Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS Industrial Users' Program Industry Home | Synchrotron Techniques | Battery Lab | Science Highlights | Industrial Program Coordinator | Publications Battery Lab NSLS users are...

2

STANFORD SYNCHROTRON RADIATION LIGHTSOURCE  

E-Print Network (OSTI)

-926-4100 SLAC is operated by Stanford University for the U.S. Department of Energy SSRL Facility Research Associate for Small Angle X-ray Scattering The Stanford Synchrotron Radiation Lightsource (SSRL) has) program. This position has a component (roughly 50%) that involves beam line development at SSRL

Ford, James

3

History of the Stanford Synchrotron Radiation Lightsource | Stanford...  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Stanford Synchrotron Radiation Lightsource SPEAR Based on new applications of synchrotron radiation, SSRL began in 1973 as the Stanford Synchrotron Radiation Project...

4

SSRL- Stanford Synchrotron Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

light shines brilliantly these days at the Stanford Synchrotron Radiation Laboratory (SSRL)". The Secretary of Energy sent these words to be conveyed at the formal opening of...

5

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of Science Content Owner: Lisa Dunn |...

6

Welcome to Stanford Synchrotron Radiation Lightsource | Stanford  

NLE Websites -- All DOE Office Websites

content Skip to search content Skip to search SLAC National Accelerator Laboratory DOE Stanford SLAC SSRL LCLS AD PPA SUNCAT PULSE SIMES Stanford Synchrotron Radiation Lightsource An Office of Science User Facility Home About SSRL What is SSRL? Director's Office Organization Advisory Panels History SSRL News SSRL News and Events Science Highlights Press Releases SSRL Newsletter Photon Science Seminars SSRL Presents User Resources User Resources User Portal Schedules Deadlines Forms & Applications Beam Lines Beam Lines Map By Number By Technique Photon Source Parameters SPEAR3 Status Science at SSRL Science at SSRL Science Highlights Photon Science Faculty SSRL Imaging Group SSRL SMB Program Publications Publications & Reports SSRL Headline News SSRL Fact Sheet SSRL Brochure SLAC Discovery Brochure SPEAR3 SPEAR3

7

THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC PLAN:  

NLE Websites -- All DOE Office Websites (Extended Search)

THE STANFORD SYNCHROTRON THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC PLAN: 2013 - 2018 MEETING THE SCIENTIFIC CHALLENGES OF THE FUTURE FEBRUARY 2013 TABLE OF CONTENTS 1 Executive Summary ................................................................................................................................................. 1 2 Synchrotron Radiation - A Unique Tool .................................................................................................................. 1 3 Stanford Synchrotron Radiation Lightsource .......................................................................................................... 3 3.1 Looking into the Future: Building a New User Facility Paradigm at SSRL ....................................................... 4

8

A program in detector development for the US synchrotron radiation community  

E-Print Network (OSTI)

CHESS), Peter Siddons (NSLS, BNL), John Arthur (SSRL), RalfSynchrotron Light Source, NSLS), John Arthur (StanfordChairman - Peter Siddons (NSLS) 9:00 Spectroscopy and atomic

2001-01-01T23:59:59.000Z

9

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Access to High Technology User Facilities at DOE National Laboratories Access to High Technology User Facilities at DOE National Laboratories In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department of Energy has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities, see http://www.gc.doe.gov/1002.htm. User Agreements All user experiments must be run under the terms of a User Agreement executed by the appropriate institutional officer(s) at your institution and their counterpart at Stanford University. A single User Agreement covers all experimenters from that institution (User Institution = "user"). Collaborators who are not coming to SSRL do not require a User Agreement.

10

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Basis of Wnt Recognition by Frizzled Structural Basis of Wnt Recognition by Frizzled SSRL Science Summary - September 2012 Figure 1. XWnt8 has an unusual two-domain structure. Wnts are a family of signaling proteins that regulate the development and growth of an organism, as well as tissue regeneration and wound healing. Misregulated Wnt signaling is associated with the development of many types of cancers, including colon cancer, breast cancer and melanoma, and degenerative diseases like multiple sclerosis, Alzheimer's and Type 2 diabetes. Understanding of how Wnt proteins bind and activate Frizzled receptors is important for the development of effective anti-Wnt and anti-Frizzled drugs for the treatment of Wnt-related disease. To understand how Wnts function, a team of researchers from Stanford

11

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Beamlines NSLS-II Ring Schematic The National Synchrotron Light Source II will accommodate at least 58 beamlines using 27 straight sections for insertion-device sources and...

12

NSLS II: The Future National Synchrotron Light Source | 2010...  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Beamline Development Proposals - Results NSLS-II Rendering The 2010 call for beamline development proposals for the National Synchrotron Light Source II yielded 54...

13

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Call for Beamline Development Proposals 2011 Call for Beamline Development Proposals National Synchrotron Light Source II February 16, 2011 NSLS-II Rendering Critical Dates Call for proposal issued Thursday, February 17, 2011 Letter of Intent due Monday, March 28, 2011 (submitted LOIs) Beamline development workshops April-June 2011 Beamline proposal due Monday, July 25, 2011 Related Materials Proposal template NSLS-II Beamline Development Policy NSLS-II Source Properties NSLS-II User Access Policy Project Beamlines Background Beamline Information Approved Proposals From 2010 The National Synchrotron Light Source II (NSLS-II), currently under construction at the U.S. Department of Energys Brookhaven National Laboratory on Long Island, NY, is pleased to announce the 2011 Call for Beamline Development Proposals for experimental facilities to be implemented at NSLS-II.

14

Team | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Team Research team: John R. Bargar (SLAC), Research manager and co-principle investigator, bargar@slac.stanford.edu Scott Fendorf (Stanford), co-principle investigator, fendorf@stanford.edu Gordon E. Brown, Jr. (Stanford), gordon.brown@stanford.edu Sharon Bone (SLAC), Post doctoral scientist Noémie Janot (SLAC), Post doctoral scientist Morris Jones (SLAC), Post doctoral scientist Collaborators: D.S. Alessi (University of Alberta) R. Bernier-Latmani (EPFL) J.A. Davis (LBNL) J. Dynes (Canadian Light Source) P.A. Fox (LBNL) E. Herndon (Kent State) D.E. Giammar (WUStL) D.E. Graham (ORNL) B. Gu (ORNL) E. Ilton (PNNL) L. Liang (ORNL) P.E. Long (LBNL) B. Mann (ORNL) P.S. Nico (LBNL) L. Pasa-Tolic (EMSL) P. Persson (University of Lund) T. Regier (Canadian Light Source) J.O. Sharp (School of Mines)

15

SSRL- Stanford Synchrotron Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Farrel W. Lytle Award was established by the SSRL Organization Executive Committee to promote important technical or scientific accomplishments in synchrotron radiation-based...

16

SSRL in SLAC Today | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

in SLAC Today Subscribe to SSRL in SLAC Today feed URL: https:news.slac.stanford.edutagsprograms-facilitieslightsourcesstanford-synchrotron-radiation-lightsource-ssrl...

17

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron X-ray Techniques for Industrial Research Synchrotron X-ray Techniques for Industrial Research Techniques http://www.sc.doe.gov/bes/synchrotron_techniques/ Spectroscopy Spectroscopy is used to study the energies of particles emitted or absorbed by samples that are exposed to beam to determine the characteristics of chemical bonding and electron energy band structure. Extended X-Ray Absorption Fine Structure Spectroscopy (EXAFS) X-Ray Absorption Near Edge Spectroscopy (XANES) Hard X-ray Photoelectron Spectroscopy (HAXPES) Scanning X-Ray Microscopy: Micro-XRF, -XAFS, -XRD Soft X-Ray Absorption and Scattering Infrared Vibrational Microspectroscopy Photoemission Electron Microscopy / Low-Energy Electron Microscopy (PEEM/LEEM) Scattering/Diffraction Scattering/diffraction makes use of the patterns of scattered x-rays when

18

Stanford Linear Accelerator Center Stanford Synchrotron Radiation Laboratory  

E-Print Network (OSTI)

1 of 13 10/16/2006 FACILITY EMERGENCY PLAN February, 2006 SSRL Safety Office Stanford Linear Accelerator Center Menlo Park, California TABLE OF CONTENTS PREFACE SSRL EMERGENCY PLAN SECTION A: SAFETY RESPONSIBILITIES 1.0 SSRL Emergency Personnel 1.1 SLAC Person - In - Charge (PIC) 1.2 SSRL Beamline Duty Operator

Ford, James

19

SPEAR History | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

SPEAR History SPEAR History Experimental Facilities : The SPEAR Storage Ring Stanford University has a long history of involvement in the development and use of colliding-beam storage rings for particle physics research. The first such machine at Stanford was a small electron-electron collider, shaped like a figure eight, located on the main campus. A collaborative effort between physicists from Princeton and Stanford Universities, this project produced the first physics results ever obtained with the colliding-beam technique. Stanford Positron Electron Accelerating Ring The next in the succession of Stanford colliders was the SPEAR (Stanford Positron Electron Accelerating Ring) machine at SLAC, completed in 1972. SPEAR consists of a single ring some 80 meters in diameter, in which counter-rotating beams of electrons

20

SSRL Users' Organization | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

U. Tennessee; Christopher Kim, Chapman U. (SNUG Chair); Hendrik Ohldag, Stanford U. The SSRL Users' Organization (SSRLUO) is broadly concerned with representing the interests of...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Stanford Synchrotron Radiation Lightsource: SPEAR3  

NLE Websites -- All DOE Office Websites (Extended Search)

SPEAR History SPEAR History Experimental Facilities : The SPEAR Storage Ring Stanford University has a long history of involvement in the development and use of colliding-beam storage rings for particle physics research. The first such machine at Stanford was a small electron-electron collider, shaped like a figure eight, located on the main campus. A collaborative effort between physicists from Princeton and Stanford Universities, this project produced the first physics results ever obtained with the colliding-beam technique. Linac map showing SPEAR The next in the succession of Stanford colliders was the SPEAR (Stanford Positron Electron Accelerating Ring) machine at SLAC, completed in 1972. SPEAR consists of a single ring some 80 meters in diameter, in which counter-rotating beams of electrons and positrons were circulated at

22

SSRL Site Map | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Global Menu DOE Stanford SLAC SSRL LCLS AD PPA SUNCAT PULSE SIMES Main menu Home About SSRL What is SSRL? Director's Office Organization Advisory Panels History SSRL News...

23

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Reports Monthly status reports on the NSLS-II project highlight progress in key areas: accelerator systems; experimental facilities; conventional facilities; procurement;...

24

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Preliminary Design Report PDR cover image Brookhaven National Laboratory has prepared a preliminary design for a world class user facility for scientific research using...

25

Proprietary Research | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Proprietary Research Proprietary Research Proprietary Research is defined as that for which users request confidentiality of proposal, data and results for a certain period of time. This research follows the guidelines for implementation by the Stanford University Faculty Senate and is executed through a Proprietary User Agreement. Proprietary Research is subject to the Department of Energy's full-cost recovery requirement for facility charges for the use of user facilities and advance payment of those charges. The facility charges are established as a dollar rate for each shift of beam time. Experimenters interested in conducting Proprietary Research should contact the User Research Administration Manager well in advance of the anticipated need for beam time as the legal and financial procedures involved may take

26

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning for Life Sciences at NSLS-II: A Chronology Planning for Life Sciences at NSLS-II: A Chronology Since 2007, through workshops, trips to Washington, white papers, and other activities, NSLS-II planners have been steadily mapping out what promises to be a rich life sciences research program at the new facility. July 17-18, 2007 - Brookhaven Lab hosts the first NSLS-II user workshop, which was attended by over 450 participants, including many members of the life sciences user community and representatives from the National Institutes of Health (NIH) and the Department of Energy's (DOE) Office of Biological and Environmental Research (BER). January 15-16, 2008 - A scientific strategic planning workshop at Brookhaven Lab marked the beginning of plans for life sciences research and beamlines at NSLS-II. The goal of this workshop was to generate a detailed white paper that presented a vision of Life Sciences research, beamlines, and facilities at NSLS-II and describes the path forward and timeline toward achieving this goal.

27

User Facility Access Policy | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Access Policy Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the facility was upgraded to a state-of-the-art third generation lightsource in 2004, providing major improvements in emittance, ring current and new or upgraded beam lines. SSRL's research programs include both the x-ray and ultraviolet regions of the spectrum. SSRL is primarily supported by the DOE Offices of Basic Energy Sciences

28

2007 NSLS Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

07 NSLS Publications 07 NSLS Publications Brookhaven National Laboratory * National Synchrotron Light Source * P.O. Box 5000, Upton, NY 11973 * http://www.nsls.bnl.gov/ VUV-IR Beamlines ................................................................................................................................................................................................. 2 X-Ray Beamlines .................................................................................................................................................................................................. 8 NSLS Users NSLS Staff ............................................................................................................................................................................................................

29

NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)  

SciTech Connect

The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS capabilities and much-needed beam time for the life sciences, soft condensed matter physics, and nanoscience communities. Looking toward the future, a significant step has been made in expanding the user base and diversifying the work force by holding the first Historically Black Colleges and Universities (HBCU) Professors' Workshop. The workshop, which brought 11 professors to the NSLS to learn how to become successful synchrotron users, concluded with the formation of an HBCU User Consortium. Finally, significant contributions were made in optics and detector development to enhance the utilization of the NSLS and address the challenges of NSLS-II. In particular, x-ray detectors developed by the NSLS Detector Section have been adopted by an increasing number of research programs both at the NSLS and at light sources around the world, speeding up measurement times by orders of magnitude and making completely new experiments feasible. Significant advances in focusing and high-energy resolution optics have also been made this year.

Miller ,L.; Nasta, K.

2008-05-01T23:59:59.000Z

30

NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)  

Science Conference Proceedings (OSTI)

This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven! However, with opportunities come challenges! One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007 budget and the years to follow, we need to continue to educate our elected representatives about the benefits that are provided to our society and our economy by scientific investigation including research done at DOE user facilities like the NSLS. We face another interesting challenge as the NSLS-II project progresses: the formation of scientific research teams associated with particular beamlines at the new facility. In early 2007, the final draft of the conceptual design report will be available, which will describe the projected capabilities of NSLS-II, and we can expect a workshop in mid-2007 to launch the process leading to letters of intent for beamlines. This process will include lots of discussion about access modes, as we seek ways to allow scientific and technical innovators from the user community to play significant roles at NSLS-II.

MILLER, L. (EDITOR)

2006-12-31T23:59:59.000Z

31

Radioactive Materials at SSRL | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials at SSRL Radioactive Materials at SSRL Contact Information SSRL Safety Officer (650) 926-3861 SSRL Radiation Protection Group (650) 926-4299 SSRLRadMat@SLAC.STANFORD.EDU Throughout the course of an SSRL Experimental Run, there are requests from users to transport and use small amounts of radioactive material in their experiments, either as stand alone samples or in a matrix of other materials. There is no minimum quantity for declaring the use of radioactive samples at SSRL. The purpose of this procedure is to enable Users, SSRL and SLAC staff to know what radiological controls will be implemented for these materials, based on the isotope, its toxicity risk and radiological controls. Radioactive materials at SSRL are classified into 4 classification Groups based on the radiotoxicity tables, see below.

32

The Dale E. Sayers Fellowship | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Dale E. Sayers Fellowship Dale E. Sayers Fellowship North Carolina State University Physical and Mathematical Sciences Foundation A dear colleague, Dale E. Sayers, one of the three pioneers of the analytical technique Extended X- ray Absorption Fine Structure (EXAFS), died in November 2004 at age 60. The key EXAFS developments in which Dale participated (now about 30 years ago) opened a new field of research that is extensively useat almost all synchrotron radiation facilities worldwide. Dale was an extraordinary man - generous and witty, as well as a great scientist. Dale was a highly visible synchrotron radiation user for over 20 years. He touched the lives of many in this world-wide scientific community. You or some of your colleagues might have even known Dale personally. Of Dale's many qualities, his colleagues and friends would like to single

33

Stanford Synchrotron Radiation Laboratory activity report for 1986  

SciTech Connect

1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

Cantwell, K. [ed.

1987-12-31T23:59:59.000Z

34

Stanford Synchrotron Radiation Laboratory activity report for 1987  

SciTech Connect

During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

Robinson, S.; Cantwell, K. [eds.

1988-12-31T23:59:59.000Z

35

Stanford Synchrotron Radiation Laboratory. Activity report for 1988  

SciTech Connect

For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

Cantwell, K. [ed.

1996-01-01T23:59:59.000Z

36

Stanford Synchrotron Radiation Laboratory. Activity report for 1989  

Science Conference Proceedings (OSTI)

The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

NONE

1996-01-01T23:59:59.000Z

37

Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992  

SciTech Connect

SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

Cantwell, K.; St. Pierre, M. [eds.

1992-12-31T23:59:59.000Z

38

Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource  

Science Conference Proceedings (OSTI)

The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reach its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.

Bauer, Johannes

2011-04-05T23:59:59.000Z

39

Experiences from First Top-Off Injection at the Stanford Synchrotron Radiation Lightsource  

Science Conference Proceedings (OSTI)

As the Stanford Synchrotron Radiation Lightsource (SSRL) of the SLAC National Accelerator Laboratory (SLAC) is moving toward Top-Off injection mode, SLAC's Radiation Protection Department is working with SSRL on minimizing the radiological hazards of this mode. One such hazard is radiation that is created inside the accelerator concrete enclosure by injected beam. Since during Top-Off injection the stoppers that would otherwise isolate the storage ring from the experimental area stay open, the stoppers no longer prevent such radiation from reaching the experimental area. The level of this stray radiation was measured in April 2008 during the first Top-Off injection tests. They revealed radiation dose rates of up to 18 microSv/h (1.8 millirem/h) outside the experimental hutches, significantly higher than our goal of 1 microSv/h (0.1 millirem/h). Non-optimal injection increased the measured dose rates by a factor two. Further tests in 2008 indicated that subsequent improvements by SSRL to the injection system have reduced the dose rates to acceptable levels. This presentation describes the studies performed before the Top-Off tests, the tests themselves and their major results (both under initial conditions and after improvements were implemented), and presents the controls being implemented for full and routine Top-Off injection.

Bauer, J.M.; Liu, J.C.; Prinz, A.; Rokni, S.H.; /SLAC

2009-12-11T23:59:59.000Z

40

NSLS-II Conceptual Design Report (CDR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Conceptual Design Report NSLS-II CDR cover Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Lead, Uranium, and Nickel Compound Data from the XAFS Library at the Stanford Synchrotron Radiation Laboratory (SSRL)  

DOE Data Explorer (OSTI)

The x-ray absorption fine structure spectroscopy (XAFS) library at the Stanford Synchrotron Radiation Laboratory is intended to be a reference library of XAFS spectra for various lead, uranium, and nickel compounds. Compounds are organized by central atom and all spectra are transmission data. Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in the biosphere with the goal of elucidating global elemental cycles and anthropogenic influences on the environment. Key areas of investigation include the: (a) Structural chemistry of water and dissolved solutes, (b) Structural chemistry and reactivity of complex natural environmental materials with respect to heavy metals and metalloids (biominerals, Fe- and Mn-oxides, biofilms, and organic materials), (c) Reactions at environmental interfaces, including sorption, precipitation and dissolution processes that affect the bioavailability of heavy metals and other contaminants, and (d) Microbial transformations of metals and anions. SSRL-based MES research utilizes synchrotron-based x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS), x-ray standing wave (XSW) spectroscopy, and photoemission spectroscopy (PES) because of their unique capabilities to probe structure/composition relationships in complex, non-crystalline, and dilute materials. [copied from http://www-ssrl.slac.stanford.edu/mes/index.html

42

NSLS-II | NEXT Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

NEXT Project NEXT stands for NSLS-II Experimental Tools, a set of five or six beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from...

43

NSLS Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services NSLS Services Computing Services Lab Space Libraries Postal Services Procurement Repair & Equipment Services Shipping Procedures Storage User Accounts Workshop Procedures...

44

Photon Sciences | Operating the National Synchrotron Light Source...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Program The goals of the NSLS Industrial Research Program are to encourage greater use of synchrotron tools by industry researchers; improve access to NSLS beamlines by...

45

NSLS-II | ABBIX Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

a set of three beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the National Institutes of Health. Documents & Design Reports...

46

STANFORD SYNCHROTRON RADIATION LIGHTSOURCE The Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Cells A new process that simultaneously combines the light and heat of solar radiation to generate electricity could offer more than double the efficiency of existing...

47

Structural Studies of Al:ZnO Powders and Thin Films | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Studies of Al:ZnO Powders and Thin Films Structural Studies of Al:ZnO Powders and Thin Films Monday, June 18, 2012 - 2:00pm SSRL Main Conference Room 137-322 Dr. Bridget Ingham, Associate Investigator, MacDiarmid Institute for Advanced Materials & Nanotechnology Al-doped ZnO (Al:ZnO) is a promising transparent conducting oxide. We have used complementary synchrotron and laboratory techniques to study the incorporation of Al within the ZnO lattice, and measure its effect on the crystallinity of thin films prepared by sol-gel techniques, with an aim to understand how these properties affect the film conductivity. I will present recent results from Al:ZnO powders and thin films, prepared with varying Al concentrations and calcination temperatures. Solid state 27Al NMR and ex situ X-ray diffraction (XRD) were performed on Al:ZnO

48

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

49

Microsoft Word - NSLS-II User Access Policy Apr 2013.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II National Synchrotron Light Source II PRP Proposal Review Panel PS Photon Sciences PU Partner User SAC Science Advisory Committee iv NSLS-II USER ACCESS POLICY APPROVALS...

50

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Element-Specific and Real-Time Observation of CO-Ru Chemisorption Bond Element-Specific and Real-Time Observation of CO-Ru Chemisorption Bond Breaking with Soft X-ray Spectroscopy March 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure An international collaboration of scientists, including several from SSRL, has taken advantage of the broad range of photon science capabilities available at the lab to investigate a proposal that adsorption and desorption of a molecule to a surface - both fundamental processes of interfacial chemistry - proceed through a transient "precursor" state in which the molecule is weakly bound to the surface. Their research focused on carbon monoxide adsorption/desorption on metal surfaces; although a large number of spectroscopic studies have been devoted to this reaction,

51

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Watching Ions Hop in Superionic Nanomaterials Watching Ions Hop in Superionic Nanomaterials March 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure For the first time, ultrafast x-ray scattering and spectroscopic measurements carried out at SSRL, the Advanced Light Source (ALS) and the Advanced Photon Source (APS) captured the atomic-level dynamics of a superionic nanocrystal as it transformed. Superionic materials are multi-component solids which can simultaneously display characteristics of both a solid and a liquid: Above a critical temperature associated with a structural phase transition, one atomic species in the material exhibits liquid-like ionic conductivities and dynamic disorder within the rigid crystalline structure of the other. Applications such as electrochemical storage materials and resistive

52

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

The Long-sought Structure of α-Catenin Defines Its Functions for Cell-cell The Long-sought Structure of α-Catenin Defines Its Functions for Cell-cell Interactions June 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications Figure Full-length α-catenin crystal structure reveals its dimeric asymmetric arrangement. The individual domains are colored individually (dimerization domain in yellow, vinculin binding domain in green, M-fragment in cyan, and the F-actin binding domain in magenta). A: View onto the vinculin binding domains. B: View onto the dimerization domains. Cell-cell interactions play an important role in the development, architecture, maintenance, and function of tissues in all higher organisms. Cells use specialized protein complexes to bind each other. These complexes define the attachment sites known as adherens junctions and consist of

53

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Examination of Microdamage in Sheep Cortical Bone Nanoscale Examination of Microdamage in Sheep Cortical Bone April 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Lead-uranyl acetate staining of damage morphologies in notched bone samples. (A, B) Staining of lacunae and canaliculi in the compressive region seen in 20 of the 23 samples; (C, D) Cross hatching damage around notch tip in the tensile region observed in 10 of 23 samples; (E, F) Crack propagating from notch tip in the tensile region in a single sample. Staining appears white due to high attenuation of lead-uranyl acetate, with bone tissue appearing grey and voids black. Scale bar: A,C,E = 50 μm; B,D,F = 5 μm. Sample created in the longitudinal plane of the bone.] An important factor contributing to bone fractures is the accumulation of

54

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Angle X-ray Scattering Small-Angle X-ray Scattering Read Self-Assembled Nanoparticle Superlattices X-ray Reflectivity X-ray reflectometry is a technique for investigating the near-surface structure of many materials. It probes the electron density with a depth resolution of less than one nm for depths of up to several hundred nm. The method involves measuring the reflected X-ray intensity as a function of X-ray incidence angle (typically small angles are used). The method is used for studies of thin films and multilayers of metals, semiconductors and polymers. It can accurately determine films thickness, density, average roughness, and the roughness correlation function. Grazing Incidence X-ray Scattering and Diffraction on Thin Films Grazing incidence X-ray scattering or diffraction (GIXS) refers to a method

55

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

this problem is to explore the phases next to superconductivity on the temperature-doping phase diagram. The pseudogap phase above Tc has been a particular stumbling block because...

