [EERE]

    ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL...

  8. Fact #723: April 16, 2012 Japan's Earthquake and Tsunami Resulted in Major

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Losses for Japanese Automakers | Department of Energy 3: April 16, 2012 Japan's Earthquake and Tsunami Resulted in Major Losses for Japanese Automakers Fact #723: April 16, 2012 Japan's Earthquake and Tsunami Resulted in Major Losses for Japanese Automakers The 9.0 magnitude earthquake and subsequent tsunami that struck northern Japan on March 11, 2011 resulted in severe disruptions and losses for Japan's seven major automakers. Automotive News contacted individual companies to collect data

  9. DOE-Japan Collaboration Expands with U.S. Embassy Fellows | Department of

    Office of Environmental Management (EM)

    Energy DOE-Japan Collaboration Expands with U.S. Embassy Fellows DOE-Japan Collaboration Expands with U.S. Embassy Fellows February 13, 2013 - 12:00pm Addthis Dr. Robert Sindelar, a researcher with Savannah River National Laboratory, arrived in Japan in early February to begin work as a U.S. Embassy Science Fellow, advising Japanese officials on decontamination and environmental cleanup. Dr. Robert Sindelar, a researcher with Savannah River National Laboratory, arrived in Japan in early

  10. Supporting U.S. Response to the Japanese Nuclear Crisis | ORAU

    SciTech Connect (OSTI)

    Crapo, John; Jakubowski, Ted

    2012-03-08

    When an earthquake and tsunami hit off the coast of Japan on March 11, 2011, and triggered a nuclear crisis, the U.S. immediately offered support. Among those tapped to assist was ORAU's National Security and Emergency Management team, which provided NNSA with technical and analytical nuclear incident support. Within 48 hours of the earthquake, ORAU emergency management experts accompanied the DOE Office of Emergency Response in deploying to Japan to support the U.S. Air Force Base in Yokota and the U.S. Embassy. A separate team from ORAU supported the NNSA Nuclear Incident Team, which served as the point of coordination for all support activities both in Japan and in the U.S.

  11. Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,856 1,908 1,915 1,913 1,915...

  12. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  13. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more about Nuclear Energy When: Saturday, October 19 | 1:00 p.m. - 3:00 p.m. Where: Aiken ... an IndyCar driver, see the Nuclear Clean Air Energy race car and receive a special ...

  14. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, Keith

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  15. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, K.; King, M.; Takase, Y.; Oshima, Y.; Nishimura, K.; Sukegawa, A.

    2014-04-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  16. 1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report

    SciTech Connect (OSTI)

    Slate, S.C.; Allen, R.E.

    1993-12-01

    The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

  17. US-EU-Japan Working Group on Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-EU-Japan Working Group on Critical Materials 4 th Annual Meeting Iowa State University Hosted by The Critical Materials Institute The Ames Laboratory September 8, 2014 AGENDA 8:30 Registration 9:00 Welcome Alex King, Director, Critical Materials Institute Opening Remarks 9:10 Akito Tani, Deputy Director-General, Manufacturing Industries Bureau, MET 9:20 Gwenole Cozigou, Director, DG Enterprise and Industry 9:30 Mark Johnson, Director, Advanced Manufacturing Office, DOE Session 1: Anticipating

  18. Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement

    SciTech Connect (OSTI)

    Chung, W. S.; Yun, S. W.; Lee, D. S.; Go, D. Y.

    2012-07-01

    Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a much more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)

  19. Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities, January 2013

    Broader source: Energy.gov [DOE]

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made. These actions and recommendations were addressed in an August 2011 report to the Secretary of Energy, Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events.

  20. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs » Office of Science » Nuclear Physics /science-innovation/_assets/images/icon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create

  1. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  2. nuclear smuggling

    National Nuclear Security Administration (NNSA)

    13, 2015

    SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense...

  3. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  4. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  5. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  6. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  7. NUCLEAR ENERGY

    Office of Environmental Management (EM)

    NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP Table of Contents List of Acronyms ................................................................................................... iii Executive Summary ............................................................................................... v 1. Introduction ...................................................................................................... 1 2. Background

  8. nuclear | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  9. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  10. United States, France and Japan Increase Cooperation on Sodium-Cooled Fast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Prototypes | Department of Energy France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes February 1, 2008 - 11:13am Addthis WASHINGTON, DC -The U.S Department of Energy (DOE), the French Atomic Energy Commission (CEA) and Japan Atomic Energy Agency (JAEA) today expanded cooperation to coordinate Sodium-Cooled Fast Reactor Prototype development through a Memorandum of

  11. Cameron, LA Liquefied Natural Gas Exports to Japan (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Cameron, LA Liquefied Natural Gas Exports to Japan

  12. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line via prompt gamma ray spectroscopy

  13. Quarterly Nuclear Deployment Scorecard - January 2014 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy January 2014 Quarterly Nuclear Deployment Scorecard - January 2014 News Updates Luminant has requested a suspension of the NRC's review of its Comanche Peak Combined Construction and Operating License (COL) application. The company cited impacts to the review schedule of the Mitsubishi Heavy Industries US Advanced Pressurized Water Reactor (US-APWR) due to the vendor's desire to refocus its resources to reactor restarts in Japan as well as low electricity prices driven by low natural

  14. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 ...

  15. Renewable Energy Opportunities at the Kanto Installations, Japan

    SciTech Connect (OSTI)

    Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

    2010-09-24

    This document provides an overview of renewable resource development potential at the U.S. Army installations in the Kanto region in Japan, which includes Camp Zama, Yokohama North Dock, Sagamihara Family Housing Area (SFHA), Sagami General Depot, and Akasaka Press Center. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the Huntsville Army Corps of Engineers, and includes the development of a methodology for renewable resource assessment at Army installations located on foreign soil. The methodology is documented in Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations. The site visit to the Kanto installations took place on April 5 and 6, 2010. At the current time, there are some renewable technologies that show economic potential. Because of siting restrictions and the small size of these installations, development of most renewable energy technologies will likely be limited to Camp Zama. Project feasibility is based on installation-specific resource availability and energy costs and projections based on accepted life-cycle cost methods. Development of any renewable energy project will be challenging, as it will require investigation into existing contractual obligations, new contracts that could be developed, the legality of certain partnerships, and available financing avenues, which involves the U.S. Forces Japan (USFJ), the Government of Japan (GOJ), and a number of other parties on both sides. The Army will not be able to implement a project without involvement and approval from the other services and multiple levels of Japanese government. However, implementation of renewable energy projects could be an attractive method for GOJ to reduce greenhouse gas emissions and lower annual utility payments to USFJ. This report recommends projects to pursue and offers approaches to use. The most promising opportunities include waste-to-energy and ground source heat pumps. Solar photovoltaics (PV) may also prove successful. Other resources were found to be insufficient on the Kanto installations.

  16. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  17. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 | Department of Energy ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 Agenda from the fourth meeting of the Annual Trilateral U.S. - EU - Japan Conference on Critical Materials for a Clean Energy Future PDF icon US-EU-Japan Working Group on Critical Materials.pdf

  18. Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.

    2014-03-01

    This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

  19. Microsoft Word - US_Japan_REE_agenda_ver7.doc | Department of...

    Office of Environmental Management (EM)

    Microsoft Word - USJapanREEagendaver7.doc Microsoft Word - USJapanREEagendaver7.doc U.S. - Japan Roundtable on Rare Earth Elements Research PDF icon Microsoft Word -...

  20. Japan-NIES Low-Carbon Society Scenarios 2050 | Open Energy Information

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name Japan-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  1. Japan-Economics of Climate Change and Low Carbon Growth Strategies...

    Open Energy Info (EERE)

    and Low Carbon Growth Strategies in Northeast Asia Jump to: navigation, search Name Japan-Economics of Climate Change and Low Carbon Growth Strategies in Northeast Asia Agency...

  2. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 | Department of Energy ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 Agenda from the fourth meeting of the Annual Trilateral U.S. - EU - Japan Conference on Critical Materials for a Clean Energy Future PDF icon US-EU-Japan Working Group on Critical Materials.pdf

  3. EM Employee to Gain Expertise in Japan Through Unique One-Year Fellowship |

    Office of Environmental Management (EM)

    Department of Energy Employee to Gain Expertise in Japan Through Unique One-Year Fellowship EM Employee to Gain Expertise in Japan Through Unique One-Year Fellowship March 31, 2014 - 12:00pm Addthis Cameron Salony, who will begin one-year Fellowship in Japan this summer, stands near Hanford’s D and DR Reactors. Cameron Salony, who will begin one-year Fellowship in Japan this summer, stands near Hanford's D and DR Reactors. RICHLAND, Wash. - An EM employee has been selected for a unique

  4. Private Sector Initiative Between the U.S. and Japan

    SciTech Connect (OSTI)

    1998-09-30

    OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.