56

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

and redox reactions, and tying this complex delithiation behavior to a combination of kinetic limitations due to macroscopic defects in the crystals and thermodynamic effects....

57

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

SSRL Discoveries Point to Better Batteries SSRL Discoveries Point to Better Batteries SSRL Science Summary - October 2012 Figure A single reconstructed slice and a volume rendering of the tomography sequence. Energy storage materials, such as batteries, are of increasing importance in the modern world. They support the storage and distribution of electricity generated by different mechanisms, enabling the use of green power sources when the resource itself is unavailable (for example, solar energy at night or wind energy on a calm day). Such devices also provide energy portability for consumer electronics and zero-emission options for transportation, in either hybrid or fully-electric vehicles. Many impressive battery technologies exist today, but the understanding of their operation is somewhat limited, which makes it very challenging to improve

58

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

X-rays Illuminate Frustrated Materials X-rays Illuminate Frustrated Materials SSRL Science Summary - August 2012 Figure 1. Two sets of Cu spin orientations on a hexagon from the honeycomb lattice; either the "green" or "blue" set of spins describe the magnetic arrangement at a given time, illustrating that there is no preferred spin orientation; i.e the spins are "frustrated". Credit: Satoru Nakatsuji, University of Tokyo The electronic, spin, and ionic structures of closely packed atoms in solids are strongly co-dependent and interactions of these three lattices, whether innate or due to subtle manipulation, can cause exotic properties to emerge. The strong coupling among these lattices can also suppress a physical property through "frustration," the term for an incompatibility of

59

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Botulinum Neurotoxin is Bio-shielded by NTNHA in a Handshake Complex Botulinum Neurotoxin is Bio-shielded by NTNHA in a Handshake Complex SSRL Science Summary - October 2012 Figure A single reconstructed slice and a volume rendering of the tomography sequence. Botulinum neurotoxins (BoNTs) invade motor neurons at their junctions with muscular tissue, where the toxins disable the release of the neurotransmitter acetylcholine and subsequently paralyze the affected muscles. Accidental BoNT poisoning primarily occurs through ingestion of food products contaminated by Clostridium botulinum, the bacterium that produces BoNTs. However, BoNTs by themselves are fragile and sensitive to low pH environments and digestive proteases. So how do they survive the harsh environment of the host's gastrointestinal tract? Researchers at Sanford-Burnham Research Institute and the Medical School of

60

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Illuminating the Multiconfigurational Ground State of Elemental and Illuminating the Multiconfigurational Ground State of Elemental and Intermetallic Compounds of Uranium and Plutonium SSRL Science Summary - October 2012 Figure Resonant x-ray emission spectra of actinide metals: Spectra show the emitted photon intensity as a function of the incident photon beam energy, EI, and the transfer energy, ET. Upper panel shows a sharp resonance dominated by a single uranium valence configuration. Bottom panel shows the broader resonance for the ground-state phase of elemental plutonium that is made up of differing amounts of three resonances = three valences. The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Using X-rays to Find an Evolutionary Step in the Origin of Oxygenic Using X-rays to Find an Evolutionary Step in the Origin of Oxygenic Photosynthesis July 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications Figure The evolution of oxygenic photosynthesis approximately 2.3 to 2.4 billion years ago revolutionized life on Earth. For most modern-day terrestrial life, oxygen has become indispensable. At the heart of oxygenic photosynthesis is the production of oxygen from water - a process mediated by the water-splitting manganese cluster of Photosystem II. Little is known about how oxygenic photosynthesis originally evolved, although some have hypothesized a manganese-oxidizing photosystem as a precursor step. Researchers from the California Institute of Technology, SSRL, and the Massachusetts Institute of Technology have now found geological

62

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

telecommunications and manufacturing. Close window SSRL Scientists About SSRL Directory | History | Organization | Video Plus Sign Overview As one of the pioneering...

63

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

charge for LHe use during scheduled beam time. Orders for gases and cryogenics (including overhead and sales tax) will be charged to your user account. Prior to your scheduled...

64

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

through a gating mechanism of conformational changes. If this proves correct, the tight sequestering of RNA and likely conformational change needed for replication and...

65

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Fischer-Tropsch Catalyst Nanoscale Chemistry under Realistic Working Conditions SSRL Science Summary - November 2012 Figure Snapshot of 3D elemental mapping (see Rock on Fire)...

66

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Correlation between Nitrogen-dopant Bond Type and Electronic Effects in Single-layer Graphene February 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications...

67

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

the Excel spreadsheet Download and save the Excel spreadsheet to your computer. You can enter data about your planned shipment of radioactive materials to SLAC. The Excel file is...

68

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley National Laboratory. His research focuses mainly on the behavior of technetium in nuclear waste and nuclear wasteforms. In addition, his research examines...

69

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

StateCountyCity Research Area: (hold Ctrl to select multiple options) Biological & Life Sciences Medical Applications Chemistry Materials Science Physics Polymers Earth Sciences...

70

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

in the September 10 online edition of the Proceedings of the National Academy of Sciences. These findings will likely facilitate further elucidation of FDTS's mechanism and...

71

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

protein synthesis. Researchers from The Scripps Research Institute, Florida State University and the University of Texas Houston have established an essential role for an...

72

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Line 10-2 in parallel with magnetic resonance imaging (MRI) at Wayne State University to map and quantify iron and calcium on the same slices of human brain, thus...

73

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Biological and Environmental Research (FWP 10094) and Office of Basic Energy Sciences. Primary Citation J. R. Bargar, K. H. Williams, K. M. Campbell, P. E. Long,...

74

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

VoluntaryAssoc DOEBES DOEBER DOD DVA NASA NIST USDA OtherUS Govt StateCountyCity Research Area: (hold Ctrl to select multiple options) Biological & Life Sciences Medical...

75

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute of Science David Baker, University of Washington Ian Wilson, The Scripps Research Institute 2575 Sand Hill Road, MS: 99, Menlo Park, California, 94025, USA Tel:...

76

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

of in vitro evolution allows the generation of model systems and the study of basic principles of complex natural evolution. This in vitro directed evolution method has...

77

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

supported by the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, scientists from Lawrence Berkeley...

78

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

investigation was funded by the U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES) Chemical and Geosciences Programs, the National Science Foundation (NSF)...

79

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

access? Scheduling Information Shifts Requested: 3 6 Samples: Sample Concentrations: EnergiesEdges: Crystal Orientation for Si(220): phi0 phi90 no preference Temperature...

80

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

access? Scheduling Information Shifts Requested: 3 6 Samples: Sample Concentrations: EnergiesEdgesTechnique(XRF, XAS, XRD): Crystal Orientation for Si(220): phi0 phi90 or...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

prokaryotic GlnRS species exists. A group led by Edward Snell of the Hauptman-Woodward Medical Research Institute has recently used data from SSRL to develop a model of the...

82

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Rock Reactions Produce Hydrogen Gas at Temperatures within the Limits of Life June 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications and Lisa E....

83

Acceptable NSLS Safety Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

84

NSLS Committees | Stockroom Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Stockroom Committee Charge Review "Request for Additional NSLS Stockroom Inventory" forms submitted by NSLS Staff and Users to decide what items, and the quantity of each, will be...

85

NSLS 2009 Activity Report  

DOE Green Energy (OSTI)

2009 was an incredibly exciting year for light sources at Brookhaven. The National Synchrotron Light Source (NSLS) hosted more than 2,200 visiting researchers, who, along with the about 50 members of our scientific staff, produced a total of 957 publications - about 20 percent of which appeared in premier journals. Covering topics ranging from Alzheimer's disease detection to ethanol-powered fuel cells, a sampling of these findings can be found in this Activity Report. We've also seen the resurfacing of some of our long-time users hard work. I was very proud to hear that two of the three recipients of the 2009 Nobel Prize in Chemistry have ties to the NSLS. Venki Ramakrishnan, a former employee in Brookhaven's biology department and long-time user of the NSLS, now at Cambridge University, and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for their work on the structure and function of the ribosome. In the late 1990s, Ramakrishnan and Steitz used protein crystallography at the NSLS to gather atomic-level images of two ribosome subunits: 30S (Ramakrishnan) and 50S (Steitz). Both laureates solved the high-resolution structures for these subunits based on this data. After struggling with a rough budget for several years, we received excellent funding, and then some, this year. In addition to NSLS operations funding, we received $3 million in funds from the American Recovery and Reinvestment Act (ARRA). We used that additional money for two exciting projects: construction of a full-field x-ray microscope and acquisition of several advanced x-ray detectors. The x-ray microscope will be able to image objects with a targeted spatial resolution of 30 nanometers. This capability will be particularly important for new initiatives in energy research and will prepare our users for the projected 1-nanometer resolution benchmark at the National Synchrotron Light Source II (NSLS-II). The detectors project is expected to increase the throughput of several high-demand beamlines by an order of magnitude as well as enable new classes of experiments. In addition, a huge chunk of ARRA money - $150 million - was put toward accelerating the construction of NSLS-II, which is now taking shape across the street. Now physically much more than just a pile of dirt, NSLS-II was granted Critical Decision 3 status by the Department of Energy (DOE) early last year, giving the official go-ahead for construction. In July, construction began, marked by a groundbreaking ceremony that attracted elected officials, media, and DOE, Battelle, and Stony Brook University representatives from across the state and the country. As progress on NSLS-II continues, we're working with Stony Brook University to identify ways to capitalize on the facility's unique capabilities through the Joint Photon Sciences Institute (JPSI). Included in this effort is a series of workshops to encourage the development and application of the photon sciences with collaborative research between industries, universities, and national laboratories. We helped host three of these workshops this year, focusing on microelectronics, energy storage, and materials in next-generation energy systems. The conversation and ideas generated at these meetings has been fresh and valuable and we hope to use this model to organize research opportunities in other scientific fields. Also this year: Brookhaven was deemed the lead institution for one of DOE's 46 Energy Frontier Research Centers, focused on understanding the underlying nature of superconductivity in complex materials by using techniques at the NSLS and CFN; DOE awarded a $100,000 supplemental grant to our detector program to continue the development of a new generation of x-ray detectors that use germanium sensors, which, at high energies, are much more efficient than equivalent ones based on silicon; and funding for one of our largest consortia, Case Western Reserve University's Center for Synchrotron Biosciences (CSB), was renewed through the National Inst

Nasta K.; Mona R.

2009-05-01T23:59:59.000Z

86

Photon Sciences | NSLS-II Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Beamlines NSLS-II Beamlines beamlines Current NSLS-II Beamline Diagram The National Synchrotron Light Source II will accommodate more than 60 beamlines using 27 straight sections for insertion-device sources and 31 bending-magnet or three-pole-wiggler sources, with additional beamlines possible through canted insertion devices and multiple branches. Six beamlines were selected in 2008 and are now funded within the NSLS-II project. These project beamlines encompass research programs in inelastic x-ray scattering, hard x-ray nanoprobe, coherent hard x-ray scattering, coherent soft x-ray scattering and polarization, submicron resolution x-ray spectroscopy, and x-ray powder diffraction. For each beamline, a beamline advisory team, or BAT, has been established to represent the broader scientific community in a specific area of

87

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

88

NSLS-II Transport Line Progress  

SciTech Connect

The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The first part of the Linac to Booster Transport (LBT) line has been installed for linac commissioning. This part includes all components necessary to commission the NSLS-II linac. The second part of this transport line is undergoing installation. Initial results of hardware commissioning will be discussed. The Booster to Storage Ring (BSR) transport line underwent a design review. The first part of the BSR transport line, consisting of all components necessary to commission the booster will be installed in 2012 for booster commissioning. We report on the final design of the BSR line along with the plan to commission the booster.

Fliller R. P.; Wahl, W.; Anderson, A.; Benish, B.; DeBoer, W.; Ganetis, G.; Heese, R.; Hseuh, H.-C.; Hu, J.-P.; Johanson, M.P.; Kosciuk, B.N.; Padrazo, D.; Roy, K.; Shaftan, T.; Singh, O.; Tuozzolo, J.; Wang, G.

2012-05-20T23:59:59.000Z

89

SYNCHROTRON RADIATION LIGHTSOURCES AT LAWRENCE BERKELEYNATIONAL...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford are allocated beam time (shifts) to perform a variety of research. SYNCHROTRON RADIATION LIGHT SOURCES AT LAWRENCE BERKELEY NATIONAL LABORATORY AND STANFORD LINEAR...

90

NSLS Vacuum  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Vacuum Safe Guards X-Ray Feedthroughs VUV Feedthroughs R&D "Much ado about nothing", a popular title from English literature, has been quoted often to vacuum technologists relative to our work. In the real world there is much to do to obtain the nothingness of a good vacuum! There is even more to achieving the good ultra-high vacuum (UHV) needed for the NSLS storage rings. Today's vacuum technologist must be familiar with a large variety of pumps, gauges, chambers, materials, processes, valves, controls, diagnostics, etc., related to vacuum. A practical example would be to measure, find, and fix a system vacuum leak - a task easily compared to finding a needle in a haystack. A good knowledge of vacuum systems and skill with mass spectrometers is required for success. The vacuum

91

NSLS Services | Shipping Procedures  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS Shipping Procedures For shipments arriving at the NSLS from other locations, please ship via Federal Express. If this is not possible, or if you have any questions, please...

92

Welcome to Stanford Synchrotron Radiation Lightsource | Stanford  

NLE Websites -- All DOE Office Websites (Extended Search)

Percolation Explains How Earth's Iron Core Formed Percolation Explains How Earth's Iron Core Formed Using r-Space Phase Information in EXAFS to Characterize Possible Off-center Displacements in PbTe Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Structure of Chinese Herbal-based Medicine Captured by ATP on a Human tRNA Synthetase Previous Pause Next Supporting the User Community ginter Register Submit Proposals Request Beam Time Check-In Visiting scientists ("users") from universities, industries and laboratories around the world use SSRL experimental facilities to conduct experiments across a broad range of scientific, engineering, and environmental disciplines. Our Experimental Facilities SPEAR Plot Click for Full Status Beam Lines Labs Schedules

93

About the Stanford Synchrotron Radiation Lightsource | Stanford...  

NLE Websites -- All DOE Office Websites (Extended Search)

and leads to major advances in energy production, environmental remediation, nanotechnology, new materials and medicine. SSRL also provides unique educational experiences and...

94

Biological Applications of Synchrotron Radiation:  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Applications of Synchrotron Radiation: Biological Applications of Synchrotron Radiation: An Evaluation of the State of the Field in 2002 A BioSync Report. Issued by the Structural Biology Synchrotron users Organization, October, 2002. 2 Table of Contents: Introduction .................................................................................................... 3 Abbreviations .................................................................................................. 5 Executive Summary ......................................................................................... 6 General Concerns ............................................................................................ 9 Synchrotron operations and maintenance ............................................... 9 NSLS, CHESS and the geographical distribution of beam lines

95

NSLS Committees | Interlock Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Interlock Working Group Charge The NSLS Interlock Working Group shall review all new construction and modification of NSLS and SDL personnel protection interlock systems. It is the...

96

NSLS-II Project Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Project Pages Project Management Team Project Schedule Integrated Project Team (IPT) Monthly Status Meetings Advisory Committees Project Reviews Documents NSLS-II...

97

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

| Industrial Program Coordinator | Publications Courtesy of The New York Times, Noah Berger The overall goal of the plan to enhance the NSLS facility's Industrial Users'...

98

NSLS Committees | ALARA Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

toward making radiation exposure As Low As Reasonably Achievable (ALARA). Reports to NSLS Chairman. Membership A. Ackerman R. Casey - Chairman N. Gmur E. Haas R. Heese X. Yang...

99

NSLS Insertion Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Insertion Devices MGU-25 VUV Ring Insertion Devices X-Ray Ring Insertion Devices VISA NISUS Flux & Brightness of NSLS IDs Magnetic Measurement Lab...

100

NSLS Work Planning & Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Work Planning & Controls NSLS Work Planning and Control Procedure Lead Working Guidelines Information on Working in Areas Subject to Radiation from VUV Injection Procedure for...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NSLS Activity Report 1996  

NLE Websites -- All DOE Office Websites (Extended Search)

Submission System PDF Publishing: P. Sutherland (BNL Information Services Division) NSLS Home Page...BNL Home Page...Return to Activity Reports Page...

102

NSLS User Access  

NLE Websites -- All DOE Office Websites (Extended Search)

After checking in with the Guest, User, Visitor (GUV) Center, and upon arrival at the NSLS, Beamline Operation and Safety Awareness (BLOSA) training is required for all users....

103

NSLS Industrial User Enhancement Plan The overall goal of this plan for enhancing the NSLS Industrial Users' Program is to encourage greater  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial User Enhancement Plan Industrial User Enhancement Plan The overall goal of this plan for enhancing the NSLS Industrial Users' Program is to encourage greater use of synchrotron tools by industry researchers, improve access to NSLS beamlines by industrial researchers, and facilitate research collaborations between industrial researchers and NSLS staff, as well as researchers from university and government laboratories. The implementation of this plan will also involve modifications of the existing user access policy. The plan includes the following major elements: Improve the NSLS proposal review system:  Proposal rating review criteria has been modified to reflect the importance of technology

104

Theses | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Theses Theses 2013 Elizabeth L. Baxter, "Uncovering Allostery in a Uniquely Folded Metalloprotein", University of California San Diego, 2013; Advisor: P. A. Jennings Martja A. Beckwith, "X-ray Absorption and Emission Spectroscopy of Manganese Complexes Relevant to Photosystem II", Cornell University, 2013; Advisor: S. DeBeer Beate Fulda, "Changes in Copper and Cadmium Solubility and Speciation Induced by Soil Redox Dynamics - Competitive Metal Sulfide Formation and Interactions with Natural Organic Matter", ETH Zurich, 2013; Advisor: R. Kretzschmar Thomas D. Grant, "Understanding the Structure of Eukaryotic Glutaminyl-TRNA Synthetase: Combining X-ray Crystallography with Statistical Evaluations of Small Angle Scattering Data", State University of New York Buffalo, 2013;

105

SSRL- Stanford Synchrotron Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

esteemed member of the international scientific community as a teacher and researcher in electrical engineering, applied physics and materials science. Bill spent the past 40...

106

SSRL- Stanford Synchrotron Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Development Award honors a pioneer at the forefront of accomplishments in NMR, EPR, and x-ray absorption spectroscopy who was dedicated to the pursuit of the...

107

NSLS-II Proposal for Approval of Conceptual Design (CD-0)  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal for Approval of Conceptual Design (CD-0) CD0 cover This proposal is to construct and then operate a new National Synchrotron Light Source, NSLS-II, at Brookhaven National...

108

BNL/SBU NSLS-II Workshop, May 18, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL Hosts Internal Workshop on Future of NSLS-II BNL Hosts Internal Workshop on Future of NSLS-II About 125 Brookhaven Laboratory and Stony Brook University scientists and staff participated in an internal workshop to learn about the status and plans for the National Synchrotron Light Source II (NSLS-II) on Wednesday, May 18, 2011, at BNL. The workshop's purpose was to help us identify strategies for developing and enhancing research programs in the different areas of science at BNL and SBU that will benefit from NSLS-II's capabilities. Attendees heard overview talks on the Laboratory's general vision and strategy, including the role of NSLS-II, a summary of NSLS-II status and plans, and a summary of the current state of the Lab's and SBU's science and technology (S&T) research interests (and collaborations) in using NSLS-II. During subsequent breakout sessions, workshop leaders solicited input for inclusion in the emerging strategies for developing, evolving, and positioning research programs to take maximum advantage of NSLS-II. Development of these strategies is being facilitated by a working group drawn from across BNL and SBU, including Allen Orville (ELS), Lisa Miller (PSD), Ron Pindak (PSD), Qun Shen (PSD), John Hill (BES), Jason Graetz (ST), Jose Rodriguez (BES), Lynne Ecker (GARS), Jeff Fitts (ELS), Ben Hsiao (SBU), Bob Haltiwanger (SBU), John Parise (SBU) and Doon Gibbs. The working group subsequently gathered the input from the breakout sessions and developed strategies for the further refinement of the developing NSLS-II based research programs as a part of the Laboratory's strategy for achieving its S&T missions. The results are presented here.

109

NSLS Booster & Linac Ring  

NLE Websites -- All DOE Office Websites (Extended Search)

Booster & Linac Ring Booster & Linac Ring Booster Operating Parameters (pdf) Lattice Information (pdf) Mechanical Drawing (pdf) Standard Operating Mode Electrons are injected into the NSLS storage rings from a 750 MeV booster synchrotron fed by a 120 MeV linac. The electrons are first produced in a 100 KeV triode electron gun. The gun is pulsed at the booster revolution period, 94.6 nsec, seven times per booster cycle. Each pulse is 5 nsec long and supplies about 17 microbunches in the linac. After acceleration in the linac, the beam is injected into the booster on seven successive turns. Multi-turn injection in the booster is accomplished in the following way: The beam is deflected into the booster by a septum magnet. The first linac pulse goes around the booster and returns to the injection point just as

110

NSLS Services | Procurement  

NLE Websites -- All DOE Office Websites (Extended Search)

signed. Forward signed copy to Joan Marshall at mail stop 725D. Users with questions about ILRs should contact the Building Manager. NSLS Staff should contact Joan Marshall (x3887)...

111

NSLS Services | Libraries  

NLE Websites -- All DOE Office Websites (Extended Search)

Libraries Green-Chasman Library (located in the NSLS) Located on the experimental floor near the Stockroom, this room is open at all times and contains a modest collection of...

112

NSLS Conduct of Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Securing the X-Ray Tunnel (LS-OPS-0003) Qualified Search Personnel for NSLS Accelerators (LS-ESH-0009) General Procedures Caution Tags (LS-OPS-0004) Conduct of...

113

NSLS II: Authentication Required  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Pages Login Access to this area of the NSLS-II website requires a valid username and password. Username: Password: Next > Last Modified: April 2, 2013 Please forward all...

114

NSLS Weekly Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Weekly Activities There are a variety of weekly meetings for NSLS staff and users. These are posted regularly on the TV monitors (User Information Channel 22), along with any time...

115

NSLS User Access  

NLE Websites -- All DOE Office Websites (Extended Search)

Requesting Beamtime The first step is to submit a proposal for an experiment at the NSLS. You may do so by using the web-based proposal system called PASS with a temporary ID...

116

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

117

Extraordinary Tools for Extraordinary Science: The Impact of SciDAC on Accelerator Science & Technology  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS) at BNL, the StanfordFigure 8. Aerial photos the NSLS at BNL (top left), SSRL at

Ryne, Robert D.

2006-01-01T23:59:59.000Z

118

Comparison of EXAFS Foil Spectra from Around the World  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS), Stanford SynchrotronTechnology Program. Use of the NSLS, BNL, was supported byafter mono slits = 300 NSLS X23A2 Si(311) Cu (4 ), Pd(15

Kelly, S. D.

2010-01-01T23:59:59.000Z

119

NSLS-II | NEXT Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

NEXT Integrated Project Team NEXT Integrated Project Team NEXT stands for NSLS-II Experimental Tools, a set of six beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the U.S. Department of Energy (DOE). DOE uses an integrated project teaming approach for managing the NEXT Project. This Integrated Project Team (IPT) is organized and led by the NSLS-II Federal Project Director. It is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NEXT Project will consist of members from both DOE and the

120

Stanford University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Prof. Wendy Mao create amorphous diamond Stanford University Dept. of Sustainability and Energy Management Stanford School of Engineering San Francisco, bordered by the Bay and...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NSLS-II Design and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Design & Performance NSLS-II CD-0 Proposal Preliminary Design Report (PDR) Conceptual Design Report (CDR) Source Properties (.pdf) Cell section Last Modified: April 2,...

122

Photon Sciences | Data Management at NSLS  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Management at NSLS Users of the NSLS are responsible for meeting their Data Management obligations to their home institutions and granting agencies. Other than the beamline...

123

NSLS ESH&Q | Additional Safety Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Committees Working Committees Staff Directory Employment Statistics 2010 Annual Report 2009 Light Sources Directorate Strategic Plan (PDF) Contacts Facilities NSLS NSLS-II...

124

NSLS Committees | Beamline Review Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Scrutinize all proposed beamline constructions and modifications to ensure they meet NSLS standards for safety (including radiation shielding), vacuum, and mechanical design....

125

NSLS Mechanical Tech  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Tech Mechanical Tech The Mechanical Technician group is supervised by Robert Scheuerer and consists of Mechanical Technicians with fabrication/machining, assembly, installation, and alignment/surveying skills. This group also serves as an interface to Central Fabrication Services when more complex or larger fabrication efforts are needed. The Mechanical Tech group is responsible for fabricating, installing, aligning, and troubleshooting the mechanical hardware used on NSLS and SDL accelerators, front ends, and User beamlines, often starting solely from Mechanical Design group drawings or CAD files. The Mechanical Tech Group is responsible for the fabrication, assembly and installation of components at the NSLS. These components include all mechanical assemblies and RF cavities. Another part of their job is to

126

NSLS Electrical Equipment Inspection  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Equipment Inspection Information Electrical Equipment Inspection Information A note to vendors visiting NSLS A note to users visiting NSLS Proteus Electrical Conformity Remediation Currently Certified Electrical Equipment Inspectors: First Line Contacts Email Extension Poshka, Dennis poshka@bnl.gov 2825 Alternate Contacts Boerner Jr, Albert aboerner@bnl.gov 5990 Buda, Scott buda@bnl.gov 3914 Caruso, Michael caruso@bnl.gov 4100 Chmiel, Robert chmiel@bnl.gov 8141 Church, Randolph church@bnl.gov 2736 Clay, Barret clay@bnl.gov 7284 D'Alsace, Roy dalsace@bnl.gov 3973 Danneil, Christopher cdanneil@bnl.gov 8609 Davila, Peter davila@bnl.gov 7625 De Toll, Peter detoll@bnl.gov 4100 Durfee, Douglas ddurfee@bnl.gov 7625 Fulkerson, Michael fulkerso@bnl.gov 5194 Gallagher, John jgallagher@bnl.gov 5770 Harder, David dharder@bnl.gov 4978

127

NSLS II: Life Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological and Medical Imaging Biological and Medical Imaging Overview The high brightness of NSLS-II will make it possible to tightly focus the beam to create very intense nanoprobes for high-resolution cellular imaging and sensitive trace element mapping in biological specimens. The brightness will also provide highly collimated beams of high intensity and large transverse dimensions for novel forms of medical imaging and tomography. NSLS-II will also provide the broadest range of wavelengths to users in a single facility, extending from hard X-rays to the far-infrared and enabling a wide array of analytical techniques, including: X-ray microscopy (hard and soft; scanning and full-field), diffraction imaging, X-ray tomography, X-ray microprobe, diffraction-enhanced imaging (DEI), and infrared imaging. These diverse imaging tools will span the resolution scale from nanometers to millimeters, allowing non-destructive analysis of biological subjects ranging from sub-cellular structures to humans.

128

NSLS Services | Postal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Postal Services Postal Services U.S. Postal Service BNL has a full-service U.S. Postal Service Office (Upton branch) located in Staff Services, Building 179, x2539. BNL Mail Service Mail is delivered and picked up twice a day from each building on site. Users should leave internal lab mail (brown envelopes, no stamps needed) and U.S. Mail (regular envelopes, stamps required) in the outgoing mail boxes at NSLS mail stop 725A, located in the lobby by the elevator. Receiving Mail During regular working hours, packages and other special deliveries are brought to the Stockroom while regular mail is taken to the mailstops around the building. Each beam port is assigned a mail slot at NSLS mail stop 725A near the elevator in the lobby. The beamline number should be on all mail addressed to users. Mail to users should be addressed as follows

129

*Department of Computer Science, Stanford University, Stanford, CA ...  

E-Print Network (OSTI)

*Department of Computer Science, Stanford University, Stanford, CA 94305. E- mail: manchoso@cs.stanford.edu. Department of Management Science and...

130

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

All Documents listed below are part of the Photon Sciences Directorate and All Documents listed below are part of the Photon Sciences Directorate and will be updated as needed. Photon Sciences ESH Standard Operating Procedures (SOPs) SOP No. Standard Operating Procedure for: LS-ES-0002 Procedure for Acid Etching of Silicon and Germanium Crystals LS-ESH-0004 NSLS Operations Group Chemical Spill and Gas Release Response LS-ESH-0010 VUV Injection Shutter LOTO LS-ESH-0012 LINAC LOTO LS-ESH-0013 Controlled Access to the VUV Ring LS-ESH-0014 Radiation Safety Interlocks at the National Synchrotron Light Source LS-ESH-0019 Beam Line Configuration Control Checklist Requirements LS-ESH-0020 Biosafety Requirements at the NSLS LS-ESH-0021 Biosafety Level 2 work at the NSLS/ A Technical Basis LS-ESH-0022 Beam Line Configuration Control Checklist Requirements

131

SHIELDING REQUIREMENTS FOR NSLS-II.  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory is in the process of designing a new Electron Synchrotron for scientific research using synchrotron radiation. This facility, called the 'National Synchrotron Light Source II' (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster accelerator operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to < 1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be low, on the order of 2-3 hours. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis are discussed in this paper. The characteristics of each of the accelerators and their operating modes are summarized with the input assumptions for the bulk shielding analysis.

JOB,P.K.; CASEY, W.R.

2008-01-02T23:59:59.000Z

132

NSLS II Advisory Committees  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Sciences Advisory Committees Science Advisory Committee Harald Reichert, Chair, European Synchrotron Radiation Facility Simon Bare, UOP Jay Bass, University of Illinois...

133

Photon Sciences | About the National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Source NSLS One of the world's most widely used scientific research facilities, the National Synchrotron Light Source (NSLS) is host each year to 2,400 researchers from more than 400 universities, laboratories, and companies. Research conducted at the NSLS has yielded advances in biology, physics, chemistry, geophysics, medicine, and materials science. Synchrotron light is produced by electrons when they are forced to move in a curved path at nearly the speed of light. At the NSLS, beams of light in the x-ray, ultraviolet, and infrared wavelengths are produced by two synchrotrons for use in experiments. Powerful Light, Diverse Research Since the intensity of synchrotron light can be 10,000 times greater than conventional beams generated in a laboratory, scientists can use these

134

NSLS Endstations | Center for Functional Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

UV and X-ray Probes UV and X-ray Probes The CFN operates three end-stations at the National Synchrotron Light Source (NSLS) for nanomaterials characterization. The station located at the X9 beamline performs simultaneous small- and wide-angle X-ray scattering experiments for nano-scale structural characterization of a variety of materials. The Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS) station located at beamline X1A1 is capable of soft X-ray photoelectron spectroscopy for quantitative surface chemical analysis of a range of materials at gas pressures up to about 1 Torr. The undulator beamline U5UA hosts a station operating in ultra-high vacuum with a low-energy electron microscope (LEEM) and X-ray photo-emission electron microscope (XPEEM). The LEEM-XPEEM system can be used to study static and

135

INSERTION DEVICE ACTIVITIES FOR NSLS-II.  

DOE Green Energy (OSTI)

National Synchrotron Light Source-II (NSLS-II) will be a medium energy storage ring of 3GeV electron beam energy with sub-nm.rad horizontal emittance and top-off capability at 500mA. Damping wigglers will be used not only to reduce the beam emittance but also used as broadband sources for users. Cryo-Permanent Magnet Undulators (CPMUs) are considered for hard X-ray linear device, and permanent magnet based elliptically polarized undulators (EPUs) for variable polarization devices for soft X-ray. 6T superconducting wiggler with minimal fan angle will be installed in the second phase as well as quasi-periodic EPU for VUV and possibly high-temperature superconducting undulator. R&D plans have been established to pursue the performance enhancement of the baseline devices and to design new types of insertion devices. A new insertion device development laboratory will also be established.

TANABE,T.; HARDER, D.A.; HULBERT, S.; RAKOWSKI, G.; SKARITKA, J.

2007-06-25T23:59:59.000Z

136

NSLS-II Preliminary Design Report  

Science Conference Proceedings (OSTI)

Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. In order to meet this need, NSLS-II has been designed to provide world-leading brightness and flux and exceptional beam stability. The brightness is defined as the number of photons emitted per second, per photon energy bandwidth, per solid angle, and per unit source size. Brightness is important because it determines how efficiently an intense flux of photons can be refocused to a small spot size and a small divergence. It scales as the ring current and the number of total periods of the undulator field (both of which contribute linearly to the total flux), as well as eing nversely proportional to the horizontal and vertical emittances (the product of beam size and divergence) of the electron beam. Raising the current in the storage ring to obtain even brighter beams is ultimately limited by beam-driven, collective instabilities in the accelerator. Thus, to maximize the brightness, the horizontal and vertical emittances must be made as small as possible. With the concept of using damping wigglers, low-field bending magnets, and a large number of lattice cells to achieve ultra small emittance, the performance of NSLS-II will be nearly at the ultimate limit of storage ring light sources, set by the intrinsic properties of the synchrotron radiation process. The facility will produce x-rays more than 10,000 times brighter than those produced at NSLS today. The facility, with various insertion devices, including three-pole-wigglers and low-field dipole radiations, has the capability of covering a broad range of radiation spectra, from hard x-ray to far infra-red. The superlative character and combination of capabilities will have broad impact on a wide range of disciplines and scientific initiatives in the coming decades, including new studies of small crystals in structural biology, a wide range of nanometer-resolution probes

Dierker, S.

2007-11-01T23:59:59.000Z

137

PERFORMANCE OF THE DIAGNOSTICS FOR NSLS-II LINAC COMMISSIONING  

Science Conference Proceedings (OSTI)

The National Synchrotron Light Source II (NSLS-II) is a state of the art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The transfer lines not only provide a means to deliver the beam from one machine to another, they also provide a suite of diagnostics and utilities to measure the properties of the beam to be delivered. In this paper we discuss the suite of diagnostics that will be used to commission the NSLS-II linac and measure the beam properties. The linac to booster transfer line can measure the linac emittance with a three screens measurement or a quadrupole scan. Energy and energy spread are measured in a dispersive section. Total charge and charge uniformity are measured with wall current monitors in the linac and transformers in the transfer line. We show that the performance of the diagnostics in the transfer line will be sufficient to ensure the linac meets its specifications and provides a means of trouble shooting and studying the linac in future operation.

Fliller III, R.; Padrazo, D.; Wang, G.M.; Heese, R.; Hseuh H.-C.; Johanson, M.; Kosciuk, B.N.; Pinayev, I.; Rose, J.; Shaftan, T.; Singh, O.

2011-03-28T23:59:59.000Z

138

NSLS Services | User Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

User Accounts User Accounts Operating Accounts (81000 accounts) General Users who are allocated beam time and Participating Research Teams (PRTs) or Contributing Users (CUs) who operate beamlines should establish a BNL operating account to cover the costs of materials while running an experiment, shipping, and/or miscellaneous BNL services (telephone & fax codes), if these needs are anticipated. The term of the purchase order must be specified and names of persons having signature authorization for charges against this account must be listed. Brookhaven's Fiscal Division will bill the user for any charges the user makes to the account. Users are obligated to pay outstanding debts promptly. All users should set up a $1,000 operating account to cover operating expenses while at the NSLS, such as charges for use of trades, shops, and

139

NSLS User Access | Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Training Training for New Users and Users with Expired Training and/or Badges: All new users and users with expired badges must complete or update the training modules shown below prior to access to the experimental floor. The training can be completed online prior to arrival at the NSLS and is strongly recommended to save considerable time during check-in at the Guest, User, Visitor (GUV) Center in Building 400. Please note each training module is followed by an exam which asks for your name and guest number. If you do not already have a guest number, leave this entry blank. All new users and users with expired badges MUST arrive on a weekday (no weekends or holidays) and check in at the GUV Center so that your training can be verified and to receive a photo ID badge (new or updated). The GUV

140

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov National Synchrotron Light Source II  

E-Print Network (OSTI)

of power, or as much as needed to power about 300,000 light bulbs or 4,000 homes. · Cooling the facility · 631 344-2345 · www.bnl.gov FACTS (04-11) National Synchrotron Light Source II NSLS-II by the Numbers World's premier synchrotron will light the way to new discoveries · Like all synchrotrons, NSLS

Homes, Christopher C.

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DESIGN OF VISIBLE DIAGNOSTIC BEAMLINE FOR NSLS2 STORAGE RING  

SciTech Connect

A visible synchrotron light monitor (SLM) beam line has been designed at the NSLS2 storage ring, using the bending magnet radiation. A retractable thin absorber will be placed in front of the first mirror to block the central x-rays. The first mirror will reflect the visible light through a vacuum window. The light is guided by three 6-inch diameter mirrors into the experiment hutch. In this paper, we will describe design work on various optical components in the beamline. The ultra high brightness NSLS-II storage ring is under construction at Brookhaven National Laboratory. It will have 3GeV, 500mA electron beam circulating in the 792m ring, with very low emittance (0.9nm.rad horizontal and 8pm.rad vertical). The ring is composed of 30 DBA cells with 15 fold symmetry. Three damping wigglers will be installed in long straight sections 8, 18 and 28 to lower the emittance. While electrons pass through the bending magnet, synchrotron radiation will be generated covering a wide spectrum. There are other insertion devices in the storage ring which will generate shorter wavelength radiation as well. Synchrotron radiation has been widely used as diagnostic tool to measure the transverse and longitudinal profile. Three synchrotron light beam lines dedicated for diagnostics are under design and construction for the NSLS-II storage ring: two x-ray beam lines (pinhole and CRL) with the source points from Cell 22 BM{_}A (first bending in the DBA cell) and Cell22 three-pole wiggler; the third beam line is using visible part of radiation from Cell 30 BM{_}B (second bending magnet from the cell). Our paper focuses on the design of the visible beam line - SLM.

Cheng, W.; Fernandes, H.; Hseuh, H.; Kosciuk, B.; Krinsky, S.; Singh, O.

2011-03-28T23:59:59.000Z

142

PULSE at Stanford University  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Science @ SLAC - LCLS - LUSI - SSRL - PULSE - Stanford University Go Search Home Publications Atomic & Molecular Physics Condensed Matter Physics Single Molecule Imaging...

143

2005 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Publications 5 Publications Journal Papers E. C. Abresch, H. L. A. Axelrod, J. T. Beatty, J. A. Johnson, R. Nechushtai and M. L. Paddock, "Characterization of a Highly Purified, Fully Active, Crystallizable RC-LH1-PufX Core Complex from Rhodobacter sphaeroides", Photosynth. Res. 86, 61 (2005) E. J. Adams, Y.-H. Chien and K. C. Garcia, "Structure of a gdT Cell Receptor in Complex with the Nonclassical MHC T22", Science 308, 5719 (2005) H. Adhikari, P. C. McIntyre, S. Sun, P. Pianetta and C. E. D. Chidsey, "Photoemission Studies of Passivation of Germanium Nanowires", Appl. Phys. Lett. 87, 263109 (2005) M. Adler, J. Bryant, B. Buckman, I. Islam, B. Larsen, S. Finster, L. Kent, K. May, R. Mohan, S. Yuan and M. Whitlow, "Crystal Structures of

144

2010 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Publications 10 Publications Journal Papers J. B. Aitken, E. A. Carter, H. Eastgate, M. J. Hackett, H. H. Harris, A. Levina, Y.-C. Lee, C.-l. Chen, B. Lai, S. Vogt and P. A. Lay, "Biomedical Applications of X-ray Absorption and Vibrational Spectroscopic Microscopies in Obtaining Structural Information from Complex Systems", Radiat. Phys. Chem. 79, 176 (2010) doi: 10.1016/j.radphyschem.2009.03.068 F. Aksoy, G. Akgul, Y. Ufuktepe and D. Nordlund, "Thickness Dependence of the L2,3 Branching Ratio of Cr Thin Films", J. Alloys Compd. 508, 233 (2010) doi: 10.1016/j.jallcom.2010.07.100 H. M. Alvarez, Y. Yue, C. D. Robinson, M. A. Canalizo-Hernández, R. A. Marvin, R. A. Kelly, A. Mondragón, J. E. Penner-Hahn and T. V. O'Halloran, "Tetrathiomolybdate Inhibits Copper Trafficking Proteins

145

Forms & Applications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Forms & Applications Forms & Applications Forms: Before You Arrive User Information Log in to the User Portal to Register or Update Contact Informatioin Proposals Submit Proposals via User Portal (including Rapid Access and Letters of Intent) Proposal Extension Requests X-ray/VUV/SMB Macromolecular Crystallography (MC) User Agreements Non-Proprietary User Agreement Proprietary Research User Agreement Beam Time & Support Requests Log in to User Portal to Submit Beam Time or User Support Requests Computer Account X-ray/VUV/SMB Macromolecular Crystallography Use of SLAC Information Resources (submit with account request) User Financial Account User Financial Account Gas & Cryogenics Liquid Helium & Standard/Specialty Shipping & Receiving Hazardous Materials Shipper Non-Hazardous Materials Shipper

146

Experimental Equipment | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Equipment SSRL plans the distribution of its limited equipment on the basis of the information supplied on the Beam Time Request Form and the User Support Requirements Form. Please make sure to state all of your needs. Standard X-Ray Station Equipment Standard equipment to be found on an x-ray station includes: (1 ea.) Small and large ionization chambers (1) Exit slits (1) X-Y sample positioner (3) Keithly 427 current-to-voltage amplifier TEK 2215 60 MHZ 2 channel scope Voltage-to-frequency converter (3 channels) (1) Fluke high voltage power supply (1) Kinetic Systems hex scaler (1) Kinetic Systems up-down presettable counter (1) Ortec real-time clock (2) Joerger stepping motor controller DSP Micro VAX or Kinetic Systems G.I./CAMAC crate controller (1) Standard Engineering Corporation CAMAC power supply

147

Scientific Advisory Committee | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Advisory Committee Scientific Advisory Committee » SAC DOCUMENTS 2013 Role and Charter of the SSRL SAC Scope The SSRL Scientific Advisory Committee (SAC) reports to and advises the SSRL Director on issues related to: Operation of SSRL as a scientific user facility Planning, construction and operation of new SSRL facilities Long-term scientific directions of SSRL Membership and Officers SAC consists of 12 external members, and representatives from the following SSRL committees serve on the SAC in an Ex Officio capacity Co-Chairs of the SSRL Proposal Review Panel (PRP) Chair of the Structural Molecular Biology Advisory Committee (SMBAC) Chair of the SSRL Users' Organization Executive Committee (SSRLUOEC SAC members are appointed by the SSRL Director for 3-year terms, with one third of the members rotating off and being replaced every year

148

User Agreements | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreements Agreements Institutional Agreements Required to Access DOE National User Facilities In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department of Energy (DOE) has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities, see http://www.gc.doe.gov/1002.htm. Non-Proprietary User Agreement (PDF) (General User Agreement; no cost for general users) Proprietary User Agreement (PDF) (For Confidential or Proprietary Research; also requires advance payment) A User Agreement is required for all users and must be executed by the appropriate institutional officer(s) at the user's institution. A single User Agreement covers all experimenters from that institution (User

149

User Financial Accounts | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Accounts Financial Accounts Why Have a User Financial Account? Each user group should establish a user financial account to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. Establishing/Renewing a User Financial Account The most common method of establishing or renewing a user financial account is by providing a purchase order (PO) (or a letter from the financial officer of the user institution). The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated expenditures (the suggested minimum is $1,000). The PO should include the expiration date, user names, funding agency, grant/contract number and whether expenditures

150

On-Surface Magnetochemistry | Stanford Synchrotron Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

interface. This knowledge can serve as a basis to develop applications in organic spintronics or magnetochemical sensors. Furthermore, by using synthetically directed molecular...

151

Floor Support | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Floor Support Floor Support Service Responsible Person BLDG Extension (650) 926-XXXX Beam Status Duty Operator 120 926-2326 (BEAM) Duty Operator Cell Duty Operator 120 926-4040 Scheduling X-ray/VUV Macromolecular Crystallography Cathy Knotts Lisa Dunn 120 120 3191 2087 User Check-In/Badging Jackie Kerlegan 120 2079 User Financial Accounts Jackie Kerlegan 120 2079 Beam Lines/ VUV Bart Johnson 120 3858 Beam Lines/ X-ray Bart Johnson 120 3858 Beam Lines/ X-ray Mechanical Chuck Troxel, Jr. 120 2700 Beam Lines/ X-ray-VUV Electronics Alex Garachtchenko 120 3440 Beam Lines/ Macromolecular Crystallography Mike Soltis 277 3050 SMB XAS Beam Lines & Equipment Matthew Latimer Erik Nelson 274 274 4944 3938 MEIS XAS Beam Lines & Equipment Matthew Latimer

152

SSRL SMB Program | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

SMB Program SMB Program SSRL Structural Molecular Biology program The SSRL Structural Molecular Biology program operates as a integrated resource and has three primary areas (or cores) of technological research and development and scientific focus: macromolecular crystallography (MC), x-ray absorption spectroscopy (XAS), and small angle x-ray scattering/diffraction (SAXS). Central to the core technological developments in all three of these areas is the development and utilization of improved detectors and instrumentation, especially to be able to take maximum advantage of the increasingly high brightness of SSRL's storage ring (SPEAR3). There is also research and development in new methods - in techniques and instrumentation development and deployment. Included is the use of enhanced computing and data

153

Proposal Review Panel | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Review Panel Proposal Review Panel Submitting a proposal is the first step to access beam time at SSRL. Proposals are peer reviewed and rated by the SSRL Proposal Review Panel (PRP) on a scale from 1 (highest) to 5 (lowest). Successful proposals are eligble to request and may be awarded beam time on SSRL beam lines, with priority given to the highest rated proposals and those which demonstrate efficient and productive use of beam time. We have three proposal calls per year with one on-site PRP meeting at SSRL annually. Access Policy The work of the PRP is accomplished with four subpanels: BIO - The biology panel reviews proposals requesting beam time for imaging, X-ray spectroscopic studies, small-angle scattering experiments, and crystallography of biologically important samples.