  5. Manhattan Project: Japan Surrenders, August 10-15, 1945

    Office of Scientific and Technical Information (OSTI)

    Japanese envoys arrive on board the U.S.S. Missouri for the surrender ceremony, Tokyo Bay, September 2, 1945. JAPAN SURRENDERS (August 10-15, 1945) Events > Dawn of the Atomic Era, 1945 The War Enters Its Final Phase, 1945 Debate Over How to Use the Bomb, Late Spring 1945 The Trinity Test, July 16, 1945 Safety and the Trinity Test, July 1945 Evaluations of Trinity, July 1945 Potsdam and the Final Decision to Bomb, July 1945 The Atomic Bombing of Hiroshima, August 6, 1945 The Atomic Bombing of

  6. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  7. Midterm Summary of Japan-US Fusion Cooperation Program TITAN

    SciTech Connect (OSTI)

    Muroga, Takeo; Sze, Dai-Kai; Sokolov, Mikhail; Katoh, Yutai; Stoller, Roger E

    2011-01-01

    Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extends its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.

  8. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  9. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  10. NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J S; Probanz, B; Foster, K T; Simpson, M; Vogt, P; Aluzzi, F; Dillon, M; Homann, S

    2012-02-14

    This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), Radiological Assistance Program (RAP) personnel, and the Consequence Management Response Team (CMRT) to Japan. DOE/NNSA home team assets included the Consequence Management Home Team (CMHT); National Atmospheric Release Advisory Center (NARAC); Radiation Emergency Assistance Center/Training Site (REAC/TS); and Radiological Triage. NARAC was activated by the DOE/NNSA on March 11, shortly after the Tohoku earthquake and tsunami occurred. The center remained on active operations through late May when DOE ended its deployment to Japan. Over 32 NARAC staff members, supplemented by other LLNL scientists, invested over 5000 person-hours of time and generated over 300 analyses and predictions.

  11. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  12. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  13. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  14. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Astrophysics One of the great scientific challenges is understanding how elements form. This process, called nucleosynthesis, occurs at extreme stellar temperatures and pressures, making it difficult to simulate in the laboratory. The conditions produced by NIF experiments, however, are well matched to the conditions that exist in stars in several phases of their evolution. As a result, NIF is a powerful tool for exploring nuclear physics. Elements heavier than iron are formed either

  15. Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  16. Liquefied U.S. Natural Gas Exports to Japan (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 4,375 4,421 1,463 5,854 5,884...

  17. Cesium Removal at Fukushima Nuclear Plant - 13215

    SciTech Connect (OSTI)

    Braun, James L.; Barker, Tracy A.

    2013-07-01

    The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

  18. Stirling engine research at national and university laboratories in Japan

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  19. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  20. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook Current New Nuclear Energy Construction Projects Small Modular...

  1. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  2. Secretary Chu To Travel to China and Japan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Travel to China and Japan Secretary Chu To Travel to China and Japan November 5, 2010 - 12:00am Addthis Washington, D.C. -U.S. Energy Secretary Steven Chu will travel to China and Japan November 14 - 19 to meet with government officials, business leaders and others to discuss the Department's ongoing clean energy and scientific collaboration with both countries. More information about the trip is as follows: Shanghai, China On Sunday, November 14, Secretary Chu will tour clean energy

  3. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    SciTech Connect (OSTI)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.; Sawada, K.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  4. International Source Book: Nuclear Fuel Cycle Research and Development Volume 2

    SciTech Connect (OSTI)

    Harmon, K. M.; Lakey, L. T.

    1982-11-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This second volume includes the program summaries of those countries listed alphabetically from Japan to Yugoslavia. Information on international agencies and associations, particularly the IAEA, NEA, and CEC, is provided also.

  5. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  6. nuclear safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home nuclear safeguards nuclear safeguards Working With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures Earlier this month, Washington State University...

  7. Nuclear Suppliers Group & Regimes | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  8. Nuclear Energy Systems Laboratory (NESL) / Transient Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient Nuclear Fuels Testing - Sandia Energy Energy Search Icon Sandia Home Locations ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  9. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  10. nuclear material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  11. Nuclear Forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Forensics | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  12. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear ...

  13. nuclear weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    weapons | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  14. Audit Report National Nuclear Security Administration Nuclear...

    Office of Environmental Management (EM)

    National Nuclear Security Administration Nuclear Weapons Systems Configuration Management DOEIG-0902 March 2014 U.S. Department of Energy Office of Inspector General Office of ...

  15. Spent Nuclear Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Previous releases 2002 1998 Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent

  16. Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Moving Forward to Address Nuclear Waste Storage and Disposal Three trucks transport nuclear waste

  17. Nuclear Forensics

    National Nuclear Security Administration (NNSA)

    Forensics Role, State of the Art, and Program Needs Joint Working Group of the American Physical Society and the American Association for the Advancement of Science Nuclear Forensics Role, State of the Art, and Program Needs Joint Working Group of the American Physical Society and the American Association for the Advancement of Science Acknowledgments Many thanks to Linton Brooks, Raymond Jeanloz, and Robin Pitman for their thoughtful comments on this paper. The authors also thank William

  18. DOE's Under Secretary for Science to Attend the G8 Science and Technology Ministerial in Japan

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - U.S. Department of Energy (DOE) Under Secretary for Science Dr. Raymond L. Orbach will travel to Okinawa, Japan this weekend to participate in the G8 Science and Technology...

  19. ,"Liquefied U.S. Natural Gas Re-Exports to Japan (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    2016 11:48:51 AM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Re-Exports to Japan (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NJAMMCF" "Date","Liquefied U.S....

  20. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  1. Direct health effects of global warming in Japan and China

    SciTech Connect (OSTI)

    Ando, M.; Yamamoto, S.; Tamura, K.

    1997-12-31

    Combustion of fossil fuels and industrial and agricultural activities are resulting in greater emissions of some greenhouse gases such as carbon dioxide and methane into the atmosphere, therefore contributing to global warming. Using general circulation models, it is estimated that surface temperatures in temperate regions will rise 1 to 3 degrees C during the next 100 years. Because global warming may increase the frequency and length of high temperatures during hot summer months, various health risks caused by heat stress have been studied. According to our epidemiological survey, the incidence of heat-related illness was significantly correlated to hot environments in Tokyo, Japan and in Nanjing and Wuhan, China. The epidemiological results also showed that the incidence of heat-related morbidity and mortality in the elderly increased very rapidly in summer. The regression analysis on these data showed that the number of heat stroke patients increased exponentially when the mean daily temperature and maximum daily temperature exceeded 27C and 32C in Tokyo and 31C and 36C in Wuhan and Nanjing, respectively. Since the incidence of heat-related morbidity and mortality has been shown to increase as a result of exposure to long periods of hot summer temperatures, it is important to determine to what extent the incidence of heat stress-related morbidity and mortality will be affected as a result of global warming.

  2. Launch of fast reactor cycle technology development project in Japan

    SciTech Connect (OSTI)

    Sagayama, Yutaka

    2007-07-01

    Japan Atomic Energy Agency (JAEA launched a new Fast Reactor Cycle Technology Development f (FaCT) Project in cooperation with the Japanese electric utilities. The FaCT project is based on the conclusion of the previous project, namely the Feasibility Study on Commercialized Fast Reactor Cycle Systems (FS) which carried out in last seven years. In the FS, the combination of the sodium-cooled fast reactor with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication was selected as the main concept which should be developed principally because it was the most promising concept for commercialization. A conceptual design study of the main concept and research and development of innovative technologies adopted in the main concept are implemented toward an important milestone at 2015. The development targets, which were set up at the beginning stage of FS, were revised for the FaCT project based on the results of FS and change in Japanese society environment and in the world situation. International collaboration is promoted to pursue fast reactor cycle technology which deserves the global standard and its efficient development. (author)

  3. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Domen, Kazunari (University of Tokyo)

    2012-03-14

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  4. Central Japan Synchrotron Radiation Research Facility Project-(II)

    SciTech Connect (OSTI)

    Yamamoto, N.; Takashima, Y.; Hosaka, M.; Takami, K.; Morimoto, H.; Ito, T.; Sakurai, I.; Hara, H.; Okamoto, W.; Watanabe, N.; Takeda, Y.; Katoh, M.; Hori, Y.; Sasaki, S.

    2010-06-23

    A synchrotron radiation facility that is used not only for basic research, but also for engineering and industrial research and development has been proposed to be constructed in the Central area of Japan. The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV, the beam current of 300 mA, and the natural emittance of about 53 nm-rad. The configuration of the storage ring is based on four triple bend cells, and four of the twelve bending magnets are 5 T superconducting ones. The bending angle and critical energy are 12 degree and 4.8 keV, respectively. For the top-up operation, the electron beam will be injected from a booster synchrotron with the full energy. Currently, six beamlines are planned for the first phase starting from 2012.