154

Press Releases | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Press Releases Press Releases 2012 Press Releases December 10, 2012 Experiment Finds Ulcer Bug's Achilles' Heel (see Press Release) June 6, 2012 New secrets from "Bay of the Pirates" warship that sunk 2,300 years ago (see Press Release) March 5, 2012 X-rays Reveal How Soil Bacteria Carry Out Surprising Chemistry (see Press Release) 2011 Press Releases July 3, 2011 Researchers Decipher Protein Structure of Key Molecule in DNA Transcription System (see Press Release) June 30, 2011 X-rays Reveal Patterns in the Plumage of the First Birds (see Press Release) March 24, 2011 High-temperature Superconductor Spills Secret: A New Phase of Matter (see Press Release) March 23, 2011 First Image of Protein Residue in 50 Million Year Old Reptile Skin (see Press Release) 2010 Press Releases

155

Computer Networking Group | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Networking Group Networking Group Do you need help? For assistance please submit a CNG Help Request ticket. CNG Logo Chris Ramirez SSRL Computer and Networking Group Manager (650) 926-2901 | email Jerry Camuso SSRL Computer and Networking (650) 926-2994 | email Networking Support The Networking group provides connectivity and communications services for SSRL. The services provided by the Networking Support Group include: Local Area Network support for cable and wireless connectivity. Installation and maintenance of network printers and queues. Telephony installations and support. Printing Support The Networking group provides printer maintenance and support for SSRL Beamline Printers and plotters. The following models are supported: HP - Designjet large format plotters HP - Color and B/W Laserjet, Inkjet, Deskjet, Officejet

156

Photon Source Parameters | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Photon Source Parameters SSRL Beam Line Map | Beam Lines by Techniques | Beam Lines by Number Beam Energy 3 GeV Injection Energy 3 GeV Current 300-500 mA Fill Pattern 270 bunches distributed in six groups of 45 with 17 bunch gaps in between Circumferenc 234.137 Radio Frequency 476.315 MHz Bunch Spacing 2.1 n Horizontal Emittance 10 nm*rad Vertical Emittance 14 pm*rad Critical Energy 7.6 keV Energy Spread 0.097 Lifetime 12 hours @ 350 mA e- size (x,y) Dipole: 140, 14 µm rms Standard ID: 310, 8 µm rms Chicane ID: 300, 5 µm rms e- divergence (x,y) Dipole: 180, 2.9 µrad rms Standard ID: 33, 1.7 µrad rms Chicane ID: 34, 2.9 µrad rms Bunch Length 20 psec rms (6.0 mm rms) Straight sections for IDs (available ID length) 9 x 2.3 m 4 x 3.7 m 2 x 1.5 m (Chicane)

157

2012 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Publications 2 Publications Journal Papers L. A. Abriata, D. Alvarez-Paggi, G. N. Ledesma, N. J. Blackburn, A. J. Vila and D. H. Murgida, "Alternative Ground States Enable Pathway Switching in Biological Electron Transfer", Proc. Natl. Acad. Sci. USA 109, 17348 (2012) doi: 10.1073/pnas.1204251109 H. B. Akkerman, A. C. Chang, E. Verploegen, C. J. Bettinger, M. F. Toney and Z. Bao, "Fabrication of Organic Semiconductor Crystalline Thin Films and Crystals from Solution by Confined Crystallization", Org. Electron. 13, 235 (2012) doi: 10.1016/j.orgel.2011.11.005 A. E. Aleshin, R. G. DiScipio, B. Stec and R. C. Liddington, "Crystal Structure of C5b-6 Suggests Structural Basis for Priming Assembly of the Membrane Attack Complex", J. Biol. Chem. 287, 19642 (2012) doi:

158

The Research Program | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

The Research Program The Research Program What is the chemical and physical form of uranium in reduced aquifers? Uranium behavior in the Rifle, CO, aquifer. In order to directly interrogate the chemical and physical form of reduced uranium (U(IV)) in bioremediated sediments within the contaminated aquifer at the Rifle site, a novel technique was developed based on reactors installed in wells (center right). U(IV) was found to be bound to biomass (structural model shown in upper left-hand) within thin (microns) sulfide-rich coatings on mineral grains (bottom left). Uranium in its oxidized (U(VI)) form, is one of the most common, abundant, and problematic subsurface contaminants at legacy nuclear sites. In contrast, the tetravalent form of uranium (U(IV) ) is relatively insoluble

159

Staff Resources | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Staff Resources Staff Resources General Online Time and Effort System (online form) SSRL Weekly Reports Beam Line Coordination Minutes SLAC BIS Home Page SLAC only (forms, property purchasing, and more) Administrative Contacts SSRL General Phonelist SSRL Organizational Chart BL Ops Staff Support Website (VMS log in) Mailing List Management (SSRL only) - Login SLAC Budget Office SLAC only (petty cash info) SLAC Conference Rooms SLAC Staff Resources SLAC/SSRL Tours - contact SSRL Building Manager, Administration and SLAC Security. Requisitions & Property SLAC Shipper Request PeopleSoft Procurement Requisitions (training required) Offsite Property Use Form New Vendor Request Computing SLAC e-mail on the Web SLAC Unix password SSRL Computer Network Group SSRL Computing Help Request Form

160

SSRL Deadlines | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Deadlines Deadlines Beam Time Requests - See How to Request Beam Time Due Dates X-ray / VUV (Submit in User Portal) November - February scheduling August 15 February - May scheduling November 15 May - July scheduling February 20 Macromolecular Crystallography (MC) (Submit in User Portal) November - February scheduling September 15 March - May scheduling January 22 June - July scheduling April 20 New Proposals & Extension Requests - See Proposal & Scheduling Guidelines Due Dates X-ray / VUV (Submit in User Portal) Beam time eligibility beginning in November June 1 Beam time eligibility beginning in February September 3 Beam time eligibility beginning in May December 1 Macromolecular Crystallography (Submit in User Portal) Beam time eligibility beginning November July 1

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Foreign Users | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Armenia, Azerbaijan, Belarus, China, Georgia, Hong Kong, India, Iraq, Israel, Kazakhstan, Kyrgystan, Libya, Macau, Moldova, North Korea, Pakistan, Russia, Taiwan,...

162

SSRL Meetings, Workshops & Training Archive | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

(SSRL24) 15 OCT 1997 Applications of X-ray Absorption Spectroscopy in Monitoring, Understanding, and Improving Phytoremediation 15 OCT 1997 Ultra High Resolution Crystallographic...

163

SSRLUO 2013 Executive Committee Members | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

University in 2009. Between 2007 and 2009 she worked on catalyst related projects at Exxon Mobil as an intern three different times. Her undergraduate research project involved...

164

SSRL News & Events | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

SSRL News & Events Meetings, Conferences, Seminars, Schools, and Workshops Events Photon Science Seminar Series SLAC Public Lecture Series All SLAC Events SSRL Meetings, Workshops...

165

Administrative Contacts | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

SSRL Business Manager x2033 Natalie Cramar SSRL Financial Planner Budgets, Proposals, Financial planning, Monthly cost statements, Journal corrections x3648 Amy Koh Structural...

166

User Shipments | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

the Use Agreement, SSRL does not assume any liability for your equipment or materials. COD packages cannot be accepted. Shipping Crystallography Dewars to SSRL Users shipping...

167

2011 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

G. D. Straganz and E. I. Solomon, "Spectroscopic and Computational Studies of -keto Acid Binding to Dke1: Understanding the Role of the Facial Triad and the Reactivity of...

168

2013 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Publications Journal Papers T. A. Addington, R. W. Mertz, J. B. Siegel, J. M. Thompson, A. J. Fisher, V. Filkov, N. M. Fleischman, A. A. Suen, C. Zhang and M. D. Toney, "Janus:...

169

2008 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Publications Journal Papers R. J. Abergel, M. C. Clifton, J. C. Pizarro, J. A. Warner, D. K. Shuh, R. K. Strong and K. N. Raymond, "The SiderocalinEnterobactin Interaction: A...

170

2006 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Biol. Chem. 281, 22312 (2006) Y. Arai, M. McBeath, J. R. Bargar, J. Joye and J. A. Davis, "Uranyl Adsorption and Surface Speciation at the Imogolite-Water Interface:...

171

2007 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactions", Neuron 56, 992 (2007) Y. Arai, P. B. Moran, B. D. Honeyman and J. A. Davis, "In Situ Spectroscopic Evidence for Neptunium(V)-Carbonate Inner-Sphere and...

172

Director's Office | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Member of Technical Staff, Hewlett-Packard Co., 1978-1982. Professor (Research), Electrical Engineering, Photon Science, 1982-present. Assistant Director, SSRL, 1982-2005....

173

Stanford Synchrotron Radiation Lightsource: Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

solvents, acids, bases, buffers, and other common reagents. See the "Chemicals We Stock for Users" section to see the full list of chemicals that we keep on hand for users....

174

Stanford Synchrotron Radiation Lightsource: Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Supplies Available For Check Out Agate Mortar & Pestle Sets Buchi V-700 Vacuum Pump & condenser Campden Instruments Vibrating Manual Tissue Cutter HA 752 Diamond Scribes & Glass...

175

Computer Accounts | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Accounts Each user group must have a computer account. Additionally, all persons using these accounts are responsible for understanding and complying with the terms outlined in the...

176

SSRL Science | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Science SSRL Science Visit our Science Highlights Archive and list of User and Staff Publications for examples of SSRL user research. Accelerator Physics Macromolecular...

177

SSRL Imaging Group | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

resolution. These activities include efforts supported by DOE BES, NIH NIBIB, and the SSRL SMB Program supported by NIH NCRR and DOE BER. Beam Line 2-3 Hard-x-ray microprobe...

178

SSRL Publications & Reports | Stanford Synchrotron Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications & Reports Reporting Requirements & Acknowledgment Statements SSRL provides technical tools for world-leading science at no charge for scientists who conduct...

179

Contact SSRL | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Hill Road, MS 99 Menlo Park, CA 94025 Tel: 650-926-20794000 Fax: 650-926-36004100 SSRL Interim Director Piero Pianetta Tel: 650-926-3484 SSRLLCLS User Research...

180

User Research Administration | Stanford Synchrotron Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Administration LCLS and SSRL User Research Administration Cathy Knotts User Research Administration Manager Tel: (650) 926-3191 Fax: (650) 926-3600 LCLS and SSRL User...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Workshop: Synchrotron Applications in Chemical Catalysis | Stanford...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRLLCLS Annual Users Conference This workshop, part of the 2011 SSRLLCLS Annual Users...

182

SSRL Science Highlights Archive | Stanford Synchrotron Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recently, researchers have altered niobium oxide glass by inserting tin-doped indium oxide nanocrystals into its structure. PDF Version | X-ray diffraction BL11-3 Role...

183

Gate Hours & Services | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

from sunset to 6 am and on all shifts during weekends and holidays. Directions and Maps: Directions and maps are available from Security or the web. Emergency Assistance: In...

184

SSRL Presents Series | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Presents Series Presents Series Date Seminar Title 11/20/2013 Graphite and its Hidden Superconductivity 11/20/2013 Graphite and its Hidden Superconductivity 10/24/2013 Atomic-Resolution Spectroscopic Imaging and In Situ Environmental Study of Bimetallic Nanocatalysts by Fast Electrons 10/09/2013 New developments with SDD detectors 09/25/2013 X-ray and neutron scattering studies of the complex compounds 09/09/2013 Dopant Site Determination in Iron Oxide Nanoparticles Utilizing X-ray Absorption Techniques 08/21/2013 Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy 08/12/2013 Lensless Imaging of Atomic Surface Structures via Ptychography 08/09/2013 The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale

185

2009 Publications | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Publications 09 Publications Journal Papers J. Abendroth, A. C. Kreger and W. G. J. Hol, "The Dimer Formed by the Periplasmic Domain of EpsL from the Type 2 Secretion System of Vibrio parahaemolyticus", J. Struct. Biol. 168, 313 (2009) doi: 10.1016/j.jsb.2009.07.022 J. Abendroth, D. D. Mitchell, K. V. Korotkov, T. L. Johnson, A. Kreger, M. Sandkvist and W. G. J. Hol, "The Three-dimensional Structure of the Cytoplasmic Domains of EpsF from the Type 2 Secretion System of Vibrio cholerae", J. Struct. Biol. 166, 303 (2009) doi: 10.1016/j.jsb.2009.03.009 V. Aguilar-Guerrero, R. J. Lobo-Lapidus and B. C. Gates, "Genesis of a Cerium Oxide Supported Gold Catalyst for CO Oxidation: Transformation of Mononuclear Gold Complexes into Clusters as Characterized by X-ray

186

Emergency Exit Maps | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Exit Maps SSRL Exit Maps Exit map 219 exit map trailer 274 exit map 450 trailers exit map trailer 271 exit map trailer 270 exit map trailer 294 exit maps 118 & 117 exit...

187

NSLS control system upgrade status  

SciTech Connect

The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

1993-07-01T23:59:59.000Z

188

Upgrade of NSLS timing system  

SciTech Connect

We report on the progress of the new NSLS timing system. There are three types of requirements for NSLS timing system: clocks, synchronization and trigger circuits. All ring revolution frequency clocks are generated using ECL and high speed TTL logic. The synchronization circuits allows to fill both storage rings with any bunch pattern. The triggers are generated by using commercially available digital delay generators. The delay unit`s outputs are ultrastable, with a resolution of 5 ps, and are programmed by computer via IEEE 488 interface. The block diagrams, description of all major timing components and the present status are provided in this paper.

Singh, O.; Ramamoorthy, S.; Sheehan, J.; Smith, J.

1995-05-01T23:59:59.000Z

189

Design and Measurement of the NSLS II Correctors  

Science Conference Proceedings (OSTI)

The National Synchrotron Light Source II (NSLS-II) under construction at Brookhaven National Laboratory will be a new state-of-the-art 3 Gev electron storage ring designed to deliver world-leading intensity and brightness, and will produce x-rays more than 10,000 times brighter than the current NSLS at Brookhaven. The 792-meter circumference storage ring is comprised of approximately 1000 magnetic elements, 300 of which are discrete corrector magnets. The three variants are: 120 of the 100 mm aperture correctors, 60 of the 156 mm aperture correctors, and 90 of the air core correctors.[1] The 100 mm and 156 mm horizontal and vertical dipole correctors come in two varieties: with and without a DC skew quad corrector. The air core is strictly an AC horizontal and vertical dipole corrector. The specifications are listed. Discrete corrector magnets are used for the 230 horizontal and vertical steering magnets in the NSLS-II storage ring. A unique design incorporates both dipole and skew quad correctors for (DC) steering in the same magnet. Separate AC (orbit feedback) correctors have also been designed. Comparison with alternate designs are presented as well as prototype measurements.

Spataro, C.; Danby, G.; Jackson, J.W.; Jain, A.K.; Rehak, M.; Singh, O. Skaritka, J.

2009-05-04T23:59:59.000Z

190

2004 NSLS Activity Report  

NLE Websites -- All DOE Office Websites (Extended Search)

NatioNal NatioNal SyNchrotroN light Source activity report 2004 BNL 73577 National Synchrotron Light Source Activity Report 2004 BNL-73577-2005 UC400 (General Energy Research) DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commerical product, process, or service by trade name, trademark,

191

NSLS PRM Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

LS-ESH-PRM-1.5.2 Standards For Use of Coaxial Cables and Connectors in Signal and High Voltage Systems by NSLS Users & Staff PS-ESH-PRM-1.5.3 Interlock Safety LS-ESH-PRM-1.5.4...

192

NSLS-II RF SYSTEMS  

Science Conference Proceedings (OSTI)

The NSLS-II is a new third generation light source being constructed at Brookhaven Lab. The storage ring is optimized for low emittance by use of damping wigglers to reduce the emittance to below 1 nm-rad. The RF systems are designed to provide stable beam through tight RF phase and amplitude stability requirements.

Rose, J.; Gash, W.; Holub, B.; Kawashima, Y.; Ma, H.; Towne, N.; Yeddulla, M.

2011-03-28T23:59:59.000Z

193

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Authorization Documents Authorization Documents Environmental Assessment for NSLS, ATF & SDL NSLS Safety Assessment Document Accelerator Safety Envelope Fire Hazard Analysis Conduct of Operations NSLS-II Environmental Assessment (2006) Finding of No Significant Impact (2006) Comparison of NSLS-II Environmental Assessment with NSLS-II Title II Design Specifications (2008) "NEXT" Beamlines Environmental Evaluation Notification Form and Approval Memo (2011) Linac Commissioning Safety Assessment Document (2011) NSLS-II USI Determination #1 NSLS-II USI Determination #2 NSLS-II USI Determination #3 NSLS-II USI Determination #4 NSLS-II USI Determination #5 Linac Commissioning Accelerator Safety Envelope (2011) Linac Commissioning Plan (2011) Booster Commissioning Safety Assessment Document (2011)

194

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Collaborators Industrial Collaborators The National Synchrotron Light Source (NSLS) and its future successor, NSLS-II, can help companies large and small solve research and manufacturing problems, generate new technologies and products, and stay competitive. The Photon Sciences Directorate would like to encourage greater use of its facilities by industrial researchers and facilitate collaborations between industry and NSLS staff, as well as government and academic institutions. Synchrotron Use by Industry What is a synchrotron? A synchrotron light source is a large machine that produces intense beams of infrared, ultraviolet, and x-ray light for the study of substances at very small scales, from looking at the molecular structure of proteins to probing the electronic properties of the next generation of computer-chip

195

NSLS Committees | Work Planning/Permit Review Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

require enhanced work planning. Committees review and approve submitted work permits. NSLS reports to Operations Section Head, Emil Zitvogel. NSLS-II reports to ESH Manager,...

196

NSLS-II: Accelerator Systems Advisory Committee (ASAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

construction, and operations of major accelerator systems. This group will advise the NSLS-II Associate Laboratory Director (ALD) and the NSLS-II Associate Director for...

197

NSLS Committees | Environmental, Safety & Health Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental, Safety & Health Committee Charge The NSLS ES&H Committee shall meet as needed to review: Proposed modifications to the accelerator facility, its operation, or...

198

NSLS VUV Storage Ring  

NLE Websites -- All DOE Office Websites (Extended Search)

VUV Storage Ring VUV Storage Ring VUV Normal Operations Operating Parameters (pdf) Insertion Devices Flux & Brightness Orbit Stability Lattice Information (pdf) Lattice : MAD Dataset Mechanical Drawing (pdf) VUV Operating Schedule Introduction & History The VUV Ring at the National Synchrotron Light Source was one of the first of the 2nd generation light sources to operate in the world. Initially designed in 1976 the final lattice design was completed in 1978 shortly after funding was approved. Construction started at the beginning of FY 1979 and installation of the magnets was well underway by the end of FY 1980. The first stored beam was achieved in December of 1981 at 600 MeV and the first photons were delivered to beamlines in May 1982, with routine beam line operations underway by the start of FY 1983. The number of beam

199

NSLS Computer Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Systems Computer Systems Micro Systems WorkStation Applications Network Configuration Documents The National Synchrotron Light Source facility at the Brookhaven National Laboratory in New York, consists of two storage rings, one for VUV operating at 800 Mev and one for XRAY at 2.8 Gev and a common injection system comprised of a linear accelerator and a Booster ring. Hardware Architecture The hardware architecture of the present control system follows the current trend seen in many accelerator facilities. It is a two-level distributed system consisting of HP/900 series workstations connected by the standard ethernet to VME-based microprocessor subsystems. All the workstations have local disk and sufficient memory for fast response. Workstations are used as file server, back-up file server and for program development and other

200

NSLS-II Project Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Project Schedule NSLS-II Project Schedule Major Milestone Event Major Milestone Event Preliminary Schedule CD-0 (approve Mission Need) 4th quarter, FY2005 CD-1 (approve Alternative Selection and Cost Range) 4th quarter, FY2007 CD-2 (approve Performance Baseline) 1st quarter, FY2008 CD-3 (approve Start of Construction) 2nd quarter, FY2009 CD-4 (approve Start of Operations) FY2015 Critical Decisions The five Critical Decisions are major milestones approved by the Secretarial Acquisition Executive or Acquisition Executive that establish the mission need, recommended alternative, Acquisition Strategy, the Performance Baseline, and other essential elements required to ensure that the project meets applicable mission, design, security, and safety requirements. Each Critical Decision marks an increase in commitment of

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NSLS-II Integrated Project Team (IPT)  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Integrated Project Team NSLS-II Integrated Project Team DOE uses an integrated project teaming approach for managing the NSLS-II Project. This Integrated Project Team (IPT), organized and led by the NSLS-II Federal Project Director, is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NSLS-II Project will consist of members from both DOE and the contractor, Brookhaven Science Associates (BSA). The team membership will change as the project progresses from initiation to closeout to ensure the necessary skills are always represented to meet the project's needs.

202

NSLS-II Source Properties and Floor Layout  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Source Properties and Floor Layout NSLS-II Source Properties and Floor Layout April 12, 2010 Contents Basic Storage Ring Parameters Basic and Advanced Source Parameters Brightness Flux Photon Source Size and Divergence Power Infrared Sources Distribution of Sources Available for User Beamlines Floor Layout This document provides a summary of the current NSLS-II source and floor layout parameters. For a more complete description of the NSLS-II accelerator properties planned for NSLS-II, see the NSLS-II Preliminary Design Report Basic NSLS-II Storage Ring Parameters at NSLS-II website. We note that this document summarizes the present status of the design, but that the design continues to be refined and that these parameters may change as part of this process. NSLS-II is designed to deliver photons with high average spectral brightness in the 2 keV to 10 keV

203

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Accessing NSLS Accessing NSLS NSLS strongly advises industrial users to first consult with the Industrial Program Coordinator, Jun Wang (junwang@bnl.gov or 631-344-2661), before beginning the beam time application process. She will discuss your proposed research with you, guiding you to the most appropriate beamline and synchrotron research technique. From there, you will be contacted by the beamline staff at your target beamline. They will work with you to develop the best possible beam time proposal, which you will need to formally apply for beam time. For new users, it is often beneficial to start your NSLS experience by collaborating with seasoned users. Dr. Wang can help establish these collaborations. Whether you decide to consult with the Industrial Program Coordinator or

204

NSLS-II | ABBIX Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

ABBIX Integrated Project Team ABBIX Integrated Project Team ABBIX stands for Advanced Beamlines for Biological Investigations with X-rays, a set of three beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the National Institutes of Health. ABBIX uses DOE project management practices and systems, including an integrated project teaming management approach. This Integrated Project Team (IPT), organized and led by the ABBIX Project Manager, is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the ABBIX Project Manager in successfully executing the project. The IPT for the ABBIX Project will consist of

205

Rf system for the NSLS coherent infrared radiation source  

Science Conference Proceedings (OSTI)

The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity, power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.

Broome, W.; Biscardi, R.; Keane, J.; Mortazavi, P.; Thomas, M.; Wang, J.M.

1995-05-01T23:59:59.000Z

206

NSLS II: Soft Matter and Biomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

capabilities, the need for which is being felt even now. The ultra-high brightness of NSLS-II is required to address many of these challenges. The proposed small-angle x-ray...

207

NSLS-II Beam Diagnostics Overview  

SciTech Connect

A new 3rd generation light source (NSLS-II) is in the early stages of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges for diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research and development activities; and then focus on other challenging aspects.

Singh,O.; Alforque, R.; Bacha, B.; Blednykh, A.; Cameron, P.; Cheng, W.; Dalesio, L. B.; Della Penna, A. J.; doom, L.; Fliller, R. P.; Ganetis, G.; Heese, R.; Hseuh, H-C.; Johnson, E. D.; Kosciuk, b. N.; Kramer, S. L.; Krinsky, S.; Mead, J.; Ozaki, S.; Padrazo, D.; Pinayev, I.; Ravindranath, R. V.; Rose, J.; Shaftan, T.; Sharma, S.; Skaritka, J.; Tanabe, T.; Tian, Y.; Willeke, F. J.; Yu, L-H.

2009-05-04T23:59:59.000Z

208

National synchrotron light source. Activity report, October 1, 1994--September 30, 1995  

SciTech Connect

This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

Rothman, E.Z.; Hastings, J. [eds.

1996-05-01T23:59:59.000Z

209

Microsoft Word - ASE_NSLS_Rev_03.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

VUV and X-Ray Rings, and beamlines. The controls are derived from analysis within the NSLS Safety Assessment Document (SAD)(LS- NSLS-0012; rev 3; June 2011). Failure to meet the...

210

NSLS II: The Future National Synchrotron Light Source | 2010 Beamline  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Beamline Development Proposals - Approved Proposals 2010 Beamline Development Proposals - Approved Proposals Proposal Results Announcement Acronym Title Spokesperson Type Information 4DE 4-Dimensional Studies in Extreme Environments Donald J. Weidner, Stony Brook University 1 Slide ABS A Highly Automated Instrument for Static X-ray Scattering Measurements of Biological Molecules in Solution Lin Yang, BNL 1 Slide AIM Advanced Infrared Microspectroscopy Lisa Miller, BNL 1 Slide AMX Flexible Access Macromolecular Crystallography at an Undulator Beamline Dieter Schneider, BNL 1 Slide | Proposal BMM Hard X-ray Absorption Spectroscopy and Diffraction - Beamline for Materials Measurements Daniel Fischer, NIST 2 Slide | Proposal CDI Coherent X-ray Diffraction Ian Robinson, University College London 1 Slide | Proposal

211

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

offer useful information about standard beamline components. http:www.bnl.govnsls2projectCDRCh11ExperimentalFacilities.pdf http:www.bnl.govnsls2projectPDR...

212

Annual Planning Summaries: Stanford Linear Accelerator (SLAC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Linear Accelerator (SLAC) Annual Planning Summaries: Stanford Linear Accelerator (SLAC) Document(s) Available For Download January 11, 2012 2012 Annual Planning Summary...

213

NSLS ESH&Q | NSLS Laboratory Rooms and Experimental Safety Reviews  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS Laboratory Rooms and Experimental Safety Reviews Some beamlines have dedicated lab space. Fill out the form below and e-mail it to the Lab Steward for that beamline first. If...