  5. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    SciTech Connect (OSTI)

    Domen, Kazunari

    2011-05-26

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several grand challenges and use-inspired basic research needs recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  6. U.S. and Japan Complete Successful Field Trial of Methane Hydrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Technologies | Department of Energy and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2, 2012 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the completion of a successful, unprecedented test of technology in the North Slope of Alaska that was able to safely extract a steady flow of natural gas from methane hydrates -

  7. Thermoacoustic Thermometry for Nuclear Reactor Monitoring

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-06-01

    On Friday, March 11, 2011, at 2:46pm (Japan Standard Trme), the Tohoku region on the east coast of northern Japan experienced what would become known as the largest earthquake in the country's history at magnitude 9.0 on the Richter scale. The Fukushima Daiichi nuclear power plant suffered extensive and irreversible damage. Six operating units were at the site, each with a boiling water reactor. When the earthquake struck, three of the six reactors were operating and the others were in a periodic inspection outage phase. In one reactor, all of the fuel had been relocated to a spent fuel pool in the reactor building. The seismic acceleration caused by the earthquake brought the three operating units to an automatic shutdown. Since there was damage to the power transmission lines, the emergency diesel generators (EDG) were automatically started to ensure continued cooling of the reactors and spent fuel pools. The situation was under control until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 meters, which was three times taller than the sea wall of 5m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to five of the six reactors. The flooding also resulted in the loss of instrumentation that would have other wise been used to monitor and control the emergency. The ugly aftermath included high radiation exposure to operators at the nuclear power plants and early contamination of food supplies and water within several restricted areas in Japan, where high radiation levels have rendered them unsafe for human habitation. While the rest of the story will remain a tragic history, it is this part of the series of unfortunate events that has inspired our research. It has indubitably highlighted the need for a novel sensor and instrumentation system that can withstand similar or worse conditions to avoid future catastrophe and assume damage prevention as quickly as possible. This is the question which we are attempting to answer: Is it possible to implement a self-powered sensor that could transmit data independently of electronic networks while taking advantage of the harsh operating environment of the nuclear reactor?

  8. National Nuclear Security Administration | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  9. EVALUATION OF ZERO-POWER, ELEVATED-TEMPERATURE MEASUREMENTS AT JAPANS HIGH TEMPERATURE ENGINEERING TEST REACTOR

    SciTech Connect (OSTI)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2011-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.

  10. Nuclear energy: Where do we go from here?

    SciTech Connect (OSTI)

    Muslim, Dato’ Dr Noramly

    2015-04-29

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  11. Reuse of secondhand TVs exported from Japan to the Philippines

    SciTech Connect (OSTI)

    Yoshida, Aya; Terazono, Atsushi

    2010-06-15

    The trade of secondhand electrical and electronic equipment (EEE) from developed to developing countries has become a growing environmental issue owing to concerns about improper recycling of these goods in developing countries. We followed a 12-m cargo container of cathode-ray-tube color TVs exported from Japan to the Philippines in February 2008. We surveyed the number of TVs damaged in transport, as well as the number of malfunctioning TVs from this shipment. In addition, we present the results of interviews with 113 Filipino consumers who intended to buy secondhand EEE at nine secondhand shops in Metro Manila. Approximately 3% of the imported TVs were damaged upon arrival. The importer sold some of the units directly to local dealers, and kept the rest to repair, refurbish and resell. Approximately 40% of the imported TVs malfunctioned and needed repair in addition to basic reconditioning. Most interviewees indicated that they prefer to buy secondhand EEE because the prices are lower than those of brand-new products. Consumers indicated that they planned on using the product for an average of about 5 years, but the actual period of use may be lower. Most end-of-life EEE in the Philippines is dismantled and recycled by unregulated companies and untrained individuals in markets or near landfill sites, and it is clear that a proper collection system and treatment methods are needed for e-waste. In addition to the material flow of secondhand TVs, we also discuss several economic aspects and appropriate control measures of the international reuse of secondhand TVs.

  12. Nuclear Workforce Initiative - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear Nuclear Workforce Initiative The SRSCRO region of Georgia and South Carolina has the most unique nuclear industry capabilities in the nation. This region is at the forefront of new nuclear power production, environmental stewardship, innovative technology and national security. Long-term nuclear workforce demand is growing in the region as new nuclear reactors are under construction at the V.C Summer Nuclear Station in Fairfield County, SC and at Plant Vogtle in Waynesboro, GA. New

  13. An option making for nuclear fuel reprocessing by using supercritical carbon dioxide

    SciTech Connect (OSTI)

    Enokida, Youichi; Sawada, Kayo; Shimada, Takashi; Yamamoto, Ichiro

    2007-07-01

    A four-year-research has been completed as a collaborative work by Nagoya University Mitsubishi Heavy Industries Corporation and Japan Atomic Energy Agency (JAEA) in order to develop a super critical carbon dioxide (SF-CO{sub 2}) based technology, 'SUPER-DIREX process', for nuclear fuel reprocessing. As a result obtained in Phase II of the Japan's feasibility Studies on Commercialized Fast Reactor Cycle Systems, this technology was evaluated as one of the alternatives for the advanced Purex process for he future FBR fuel cycle. Although further investigation is required for a scaled-up demonstration of processing spent fuels by SUPER-DIREX process, we could conclude that an option has been made for nuclear fuel reprocessing by using supercritical carbon dioxide. (authors)

  14. Answering Public Health Concerns Over Japanese Nuclear Disaster | ORAU

    SciTech Connect (OSTI)

    Allen, Leeanna; Vasconez, Rachel

    2012-03-08

    When the Fukushima Daiichi Nuclear Power Plant became crippled following Japan's March 2011 earthquake and tsunami, some U.S. citizens became concerned about whether radiation would disperse across the Pacific Ocean. As the Centers for Disease Control and Prevention prepared to assist in the U.S. response effort, ORAU provided the CDC with onsite, staff support at its Joint Information Center. ORAU also had a lead role in the development and execution of the CDC's first-ever Bridging the Gaps: Public Health and Radiation Emergency Preparedness conference, which took place 10 days after the earthquake and served as a forum for discussing the current state of radiation emergency preparedness.

  15. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  16. Nuclear Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Advancing the safe and secure use of nuclear energy Argonne's Nuclear Engineering (NE) division works to advance nuclear energy as a proven, abundant and ...

  17. TUNL Nuclear Data Evaluation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TUNL Nuclear Data Evaluation Group As a part of the United States Nuclear Data Network and the international Nuclear Structure and Decay Data Evaluators' Network, the Nuclear Data...

  18. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  19. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. ...

  20. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  1. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  2. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments [OSTI]

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  3. Safer nuclear power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safer nuclear power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Safer nuclear power Experiments at Los Alamos reveal that alternative fuel rod cladding materials can make nuclear power plants dramatically less likely to suffer a Fukushima-type explosion in the event of a nuclear accident March 25, 2013 Safer nuclear power Nuclear generating station Los Alamos scientists, in collaboration with scientists from the Idaho and Oak Ridge

  4. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Programs Solving Nuclear Energy Technical Challenges Our science and technology are making way for new nuclear fuels and reactor materials. Get Expertise David Teter Email Generating breakthroughs in nuclear energy materials Safe and sustainable nuclear energy is a focus of the Laboratory's energy security mission, and our expertise in materials science plays an important role. With collaborators worldwide, Los Alamos is developing technologies for future nuclear reactor designs

  5. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D.

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  6. Nuclear Materials Information Program | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Information Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  7. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  8. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  9. Chernobyl Nuclear Accident | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Chernobyl Nuclear Accident | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working

  10. defense nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  11. Advancing Global Nuclear Security

    Office of Energy Efficiency and Renewable Energy (EERE)

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  12. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  13. Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  14. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make other options for new nuclear capacity uneconomical even in the alternative...

  15. Nuclear Security Summit

    National Nuclear Security Administration (NNSA)

    Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material http:...

  16. Sandia Energy Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  17. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Practice in Nuclear Medicine Radiopharmacy Patient Care Medical Imaging & Computers Moderator: Deborah M. Gibbs, MEd, PET, CNMT Lead Nuclear Medicine PET Facility...

  18. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Useful Online Nuclear Physics Journals Important Online Resources Science Direct ... Elsevier Physics Online: Nuclear Physics A, B, Physics Repots, Physics Letters B and more. ...

  19. Nuclear Controls Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Controls Yes No 1) Is your Facility involved in the research on or development, design, manufacture, construction, testing or maintenance of any nuclear explosive ...

  20. Nuclear and Particle Futures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Futures Nuclear and Particle Futures The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar ...

  1. Nuclear Energy Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  2. Nuclear Safety Regulatory Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 ...

  3. Nuclear Energy Systems Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  4. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    15 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical ... The National Nuclear Security Administration (NNSA) Production Office (NPO) took into ...