214

CURRENT STATUS OF INSERTION DEVICE DEVELOPMENT AT THE NSLS-II AND ITS FUTURE PLANS  

Science Conference Proceedings (OSTI)

National Synchrotron Light Source-II (NSLS-II) project is currently under construction. Procurement of various insertion devices (IDs) has begun. This ring assumes a very high beam stability requirement which imposes tighter field specifications on insertion devices (IDs) compared to the rings of previous generation. The state of the art ID Magnetic Measurement Facility is being set up in order to be able to certify the stringent requirements on the magnetic field of NSLS-II IDs. The IDs in the project baseline scope include six 3.5m long damping wigglers (DWs) with 100mm period length and 15mm pole gap, two 2.0m Elliptically Polarizing Undulator (EPU) with 49mm period and 11.5mm minimum magnetic gap, two 3.0m long 20mm period and one 1.5m long 21mm period IVU, which the minimum gap of these is 5mm and 5.5mm, respectively. Recently a special device for inelastic X-ray scattering (IXS) beamline has been added to the collection of baseline devices. Three pole wigglers with a 28mm magnetic gap and a peak field over 1 Tesla will be utilized to accommodate the users of the type of radiation which is currently produced with bending magnets at the NSLS.

Tanabe, T.; Chubar, O.; Corwin, T.; Harder, D.A.; He, P.; Kitegi, C.; Rank, J.; Rhein, C.; Rakowsky, G.; Spataro, C.

2011-03-28T23:59:59.000Z

215

Stanford University Precourt Institute for Energy  

E-Print Network (OSTI)

for Energy Efficiency · 2009 ­ Precourt Institute for Energy Current Faculty Stanford History ManyStanford University Precourt Institute for Energy The Precourt Institute for Energy at Stanford Lynn Orr Director Stanford University Senate February 18, 2010 #12;2 Observations · Energy

Ford, James

216

DOE Solar Decathlon: Stanford University  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford University Stanford University Start.Home solardecathlon.stanford.edu For the U.S. Department of Energy Solar Decathlon 2013, Stanford University designed the Start.Home to provide energy efficiency at the push of a button to a new generation of environmentally conscious occupants. With modular architecture and advanced controls to optimize each component, the house aims to spark a revolution by lowering the entry barrier for an ultra-efficient house and making sustainability trendy, social, and affordable. Design Philosophy The Start.Home is built on a simple, three-by-three modular grid and integrates core, public, and private modules as well as multiple technologies to optimize value and energy efficiency. These spaces can be added or subtracted to allow the house to grow with the family by filling

217

Stanford Geothermal Program  

DOE Green Energy (OSTI)

Reliable measurement of steam-water relative permeability functions is of great importance for geothermal reservoir performance simulation. Despite their importance, these functions are poorly known due to the lack of fundamental understanding of steam-water flows, and the difficulty of making direct measurements. The Stanford Geothermal Program has used an X-ray CT (Computer Tomography) scanner to obtain accurate saturation profiles by direct measurement. During the last five years, the authors have carried out experiments with nitrogen-water flow and with steam-water flow, and examined the effects of heat transfer and phase change by comparing these sets of results. In porous rocks, it was found that the steam-water relative permeabilities follow Corey type relationships similar to those in nitrogen-water flow, but that the irreducible gas phase saturation is smaller for steam than for nitrogen. The irreducible saturations represent substantial fractions of the recoverable energy in place yet are hard to determine in the field. Understanding the typical magnitude of irreducible saturations will lead to a much clearer forecast of geothermal field performance. In fracture flow, indirect measurements suggested that the relative permeabilities follow a linear (or ''X-curve'') behavior - but there is still considerable uncertainty in the knowledge of this behavior.

R. Horn

1999-06-30T23:59:59.000Z

218

National Synchrotron Light Source 2010 Activity Report  

Science Conference Proceedings (OSTI)

This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3) high-temperature superconducting materials that carry electricity with no loss for efficient power transmission lines; and (4) materials for solid-state lighting with half of the present power consumption. Excitement about NSLS-II is evident in many ways, most notably the extraordinary response we had to the 2010 call for beamline development proposals for the anticipated 60 or more beamlines that NSLS-II will ultimately host. A total of 54 proposals were submitted and, after extensive review, 34 were approved. Funding from both the Department of Energy and the National Institutes of Health has already been secured to support the design and construction of a number of these beamlines. FY11 is a challenging and exciting year for the NSLS-II Project as we reach the peak of our construction activity. We remain on track to complete the project by March 2014, a full 15 months ahead of schedule and with even more capabilities than originally planned. The Photon Sciences Directorate is well on its way to fulfilling our vision of being a provider of choice for world-class photon sciences and facilities.

Rowe, M.; Snyder, K. J.

2010-12-29T23:59:59.000Z

219

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement Plans NSLS FY04 FY05 FY06 FY07 FY08 FY09 NSLS-II FY09 PS Directorate FY10 FY11 FY12 FY13...

220

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

and Interlock Testing Active NSLS Controlled Documents Assessment Tracking System (ATS) Conduct of Operations Document Index Forms & Templates Interlocks (Personnel...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An energy dispersive x-ray absorption spectroscopy beamline, X6A, at NSLS  

Science Conference Proceedings (OSTI)

An energy dispersive x-ray absorption spectroscopy instrument has been built at the X6A beam port of the x-ray ring at the National Synchrotron Light Source (NSLS). This instrument allows the collection of extended x-ray-absorption fine structure and/or x-ray absorption near-edge structure spectra for many elements on the millisecond time scale. The beamline employs a four-point crystal bender and a rectangular Si 220 crystal to access incident energies between 6.5 and 21 keV. Because the polychromator focuses the synchrotron beam to a narrow 100-[mu]m line, this experimental apparatus is ideal for x-ray absorption spectroscopy experiments in special environments such as at high pressures, for [ital in] [ital situ] experiments, and/or for very small samples. In this manuscript we will describe the instrument design and present data with which to evaluate the instrument. This beamline is available through the NSLS user proposal system.

Lee, P.L.; Beno, M.A.; Jennings, G.; Ramanathan, M.; Knapp, G.S.; Huang, K. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)); Bai, J. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) Department of Physics, Brooklyn College of CUNY, Brooklyn, New York 11210 (United States)); Montano, P.A. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) Department of Physics, University of Illinois, Chicago, Chicago, Illinois 60680 (United States))

1994-01-01T23:59:59.000Z

222

NSLS-II INJECTION STRAIGHT DIAGNOSTICS  

Science Conference Proceedings (OSTI)

The ultra-bright light source being developed by the NSLS-II project will utilize top-up injection and fine tuning of the injection process is mandatory. In this paper we present the diagnostics installed in the injection straight. Its use for commissioning and tuning of the injection cycle is also described. The NSLS-II storage ring will utilize a 9.3 meter long injection straight section shown in Fig. 1. Injection will be preformed with two septa (one pulsed, one DC) and four kickers. The stored beam will be shifted towards the pulsed septum up to IS mm and the nominal distance between centers of the injected and the bumped beam is 9.5mm. The NSLS-II beam position monitors will have turn-by-turn and first-turn capabilities and will be used for the commissioning and tuning the injection process. However, there are three additional BPMs and two beam intercepting OTR screens (flags) installed in the injection straight.

Pinayev, I.; Blednykh, A.; Ferreira, M.; Fliller, R.; Kosciuk, B.; Shaftan, T.V.; Wang, G.

2011-03-28T23:59:59.000Z

223

PHOTOEMISSION STUDIES OF CLEAN AND ADSORBATE COVERED METAL SURFACES USING SYNCHROTRON AND UV RADIATION SOURCES  

E-Print Network (OSTI)

c J/ l TABLE II, SSRL 4 Beam Line - Monochroraatorhave made on the A oratory (SSRL). beam line at the Stanfordas they pertain to the SSRL (Stanford Synchrotron Radiation

Apai II, jG.R.

2011-01-01T23:59:59.000Z

224

Achieving Stability Requirements for Nanoprobe and Long Beam Lines at NSLS II. A Comprehensive Study  

E-Print Network (OSTI)

Achieving Stability Requirements for Nanoprobe and Long Beam Lines at NSLS II. A Comprehensive Study

Simos, N; Broadbent, A J; Evans-Lutterodt, K; Fallier, M; Hill, J

2008-01-01T23:59:59.000Z

225

SSRL Beam Lines by Technique | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Technique Technique SSRL Beam Line Map | Beam Lines by Number | SPEAR3 Parameters Supported Technique(s) Beam Line X-ray Absorption Spectroscopy Biological x-ray absorption spectroscopy 4-3, 7-3, 9-3, 14-3 Materials / catalysis / chemistry x-ray absorption spectroscopy 4-1, 4-3, 11-2, 14-3 MEIS x-ray absorption spectroscopy 4-1, 4-3, 11-2, 14-3 X-ray absorption spectroscopy imaging 2-3, 6-2a, 10-2a,14-3 Single crystal x-ray absorption spectroscopy 9-3 Grazing incidence x-ray absorption spectroscopy 11-2 Tender x-ray absorption spectroscopy 4-3, 14-3 Tender x-ray absorption spectroscopy imaging 14-3 Photoemission spectroscopy 8-1a, 8-1b, 8-2, 10-1, 13-2 X-ray absorption spectroscopy, near edge, soft energy 8-2, 10-1, 13-2 Elliptic polarization, soft energy photoemission spectroscopy 13-2

226

SSRL Experimental Run Schedule | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Run Schedule Experimental Run Schedule SLAC National Accelerator Laboratory will be closed for the winter holidays, December 21, 2013 through January 5, 2014. SSRL generally operates November through August, using the shutdown period for upgrades and maintenance projects. SSRL operates at 500mA and employs a frequent fill schedule to maintain the SPEAR3 current approximately constant. Automatic injections will be conducted every 5 minutes. Automatic injections will only occur at the designated 5 minute intervals (i.e., on the hour and every 5 minutes thereafter). If the injector is not functional at the designated fill time, then the fill will be skipped. The current will be replenished at the next scheduled fill time after the injector is repaired and normal injection intervals will resume. The operator will give

227

Water an Unusual Liquid; LCLS Provides New Insights | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Water an Unusual Liquid; LCLS Provides New Insights Water an Unusual Liquid; LCLS Provides New Insights Wednesday, November 13, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Anders Nilsson, SUNCAT The anomalous physical properties of water are responsible for sustaining much of life on earth; for example, water displays a higher heat capacity than common liquids and expands upon freezing. Some of these anomalous physical properties become dramatically enhanced upon supercooling below the freezing point. In particular, extrapolations of the thermal expansion coefficient, isothermal compressibility, heat capacity and correlation length can all be fitted with a power law divergence with the same apparent singularity temperature of about 228 K. Experiments on pure bulk water below about ~240 K have so far been difficult: water crystallization occurs

228

SSRL Safety Guidelines & Resources | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Guidelines & Resources Safety Guidelines & Resources The Office of Basic Energy Sciences (BES) is committed to conducting research in a manner that ensures protection of the workers, the public and the environment, and it is a direct and individual responsibility of all BES managers and BES supported researchers and their staff. Funds provided by BES for research will be applied as necessary to ensure that all BES research activities are conducted safely and in an environmentally conscientious manner. Only research conducted in this way will be supported. Safety and Security Overview Each person who works at SSRL is required to be familiar with and identify in advance the hazards associated with his/her work, the hazards associated with work areas, and to properly implement all necessary procedures and

229

While You Are Here | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

While You Are Here While You Are Here To Enter the Site After Hours You Must Have a Picture I.D and Your Safety Training Must Be Current. You should plan to arrive at SSRL between 8:00 a.m. - 3:00 p.m., Monday through Friday, except Holidays. A knowledgeable person from your group should be available for consultation by the SSRL staff readying the beam line for your group the morning you are scheduled to go on line. A Safety Checklist (SCL) must be completed by the Operations staff before your experiment will be put on line. This cannot be done if your spokesperson has not signed the Safety Review Summary form (see Section 2, Safety Review of Scheduled Experiments). If you arrive after hours and are listed on the User Support Form you will be allowed entry after providing proof of identification (usually a drivers

230

Integrated Safety & Environmental Management System | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Safety & Environmental Management System Integrated Safety & Environmental Management System How do you plan for SAFETY in your job? In an effort to provide a formal and organized process to manage all aspects of Environment, Safety and Health (ES&H) issues at its laboratories, the DOE developed the Integrated Safety and Environmental Management System (ISEMS). In short, it's a process that allows people (such as staff and Users) at all levels to plan, perform, assess and improve their implementation of ES&H at work. The system puts the responsibility for safety on each person. Fundamental to the process are the Guiding Principles that can be viewed as "best management practices" or "how we do business", which are the policies that integrate ISMS at all levels; the Core Functions, which provide the

231

Data Management at SSRL | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Management at SSRL Management at SSRL SSRL Users are responsible for meeting the Data Management obligations of their home institutions and granting agencies. In general, SSRL provides data acquisition systems (computers/software) and short term data storage on all of its beam lines. The beam line computers are connected to central servers via a high speed network, and data are transferred to these servers for backup and short-term storage. SSRL does not provide long term storage or archiving of data; users must generally transfer their data to their home institutions over the network or to their own portable storage devices. Individual beam lines may have specific resources and data management practices to help users meet their data management needs and obligations. Users should consult beam line staff when formulating data management plans

232

How to Request & Access Beam Time | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Request & Access Beam Time How to Request & Access Beam Time Step 1: Submit a proposal that summarizes proposed research plans. Step 2: Submit beam time requests. Step 3: Review & accept beam time allocations. Instructions for users allocated beam time on SSRL X-ray/VUV beam lines. Accept Beam Time & Submit Support Request Registration & Assistance User Agreements User Financial Accounts, Supplies, Gases, Domestic & International Shipments User Computer Accounts User Safety Preparing for Arrival/Lodging/Check-In Acknowledgements, Publications, Science Highlights & News Feedback Step 1: Submit a proposal that summarizes proposed research plans. Review the guidelines for proposals and scheduling procedures. Standard proposals can be submitted through the user portal three times each year:

233

Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Phone Numbers for Beam Lines and Other Services Phone Numbers for Beam Lines and Other Services The local area code for SSRL is 650. All numbers listed below should be dialed as 650-926-xxxx from other area codes. When calling an onsite location from within SSRL simply dial the 4-digit extension. When calling an offsite number within the 650 area code dial, dial 9 plus the 7-digit number. To call a number in another area code dial 9-1-area code - phone number. Beam Lines Beam Line Extension 1-4 5214 1-5 5215 2-1 5221 2-2 5222 2-3 5223 3-3 5233 3-4 5234 4-1 5241 4-2 5242 4-3 5243 5-2 5252 5-3 5253 5-4 5254 6-2 5262 7-1 5271 7-2 5272 7-3 5273 8-1 5281 8-2 5282 9-1 5291 9-2 5292 9-3 5293 10-1 5101 10-2 5102 11-1 8648 11-2 8650 11-3 8656 12-2 5212 13-1 5131 13-2 5132 13-3 5133 User Labs/Services Building Lab/Service Extension

234

BL1-4 Cheat Sheet | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

BL1-4 Cheat Sheet BL1-4 Cheat Sheet Last updated 30 April 2012 This is a guide to help you operate SAXS Beamline 1-4 a beamline primarily dedicated to the SAXS Materials Science technique. Computer Control of Beamline 1-4 MARCCD PC runs on a LINUX OS. MARCCD runs the Mar (Rayonix) detector acquisition software, also called marccd (invoked with the command "marccd"). The Rayonix software is extremely unstable and bug-ridden and will crash even if simple interactions are attempted (e.g. inverting the intensity output display). Best to leave this PC well alone. The good news is that the functions that are necessary for data collection are all stable and can all be invoked remotely from BL14LX. MARCCD has been taken off the network so it is not perturbed by crosstalk.

235

Shining Light on Catalysis | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Shining Light on Catalysis Shining Light on Catalysis Tuesday, July 19, 2011 - 4:38pm SSRL Conference Room 137-322 Jeroen A. van Bokhoven, Professor for Heterogeneous Catalysis Institute for Chemical and Bioengineering ETH Zurich Head of Laboratory for Catalysis and Sustainable Chemistry (LSK) Swiss Light Source Paul Scherrer Institute Understanding a functioning catalyst requires understanding at the atomic scales in a time-resolved manner. X-rays can be readily used to accomplish that task, because of the large penetration depth of hard X-rays, in situ or operando experiments are possible. In addition, complementary techniques, such as the vibrational spectroscopies can be simultaneously applied. Recent development in instrumentation to perform quick EXAFS and secondary emission spectroscopy has provided exciting new opportunities to

236

Percolation Explains How Earth's Iron Core Formed | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Percolation Explains How Earth's Iron Core Formed Percolation Explains How Earth's Iron Core Formed Wednesday, November 27, 2013 The formation of Earth's metallic core, which makes up a third of our planet's mass, represents the most significant differentiation event in Earth's history. Earth's present layered structure with a metallic core and an overlying silicate mantle would have required mechanisms to separate iron alloy from a silicate phase. Percolation of liquid iron alloy moving through a solid silicate matrix (much as water percolates through porous rock, or even coffee grinds) has been proposed as a possible model for core formation (Figure 1). Many previous experimental results have ruled out percolation as a major core formation mechanism for Earth at the relatively lower pressure conditions in the upper mantle, but until now experimental

237

SSRL Beam Lines by Number | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Number Number SSRL Beam Line Map | Beam Lines by Techniques | SPEAR3 Parameters BL Type Source Supported Technique(s) Energy Range Status Contacts 1-4 X-ray Bend Small angle x-ray scattering 7100-9000 eV Limited Chris Tassone Mike Toney 1-5 X-ray Bend Thin film diffraction 6000-14500 eV Limited Chad Miller 2-1 X-ray Bend Powder diffraction Thin film diffraction 4000-15800 eV Open Chad Miller Apurva Mehta 2-2 X-ray Bend White light station Instrumentation Development 1000-40000 eV Limited Bart Johnson 2-3 X-ray Bend X-ray absorption spectroscopy imaging 4500-24000 eV Open Sam Webb Ben Kocar 4-1 X-ray Wiggler X-ray Absorption Spectroscopy 6500-30000 eV Open John Bargar Matthew Latimer Ryan Davis 4-2 X-ray Wiggler Biological solution small angle x-ray scattering

238

Stanford Synchrotron Radiation Laboratory, BL6-2  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory TXM Overview | TXM Imaging | Researchers | Publications TXM SRL null Full-field Transmission X-ray Microscopy Capabilities The transmission X-ray microscope (TXM) on beam line 6-2c at SSRL is capable of 2D imaging and tomography of many materials including biological and environmental samples, and complex hierarchical systems such as fuel cells and battery electrodes, with chemical information, at 30 nm resolution. The field of view (FOV) is 30 microns, but samples can be raster scanned to increase the FOV while maintaining the same resolution. Because the microscope is equipped with optics that can be used from ~5 to 14 keV, it is useful for characterizing metal distribution and chemical states by imaging at X-ray absorption edges for many metals involved in energy materials. 3D elemental mapping is accomplished via acquisition of tomography above and below the X-ray absorption edge. 2D mapping of chemical states is accomplished with XANES (X-ray absorption near edge structure) imaging, in which many images are acquired along the X-ray absorption edge of a metal, and constructed spectra can be compared to those for model compounds of known structure. It is also possible to acquire 3D XANES tomography, in which chemical states can be mapped in 3D.

239

Welcome to the SSRL User Research Site | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

30 days during a 12-month period (see additional requirements for users from Cuba, Iran, Sudan or Syria). Complete training before arrival and check in at the URA offices...

240

SLAC Science Focus Area | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Ferrihydrite banner Nano biogenic uraninite Energy and biogeochemistry: Nuclear fuel and weapons production have produced radionuclide and heavy metal contamination in terrestrial...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SSRLUO 2013-2014 Executive Committee Members | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany Serena DeBeer recently joined the Max Planck Institute fr Bioanorganische Chemie, Mlheim an der Ruhr, Germany. Prior to that time, She was an Assistant Professor in...

242

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport and Failure in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well...

243

SAXS Beamline 1-4 | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

to date it has been adapted for an electrochemical cell; humidity chamber; multi-sample oven, from various experimental groups; etc). If you have your own sample environment you...

244

SSRL Lift Plan Procedure Stanford Synchrotron Radiation Laboratory  

E-Print Network (OSTI)

SSRL Division Internal Work Authorization Work at SSRL is assigned on a distributed basis from or mitigate those hazards are established, after which work begins. When SLAC resources external to SSRL are involved the SSRL Interim Work Authorization Process for Activities by Non-SSRL Workers at SLAC is invoked

Wechsler, Risa H.

245

Stanford Synchrotron Radiation Lightsource Extension Application for Macromolecular Crystallography Proposals  

E-Print Network (OSTI)

SSRL Users' Organization Meeting Thursday, January 27, 2011 The Users' Executive Committee (UEC) met in SSRL Building 137, 3rd Floor Conference Room, with several members participating will co-organize the next users' conference and serve as Chair next year. Strategic planning: SSRL

Wechsler, Risa H.

246

Stanford Synchrotron Radiation Lightsource Format for Proposal Extension Request  

E-Print Network (OSTI)

From the Director: New ALDs in LCLS, SSRL and PPA and a new Directorate in the Making Wednesday lab director, I asked Jo to serve as the ALD for SSRL. Jo has been co-leading the joint light source to be the acting ALD for SSRL effective July 1. We will start an international search immediately to find

Wechsler, Risa H.

247

Sustainable Energy Materials Research at SSRL | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Redtail Hawk Conference Room 108A Speaker: Mike Toney, SSRL The development of a carbon free economy Is probably the greatest challenge facing humanity in the coming decades. This...

248

Graphite and its Hidden Superconductivity | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphite and its Hidden Superconductivity Graphite and its Hidden Superconductivity Wednesday, November 20, 2013 - 2:00pm SLAC, Conference Room 137-322 Pablo Esquinazi, University of Leipzig We review different experimental results that indicate the existence of granular superconductivity at high temperatures at graphite interfaces. In particular we will discuss the following experimental results: The temperature and magnetic field dependence of the electrical resistance of bulk and thin graphite samples and its relation with the existence of two-dimensional (2D) interfaces. The anomalous hysteresis in the magnetoresistance observed in graphite thin samples as well as its enhancement restricting the current path within the sample. The Josephson behavior of the current-voltage characteristics with

249

Shining Light on Catalysis | Stanford Synchrotron Radiation Lightsourc...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Tuesday, July 19, 2011 - 4:38pm SSRL Conference Room 137-322 Jeroen A. van Bokhoven, Professor for Heterogeneous Catalysis Institute for Chemical and Bioengineering ETH...

250

Environmental Assessment for the National Synchrotron Light Source II at Brookhaven National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL SYNCHROTRON LIGHT SOURCE-II NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II) BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK U. S. Department Of Energy Brookhaven Site Office September 2006 DOE/EA-1558 i TABLE OF CONTENTS 1.0 PREFACE....................................................................................................................1 2.0 SUMMARY .................................................................................................................2 3.0 PURPOSE AND NEED ............................................................................................10 4.0 DESCRIPTION OF ALTERNATIVES, INCLUDING THE PROPOSED ACTION.....................................................................................................................11

251

National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1  

SciTech Connect

The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

Fewell, N.

1993-12-01T23:59:59.000Z

252

Rf power systems for the national synchrotron light source  

SciTech Connect

The booster synchrotron and the two storage rings at the NSLS are provided with rf power systems of 3 kW, 50 kW, and 500 kW nominal output power, all at 53 MHz. This power is supplied by grounded grid tetrode amplifiers designed for television broadcast service. These amplifiers and associated power supplies, control and interlock systems, rf controls, and computer interface are described.

Dickinson, T.; Rheaume, R.H.

1981-01-01T23:59:59.000Z

253

National Synchrotron Light Source 2008 Activity Report  

SciTech Connect

Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work explaining how one class of proteins helps to generate nerve impulses.

Nasta,K.

2009-05-01T23:59:59.000Z

254

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Spill A review of a recent incident at NSLS, as well as historical events, shows that communication and self checking are crucial to avoiding Human Performance Error Traps....

255

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Policies & Requirements Manual Waste Management Links Tier 1 Information Muffin Fan Wiring Guidance Solenoid Wiring Guidance Heater Tape Wiring Guidance NSLS ES&H...

256

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

to the QCC Forms Description Number File Format Assessment Tracking System (ATS): NSLS Family ATS Entry Request Form QF-053 Word Controlled DocumentsProcedure: Distribution...

257

DESIGN AND PRELIMINARY TEST OF THE 1500 MHZ NSLS-II PASSIVE SUPERCONDUCTING RF CAVITY  

SciTech Connect

NSLS-II is a new ultra-bright 3 GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. Ion clearing gaps are required to suppress ion effects on the beam. The natural bunch length of 3mm is planned to be lengthened by means of a third harmonic cavity in order to increase the Touschek limited lifetime. Earlier work described the design alternatives and the geometry selected for a copper prototype. We subsequently have iterated the design to lower the R/Q of the cavity and to increase the diameter of the beam pipe ferrite HOM dampers to reduce the wakefield heating. A niobium cavity and full cryomodule including LN2 shield, magnetic shield and insulating vacuum vessel have been fabricated and installed. A passive SRF 3rd harmonic cavity consisting of two tightly coupled cells has been designed and fabricated for NSLS-II. Initial cold tests of this cavity are very promising. These tests have verified that the cavity frequency and mode separation between the 0 and {pi}-modes can be set at manufacture. Further, the frequency separation can be maintained over wide tuning ranges necessary for operation. Future work includes HOM damper and motorized tuner development.

Rose, J.; Gash, W.; Kosciuk, B.; Ravindranath, V.; Sikora, B.; Sharma, S.; Towne, N.; Grimm, T.L.; Boulware, C.H.; Krizmanich, C.; Kuhlman, B.; Miller, N.; Siegel, B.; Winowski, M.

2011-03-28T23:59:59.000Z

258

National Synchrotron Light Source: vacuum system for National Synchrotron Light Source  

SciTech Connect

The National Synchrotron Light Source (NSLS), a 24 million dollar project under construction at Brookhaven National Laboratory (BNL), is a research facility dedicated to the production of synchrotron radiation. Synchrotron radiation is that radiation produced by the acceleration of charged particles at near the speed of light. This facility will provide a continuous spectrum of radiation from the vacuum ultraviolet to the hard x-ray range. The radiation will be highly intense, 100% polarized, extremely well collimated and will have a pulsed time structure. The radiation will be produced in two electron storage rings at energies of 700 MeV and 2.5 GeV, respectively. A maximum of one ampere at 2 GeV, or one-half ampere at 2.5 GeV, of electron beam will be stored.

Schuchman, J.C.; Godel, J.B.; Jordan, W.; Oversluizen, T.

1978-01-01T23:59:59.000Z

259

Microsoft Word - NSLS-II Call for First Experiment Proposals...  

NLE Websites -- All DOE Office Websites (Extended Search)

to biological and life science research. NSLS-II is scheduled to start science-commissioning operations in October 2014 with an initial suite of the following seven beamlines:...

260

Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California  

SciTech Connect

This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

Not Available

1988-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NSLS Services | Repair & Equipment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Repair & Equipment Services Repair & Equipment Services Cleaning Facility (BNL Central Shops) Solvent cleaning of vacuum parts and leak checking service is also available. Work is billed to each user via a BNL ILR. Contact the NSLS Building Manager to arrange for any of these services. Electronics Repair Limited repairs for electronic equipment are available from an outside contractor through the Control Room. Contact Control Room Supervisor Randy Church (x2550 or x2736, pager 5310). Shipping memos are filled out on the web, and pick ups are on Fridays. Come to the Control Room for assistance. The user should call the contractor on the day before scheduled pickups to alert the contractor of the pickup. Items to be repaired should be left in the Control Room with the completed shipping memo. Costs are charged to the

262

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

263

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

264

Independent Oversight Inspection, Stanford Linear Accelerator Center -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Linear Accelerator Stanford Linear Accelerator Center - January 2007 Independent Oversight Inspection, Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security, conducted an inspection of environment, safety, and health (ES&H) programs at the DOE Stanford Linear Accelerator Center (SLAC) during October and November 2006. The inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. Since the 2004 Type A electrical accident, SSO and SLAC have made improvements in many aspects of ES&H programs. However, the deficiencies in

265

2011 Annual Planning Summary for Stanford Linear Accelerator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Linear Accelerator Center Site Office (SLAC) 2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) The ongoing and projected Environmental...

266

Stanford University Researchers Represented in the E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

PatBrownLabHomePagePapers.html Brubaker, Ben - Department of Mathematics, Stanford University http:math.stanford.edubrubaker Brunet, Anne - Department...

267

National Synchrotron Light Source. Annual report 1992  

SciTech Connect

This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

Hulbert, S.L.; Lazarz, N.M. [eds.

1993-04-01T23:59:59.000Z

268

July 4, 1997 The Stanford InfoBus and  

E-Print Network (OSTI)

July 4, 1997 1 of 30 The Stanford InfoBus and Its Service Layers Augmenting the Internet Project Computer Science Department Stanford University, CA 94305 The Stanford InfoBus is a prototype service layers pro­ vided by the Stanford InfoBus: protocols for managing items and collections (DLIOP

Gravano, Luis

269

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Innovation » Commercialization » National Science & Innovation » Innovation » Commercialization » National Clean Energy Business Plan Competition » Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen.

270

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Document Index Document Index A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Assessment Tracking System (ATS) Institutional ATS NSLS Family ATS NSLS Family ATS Instructions B Beamline Safety Review Beamline Safety Checklist C Calibration Calibration procedure NSLS Controlled Measuring Test Equipment Calibration List Caution Tags Coaxial cables & connectors Conduct of Operations Manual Cryogenic safety Cryogenic Liquids: Storage, Usage and Handling D Design (see engineering design) Document Control drawings (also refer to Engineer Design) procedures, & policies Approving, Distributing; List of NSLS Active Controlled Documents Periodic Review; Preparing; Reviewing; specification (distribution) specification (preparation) Document list - Active Controlled Documents

271

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Requirements at NSLS All sample preparation or wet chemistry performed in a laboratory must be coordinated with a Lab Steward. Consult this map or your Local Contact for...

272

Opportunities in Catalysis Research Using Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

in Catalysis Research Using Synchrotron Radiation in Catalysis Research Using Synchrotron Radiation Tuesday 10/8/02 Chair: Lars Pettersson 1:30-1:40 Anders Nilsson Welcome 1:40-2:30 Gabor Somorjai University of California, Berkeley and LBLN Need for New Directions of Research at the Frontiers of Catalysis Science 2:30-3:00 Geoff Thornton University of Manchester Influence of defects on the reactivity of ZnO 3:00-3:30 Anders Nilsson Stanford Synchrotron Radiation Laboratory Soft X-ray Spectroscopy of Surfaces and Reactions 3:30-3:45 Break Chair: Anders Nilsson 3:45-4:15 Lars Pettersson Stockholm University Adsorbate-Substrate Bonding: An Experimental and Theoretical MO Picture 4:15-4:45 Miquel Salmeron Lawrence Berkeley National Laboratory Photoelectron Spectroscopy studies of surfaces in high pressure gas

273

Synchrotron Ultraviolet Radiation Facility SURF III ...  

Science Conference Proceedings (OSTI)

... Synchrotron Radiation. What is Synchrotron Radiation? Synchrotron radiation ... known. Properties of Synchrotron Radiation. Schwinger ...

274

Stanford, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stanford, California: Energy Resources Stanford, California: Energy Resources (Redirected from Stanford, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.424106°, -122.1660756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.424106,"lon":-122.1660756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Spatial resolution limits for synchrotron-based infrared spectromicroscopy  

E-Print Network (OSTI)

Predicted ? y = 185 ? m (NSLS VUV) Measured ? y = 52 ? m (beamline was built at the NSLS VUV ring (a 2nd generationFig. 2. The under development NSLS-II storage ring [13] is

Levenson, Erika

2008-01-01T23:59:59.000Z

276

POLARIZATION STUDIES OF CdZnTe DETECTORS USING SYNCHROTRON X-RAY RADIATION.  

Science Conference Proceedings (OSTI)

New results on the effects of small-scale defects on the charge-carrier transport in single-crystal CdZnTe (CZT) material were produced. We conducted detailed studies of the role of Te inclusions in CZT by employing a highly collimated synchrotron x-ray radiation source available at Brookhaven's National Synchrotron Light Source (NSLS). We were able to induce polarization effects by irradiating specific areas with the detector. These measurements allowed the first quantitative comparison between areas that are free of Te inclusions and those with a relatively high concentration of inclusions. The results of these polaration studies will be reported.

CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; JAMES, R.B.

2007-07-01T23:59:59.000Z

277

NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2004  

Science Conference Proceedings (OSTI)

The NSLS remains a viable and productive facility, as can be seen by the rich and diverse science produced in 2004. In one of these exciting research projects published in Nature, researchers detected a rare 'hole crystal' in a cuprate superconductor, which may provide insight into high-temperature superconductivity. In another Nature publication, the crystal structure of a segment of RNA was determined, opening a new window of knowledge into that crucial molecule. These are just a couple of the science highlights of 2004, and many others are displayed in the pages of this report. All told, more than 700 publications resulted from NSLS research this year, the facility hosted 2,299 users, and the number of experiments performed rose from 1,145 in 2003 to 1,374 nuclear indications that the NSLS continues to thrive. As the NSLS accelerator complex enters its third decade of operations, it continues to perform very well. For 2004, the overall reliability of the VUV-IR ring was excellent at 99 percent. The reliability of the x-ray ring was just shy of 92 percent, primarily due to the need to replace the injection septum vacuum chamber, which developed a leak during the middle of the year. The Operations Division did a tremendous job of installing our spare chamber in minimal time, despite the complexity of the job and the inaccessibility of its location in the ring, as well as keeping downtime to a minimum throughout the rest of the year. In order to continue to meet the needs of users, several key beamline upgrades took place this year that will enrich our scientific programs, including upgrades to beamlines U12IR, X1A, X13A, and X21. We are very excited about two brand-new beamlines that were commissioned in 2004: X29 and X27A. X29 is the new mini-gap undulator beamline designed for macromolecular crystallography, and it will meet the growing demand of NSLS users who perform research in that area. The establishment of an x-ray microprobe at beamline X27A, optimized for the environmental science community, is also very important, as it will help to satisfy the large over subscription rate for this technique at the NSLS. Two other important upgrades that were initiated this past year are the replacement of the X25 wiggler with an undulator and the construction of the X9 undulator beamline for small-angle scattering, with an emphasis on nanoscience research. Another key activity that will benefit all users was the restoration of the x-ray ring lattice symmetry, which reduced the horizontal emittance and made the operational lattice more robust. Similarly, all users will benefit from the introduction of the PASS (Proposal Allocation Safety Scheduling) system this past year, which has greatly improved the process of proposal submission, review, allocation, and scheduling. This coming year we will work to add Rapid Access to the capabilities of PASS. Overall, the success of these and the many other projects that space does not permit listing is a testament to the dedication, hard work, and skill of the NSLS staff. Safety has always been an important issue at a large, complex scientific facility like the NSLS and in 2004 it received renewed attention. Safety is our highest priority and we spent a great deal of time reviewing and refining our safety practices and procedures. A new 'Safety Highlights' web page was created for safety news, and a large number of safety meetings and discussions were held. These reviews and meetings generated many ideas on how the NSLS might improve its safety practices, and we are committed to putting these in place and improving our already very good safety program. We had no lost-time accidents in 2004, which is a notable accomplishment. Our goal is to be best in class and I'm confident that by working together we can achieve that status. Several activities took place this past year to advance our proposal to replace the NSLS with a new National Synchrotron Light Source-II facility. These included a major workshop in support of the proposed facility in March, a mail review of our proposal outlinin

MILLER,L.; (EDITOR)

2005-05-01T23:59:59.000Z

278

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 ASSESSMENT OF LOW-TEMPERATURE GEOTHERMAL Fujimitsu and Sachio Ehara Geothermic Laboratory, Earth Resources Engineering Department, Kyushu University

Stanford University

279

COMPUTER SYSTEMS LABORATORY STANFORD ELECTRONICS LABORATORIES  

E-Print Network (OSTI)

of Data 2.1 Performance and Utilization Data 2.2 Failure Data 5 5 6 3. Preliminary Analysis 3.1 Load Profiles 3.2 Failure Profiles 7 3.3 Analysis and Discussion of Preliminary Results Some ReliabilityCOMPUTER SYSTEMS LABORATORY I I STANFORD ELECTRONICS LABORATORIES DEPARTMENT OF ElECTRiCAl

Stanford University

280

Impedance Calculations for the NSLS-II Storage Rings  

Science Conference Proceedings (OSTI)

Impedance of two vacuum chamber components, Bellows and BPM, is considered in some detail. In order to avoid generation of Higher-Order Modes (HOM's) in the NSLS-II bellows, we designed a new low-impedance RF shielding consisting of 6 wide and 2 narrow metal plates without opening slots between them. The short-range wakepotential has been optimized taking into account vertical offset of RF fingers from their nominal position. The results were compared with data of bellows designed at other laboratories. Narrow-band impedance of the BPM Button has been studied. TE-modes in the BPM button were suppressed by a factor of 8 by modification of existing housings. Two new types of housings are shown. The total impedance of the NSLS-II storage ring is discussed in terms of the loss factor and the vertical kick factor for a 3mm-Gaussian bunch.

Blednykh,A.; Ferreira, M.; Krinsky, S.

2009-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Top-Off Safety Analysis for NSLS-II  

Science Conference Proceedings (OSTI)

Top-off injection will be adopted in NSLS-II. To ensure no injected beam can pass into experimental beamlines with open photon shutters during top-off injection, simulation studies for possible machine fault scenarios are required. We compare two available simulation methods, backward (H. Nishimura-LBL) and forward tracking (A. Terebilo-SLAC). We also discuss the tracking settings, fault scenarios, apertures and interlocks considered in the analysis.

Li,Y.; Casey, B.; Heese, R.; Hseuh, H.; Job, O.; Krinsky, S.; Parker, B.; Shaftan, T.; Sharma, S.

2009-05-04T23:59:59.000Z

282

Comparative Study of Vibration Stability at Operating Light Source Facilities and Lessons Learned in Achieving NSLS II Stability Goals  

E-Print Network (OSTI)

Comparative Study of Vibration Stability at Operating Light Source Facilities and Lessons Learned in Achieving NSLS II Stability Goals

Simos, N; Fallier, M

2008-01-01T23:59:59.000Z

283

radiation damage Journal of Synchrotron Radiation  

E-Print Network (OSTI)

Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

Grace Shea-mccarthy; Dieter K. Schneider; John M. Skinner; Michael J. Skinner; Deborah Stoner-ma; Robert M. Sweet

2010-01-01T23:59:59.000Z

284

PROGRESS WITH NSLS-II INJECTION STRAIGHT SECTION DESIGN  

SciTech Connect

The NSLS-II injection straight section (SR) consists of pulsed and DC bumps, septa system, beam trajectory correction and diagnostics systems. In this paper we discuss overall injection straight layout, preliminary element designs, specifications for the pulsed and DC magnets and their power supplies, vacuum devices and chambers and diagnostics devices. Prior to selecting the current 'conventional' design of the injection straight section we analyzed an option of injection via pulsed multipole pioneered at PF-AR. We found that this promising approach was not suited to the NSLS-II storage ring optics, since it would require a impractically compact arrangement of the injection straight section components and a complex modification of the transport line optics due to the strong focusing of the injected beam passing off the pulsed multipole axis. In addition, the requirement for a small injection transient of the stored beam orbit severely constrains the vertical alignment tolerance of the pulsed multipole. The design of the NSLS-II injection straight section is now completed with exception of transition chamber details, which will be adjusted to accommodate the actual layouts of the pulsed magnets.

Shaftan, T.; Blednykh, A.; Casey, B.; Dalesio, B.; Faussete, R.; Ferreira, M.; Fliller, R.; Ganetis, G.; Heese, R.; Hseuh, H.-C.; Job, P.K.; Johnson, E.; Kosciuk, B.; Kowalski, S.; Padrazo, D.; Parker, B.; Pinayev, I.; Sharma, S.; Singh, O.; Spataro, C.

2011-03-28T23:59:59.000Z

285

NSLS-II HIGH LEVEL APPLICATION INFRASTRUCTURE AND CLIENT API DESIGN  

Science Conference Proceedings (OSTI)

The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. It is an open structure platform, and we try to provide a narrow API set for client application. With this narrow API, existing applications developed in different language under different architecture could be ported to our platform with small modification. This paper describes system infrastructure design, client API and system integration, and latest progress. As a new 3rd generation synchrotron light source with ultra low emittance, there are new requirements and challenges to control and manipulate the beam. A use case study and a theoretical analysis have been performed to clarify requirements and challenges to the high level applications (HLA) software environment. To satisfy those requirements and challenges, adequate system architecture of the software framework is critical for beam commissioning, study and operation. The existing traditional approaches are self-consistent, and monolithic. Some of them have adopted a concept of middle layer to separate low level hardware processing from numerical algorithm computing, physics modelling, data manipulating, plotting, and error handling. However, none of the existing approaches can satisfy the requirement. A new design has been proposed by introducing service oriented architecture technology. The HLA is combination of tools for accelerator physicists and operators, which is same as traditional approach. In NSLS-II, they include monitoring applications and control routines. Scripting environment is very important for the later part of HLA and both parts are designed based on a common set of APIs. Physicists and operators are users of these APIs, while control system engineers and a few accelerator physicists are the developers of these APIs. With our Client/Server mode based approach, we leave how to retrieve information to the developers of APIs and how to use them to form a physics application to the users. For example, how the channels are related to magnet and what the current real-time setting of a magnet is in physics unit are the internals of APIs. Measuring chromaticities are the users of APIs. All the users of APIs are working with magnet and instrument names in a physics unit. The low level communications in current or voltage unit are minimized. In this paper, we discussed our recent progress of our infrastructure development, and client API.

Shen, G.; Yang; L.; Shroff; K.

2011-03-28T23:59:59.000Z

286

SERVER DEVELOPMENT FOR NSLS-II PHYSICS APPLICATIONS AND PERFORMANCE ANALYSIS  

SciTech Connect

The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. The server software under development is available via an open source sourceforge project named epics-pvdata, which consists of modules pvData, pvAccess, pvIOC, and pvService. Examples of two services that already exist in the pvService module are itemFinder, and gather. Each service uses pvData to store in-memory transient data, pvService to transfer data over the network, and pvIOC as the service engine. The performance benchmarking for pvAccess and both gather service and item finder service are presented in this paper. The performance comparison between pvAccess and Channel Access are presented also. For an ultra low emittance synchrotron radiation light source like NSLS II, the control system requirements, especially for beam control are tight. To control and manipulate the beam effectively, a use case study has been performed to satisfy the requirement and theoretical evaluation has been performed. The analysis shows that model based control is indispensable for beam commissioning and routine operation. However, there are many challenges such as how to re-use a design model for on-line model based control, and how to combine the numerical methods for modeling of a realistic lattice with the analytical techniques for analysis of its properties. To satisfy the requirements and challenges, adequate system architecture for the software framework for beam commissioning and operation is critical. The existing traditional approaches are self-consistent, and monolithic. Some of them have adopted a concept of middle layer to separate low level hardware processing from numerical algorithm computing, physics modelling, data manipulating and plotting, and error handling. However, none of the existing approaches can satisfy the requirement. A new design has been proposed by introducing service oriented architecture technology, and client interface is undergoing. The design and implementation adopted a new EPICS implementation, namely epics-pvdata [9], which is under active development. The implementation of this project under Java is close to stable, and binding to other language such as C++ and/or Python is undergoing. In this paper, we focus on the performance benchmarking and comparison for pvAccess and Channel Access, the performance evaluation for 2 services, gather and item finder respectively.

Shen, G.; Kraimer, M.

2011-03-28T23:59:59.000Z

287

Synchrotron Radiation Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Radiation Effects in the IR Solenoid Flux Excluder Peter Tenenbaum LCC-Note-0007 Draft 23-September-1998 Abstract We examine the emittance dilution due to synchrotron...

288

Courses on Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Radiation The following is an incomplete list of courses on Synchrotron Radiation. For additional courses, check lightsources.org. XAFS School The APS XAFS School...

289

Stanford Geothermal Program, reservoir and injection technology  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

290

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

50V or Greater than 50V - How Do We Know? (NSLS ESH Highlight 36) 9.10.2004 Electric Shock Incident at X1 7.15.2004 Improper Modification of Power Supply 5.5.2004 How Can We...

291

NIST Synchrotron radiation in SSD  

Science Conference Proceedings (OSTI)

Synchrotron radiation in the Sensor Science Division. ... Synchrotron Radiation-Based Calibrations for Space Weather Prediction. ...

2011-10-18T23:59:59.000Z

292

Stanford University Solar Decathlon 2011 Construction Drawings  

NLE Websites -- All DOE Office Websites (Extended Search)

CONSULTANTS CONSULTANTS NONE: PROJECT IS PUBLIC DOMAIN 01 10/11/2012 80% DOE/NREL DD SUBMISSION 02 11/20/2012 80% DOE/NREL RE-SUBMISSION 03 02/14/2013 100% DOE/NREL CD SUBMISSION 04 04/05/2013 100% DOE/NREL CD RE-SUBMISSION 05 08/22/2013 100% AS-BUILT SUBMISSION 8/22/2013 12:23:07 PM G-001 COVER PAGE 104 DEREK OUYANG ANRAN LI STANFORD UNIVERSITY Y2E2 BUILDING RM 254 273 VIA ORTEGA STANFORD, CA 94305 STANFORDSD@GMAIL.COM SOLARDECATHLON.STANFORD.EDU 1 2 3 4 5 6 7 A B C D E 1 2 3 4 5 6 7 A B C D E SHEET TITLE LOT NUMBER: DRAWN BY: CHECKED BY: COPYRIGHT: CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 WWW.SOLARDECATHLON.GOV TEAM NAME: ADDRESS: CONTACT: CONSULTANTS NONE: PROJECT IS PUBLIC DOMAIN 01 10/11/2012 80% DOE/NREL DD SUBMISSION 02 11/20/2012 80% DOE/NREL RE-SUBMISSION

293

Synchrotron Methods Staff  

Science Conference Proceedings (OSTI)

... Determination Staff; Materials Measurement Science Division Staff Directory; MML Organization. Contact. Synchrotron Methods ...

2012-10-07T23:59:59.000Z

294

NSLS beam line data acquisition and analysis computer system  

SciTech Connect

A versatile computer environment to manage instrumentation alignment and experimental control at NSLS beam lines has been developed. The system is based on a 386/486 personal computer running under a UNIX operating system with X11 Windows. It offers an ideal combination of capability, flexibility, compatibility, and cost. With a single personal computer, the beam line user can run a wide range of scattering and spectroscopy experiments using a multi-tasking data collection program which can interact with CAMAC, GPIB and AT-Bus interfaces, and simultaneously examine and analyze data and communicate with remote network nodes.

Feng-Berman, S.K.; Siddons, D.P.; Berman, L.

1993-11-01T23:59:59.000Z

295

Beam Loss Monitors for NSLS-II Storage Ring  

Science Conference Proceedings (OSTI)

The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

Kramer, S.L.; Cameron, P.

2011-03-28T23:59:59.000Z

296

Stanford v. Roche, Microsoft and other Supreme Court Cases |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

other Supreme Court Cases Stanford v. Roche, Microsoft and other Supreme Court Cases LBNLDOE meeting0.pdf recentcaselaw lally drysdale.pdf More Documents & Publications...

297

SLAC National Accelerator Laboratory - SLAC, Stanford Team Focuses...  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC, Stanford Team Focuses on High-Energy Electrons to Treat Cancer By Diane Rezendes Khirallah February 9, 2012 Accelerator physicists at SLAC and cancer specialists from...

298

2008-09 Stanford University Parking and Circulation Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Residences, under construction School of Engineering Center Nanotechnology Building, under construction Li Ka Shing Center Stanford Institutes of Medicine, under construction...

299

Norwich University, Stanford University and Kentucky/Indiana...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy, (202) 779-3295 Jason.Lutterman@ee.doe.gov Norwich University, Stanford University and Team KentuckyIndiana Take the Affordability Contest and University of...