  5. Nuclear Science Series: Radiochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiochemistry Nuclear Science Series: Radiochemistry These volumes are publicly ... working under the Committee on Nuclear Science within the National Academy of ...

  6. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration DOENV--325-Rev. lOa February 2015 Nevada National Security Site Waste Acceptance Criteria Prepared by U.S. Department of Energy National Nuclear ...

  7. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  8. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  9. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering ...

  10. Nuclear / Radiological Advisory Team | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration / Radiological Advisory Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  11. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  12. Joint Statement between U.S. Department of Energy and Japan's Ministry of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy, Trade and Industry | Department of Energy Joint Statement between U.S. Department of Energy and Japan's Ministry of Economy, Trade and Industry Joint Statement between U.S. Department of Energy and Japan's Ministry of Economy, Trade and Industry July 24, 2013 - 4:37pm Addthis News Media Contact (202) 586-4940 Japanese Minister of Economy, Trade and Industry, Toshimitsu Motegi, and U.S. Secretary of Energy, Ernest Moniz, met on July 24, 2013, in Washington, D.C. Both sides noted the

  13. EM-Led Delegation Offers Expertise in Workshop in Japan | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy EM-Led Delegation Offers Expertise in Workshop in Japan EM-Led Delegation Offers Expertise in Workshop in Japan November 9, 2011 - 12:00pm Addthis The U.S. delegation of DOE representatives, including DOE national laboratory and contractor staff, are pictured, front row, left to right, Doug Akers, Steve Schneider, Robert Montgomery, Dan McCabe, Steve Herring, Paul Bredt, Rich Abitz; back row, left to right, Jeff Miller, Jeff Griffin, Bob Sindelar, Reid Peterson, Chuck Negin, and Wayne

  14. Secretary Moniz's Remarks on US Japanese Cooperation in Tokyo, Japan -- As

    Energy Savers [EERE]

    Delivered | Department of Energy US Japanese Cooperation in Tokyo, Japan -- As Delivered Secretary Moniz's Remarks on US Japanese Cooperation in Tokyo, Japan -- As Delivered October 31, 2013 - 5:44pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Thank you, Tanaka-san. We do indeed have a history together. In fact, his kind introduction was simply a repayment for my kind introduction of him at MIT a few years ago. I also want to thank Chairman Hanyu for his remarks, and for

  15. The Joys of Nuclear Engineering

    ScienceCinema (OSTI)

    Jon Carmack

    2010-01-08

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  16. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  17. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  18. The Prospective Role of JAEA Nuclear Fuel Cycle Engineering Laboratories

    SciTech Connect (OSTI)

    Ojima, Hisao; Dojiri, Shigeru; Tanaka, Kazuhiko; Takeda, Seiichiro; Nomura, Shigeo

    2007-07-01

    JAEA Nuclear Fuel Cycle Engineering Laboratories was established in 2005 to take over the activities of the JNC Tokai Works. Many kinds of development activities have been carried out since 1959. Among these, the results on the centrifuge for U enrichment, LWR spent fuel reprocessing and MOX fuel fabrication have already provided the foundation of the fuel cycle industry in Japan. R and D on the treatment and disposal of high-level waste and FBR fuel reprocessing has also been carried out. Through such activities, radioactive material release to the environment has been appropriately controlled and all nuclear materials have been placed under IAEA safeguards. The Laboratories has sufficient experience and ability to establish the next generation closed cycle and strives to become a world-class Center Of Excellence (COE). (authors)

  19. Civilian Nuclear Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Civilian Nuclear Programs Office is the focal point for nuclear energy research and development and next-generation repository science at Los Alamos National Laboratory. Civilian Nuclear Programs Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Venkateswara Rao Dasari (Rao) (505) 667-5098 Email Los Alamos partners extensively with other laboratories,

  20. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  1. Safe Advantage on Dry Interim Spent Nuclear Fuel Storage

    SciTech Connect (OSTI)

    Romanato, L.S.

    2008-07-01

    This paper aims to present the advantages of dry cask storage in comparison with the wet storage (cooling water pools) for SNF. When the nuclear fuel is removed from the core reactor, it is moved to a storage unit and it wait for a final destination. Generally, the spent nuclear fuel (SNF) remains inside water pools within the reactors facility for the radioactive activity decay. After some period of time in pools, SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing facilities, or still, wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet facilities, depending on the method adopted by the nuclear power plant or other plans of the country. Interim storage, up to 20 years ago, was exclusively wet and if the nuclear facility had to be decommissioned another storage solution had to be found. At the present time, after a preliminary cooling of the SNF elements inside the water pool, the elements can be stored in dry facilities. This kind of storage does not need complex radiation monitoring and it is safer then wet one. Casks, either concrete or metallic, are safer, especially on occurrence of earthquakes, like that occurred at Kashiwazaki-Kariwa nuclear power plant, in Japan on July 16, 2007. (authors)

  2. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  3. Defense Nuclear Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  4. International Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Safeguards | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  5. International Nuclear Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  6. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  7. Nuclear Detonation Detection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Detonation Detection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  8. Nuclear Forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Forensics | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  9. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home / About

  10. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  11. Nuclear Material Removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  12. Nuclear Security 101 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    101 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  13. Nuclear Security Enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Enterprise | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  14. Nuclear Verification | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Verification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  15. nuclear emergency | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    emergency | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  16. Defense Nuclear Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nonproliferation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  17. Naval Nuclear Propulsion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home / Naval

  18. Nuclear Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  19. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Summit | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  20. nuclear bombs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    bombs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  1. nuclear controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  2. nuclear enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    enterprise | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  3. nuclear forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    forensics | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  4. nuclear navy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    navy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  5. nuclear safety | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    safety | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  6. nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  7. nuclear technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    technology | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  8. nuclear threat science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    threat science | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  9. Defense Nuclear Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  10. nuclear fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fusion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  11. nuclear science week | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    week | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  12. nuclear science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  13. nuclear smuggling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    smuggling | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  14. Nuclear Nonproliferation Program Offices | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Program Offices | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  15. Nuclear Nonproliferation Treaty | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Treaty | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  16. Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste |

    Office of Environmental Management (EM)

    Department of Energy Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as spent fuel, and defer the need for additional geologic nuclear waste repositories until the next century. PDF icon Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy

  17. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    NNSA builds the nation's operational sensors that monitor the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates...

  18. Nuclear Structure and Nuclear Reactions | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x2 - triaxiality, and x3 - pairing correlations. Calculations were carried out using nuclear density functional theory. The collective action was minimized using the dynamical...

  19. Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... site link , and the emergence of new proliferation threats from both state and non-state ...

  20. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates the regional geophysical datasets enabling...

  1. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  2. Comprehensive Nuclear Test-Ban Treaty | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Nuclear Test-Ban Treaty | National Nuclear Security Administration Facebook Twitter ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home Comprehensive Nuclear Test-Ban ...

  3. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jan 1, 2009 The National Nuclear Security Administration (NNSA) has more than 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and...

  4. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Dec 1, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and incidents....

  5. Towards consistent nuclear models and comprehensive nuclear data...

    Office of Scientific and Technical Information (OSTI)

    Conference: Towards consistent nuclear models and comprehensive nuclear data evaluations Citation Details In-Document Search Title: Towards consistent nuclear models and ...

  6. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Our Mission Maintaining the Stockpile Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are ...

  7. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  8. budget | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reflects Commitment to Maintain a Safe, Secure, and Effective Nuclear Deterrent; Prevent, Counter, and Respond to Global Nuclear Dangers; and Effectively Power the Nuclear Navy(...

  9. Nuclear Physics from Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, May 26, 2011 Exa-Scale Computational Resources Nuclear Astrophysics Accelerator Physics Cold QCD and Nuclear Forces Hot and Dense QCD Nuclear Structure and Reactions ...

  10. Nuclear Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy ...

  11. Nuclear Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear Facilities List: Argonne National ...

  12. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  13. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  14. Nuclear Energy Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hub Douglas B. Kothe Oak Ridge National Laboratory Director, CASL 9 th Nuclear Energy R&D Summit Nuclear Energy Institute Washington, D.C. February 26, 2014 CASL-U-2014-0355-000 ...

  15. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  16. American Nuclear Society Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Society Awards Established in 1999 by the Fusion Energy Division of the American Nuclear Society (ANS) and named after LLNL's co-founder, the Edward Teller Medal recognizes...

  17. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    FirstEnergy Nuclear Operating Company Perry Unit 1 1,240 10,620 67.2 FirstEnergy ... Perry Nuclear Power Plant Unit Summer capacity (mw) Net generation (thousand mwh) Summer ...

  18. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even ...

  19. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security, Safety, Weapon...

  20. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Over Five Years Computational Modeling & Simulation, Energy, News, News & Events, Nuclear Energy, Partnership, Systems Analysis Consortium for Advanced Simulation of...

  1. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  2. Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems https://vision.lbl.gov/Software/3DMorphometry/

  4. Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  5. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  6. Nuclear Safety Regulatory Framework

    Energy Savers [EERE]

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting

  7. Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing ...

  8. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  9. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  10. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  11. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  12. Proceedings of a joint US-Japan Seminar in the Environmental Sciences

    SciTech Connect (OSTI)

    DeAngelis, D.L.; Teramoto, E.; Neergaard, D.A.

    1993-11-01

    The Joint US-Japan Seminar in the Environmental Sciences was based on the premises that questions remain concerning the factors that control many of the regularities observed in ecological communities and that increased collaboration between researchers in the United States and Japan can contribute to answering these questions. The papers included in this report resulted from the Seminar. These papers as well as workshop discussions summarized here outline the main issues that face theoretical ecology today. The papers cover four different areas of theoretical ecology: (1) individual species adaptations, (2) ecological community-food web interactions, (3) food web theory, and (4) concepts related to the ecosystem. Individual projects are processed separately for the databases.

  13. U.S. Secretary of Energy Concludes Productive G8+3 Energy Ministerial Meeting in Japan

    Broader source: Energy.gov [DOE]

    WASHINGTON- U.S. Secretary of Energy Samuel W. Bodman today concluded his weekend visit to Aomori, Japan where he participated in the Five-Country and the Group of Eight (G8), China, India and...

  14. Triangle Universities Nuclear Laboratory : 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear data evaluation group at TUNL continue their work as part of the United States Nuclear Data Program

  15. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Myths Topics:  Can a Nuclear Reactor Explode Like a Bomb?  Will Nuclear Waste Be Around for Millions of Years?  Is Nuclear Energy Dangerous? Moderator: Suzy Hobbs Baker Founder, PopAtomic Studios & Director of Nuclear Literacy Project Panel Members: TJ Corder - Nuclear Engineer, Vogtle 3 & 4 Southern Company Jana Thames - Communications Specialist Southern Company Brian Dyke - Nuclear Auxiliary Operator Duke Energy Nathan Zohner North American Young Generation in Nuclear

  16. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and ...

  17. transportation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    transportation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  18. U.S.-Japan Workshop on Magnetic Reconnection draws participants from seven

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    countries to Princeton University | Princeton Plasma Physics Lab -Japan Workshop on Magnetic Reconnection draws participants from seven countries to Princeton University By John Greenwald May 29, 2012 Tweet Widget Google Plus One Share on Facebook PPPL physicist Masaaki Yamada discussed the work of Akihiro Kuwahata, a graduate student at the University of Tokyo. (Photo by Elle Starkman, PPPL Office of Communications) PPPL physicist Masaaki Yamada discussed the work of Akihiro Kuwahata, a

  19. Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations

    SciTech Connect (OSTI)

    Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

    2010-03-09

    This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  20. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  1. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Nuclear Safety The Nuclear Safety Program mission is to support the design, construction, operation, and deactivation and decommissioning of the Paducah and Portsmouth nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Major Responsibilities: Establish and implement nuclear safety requirements that utilize national consensus (or other government) standards or applicable external agency regulations (Nuclear Regulatory

  2. Office of Defense Nuclear Nonproliferation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (DOENNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, About This Site Budget IG Web Policy...

  3. Assessment of technical strengths and information flow of energy conservation research in Japan. Volume 2. Background document

    SciTech Connect (OSTI)

    Hane, G.J.; Lewis, P.M.; Hutchinson, R.A.; Rubinger, B.; Willis, A.

    1985-06-01

    Purpose of this study is to explore the status of R and D in Japan and the ability of US researchers to keep abreast of Japanese technical advances. US researchers familiar with R and D activities in Japan were interviewed in ten fields that are relevant to the more efficient use of energy: amorphous metals, biotechnology, ceramics, combustion, electrochemical energy storage, heat engines, heat transfer, high-temperature sensors, thermal and chemical energy storage, and tribology. The researchers were questioned about their perceptions of the strengths of R and D in Japan, comparative aspects of US work, and the quality of available information sources describing R and D in Japan. Of the ten related fields, the researchers expressed a strong perception that significant R and D is under way in amorphous metals, biotechnology, and ceramics, and that the US competitive position in these technologies will be significantly challenged. Researchers also identified alternative emphases in Japanese R and D programs in these areas that provide Japan with stronger technical capabilities. For example, in biotechnology, researchers noted the significant Japanese emphasis on industrial-scale bioprocess engineering, which contrasts with a more meager effort in the US. In tribology, researchers also noted the strength of the chemical tribology research in Japan and commented on the effective mix of chemical and mechanical tribology research. This approach contrasts with the emphasis on mechanical tribology in the US.

  4. British nuclear policymaking

    SciTech Connect (OSTI)

    Bowie, C.J.; Platt, A.

    1984-01-01

    This study analyzes the domestic political, economic, and bureaucratic factors that affect the nuclear policymaking process in Great Britain. Its major conclusion is that, although there have been changes in that process in recent years (notably the current involvement of a segment of the British public in the debate about the deployment of intermediate-range nuclear forces), future British nuclear policymaking will remain much what it has been in the past. Three ideas are central to understanding British thinking on the subject: (1) Britain's long-standing resolve to have her own national nuclear force is largely traceable to her desire to maintain first-rank standing among the nations of the world in spite of loss of empire. (2) Financial considerations have always been important--so much so that they have usually dominated issues of nuclear policy. (3) The executive branch of government dominates the nuclear policymaking process but does not always present a united front. The United States heavily influences British nuclear policy through having supplied Britain since the late 1950s with nuclear data and components of nuclear weapon systems such as Polaris and Trident. The relationship works both ways since the U.S. depends on Britain as a base for deployment of both conventional and nuclear systems.

  5. Joint Japan/U. S. Conference on Adaptive Structures, 2nd, Nagoya, Japan, Nov. 12-14, 1991, Collection of Papers

    SciTech Connect (OSTI)

    Matsuzaki, Y.; Wada, B.K.

    1992-01-01

    The present conference discusses the development status of adaptive structures in Europe and in Japan, the 'Cosmo-Lab' structures/robotics cooperation concept, active-adhesion concepts for in-orbit structural assembly, adaptively controlled truss structures, object-oriented modeling in structural analysis, the control effectiveness and energy efficiency of an active mass damper, a space truss with experimental tendon control, and piezoelectric actuator-based space trusses. Also discussed is the control of resonant frequencies in adaptive structures through prestressing, active control of vortex-excited vibrations of flexible cylindrical structures, shape adjustment of a flexible space antenna reflector, the SDIO Adaptive Structures Program, optimal trajectories of iterative manipulation for space robots, a docking device as an adaptive structure, shape-memory polymers and their hybrid composites, and fuzzy control methods for structural dynamics.

  6. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Nuclear Proliferation Challenges

    SciTech Connect (OSTI)

    Professor William Potter

    2005-11-28

    William C. Potter, Director of the Center for Non Proliferation Studies and the Center for Russian and Eurasian Studies at the Monterey Institute of International Studies, will present nuclear proliferation challenges following the 2005 Nuclear Non-Proliferation Treaty (NPT) Review Conference. In addition to elucidating reasons for, and implications of, the conferences failure, Dr. Potter will discuss common ground between nuclear proliferation and terrorism issues and whether corrective action can be taken.

  9. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    24, 2001 NNSA Cites Los Alamos National Laboratory For Nuclear Safety Violations The Department of Energy's National Nuclear Security Administration (NNSA) has cited the University of California for violations of nuclear safety rules at the Los Alamos National Laboratory (LANL) in New Mexico. The University of California operates LANL for the NNSA. The violations are described in a Preliminary Notice of Violation (PNOV), which was issued on January 19, 2001. The violations stem from several

  10. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  11. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Power Clicks with Geochemistry Energy, News, News & Events, Nuclear Energy Computer Power Clicks with Geochemistry Sandia is developing computer models that show how...

  12. Defense Nuclear Nonproliferation

    National Nuclear Security Administration (NNSA)

    span>

    WASHINGTON D.C - The Department of Energy's National Nuclear Security Administration (DOENNSA) announced today the removal of 36 kilograms...

  13. nuclear threat science

    National Nuclear Security Administration (NNSA)

    2011 National Strategy for Counterterrorism states that the danger of nuclear terrorism is the greatest threat to global security, and affirms preventing terrorist...

  14. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (acting) Email Group Office (505) 667-4665 Find Expertise header Search our employee skills database The evaluations performed by our group are essential for the nuclear weapons...

  15. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to...

  16. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  17. Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

  18. Office Of Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... assessing risk (safety, economics, regulatory compliance) ... health consequences to the public PRA and Dynamic PRA * ... Monitoring" Nuclear Plant Journal, Vol. 32 No.1, pp 42- 44, ...