300

Multilayer Laue Lens Growth at NSLS-II  

Science Conference Proceedings (OSTI)

The new NSLS-II deposition laboratory has been commissioned to include a variety of thin-film characterization equipment and a next-generation deposition system. The primary goal for this effort is R&D on the multilayer Laue lens (MLL), which is a new type of x-ray optic with the potential for an unprecedented level of x-ray nano-focusing. This unique deposition system contains many design features in order to facilitate growth of combined depth-graded and laterally graded multilayers with precise thickness control over many thousands of layers, providing total film growth in one run of up to 100 {micro}m thick or greater. A precision in-vacuum linear motor servo system raster scans a substrate over an array of magnetrons with shaped apertures at well-defined velocities to affect a multilayer coating. The design, commissioning, and performance metrics of the NSLS-II deposition system will be discussed. Latest growth results of both MLL and reflective multilayers in this machine will be presented.

Conley R.; Bouet, N.; Lauer, K.; Carlucci-Dayton, M.; Biancarosa, J.; Boas, L.; Drannbauer, J.; Feraca, J.; Rosenbaum, L.

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Orbit Stability Improvement At The Nsls X-Ray Ring  

E-Print Network (OSTI)

We describe recent improvements in both the short and long-term orbit stability at the NSLS X-Ray Ring. The short-term stability has been improved by increasing the gain and the bandwidth of the global harmonic feedback systems. The long-term horizontal orbit drift over the course of a fill has been reduced by including the rf-frequency in the orbit feedback. Work is in progress to further reduce orbit drift by compensating for thermally induced mechanical motions of the beam position monitors (BPMs). I. INTRODUCTION At the NSLS storage rings, the harmonic based analog global feedback system has provided excellent orbit stability [1]. For most users, the level of this beam stability (short and long-term) has been satisfactory, however, further stabilization is desirable. During the Fall of 1994, the gain and bandwidth of the global feedback systems were increased resulting in significantly reduced short-term orbit fluctuations. The long-term drift in the horizontal orbit has been red...

Safranek Singh And; J. Safranek; O. Singh; L. Solomon

1996-01-01T23:59:59.000Z

302

Modeling and experimental measurements of residual stress using synchrotron radiation  

SciTech Connect

This work was an extension of recent LLNL-related efforts to determine the most effective method for determining residual stress in metal components by non-destructive techniques. These activities have included neutron diffraction, x-ray diffraction, and ultrasonics. In 1988, we recognized that the newly installed UC/LLNL beam line at the Stanford Synchrotron Radiation Laboratory (SSRL) could be applied to determining lattice strains in a fashion helpful to our overall research goals. Pioneering work using synchrotron radiation for stress measurements had been reported in Japan. Benefits of a synchrotron source to our studies include a highly intense and monochromatic beam, with variable energies (allowing significant sample penetration) and very low beam divergence. 10 refs., 3 figs., 2 tabs.

Shackelford, J.F.

1989-05-08T23:59:59.000Z

303

Stanford - Woods Institute for the Environment | Open Energy Information  

Open Energy Info (EERE)

Stanford - Woods Institute for the Environment Stanford - Woods Institute for the Environment Jump to: navigation, search Logo: Stanford- Woods Institute for the Environment Name Stanford- Woods Institute for the Environment Address 473 Via Ortega Place Stanford, California Zip 94305 Region Bay Area Coordinates 37.427774°, -122.175672° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.427774,"lon":-122.175672,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Stanford- Global Climate and Energy Project | Open Energy Information  

Open Energy Info (EERE)

Stanford- Global Climate and Energy Project Stanford- Global Climate and Energy Project Jump to: navigation, search Logo: Stanford- Global Climate and Energy Project Name Stanford- Global Climate and Energy Project Address 473 Via Ortega Place Stanford, California Zip 94305 Region Bay Area Coordinates 37.427774°, -122.175672° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.427774,"lon":-122.175672,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Real-time x-ray absorption spectroscopy of uranium, iron, and manganese in contaminated sediments during bioreduction  

E-Print Network (OSTI)

National Synchrotron Light Source (NSLS, Brookhaven NationalSynchrotron Light Source (NSLS), Brookhaven Nationalof Georgia). Use of the NSLS was supported by DOE under

Tokunaga, T.K.

2008-01-01T23:59:59.000Z

306

Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils, and its relation to manganese redox status  

E-Print Network (OSTI)

of Georgia). Use of the NSLS was supported by DOE underNational Synchrotron Light Source (NSLS, Brookhaven NationalSynchrotron Light Source (NSLS), Brookhaven National

Tokunaga, Tetsu K.; Wan, Jiamin; Lanzirotti, Antonio; Sutton, Steve R.; Newville, Matthew; Rao, William

2007-01-01T23:59:59.000Z

307

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

TEMPERATURE DURING POWER GENERATION IN OIL FIELDS Bin Gong1 , Hongbin Liang2 , Shouliang Xin2 , and Kewen Li Stanford, CA94305, USA e-mail: kewenli@stanford.edu 1 Peking University, 2 PetroChina ABSTRACT The effects in these petroleum reservoirs. As Erdlac et al (2007) reported, Texas has thousands of oil and gas wells

Stanford University

308

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 GEOTHERMAL FLUID FLOW MONITORING BY THE REPEAT GRAVITY MEASUREMENT AT THE TAKIGAMI GEOTHERMAL FIELD, JAPAN -APPLICATION OF HYBRID GRAVITY

Stanford University

309

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 SUSTAINABILITY OF GEOTHERMAL DOUBLETS-in the natural energy flow will slowly replenish the geothermal system and it will again be available

Stanford University

310

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 CONVERTING GEOTHERMAL PLAYS TO PROJECTS and Resources SA, Petroleum and Geothermal Group GPO Box 1671 Adelaide, South Australia, 5000, Australia e

Stanford University

311

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 DISTRIBUTION OF ARSENIC IN GEOTHERMAL WATERS FROM SABALAN GEOTHERMAL FIELD, N-W IRAN Haeri A.,1 Strelbitskaya S., Porkhial S2 ., Ashayeri, A1 . 1

Stanford University

312

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 GEOTHERMAL RESOURCES IN THE PACIFIC ISLANDS their untapped geothermal resources) for cost effective power production and direct-use applications. As part

Stanford University

313

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

Stanford Geothermal Program Department of Energy Resources Engineering, 367 Panama Street Stanford the effect of shear-induced pore dilation, injection schedule, and the characteristic displacement scale dc/dynamic friction in McClure and Horne (2010). The effect of increasing characteristic displacement scale, dc

Stanford University

314

Synchrotron Programs and Projects  

Science Conference Proceedings (OSTI)

... Synchrotron Radiation-Based Calibrations for Space Weather Prediction Last ... NASA launched the Solar Dynamics Observatory ( SDO ) satellite on ...

2010-05-24T23:59:59.000Z

315

INSERTION DEVICES R AND Ds FOR NSLS-II.  

DOE Green Energy (OSTI)

NSLS-II is a medium energy storage ring of 3GeV electron beam energy with sub-nm.rad horizontal emittance and top-off capability at 500mA. Damping wigglers will be used not only to reduce the beam emittance but also for broadband sources for users. Cryo-Permanent Magnet Undulators (CPMUs) are considered for hard X-ray linear device, and permanent magnet based Elliptically Polarized Undulators (EPUs) are for polarization control. Rigorous R&D plans have been established to pursue the performance enhancement of the above devices as well as building new types of insertion devices such as high temperature superconducting wiggler/undulators. This paper describes the details of these activities and discuss technical issues.

TANABE,T.; HARDER, D.A.; RAKOWSKY, G.; SHAFTAN, T.; SKARITKA, J.

2007-06-25T23:59:59.000Z

316

Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared  

E-Print Network (OSTI)

Summary of NSLS-II Source Properties, http://www.bnl.gov/Predicted ? y = 185 m (NSLS VUV) Measured ? y = 52 m (beamline was built at the NSLS VUV ring (a 2 nd generation

Levenson, Erika

2008-01-01T23:59:59.000Z

317

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University AND PDM SYSTEMS IMPROVE DRILLING PERFORMANCE IN A CALIFORNIA GEOTHERMAL WELL Dennis Lovett, Terra system allows data transmission without a continuous fluid column. Operating the Coso geothermal field

Stanford University

318

Workshop on atomic physics at the National Synchrotron Light Source  

SciTech Connect

The workshop emphasis was to acquaint the atomic physics community with the range of experimental capabilities of the NSLS. (GHT)

Jones, K.W.; Johnson, B.M.; Gregory, D.C. (eds.)

1981-01-01T23:59:59.000Z

319

Low-Level Radio Frequency System Development for the National Synchrotron Light Source II  

SciTech Connect

The National Synchrotron Light Source-II (NSLS-II) is a new ultra-bright 3GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. The position and timing specifications of the ultra-bright photon beam imposes a set of stringent requirements on the performance of radio frequency (RF) control. In addition, commissioning and staged installation of damping wigglers and insertion devices requires the flexibility of handling varying beam conditions. To meet these requirements, a digital implementation of the LLRF is chosen, and digital serial links are planned for the system integration. The first prototype of the controller front-end hardware has been built, and is currently being tested.

Ma,H.; Rose, J.

2009-05-04T23:59:59.000Z

320

Two-Color Self-Seeding at LCLS | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Color Self-Seeding at LCLS Two-Color Self-Seeding at LCLS Wednesday, September 18, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Franz-Josef Decker, Accelerator Directorate The Linac Coherent Light Source (LCLS) produces typically SASE FEL pulses with intensities of up to 5 mJ and at high photon energy an FEL bandwidth 0.2% (FWHM). Self-seeding with a diamond crystal reduces the bandwidth by a factor of 10 to 40. The range depends on which Bragg reflection is used, or the special setup of the electron beam like over-compression. The peak intensity level is lower by a factor of only five, giving the seeded beam an advantage of about 2.5 in average intensity over the use of a monochromator with SASE. At certain energies and crystal angles different Bragg lines cross which allows seeding at two or even three different colors inside the bandwidth

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Full-field Transmission X-ray Microscopy | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

BL6-2c / Transmission X-ray Microscopy BL6-2c / Transmission X-ray Microscopy Home Researchers Publications Science Highlights Department of Energy Office of Science Search form Search Search TXM Search Full-field Transmission X-ray Microscopy Capabilities Full-field TXM is an excellent method to examine nanoscale heterogeneties in many materials, including complex hierarchical systems such as catalysts, fuel cells and battery electrodes, and biological and environmental samples, at 30 nm resolution.The transmission X-ray microscope (TXM) on beam line 6-2c at SSRL is capable of 2D imaging and tomography, as well as spectroscopic imaging for 2D and 3D elemental mapping and chemical mapping over tens of microns (up to mm in 2D). The field of view (FOV) is 30 microns, but mosaic images can be collected to

322

Materials Small-angle X-ray Scattering (SAXS) | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Small-angle X-ray Scattering (SAXS) Materials Small-angle X-ray Scattering (SAXS) Small Angle X-ray Scattering for Materials Science Small-angle X-ray scattering (SAXS) is a well-established characterization method for microstructure investigations in various materials. It probes electron density differences to give information about structural inhomogeneities from the near atomic scale (1 nm) to the micron scale (1 000 nm). The method involves measuring the scattered X-ray intensity as a function of (typically small) scattering angles and is generally performed in transmission. SAXS is used to characterize the size scale of inhomogeneities (e.g. pores, inclusions, second phase regions) in polymer blends, micro-emulsions, geological materials, bones, cements and ceramics. Instrumentation

323

User 'To Do' List as Soon as Beam Time is Assigned | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

'To Do' List as Soon as Beam Time is Assigned 'To Do' List as Soon as Beam Time is Assigned Safety Review of Scheduled Experiments Identify potential safety issues on proposals and beam time requests. If there are any potential hazards with your samples, materials you are using, or overall set up you may be contacted by the safety office depending on the degree of the hazard indicated. If you want to bring hazardous equipment or substances to SSRL and have not previously indicated this on either your proposal or beam time request (BTR), contact the safety office immediately. Additionally, any changes you may wish to make to your proposal or BTR must be reviewed and approved by the safety office in advance. Late changes that involve potential hazards may not be possible. The experiment information provided by users is used to generate a Safety

324

Welcome to SSRL: User Check-In Procedures | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

SSRL: User Check-In Procedures SSRL: User Check-In Procedures Note: SLAC will be closed for the holidays from December 21-January 5. SLAC has installed RFID proximity card readers which facilitate 24/7 access during normal operations - at the main entrance off Sand Hill Road, at the Alpine Road Gate, and at Security Gates 17 and Sector 30. Register and complete safety training before arrival. Scheduled users will obtain a SLAC ID badge with 30-90 days proximity access after completing training and check-in at the URA office in Building 120. If you have a proximity ID badge, contact URA to re-activate your proximity access before subsequent scheduled user experiments. If you do not yet have a proximity activated ID badge, enter SLAC from Sand Hill Road, turn right at the main entrance and visit the Security Office.

325

A Soft X-ray Split and Delay System for LCLS | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Room 108A Brendan Murphy, LCLS In this talk I will describe the development and commissioning of the x-ray split and delay (XRSD) system at LCLS. The XRSD is a two-mirror delay...

326

Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Accelerators

Johannes M. Bauer; James C. Liu; Alyssa A. Prinz; Sayed H. Rokni

327

Two-Color Self-Seeding at LCLS | Stanford Synchrotron Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Color Self-Seeding at LCLS Wednesday, September 18, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Franz-Josef Decker, Accelerator Directorate The Linac Coherent Light...

328

Beam Loss Monitors for NSLS-II Storage Ring  

SciTech Connect

The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

Kramer, S.L.; Cameron, P.

2011-03-28T23:59:59.000Z

329

Photon Sciences Directorate | 2010 Annual Report | Close-Up: NSLS Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Close-Up: NSLS Users Close-Up: NSLS Users From Alabama to Australia, more than 2,200 visiting scientists from over 400 institutions came to NSLS to conduct their research in FY10, exactly 700 of which were new to the facility. These scientists, known as "users," primarily are awarded beam time by submitting a general user proposal through a peer-reviewed, web-based system. The proposal is rated based on various scientific criteria and can remain active for up to six cycles of operation (about two years). In FY10, about 1,000 requests for beam time were submitted, with about one-third of those requests on new proposals. Beam time is given without charge, as long as the research results are published in open literature. Work that is proprietary in nature is charged on a full-cost recovery basis

330

Brought to You by Stanford Office of Sustainability, 340 Bonair Siding, Stanford. Visit us at http://sustainable.stanford.edu Sustainability on the Farm  

E-Print Network (OSTI)

air. energy recovery Y2E2 uses the conditioned air exiting the building to pre-cool or pre ducts on the roof, essentially taking the edge off the outside air before it is conditioned. onsite as emissions from university population commute and air travel. stanford energy and climate plan (2008 -2009

Nur, Amos

331

Cavity Design and Beam Simulations for the APS RF Gun Advanced Photon Source  

E-Print Network (OSTI)

presented an outline of the Stanford Synchrotron Radiation Light Source (SSRL), emphasizing their more. SSRL $21.OM B. NSLS $33.8M ($3M increase) C. APS $84.7M D. 4th Generation X-ray Source R&D $3.OM The SSRL and APS figures are the FY98 DOE requests. The NSLS figure is increased by $3.OM above the FY98

Kemner, Ken

332

electronic reprint Synchrotron  

E-Print Network (OSTI)

of Synchrotron Radiation ISSN 0909-0495 Received 13 October 2010 Accepted 1 March 2011 # 2011 International Union, 2010). Global effects from radiation exposure at this temperature include decreasing diffractionelectronic reprint Journal of Synchrotron Radiation ISSN 0909-0495 Editors: G. Ice, A° . Kvick

Juers, Doug

333

Phase 2 safety analysis report: National Synchrotron Light Source  

SciTech Connect

The Phase II program was established in order to provide additional space for experiments, and also staging and equipment storage areas. It also provides additional office space and new types of advanced instrumentation for users. This document will deal with the new safety issues resulting from this extensive expansion program, and should be used as a supplement to BNL Report No. 51584 ''National Synchrotron Light Source Safety Analysis Report,'' July 1982 (hereafter referred to as the Phase I SAR). The initial NSLS facility is described in the Phase I SAR. It comprises two electron storage rings, an injection system common to both, experimental beam lines and equipment, and office and support areas, all of which are housed in a 74,000 sq. ft. building. The X-ray Ring provides for 28 primary beam ports and the VUV Ring, 16. Each port is capable of division into 2 or 3 separate beam lines. All ports receive their synchrotron light from conventional bending magnet sources, the magnets being part of the storage ring lattice. 4 refs.

Stefan, P. (ed.)

1989-06-01T23:59:59.000Z

334

Stanford- Precourt Energy Efficiency Center | Open Energy Information  

Open Energy Info (EERE)

Precourt Energy Efficiency Center Precourt Energy Efficiency Center Jump to: navigation, search Logo: Stanford- Precourt Energy Efficiency Center Name Stanford- Precourt Energy Efficiency Center Address 473 Via Ortega Place Stanford, California Zip 94305 Region Bay Area Coordinates 37.427774°, -122.175672° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.427774,"lon":-122.175672,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

49 49 Hand Safety Date: January 7, 2011 Editor: Lori Stiegler It's not unusual for experiment needs to change, and beam time to be limited while conducting research at the NSLS. Unfortunately, these factors, and several other contributing factors, converged recently and adversely affected an experimenter. The result was a hand injury that required a trip to the hospital, and sutures. In the case of this injury, the user was trying to fashion a new sample holder because of difficulty with the equipment he had brought from his home institution. The idea for the substitute sample holder had been previously discussed with his work group, but never tried. Using the alternate tools and holders he had brought, he tried to cut a slot out of a hard plastic tube with a razor

336

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions to Training Office Directions to Training Office The Photon Sciences Training Manager is located in the NSLS facility, Building 725D, Room 2-160. Directions (from the Main Entrance) From the Main (front) entrance, take the stairs or elevator to the second floor. Turn right into the hallway and proceed past the lobby balcony. Continue past the seminar room on the right and through the hallway to make a 90 degree left turn. Continue through this next hallway past the Design Room on the left. Turn left at the overhead sign for "Training" and continue straight through to Room 2-160 on your left. Directions (from the North Entrance) From the North (back) entrance, take the stairs or elevator to the second floor. Turn left into the hallway. Turn right at the doorway marked Room

337

Phase and amplitude detection system for the Stanford Linear Accelerator  

Science Conference Proceedings (OSTI)

A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

Fox, J.D.; Schwarz, H.D.

1983-01-01T23:59:59.000Z

338

Statistical Analysis of X-ray Speckle at the NSLS  

E-Print Network (OSTI)

We report a statistical analysis of the static speckle produced by illuminating a disordered aerogel sample by a nominally coherent x-ray beam at wiggler beamline X25 at the National Synchrotron Light Source. The results of the analysis allow us to determine that the coherence delivered to the X25 hutch is within 35% of what is expected. The rate of coherent photons is approximately two times smaller than expected on the basis of the X25 wiggler source brilliance.

Ophelia K. C. Tsui; S. G. J. Mochrie; L. E. Berman

1997-09-30T23:59:59.000Z

339

Conventional Facilities Chapter 6: HVAC Systems 6-1 NSLS-II Preliminary Design Report  

E-Print Network (OSTI)

Conventional Facilities Chapter 6: HVAC Systems 6-1 NSLS-II Preliminary Design Report 6 MECHANICAL ­ HVAC SYSTEMS 6.1 Design Criteria 6.1.1 Codes and Standards The latest edition of the codes, standards have adequate capacity and head, no chilled water pumps #12;Conventional Facilities Chapter 6: HVAC

Ohta, Shigemi

340

Chapter 1: Executive Summary 1-1 NSLS-II Conceptual Design Report  

E-Print Network (OSTI)

devices 27 Number of bend magnet sources 30 1.4 Cost and Schedule The Total Estimated Cost (TEC) of NSLS the capability to characterize and understand physical properties at the nanoscale, the processes by which, and appropriate support equipment, all housed in a new building. Specifically, the main scope elements include

Ohta, Shigemi

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SPLASH: Stanford parallel applications for shared-memory  

Science Conference Proceedings (OSTI)

We present the Stanford Parallel Applications for Shared-Memory (SPLASH), a set of parallel applications for use in the design and evaluation of shared-memory multiprocessing systems. Our goal is to provide a suite of realistic applications that will ...

Jaswinder Pal Singh; Wolf-Dietrich Weber; Anoop Gupta

1992-03-01T23:59:59.000Z

342

Global Climate & Energy ProjectGlobal & Energy Project STANFORD UNIVERSITY  

E-Print Network (OSTI)

from plants and animals to energy, and to determine the best conditions for doing so (see below). #12, and processes may have an enormous impact on the world's future energy consumption and environment. In orderGlobal Climate & Energy ProjectGlobal & Energy Project STANFORD UNIVERSITY Global Energy Climate

Nur, Amos

343

Introduction 3 About The Stanford Department of Public Safety 4  

E-Print Network (OSTI)

at Vaden Health Center for smoking cessation information and programs. Holiday Fire Safety Information://www.stanford.edu/group/svab/, (650) 7253190 The Health Library at the Vaden Health Center is a comprehensive resource center sexual assault. The library is located on the 2nd floor of Vaden at the Health Promotion Services

Ford, James

344

Stanford Green Dorm Project --Photovoltaic Mini-Report --  

E-Print Network (OSTI)

, and promotional purposes. Technology Overview Photovoltaic (PV) cells are semiconductor devices that convert light and the overall installation of modules is called an array. Diagram of photovoltaic cell. (httpStanford Green Dorm Project -- Photovoltaic Mini-Report -- Paul Kreiner ­ May 7, 2004 Purpose PVs

Krothapalli, Anjaneyulu

345

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

E-Print Network (OSTI)

Synchrotron Light Source, NSLS, (Brookhaven, USA) during thehave been at the ALS or NSLS. Several new instruments aremicroscopes at the ALS and NSLS are provided elsewhere. 18-

Moffet, Ryan C.

2011-01-01T23:59:59.000Z

346

Optimizing ring-based CSR sources  

E-Print Network (OSTI)

synchrotron radiation from the NSLS VUV ring", NIMA, 463 (of Coherent Emission from the NSLS VUV Ring, Proc. 1999

2004-01-01T23:59:59.000Z

347

Selenium fractionation and cycling in the intertidal zone of the Carquinez Strait. Annual Report. October 1, 1995 through December 31, 1996.  

E-Print Network (OSTI)

National Synchrotron Light Source (NSLS; Brookhaven NationalX-ray microprobe (X26A, NSLS), with monochromatic X-- rays

Zawislanski, P.T.

2010-01-01T23:59:59.000Z

348

ALS Activity Report 2004  

E-Print Network (OSTI)

Science Foundation NSLS . . . . . . National SynchrotronPohang Light Source, and the NSLSs vacuum ultravi- olet and

Tamura Ed., Lori S.

2005-01-01T23:59:59.000Z

349

A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS), Canadian Light Source (with groups at the APS and NSLS, the ALS has pioneered some

Tamura, N.

2009-01-01T23:59:59.000Z

350

2nd Annual DOE-ERSP PI Meeting: Abstracts  

E-Print Network (OSTI)

ALS_environmental/, NSLS: http://www.bnl.gov/envirosuite/,Synchrotron Light Source (NSLS), the EnviroSuite program

Hazen, Terry C.

2007-01-01T23:59:59.000Z

351

High-Resolution Soft X-Ray Photoionization Studies of Selected Molecules  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS) [9]. Another Sphericalas well as a newer SGM at NSLS, has actively investigated a

Hudson, E.A.

2009-01-01T23:59:59.000Z

352

Earth Sciences Division Research Summaries 2006-2007  

E-Print Network (OSTI)

t ron user facilities (ALS, NSLS, and SSRL). By frequentNational Science Foundation NSLSNational Synchrotron Light

DePaolo, Donald

2008-01-01T23:59:59.000Z

353

SSRL School on Synchrotron X-ray Spectroscopy Techniques in Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Agenda Location Visitor Information Transportation Tourism & Dining SSRL School on Synchrotron X-ray Spectroscopy Techniques in Environmental and Materials Sciences: Theory and Application June 2-5, 2009 Group photo of the attendees at the SSRL School on X-ray Spectropscopy Techniques in Environmental and Materials Sciences: Theory and Application held June 2-5, 2009 at the Stanford Synchrotron Radiation Lightsource. » View photos from XAS 2009 Overview: Modern synchrotron radiation based X-ray absorption spectroscopy (SR-XAS) techniques offer the ability to probe local molecular scale physical and electronic structures that govern key properties of technological and environmental materials and molecular complexes. The high collimation, intensity, and tunability of SR allow the investigation of a wide range of materials, including thin films and interfaces, nanoparticles, amorphous materials, solutions, hydrated and disordered bacteriogenic minerals, soils, interfaces, and dissolved species.