  19. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  20. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall A Hall B Hall C Hall D Physics Departments Administrative Office Data Acquisition Group Detector & Imaging Group Electronics Group User Liaison Nuclear Physics Program HALL A ...

  1. defense nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Defense Nuclear Security http:www.nnsa.energy.govaboutusourprogramsnuclearsecurity

  2. WIPP Nuclear Facilities Transparency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the safety, security, and legitimate management of nuclear materials." Other Links Yucca Mountain Test Data Carlsbad Environmental Monitoring and Research Center Dimitrovograd...

  3. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    preparedness Read More NSC leader recognized as community role model Read More Apex Gold discussion fosters international cooperation in run-up to 2016 Nuclear Security Summit...

  4. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  5. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Success Taking Advantage of Internships & Co-Op Programs Moderator: Renee Stewart - National Nuclear Security Administration Operations & Programs Savannah River...

  6. Nuclear Spectra from Skyrmions

    SciTech Connect (OSTI)

    Manton, N. S.

    2009-08-26

    The structures of Skyrmions, especially for baryon numbers 4, 8 and 12, are reviewed. The quantized Skyrmion states are compared with nuclear spectra.

  7. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all describe Suzy Hobbs Baker. Hear and ask questions about her experience traveling Europe as a nuclear tourist. The Babcock & Wilcox Company Suzy Hobbs Baker Founder of...

  8. Challenges in Determining the Isotopic Mixture for the Fukushima Daiichi Nuclear Power Plant

    SciTech Connect (OSTI)

    Shanks, Arthur; Fournier, Sean; Shanks, Sonoya

    2012-05-01

    As part of the United States response to the Fukushima Daiichi Nuclear Power Plant emergency, the National Nuclear Security Administration (NNSA) Consequence Management (CM) Teams were activated with elements deploying to Japan. The NNSA CM teams faced the urgent need for information regarding the potential radiological doses that citizens of might experience. This paper discusses the challenges and lessons learned associated with the analysis of field collected samples and gamma spectra in an attempt to determine the isotopic mixture present on the ground around the Plant. There were several interesting and surprising lessons to be learned from the sample analysis portion of the response. The paper discusses several elements of the response that were unique to the event occurring in Japan, as well as several elements that would have occurred in a U.S. nuclear reactor event. Sections of this paper address details of the specific analytical challenges faced during the efforts to analyze samples and try to understand the overall release source term.

  9. Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants

    SciTech Connect (OSTI)

    Khan, T.A.; Roecklein, A.K.

    1995-03-01

    This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately.

  10. Public meetings on radiation and its health effects caused by the Fukushima nuclear accident

    SciTech Connect (OSTI)

    Sugiyama, K.; Ayame, J.; Takashita, H.; Yamamoto, R.

    2013-07-01

    The Japan Atomic Energy Agency (JAEA) has held public meetings on radiation and its health effects mainly for parents of students in kindergartens, elementary schools, and junior high schools in Fukushima and Ibaraki prefectures after the Fukushima nuclear accident. These meetings are held based on our experience of practicing risk communication activities for a decade in JAEA with local residents. By analyzing questionnaires collected after the meetings, we confirmed that interactive communication is effective in increasing participants' understanding and in decreasing their anxiety. Most of the participants answered that they understood the contents and that it eased their mind. (authors)

  11. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  12. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  13. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect (OSTI)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

  14. COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 18, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons Dr. Alan Robock Rutgers University A nuclear war ...

  15. Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future, October 4-5, 2011

    Broader source: Energy.gov [DOE]

    Agenda from the first meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

  16. LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability

    SciTech Connect (OSTI)

    Fukasawa, T.; Hoshino, K.; Takano, M.; Sato, S.; Shimazu, Y.

    2013-07-01

    Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

  17. MiniBooNE H. A. Tanaka Princeton University Neutrino Factory 2004 Osaka, Japan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. A. Tanaka Princeton University Neutrino Factory 2004 Osaka, Japan The MiniBooNE Collaboration University of Alabama: Y.Liu, I.Stancu Bucknell University: S.Koutsoliotas University of Cincinnati: E.Hawker, R.A.Johnson, J.L.Raaf University of Colorado: T.Hart, R.H.Nelson, M.Wilking, E.D.Zimmerman Columbia University: A.A.Aguilar-Arevalo, L.Bugel, J.M.Conrad, J.Link, J.Monroe, D.Schmitz, M.H.Shaevitz, M.Sorel, G.P.Zeller Embry Riddle Aeronautical University: D.Smith Fermi National Accelerator

  18. Vented nuclear fuel element

    DOE Patents [OSTI]

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  19. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  20. Office of Nuclear Energy

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Nuclear Energy advances nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving technical, cost, safety, proliferation resistance, and security barriers through research, development, and demonstration as appropriate.

  1. Nuclear Facility Risk Ranking

    Broader source: Energy.gov [DOE]

    The CNS has purview of over ninety EM nuclear facilities across the DOE complex. To ensure that limited resources are applied in a risk-informed and balanced approach, the CNS performed a methodical assessment of the EM nuclear facilities. This risk-informed approach provides a data-driven foundation on which to construct a balanced set of operating plans and staff assignments.

  2. NUCLEAR REGULATORY COMMISSION

    Office of Environmental Management (EM)

    Register: December 21, 1999 (Volume 64, Number 244)] [Proposed Rules] [Page 71331-71333] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr21de99-21] ======================================================================= ----------------------------------------------------------------------- NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY:

  3. National Nuclear Science Week 2012 - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Know Nuclear National Nuclear Science Week January 23 - 27, 2012 Fostering a deeper public understanding Logos for: National Nuclear Science Week, Nuclear Workforce Initiative, ...

  4. Nuclear Regulatory Commission | Department of Energy

    Office of Environmental Management (EM)

    What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants Gap Analysis to Support Extended Storage of Used Nuclear Fuel Nuclear Fuel...

  5. The Office of Nuclear Energy Announces Central Europe Nuclear Safety

    Energy Savers [EERE]

    Workshop in Prague | Department of Energy The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional

  6. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear

    Office of Environmental Management (EM)

    Safeguards | Department of Energy Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more proliferation-resistant fuel cycle technologies.

  7. World nuclear outlook 1994

    SciTech Connect (OSTI)

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  8. World nuclear outlook 1995

    SciTech Connect (OSTI)

    1995-09-29

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  9. National Nuclear Science Week - Jan. 24-28 | National Nuclear...

    National Nuclear Security Administration (NNSA)

    - Jan. 24-28 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  10. National Nuclear Science Week Day 2: NNSA Showcases Nuclear Science...

    National Nuclear Security Administration (NNSA)

    2: NNSA Showcases Nuclear Science Careers | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  11. NNSA Celebrates National Nuclear Science Week | National Nuclear...

    National Nuclear Security Administration (NNSA)

    National Nuclear Science Week | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  12. Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory...

    Office of Legacy Management (LM)

    111989 Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia. Pennsylvania 19406 Dear Mr. Kinneman: -;' .-. 'W ...

  13. Last U.S. Underground Nuclear Test Conducted | National Nuclear...

    National Nuclear Security Administration (NNSA)

    U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  14. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

  15. Nuclear Weapons Testing Resumes | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 ...

  16. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Nuclear Weapons Stockpile | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering ...

  17. B53 Nuclear Bomb | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA) is consistent with the goal President Obama announced in his April 2009 Prague speech to reduce the number of nuclear weapons. ...

  18. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  19. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Links Neutron and Nuclear Science News Media Links Profiles Events at...

  20. Interaction of science and diplomacy: Latin American, the United States and nuclear energy, 1945-1955

    SciTech Connect (OSTI)

    Cabral, R.

    1986-01-01

    Nuclear programs in Argentina and Brazil can be traced to August 1945 when their scientific communities articulated responses to the atomic bombings of Japan. They culminated in attempts to develop independent nuclear programs, sharply opposed by the United States, during the nationalist governments of Juan Peron and Getulio Vargas. This dissertation, based on primary sources from the three nations, analyzes these programs and the American responses. Latin America entered the nuclear age attempting to control natural resources, to improve scientific establishments, and to appraise Latin American-United States relations. Despite some clear warnings about nuclear dangers, the new form of energy was seen as the solution to industrial problems, poverty, and outside political interference. International opposition, which may have included nuclear threats from the United States, blocked Argentina's first attempt in 1947. After 1948, Peron wanted a nuclear program for cheap energy and prestige. The qualifications of the Brazilian scientists gave more substance to their program. The program originated in August, 1945, but assumed national proportion with the government of Vargas in 1951. Lack of American cooperation forced Vargas to establish a secret program with Germany. American troops intervened taking over the German equipment already completed. The final collapse came about with Vargas' suicide in August, 1954.

  1. Newsletters | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Us / Our Programs / Defense Nuclear Security / Nuclear Materials Management & Safeguards System / NMMSS Information, Reports & Forms / Newsletters Newsletters U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System Newsletters NMMSS is sponsored by the National Nuclear Security Administration's (NNSA) Office of Materials Integration within the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission Attachment

  2. US/Japan Cooperation in High Energy Physics. Review of activities, 1988--1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-16

    The objective of the Implementing Arrangement was to further the energy programs of both countries by establishing a framework for cooperation in the field of high energy physics, including research, accelerator and detector instrumentation research and development, the fabrication and subsequent use of new experimental devices and facilities, and related joint efforts as may be mutually agreed. Over the years, this cooperation has been very effective and has strengthened the overall collaborative efforts and the understanding between our nations and their citizens. It has demonstrated to the world our ability to work together to attack difficult problems. High Energy Physics goes across national borders; the bond is clearly intellectual and common ground is shared for the benefit of all in a most effective manner. This review covers the activities conducted under the aegis of the US/Japan Committee for Cooperation in High Energy Physics during the past five years (1988--1993). This was the second such US review of the US/Japan cooperative activities; the first was held in 1987.

  3. Sandia Teaches Nuclear Safety Course

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and policy makers from 36 countries who recently completyed the three-week international training course on the physical protection of nuclear material and nuclear facilities. ...

  4. dnn | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (DOENNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, Shaping the future of nuclear...

  5. green | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  6. Nuclear Structure - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Structure depiction of giant resonance modes (ref. Xinfeng Chen, "Giant Resonance Study By 6Li Scattering" Nuclear structure studies at the Institute explore a wide range...

  7. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  8. fleet | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fleet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  9. Australia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Australia | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  10. hydrogen | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hydrogen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  11. testmenu | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testmenu | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  12. Neutron and Nuclear Science Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Recent publications related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science Publications Chi-Nu Publications DANCE Publications GEANIE...

  13. hrp | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hrp | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  14. sliderphotos | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sliderphotos | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  15. airport | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    airport | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  16. boston | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boston | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  17. Romania | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Romania | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  18. ap | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ap | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  19. simulations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    simulations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  20. police | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    police | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  1. NMIP | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NMIP | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  2. associates | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    associates | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  3. weapons | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  4. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  5. Evaluated Nuclear Data

    SciTech Connect (OSTI)

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  6. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  7. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  8. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  9. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  10. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) – Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : • Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. • Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. • Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. • Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. • Supporting industry in helping to create a larger qualified nuclear supplier network. • Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. • Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. • Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  11. TUNL Nuclear Data Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Levels of Light Nuclei, A = 3 - 20 Nuclear Data Evaluation Project Triangular Universities Nuclear Laboratory TUNL Nuclear Data Evaluation Home Page Information on mass chains and nuclides 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Group Info Publications HTML General Tables Level Diagrams Tables of EL's NSR Key# Retrieval ENSDF Excitation Functions Thermal N Capt. G.S. Decays TUNL Dissertations NuDat at BNL Useful Links Citation Examples Home Sitemap Directory Email Us Search WWW

  12. Belgium Nuclear Security Summit: Fact Sheet | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear Security Summit: Fact Sheet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  13. NNSA: Working to Prevent Nuclear Proliferation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration to Prevent Nuclear Proliferation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for

  14. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  15. Comprehensive Nuclear-Test-Ban Treaty Organization | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Comprehensive Nuclear-Test-Ban Treaty Organization | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  16. Electric Power Produced from Nuclear Reactor | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery

  17. Office of Defense Nuclear Nonproliferation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear Nonproliferation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs

  18. Preparing the Nuclear Security Science Minds of Tomorrow | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration the Nuclear Security Science Minds of Tomorrow | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  19. President Obama Hosts Global Nuclear Security Summit | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Hosts Global Nuclear Security Summit | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery

  20. Reducing emissions to improve nuclear test detection | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Reducing emissions to improve nuclear test detection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  1. Peaceful Uses of Nuclear Technology | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Peaceful Uses of Nuclear Technology | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  2. Shaping the future of nuclear detection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Shaping the future of nuclear detection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  3. NNSA Nuclear/Radiological Incident Response | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear/Radiological Incident Response | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  4. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  5. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  6. General Engineer / Nuclear Engineer

    Broader source: Energy.gov [DOE]

    The Idaho Operations Office (DOE-ID) manages and oversees work done at the Idaho National Laboratory (INL), the DOE's lead nuclear energy laboratory in the United States. DOE-ID supports the...

  7. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  8. Nuclear Emergency Search Team

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20

    To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

  9. defense nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Defense Nuclear Security http:nnsa.energy.govaboutusourprogramsnuclearsecurity

    Page...

  10. Direct nuclear pumped laser

    DOE Patents [OSTI]

    Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  11. General Nuclear Date

    Energy Science and Technology Software Center (OSTI)

    2010-10-27

    Provides python rountines to convert ENDF-6 formatted nuclear data (4) into the new GND structure. Includes sample published ENDF-6 formatted data as well as published ENSL (5) and HDF5 file.

  12. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  13. SECTION III: NUCLEAR THEORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The nature of the low energy isovector dipole excitations in neutron rich nuclei... III-1 E. Nica, D.C. Fuls, and S. Shlomo A modern nuclear energy density...

  14. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  15. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  16. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  17. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  18. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  19. TEPP- Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel.  This exercise manual is one in...

  20. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    FirstEnergy Nuclear Operating Company Perry Unit 1 1,240 10,620 67.2 FirstEnergy ... mwh) Summer capacity factor (percent) Perry 1 1,240 10,620 97.8 BWR 11181987 318...

  1. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2016-01-01

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  2. Nuclear Safety Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Information Nuclear Safety Information Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Nuclear Facilities List and Map Nuclear Safety Regulatory Framework Summary Pamphlet, Nuclear Safety at the Department of Energy External Nuclear Safety Links Nuclear Regulatory Commission (NRC) Defense Nuclear Facilities Safety Board Contact Tom Staker

  3. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  4. Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  5. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration Savannah River Site 1 NNSA Budget ($ Millions) By Program Office FY 2015 Enacted FY 2016 Enacted FY 2017 President Request Delta FY Request Weapon Activities 241 242 252 10 Mixed Oxide Fuel Fabrication Facility (MOX) 340 332 270 (62) Defense Nuclear Nonproliferation (DNN) 77 58 91 33 Federal Expenses 4.7 5.2 5.4 .2 Total Budget for NNSA at SRS 662.7 637.2 618.4 (18.8)

  6. Nuclear Energy Safety Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. Protecting Against Nuclear Threats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Against Nuclear Threats Protecting Against Nuclear Threats Los Alamos' mission is to solve national security challenges through scientific excellence. April 12, 2012 Los Alamos researchers use a magnetic field detector to screen carry-on liquids at airports Los Alamos researchers use a magnetic field detector to screen carry-on liquids at airports: MagViz project leader Michelle Espy demonstrates the MagViz liquid detection and analysis system in the Albuquerque International Sunport.

  9. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog NNSA labs and sites get girls excited

  10. Office Of Nuclear Energy

    Energy Savers [EERE]

    Operator Support Technologies for Fault Tolerance and Resilience Richard Vilim, Argonne National Laboratory Ken Thomas, Idaho National Laboratory Nuclear Energy Enabling Technology October 28-29, 2015 2 Project Overview § A nuclear plant operator presently takes a symptom- based approach to upsets § Not necessarily expected to diagnose a fault § Fault diagnosis is time consuming, approximate, and prone to error § Situational awareness is limited by old technologies 3 Project

  11. Nuclear fuel element

    DOE Patents [OSTI]

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  12. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    20 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical Services Y-12, LLC Performance Evaluation Report NNSA Production Office Y-12 Nuclear Security Complex Performance Period: October 2012 - September 2013 December 24, 2013 APPROVED FOR PUBLIC RELEASE This document has been approved for release to the public by: Name / Title: Scott A. Hawks, NPO Y-12 Classification Officer Date: 12/31/2013 NNSA Production Office, Y-12 Page 2 of 20 Executive Summary This

  13. Fifty years of nuclear fission: Nuclear data and measurements series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Technical Report: Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and measurements series This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of

  14. Towards consistent nuclear models and comprehensive nuclear data

    Office of Scientific and Technical Information (OSTI)

    evaluations (Conference) | SciTech Connect Conference: Towards consistent nuclear models and comprehensive nuclear data evaluations Citation Details In-Document Search Title: Towards consistent nuclear models and comprehensive nuclear data evaluations The essence of this paper is to enlighten the consistency achieved nowadays in nuclear data and uncertainties assessments in terms of compound nucleus reaction theory from neutron separation energy to continuum. Making the continuity of

  15. Powering the Nuclear Navy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Our Mission / Powering the Nuclear Navy Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. NNSA's Naval Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. Learn More USS George H.W. Bush conducts flight operations Concern for

  16. Naval Nuclear Propulsion Plants | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Our Mission / Powering the Nuclear Navy / Naval Nuclear Propulsion Plants Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces radiation, shielding is placed around the reactor to protect the crew. Despite close proximity to a reactor core, a typical crewmember receives less exposure to radiation than one who remains ashore and works in an office building. U.S. naval nuclear

  17. Physics (selected articles). [Nuclear fusion

    SciTech Connect (OSTI)

    Shiyao, Z.; Zesheng, C.; Xiaolung, X.; Qiang, H.

    1982-09-01

    Controlled nuclear fusion as a new energy source was investigated. It will be possible in the 1980's to obtain thermal nuclear ignition, and in the early 2000's nuclear fusion may be used to supplement the energy shortage. It is predicted that in the 2000's nuclear fusion will occupy an important position as a global source of energy.

  18. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook  Current New Nuclear Energy Construction Projects  Small Modular Reactor Developments  Nuclear Workforce Demo Moderator: Nora Swanson - Workforce Development Coordinator Southern Company Panel Members: Scott Macfarland - Manager, Corporate Workforce Planning SCANA Corporation Randy Johnson - Vice President, Operational Readiness Vogtle 3 &4 Southern Company Mary

  19. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    SciTech Connect (OSTI)

    Fujinaga, H.; Yamazaki, N.; Takebe, N.

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  20. Chapter 19 - Nuclear Waste Fund

    Energy Savers [EERE]

    Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the

  1. Nuclear Regulatory Commission information digest

    SciTech Connect (OSTI)

    None,

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide.

  2. Tombs, tunnels, and terraces a cultural resources survey of a former ammunition supply point in Okinawa, Japan

    SciTech Connect (OSTI)

    Verhaaren, B. T.; Levenson, J. B.; Komine, G.

    2000-02-09

    U.S. forces serving at military bases on foreign soil are obligated to act as good stewards of the cultural and natural resources under their control. However, cultural resources management presents special challenges at U.S. bases in other countries where cultural properties laws differ in emphasis and detail from those in the United States and issues of land ownership and occupancy are not always clear. Where status of forces agreements (SOFAs) exist, environmental governing standards bridge the gap between U.S. and host nation cultural priorities. In Japan, the Department of Defense Japan Environmental Governing Standards (JEGS) fill this function. Under Criteria 12-4.2 and 12-4.3 of the JEGS, U.S. Forces Japan commit themselves to inventory and protect cultural properties found on the lands they control or use. Cultural properties include archaeological sites, tombs, historic buildings, and shrines. Natural monuments, such as landscape features or plant and animal species, may also be designated as cultural properties. As part of this commitment, in February 1999 a cultural resources inventory was conducted in Area 1, part of Kadena Air Base (AB), Okinawa, Japan. Area 1, the former U.S. army Ammunition Supply Point 1, is currently used primarily for training exercises and recreational paint ball.

  3. Optimal Combination of Distributed Energy System in an Eco-Campusof Japan

    SciTech Connect (OSTI)

    Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

    2006-06-14

    In this study, referring to the Distributed Energy Resources Customer Adoption Model (DER-CAM) which was developed by the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), E-GAMS programmer is developed with a research of database of energy tariffs, DER (Distributed Energy Resources) technology cost and performance characteristics, and building energy consumption in Japan. E-GAMS is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills. In this research, by using E-GAMS, we present a tool to select the optimal combination of distributed energy system for an Ecological-Campus, Kitakyushu, Science and Research Park (KSRP). We discuss the effects of the combination of distributed energy technologies on the energy saving, economic efficiency and environmental benefits.

  4. Survey of carbonization facilities for municipal solid waste treatment in Japan

    SciTech Connect (OSTI)

    Hwang, In-Hee; Kawamoto, Katsuya

    2010-07-15

    The operations of carbonization facilities for municipal solid waste treatment in Japan were examined. Input waste, system processes, material flows, quality of char and its utilization, fuel and chemical consumption, control of facility emissions, and trouble areas in facility operation were investigated and analyzed. Although carbonization is a technically available thermochemical conversion method for municipal solid waste treatment, problems of energy efficiency and char utilization must be solved for carbonization to be competitive. Possible solutions include (1) optimizing the composition of input waste, treatment scale, organization of unit processes, operational methods, and quality and yield of char on the basis of analysis and feedback of long-term operating data of present operating facilities and (2) securing stable char demands by linking with local industries such as thermal electric power companies, iron manufacturing plants, and cement production plants.

  5. Chemical composition of interstitial waters from the Japan Sea, ODP Leg 128

    SciTech Connect (OSTI)

    Sturz, A. ); Von Breymann, M.; Dunbar, R. )

    1990-06-01

    During ODP Leg 128, interstitial waters were recovered from Oki Ridge (Site 798) and Kita-Yamato Trough (Site 799) sediment, Sea of Japan. Interstitial water chemical composition reflects diagenetic processes. Evidence indicating organic matter degradation processes includes sulfate depletion, high ammonium concentrations, and shallow maxima of dissolved phosphate. Rapid alkalinity increases in the uppermost sections of the sediments are accompanied by decreases in dissolved calcium, reflecting inorganic calcite precipitation. Authigenic dolomitization results in changes in slopes of the Mg/Ca molar ratios with depth. The opal-A/opal-CT transition is documented by the concentration depth profiles of dissolved silica and lithium. Dolomitization precedes the opal-A/opal-CT transition at both sites. Kita-Yamato Trough sediments show an abrupt change in the compositional character of the pore fluids below 435 mbsf, which coincides with the occurrence of low porosity and high bulk density layers composed of dolomite and opal-CT. These layers impede to some extent diffusional communication with the overlying interstitial waters. The interstitial waters in sediments below 435 mbsf have chloride concentrations of 504-515 mM, significantly lower than that of modern day Japan Sea water (540 mM). The presence of low chloride waters within Miocene age sediments may indicate: (1) diagenetic reactions that involve the release of exchangeable and structural bound water from clay minerals and/or opal-A, (2) Miocene connate brackish lake water, (3) phase separation of hydrothermal fluids associated with rifting, (4) potential effects of clay membrane filtration in a high pressure zone.

  6. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,842,"6,607",89.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,993,"8,416",96.7,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  7. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,123","9,738",99.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,123","9,738",99.0 "Data for 2010" "PWR = Pressurized Light Water

  8. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,506,"3,954",89.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,512,"4,336",96.7,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  9. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    SciTech Connect (OSTI)

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-03-01

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.

  10. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect (OSTI)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo; Kim, Juyoul; Kim, Juyub

    2013-07-01

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  11. Labor and nuclear power

    SciTech Connect (OSTI)

    Logan, R.; Nelkin, D.

    1980-03-01

    The AFL-CIO is officially pro-nuclear, but tensions within unions are taking issue over ideological differences. The Labor movement, having looked to nuclear power development as an economic necessity to avoid unemployment, has opposed efforts to delay construction or close plants. As many as 42% of union members or relatives of members, however, were found to oppose new power plants, some actively working against specific construction projects. The United Mine Workers and Teamsters actively challenged the nuclear industry while the auto workers have been ambivalent. The differences between union orientation reflects the history of unionism in the US and explains the emergence of social unionism with its emphasis on safety and working conditions as well as economic benefits. Business union orientation trends to prevail during periods of prosperity; social unions during recessions. The labor unions and the environmentalists are examined in this conext and found to be hopeful. 35 references. (DCK)

  12. Nuclear fuel element

    DOE Patents [OSTI]

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  13. Nuclear fuel element

    DOE Patents [OSTI]

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1980-04-29

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  14. Nuclear Power in Space

    DOE R&D Accomplishments [OSTI]

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  15. Nuclear medicine imaging system

    DOE Patents [OSTI]

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  16. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 11 References References for A = 11: A = 11 (Nuclear Physics A880 (2012)) A = 11 (Nuclear Physics A506 (1990)) A = 11 (Nuclear Physics A433 (1985)) A = 11 (Nuclear Physics A336 (1980)) A = 11 (Nuclear Physics A248 (1975)) A = 11 (Nuclear Physics A114 (1968)) A = 11 (Nuclear Physics 11 (1959)) Last modified on 29

  17. State Nuclear Profiles - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Nuclear Reports State Nuclear Profiles Data for 2010 (See also State Electricity Profiles) | Release

  18. Security and Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-17

    This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

  19. Italy Nuclear Security Summit: Fact Sheet | National Nuclear...

    National Nuclear Security Administration (NNSA)

    In 1979, Italy signed the NPT which reaffirmed its commitment to be nuclear weapons free. In 1987, through a referendum, Italy announced the end of its nuclear energy program, and ...

  20. SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS

    National Nuclear Security Administration (NNSA)

    UNAUTHORIZED USE 1. PURPOSE. This NNSA Supplemental Directive (SD) supports the requirements of DOE O 452.4B, Security and Use Control of Nuclear Explosives and Nuclear Weapons. ...