354

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network (OSTI)

, Stanford, California, February 9-11, 2009 SGP-TR-187 DISTRICT HEATING MODELLING AND SIMULATION Lei Haiyan1 air pollution and save conventional energy, geothermal energy as a heat source for district heating. This paper describes the geothermal resource and district heating system in Tianjin. Heat load for one sample

Stanford University

355

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

, 34469, Turkey 2 Stanford University, Department of Energy Resources Engineering, 367 Panama Street works and in different mathematical forms. This can be seen in the classic paper of Harper and Jordan of parameters with poor predictive capacity. ACKNOWLEDGEMENT We gratefully acknowledge PNOC-EDC (now Energy

Stanford University

356

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

given by l v q q . 1 1 1 - + = . (5) Using numerical formulae for (1b) and for specific volumes was 23.4 m/s which occurred at 1.0=p MPa and 000626.0=q , i.e. at atmospheric pressure, when the vapour1 PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

357

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROPERTIES AND FRACTURE ORIENTATIONS ON FAULT ACTIVATION Souheil M. Ezzedine1,2 , Joseph P. Morris3 , Lee G. Glascoe1 , Laura Chiaramonte4 , Tarabay H. Antoun4 , Walter W. McNab4 1 Lawrence Livermore National-mail: ezzedine1@llnl.gov 2 Stanford University, Department of Civil and Environmental Engineering, 396 Via Ortega

Stanford University

358

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

, Stanford, California, February 1-3, 2010 SGP-TR-188 THERMAL ENERGY RECOVERY FROM ENHANCED GEOTHERMAL to the thermal energy contained in the fractured volume comprising the reservoir. One approach to EGS resource crustal heat flow is most favorable for EGS development (Figure 1), were included in the recent USGS

Stanford University

359

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University SAND PROPPANTS UNDER GEOTHERMAL CONDITIONS Daniel Brinton, Kristie McLin, Joseph Moore Energy@egi.utah.edu ABSTRACT Engineered Geothermal Systems (EGS) can be developed in reservoirs otherwise lacking sufficient

Stanford University

360

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University OF COSO GEOTHERMAL FIELD, CA Kelly Blake and Nicholas C. Davatzes Temple University 1901 North 13th Street structures in image logs of wells from the Coso Geothermal Field (CGF), CA record variation in the azimuth

Stanford University

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Talang geothermal field lies in Solok Regency- West Sumatra Province. Low gravity anomaly (bouguer source of the geothermal system in the area. The gravity anomaly leneament trending NW-SE coincident

Stanford University

362

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University OF KIZILDERE GEOTHERMAL FIELD IN TURKEY Füsun S. Tut Haklidir, Taylan Akin, Aygün Güney, Aye Alpagut Bükülmez In Kizildere Geothermal Field, there were 25 drilled wells until 2009, 9 of which are currently being produced

Stanford University

363

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University electrical generation capacity of a geothermal system. The methodology consists of combining probability of a geothermal reservoir to obtain the probability distribution function for the stored energy ("heat in place

Stanford University

364

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University OF THE GEOTHERMAL PARAMETERS OF THE GROUND IN CYPRUS FOR THE EXPLOITATION OF GEOTHERMAL ENERGY AND THE IMPACT OF THE RESULTS IN THE DESIGN OF THE GEOTHERMAL SYSTEMS. G. Partasides1 , A. Lizides1 , S. Kassinis1 , G. Florides

Stanford University

365

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University AT THE PAILAS GEOTHERMAL FIELD - A RECENTLY DESIGNED DIGITAL BOREHOLE LOG DATA SHEET USING MICROSOFT EXCEL of the borehole log data compiled at the Pailas Geothermal Borehole Field (rate of penetration, weight on bit, mud

Stanford University

366

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University problems associated with geothermal utilization. Hellisheiði Power Plant annually emits around 13000 tons of 2011. H2S will be separated from other geothermal gases at a pilot gas separation plant, dissolved

Stanford University

367

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University THE SOLUTION OF GEOTHERMAL HEAT-CARRIER Belova .P. Research Geotechnological Centre, Far Eastern Branch of geothermal power plants operation. Silica extraction from the solution of geothermal plants and its cleaning

Stanford University

368

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University RESERVOIR MODEL OF THE TAKIGAMI GEOTHERMAL FIELD, OITA, JAPAN Saeid Jalilinasrabady1 , Ryuichi Itoi1@kyudai.jp ABSTRACT The natural state model was developed in the Takigami geothermal field, using TOUGH2 simulator

Stanford University

369

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University APPRAISAL SYSTEM FOR DEEP GEOTHERMAL ENERGY SYSTEMS IN AQUIFERS W.A. van Leeuwen, C.N.P.J. Maaijwee and N.a.vanleeuwen@geo.uu.nl ABSTRACT Pursuit and use of geothermal energy in the Netherlands is developing steadily. However, in order

Stanford University

370

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University AT OLKARIA I, KENYA Cornel O. Ofwona Geothermal Development Company Ltd., P. O. Box 100746 - 00101 Nairobi, Kenya e-mail: cofwona@gdc.co.ke ABSTRACT Exploitation of Olkaria geothermal field started in 1981 when

Stanford University

371

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-THERMAL INFRARED BAND AND MAGNETOTELLURIC METHOD TO SIMULATE A GEOTHERMAL SITTING AT MT. CIREMAI, WEST JAVA at surface is crucial for geothermal exploration. Since field observations to map surface manifestation

Stanford University

372

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-mail: sass@geo.tu-darmstadt.de ABSTRACT The investigation and exploration of potential deep geothermal important in the exploration of potentially engineered geothermal systems and of mid to low enthalpy

Stanford University

373

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Geothermal System (EGS) were coupled with wellbore flow simulations. The 3D reservoir simulations used at par with H2O based EGS. The total exergy that can be generated in 1 km2 area of a geothermal reservoir

Stanford University

374

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University RIVER GEOTHERMAL SITE Earl Mattson1 , Mitchell Plummer1 , Carl Palmer1 , Larry Hull1 , Samantha Miller1 and Randy Nye2 1 Idaho National Laboratory PO Box 1625 Idaho Falls, ID 83415-2107 2 US Geothermal Inc 1505

Stanford University

375

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University TEMPERATURE DATA OBTAINED AT AND AROUND THE LAS PAILAS GEOTHERMAL PROJECT AND IN RINC?N DE LA VIEJA NATIONAL the existence of subsoil thermal anomalies that may be correlated with local faults in the Pailas Geothermal

Stanford University

376

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University out in Salavatli geothermal field, Turkey. Since reinjection returns as relatively colder water seismometers at the Salavatli, Kök, Aydin, Turkey geothermal area was deployed in May 2010 in connection

Stanford University

377

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-mail:john.lund@nrel.gov ABSTRACT A geothermal direct-use project utilizes a natural resource, a flow of geothermal fluid, aquaculture ponds, and industrial processes. Geothermal utilization requires matching the varied needs

Stanford University

378

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University FOR GEOTHERMAL EXPLORATION AT JEMEZ PUEBLO IN NEW MEXICO Lianjie Huang1 and Michael Albrecht2 1 Los Alamos Geothermal Technology Center 4200 West Jemez Road, Suite 301-13 Los Alamos, NM 87544, USA e-mail: michael

Stanford University

379

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Group Zorlu Plaza, Avcilar stanbul, 34310, TURKEY e-mail: aygun.guney@zorlu.com ABSTRACT Geothermal well that Petroleum and Geothermal fluids have similar properties in terms of well testing. In this regard, almost

Stanford University

380

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Keyan Zheng1 Fang He2 1 Geothermal Council of China Energy Society 20 Da Hui Si Road, Haidian District of Renewable Energy of PRC" had clearly explained that geothermal energy belongs to renewable energy

Stanford University

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Germany iulia.ghergut@geo.uni-goettingen.de ABSTRACT In fluid-based geothermal reservoirs, thermal between "heat exchange area" and RTD features of a geothermal reservoir feel natural, but act highly

Stanford University

382

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University CASING IN A HIGH TEMPERATURE GEOTHERMAL WELL Gunnar Skúlason Kaldal1 *, Magnús ?. Jónsson1 , Halldór@hi.is ABSTRACT The production casing of a high temperature geothermal well is subjected to multiple thermo

Stanford University

383

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University ON OPTIMAL LOCATION AND SIZE OF A HEAT SINK IN A GEOTHERMAL RESERVOIR Y. Feng, M. Tyagi and C.D. White Louisiana State University Baton Rouge, LA, 70802, USA E-mail: yfeng1@tigers.lsu.edu ABSTRACT Geothermal

Stanford University

384

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University BINARY POWER PLANTS IN REMOTE GEOTHERMAL AREAS OF INDONESIA Huenges E., K. Erbas, M. Jaya, and A. Saadat in remote areas. Geothermal is one of these and has huge resources in Indonesia. Today, geothermal provides

Stanford University

385

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL FIELD, SW-ICELAND Samuel W. Scott1 , Ingvi Gunnarsson2 , Andri Stefánsson1 , Stefán Arnórsson1 sampling campaign has recently been carried out at the Hellisheiði geothermal field in southwest Iceland

Stanford University

386

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Berkeley, California 94720 e-mail: Kboyle@lbl.gov ABSTRACT The Geysers Geothermal Reservoir experiences, and processing system. INTRODUCTION Geological Setting The Geysers geothermal reservoir is located just south

Stanford University

387

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL SOFTWARE S. Alcaraz1 , R. Lane2 , K. Spragg2 , S. Milicich1,3 , F. Sepulveda4 and G. Bignall1 1 Geothermal is an innovative 3-D modelling visualisation software and resource management tool, developed

Stanford University

388

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University IN KOTAMOBAGU GEOTHERMAL FIELD, NORTH SULAWESI, INDONESIA Riogilang, H.1, 3 , Itoi, R.1 , Taguchi, S2 from thermal spring, river, and shallow well in Kotamobagu geothermal field. Temperature of waters

Stanford University

389

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-WATER INJECTION INTO GEOTHERMAL RESERVOIRS: GEOTHERMAL ENERGY COMBINED WITH CO2 STORAGE Hamidreza Salimi Stevinweg 1 Delft, 2628 CN, The Netherlands e-mail: h.salimi@tudelft.nl ABSTRACT The Delft Geothermal

Stanford University

390

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously operated

Stanford University

391

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 DESIGNING THERMAL-PHYSICAL, POWER out at expeditious development rates and there are about a million power plants of this type-energy power plant, that supplies consumers with heat within constrained by them parameters, standard

Stanford University

392

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network (OSTI)

and the near the bottom at the hot aquifer level, a convection cell is induced and the well becomes very nearly providing around 171o F over the entire well depth and obviously creating a convection cell bringing hot, Stanford, California, February 9-11, 2009 SGP-TR-187 DESIGN OF A CONVECTION CELL FOR A DOWNHOLE HEAT

Stanford University

393

In situ synchrotron x-ray studies of LiMn{sub 2}O{sub 4} cathodes  

DOE Green Energy (OSTI)

LiCoO{sub 2} cathodes are now used in most commercial lithium ion batteries. LiMn{sub 2}O{sub 4} is an attractive low cost alternative. However, it is difficult to make reproducibly. At Brookhaven National Laboratory two in situ synchrotron x-ray techniques, that are available at the National Synchrotron Light Source (NSLS), have been used to investigate LiMn{sub 2}O{sub 4}. The techniques are x-ray absorption and high resolution x-ray diffraction. With x-ray absorption it is possible to follow the changes in the Mn oxidation state and the changes in the Mn-O and Mn-Mn bond lengths on cycling. Also it is possible to detect amorphous phases. The high energy x-rays at the diffraction Beam Lines at the NSLS (up to 24 KeV) permit in situ x-ray diffraction, in the transmission mode, in thin lithium and lithium ion cells. The evolution of the structural chances that occur on cycling can be followed. These in situ measurements were done on Li/LiMn{sub 2}O{sub 4} cells with a liquid electrolyte (1 M LiPF{sub 6} in a 1:1:3 PC:EC:DMC solvent).

McBreen, J.; Mukerjee, S.; Yang, X.Q. [and others

1997-05-01T23:59:59.000Z

394

RHIC | Booster Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Booster Synchrotron Booster Synchrotron Construction of the Alternating Gradient Synchrotron (AGS) Booster was begun in 1986 and completed in 1991. The Booster is less than one quarter the size of the AGS. It is used to preaccelerate particles entering the AGS ring, increasing the intensity of the proton beams generated by the AGS. The Booster also plays an important role in the operation of the Relatavistic Heavy Ion Collider by accepting heavy ions from EBIS or protons from the 200-million electron volt (MeV) Linac. It then feeds them to the AGS for further acceleration and delivery to RHIC. After the installation of the heavy-ion transfer line in 1986, the AGS was capable of accelerating ions up to silicon with its atomic mass of 28. However, due to its superior vacuum, the Booster makes it possible for the AGS to

395

Subscriber access provided by STANFORD UNIV GREEN LIBR Nano Letters is published by the American Chemical Society. 1155 Sixteenth  

E-Print Network (OSTI)

(Figure 1a) was grown by hot wire chemical vapor deposition (HWCVD) on an indium-tin-oxide (ITO) coated of Chemistry, Stanford UniVersity, Stanford, California 94305, and National Renewable Energy Laboratory, 1617, Stanford University. | Department of Chemistry, Stanford University. National Renewable Energy Laboratory

Cui, Yi

396

Insertion device development in the X13 straight of the NSLS X-Ray Ring  

SciTech Connect

On the NSLS X-Ray Storage Ring, the X13 straight section and beamline have been used for insertion-device-related R and D since 1990. The authors will describe three important projects: The Prototype Small-Gap Undulator (PSGU), the In-Vacuum Undulator (IVUN), and the Time Varying Elliptically Polarized Wiggler (EPW). The PSGU has successfully operated with a vertical aperture of only 3 mm, with minimal reduction in electron beam lifetime. The EPW has successfully run during regular user operations while switching at either 2 Hz or 100 Hz, with no adverse effects on other experiments. The IVUN project is a collaboration between NSLS and Spring-8, and installation is scheduled for May 1997.

Stefan, P.M.; Krinsky, S.; Kao, C.C.; Rakowsky, G.; Singh, O.; Solomon, L.

1997-07-01T23:59:59.000Z

397

Stanford Geothermal Program, reservoir and injection technology. Fourth annual report  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

398

Estimate of the coupling impedance for the storage rings of the NSLS  

SciTech Connect

The most important ingredient to evaluate the stability of a particle beam in a storage ring is the longitudinal coupling impedance Z/n and the transverse impedance Z/sub perpendicular/ which is usually associated to the former. These impedances are calculated for the two storage rings which are part of the NSLS, namely the Ultra Violet Ring (UVR) and the X-Ray Ring (XRR)-the parameters for these two rings which are used throughout the paper are shown.

Ruggiero, A.G.

1979-08-01T23:59:59.000Z

399

SUNY beam line X3, National Synchrotron Light Source  

Science Conference Proceedings (OSTI)

This report discusses: beamline change and upgrades at NSLS; crystallography; surface structure; small angle scattering; EXAFS, glazing angle and fluorescence studies; and high temperature superconductors. (LSP).

Not Available

1991-01-01T23:59:59.000Z

400

Photon Sciences | Operating the National Synchrotron Light Source...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proprietary Research Information At NSLS, proprietary research is work conducted under a Class Waiver for Proprietary Users of Energy Research Designated Facilities. Such research...

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SEMATECH Visit to the National Synchrotron Light Source  

Science Conference Proceedings (OSTI)

... The SEMATECH visitors were first given a detailed tour of the NIST NSLS beamlines, highlighting the opportunities for nanoscale measurements of ...

2012-10-01T23:59:59.000Z

402

Photon Sciences | About the National Synchrotron Light Source...  

NLE Websites -- All DOE Office Websites (Extended Search)

assemble nanomaterials into useful devices more simply and economically. High-Temperature Superconductors NSLS-II will allow scientists to study how materials become...

403

Storage Rings for Science with: Electron-Positron Collisions, Hadron Collisions and Synchrotron Light  

SciTech Connect

The author is honored to receive the 2009 Robert Wilson Prize and the recognition that comes with it. The citation for the prize reads, 'For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents and his promotion of international collaboration.' In this article, he will discuss the two construction projects, which he led, one (TRISTAN e{sup +}e{sup -} Collider at KEK) in Japan and the other (RHIC at BNL) in the USA, covering project issues and lessons learned from these projects. Although both of them were built on separate continents, it is interesting to note that they are both built on long off-shore islands. He will also add comments on his recent engagement in the development of the Conceptual Design for the National Synchrotron Light Source II (NSLS-II).

Ozaki,S.

2009-05-04T23:59:59.000Z

404

Storage Rings for Science with: Electron-Positron Collisions, Hadron Collisions and Synchrotron Light  

SciTech Connect

The author is honored to receive the 2009 Robert Wilson Prize and the recognition that comes with it. The citation for the prize reads, 'For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents and his promotion of international collaboration.' In this article, he will discuss the two construction projects, which he led, one (TRISTAN e{sup +}e{sup -} Collider at KEK) in Japan and the other (RHIC at BNL) in the USA, covering project issues and lessons learned from these projects. Although both of them were built on separate continents, it is interesting to note that they are both built on long off-shore islands. He will also add comments on his recent engagement in the development of the Conceptual Design for the National Synchrotron Light Source II (NSLS-II).

Ozaki,S.

2009-05-04T23:59:59.000Z

405

A "Cardinal" Partnership: Stanford University & the Energy Department |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A "Cardinal" Partnership: Stanford University & the Energy A "Cardinal" Partnership: Stanford University & the Energy Department A "Cardinal" Partnership: Stanford University & the Energy Department January 3, 2012 - 2:28pm Addthis Stanford Physics Professor Pat Burchat and student Ho Jeong Kim in the BaBar main control room at the SLAC National Lab. | Photo courtesy of the SLAC National Accelerator Lab. Stanford Physics Professor Pat Burchat and student Ho Jeong Kim in the BaBar main control room at the SLAC National Lab. | Photo courtesy of the SLAC National Accelerator Lab. Kate Bannan Communications and Outreach Specialist For over 100 years, Stanford University has advanced knowledge and transformed lives through innovative academic programs, research and outreach. The school is recognized internationally as a top research

406

A "Cardinal" Partnership: Stanford University & the Energy Department |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A "Cardinal" Partnership: Stanford University & the Energy A "Cardinal" Partnership: Stanford University & the Energy Department A "Cardinal" Partnership: Stanford University & the Energy Department January 3, 2012 - 2:28pm Addthis Stanford Physics Professor Pat Burchat and student Ho Jeong Kim in the BaBar main control room at the SLAC National Lab. | Photo courtesy of the SLAC National Accelerator Lab. Stanford Physics Professor Pat Burchat and student Ho Jeong Kim in the BaBar main control room at the SLAC National Lab. | Photo courtesy of the SLAC National Accelerator Lab. Kate Bannan Communications and Outreach Specialist For over 100 years, Stanford University has advanced knowledge and transformed lives through innovative academic programs, research and outreach. The school is recognized internationally as a top research

407

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Report 2001 Report 2001 National Synchrotron Light Source For the period October 1, 2000 through September 30, 2001 Introduction Science Highlights Year in Review Operations Publications Abstracts Nancye Wright & Lydia Rogers The National Synchrotron Light Source Department is supported by the Office of Basic Energy Sciences United States Department of Energy Washington, D.C. Brookhaven National Laboratory Brookhaven Science Associates, Inc. Upton, New York 11973 Under Contract No. DE-AC02-98CH10886 Mary Anne Corwin Steven N. Ehrlich & Lisa M. Miller Managing Editor Science Editors Production Assistants Cover images (clockwise from top left) 1. from Science Highlight by K.R. Rajashankar, M.R. Chance, S.K. Burley, J. Jiang, S.C. Almo, A. Bresnick, T. Dodatko, R. Huang, G. He,

408

2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

409

National Synchrotron Light Source annual report 1991  

Science Conference Proceedings (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. (eds.)

1992-04-01T23:59:59.000Z

410

Long ion chamber systems for the SLC (Stanford Linear Collider)  

Science Conference Proceedings (OSTI)

A Panofsky Long Ion Chamber (PLIC) is essentially a gas-filled coaxial cable, and has been used to protect the Stanford Linear Accelerator from damage caused by its electron beam, and as a sensitive diagnostic tool. This old technology has been updated and has found renewed use in the SLC. PLIC systems have been installed as beam steering aids in most parts of the SLC and are a part of the system that protects the SLC from damage by errant beams in several places. 5 refs., 3 figs., 1 tab.

Rolfe, J.; Gearhart, R.; Jacobsen, R.; Jenkins, T.; McComick, D.; Nelson, R.; Reagan, D.; Ross, M.

1989-03-01T23:59:59.000Z

411

DOE Cites Stanford University and Two Subcontractors for Worker Safety and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Cites Stanford University and Two Subcontractors for Worker DOE Cites Stanford University and Two Subcontractors for Worker Safety and Health Violations DOE Cites Stanford University and Two Subcontractors for Worker Safety and Health Violations April 3, 2009 - 12:00am Addthis The U.S. Department of Energy (DOE) today issued Preliminary Notices of Violation (PNOVs) to three contractors - Stanford University, Pacific Underground Construction, Inc., and Western Allied Mechanical, Inc. - for violations in September 2007 of the Department's worker safety and health regulations. Stanford University is the managing and operating contractor for DOE's SLAC National Accelerator Laboratory (SLAC), located in Menlo Park, California. At the time the violations occurred, Pacific Underground Construction was performing work at SLAC under subcontract to

412

Design of the NSLS-II Linac Front End Test Stand  

SciTech Connect

The NSLS-II operational parameters place very stringent requirements on the injection system. Among these are the charge per bunch train at low emittance that is required from the linac along with the uniformity of the charge per bunch along the train. The NSLS-II linac is a 200 MeV linac produced by Research Instruments Gmbh. Part of the strategy for understanding to operation of the injectors is to test the front end of the linac prior to its installation in the facility. The linac front end consists of a 100 kV electron gun, 500 MHz subharmonic prebuncher, focusing solenoids and a suite of diagnostics. The diagnostics in the front end need to be supplemented with an additional suite of diagnostics to fully characterize the beam. In this paper we discuss the design of a test stand to measure the various properties of the beam generated from this section. In particular, the test stand will measure the charge, transverse emittance, energy, energy spread, and bunching performance of the linac front end under all operating conditions of the front end.

Fliller III, R.; Johanson, M.; Lucas, M.; Rose, J.; Shaftan, T.

2011-03-28T23:59:59.000Z

413

LOW HORIZONTAL BETA FUNCTION IN LONG STRAIGHTS OF THE NSLS-II LATTICE  

Science Conference Proceedings (OSTI)

The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 short straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimization of dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses dynamic aperture optimization for the NSLS-II lattice with alternate high and low horizontal beta function in the long straights, which is proposed for the optimization of the brightness of insertion devices. The linear optics is optimized to meet the requirements of lattice function and source properties. Nonlinear optimization for a lattice with working point at (37.18, 16.2) is performed. Considering the realistic magnets errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the lattice with high-low beta function has adequate dynamic aperture for good injection efficiency and sufficient Touschek lifetime.

Fanglei, L.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y.; Yang, L.

2011-03-28T23:59:59.000Z

414

Investigation of Charge Transport Properties of CdZnTe Detectors with Synchrotron X-ray Radiation  

Science Conference Proceedings (OSTI)

Various internal defects, such as Te inclusions, twin boundaries, dislocation, etc., are prevalent in as-grown CdZnTe (CZT) crystals, which affect the charge transport properties of CZT crystals and, therefore, worsen the performance of CZT detectors. In order to develop high quality CZT detectors, it is imperative to clarify the effects of internal defects on the charge transport properties of CZT. Simple flood illumination with nuclear radiation source cannot reveal the nature of highly localized defects in CZT. Therefore, at Brookhaven's National Synchrotron Light Source (NSLS), we have developed a unique testing system for micro-scale defect investigation of CZT, which employs an X-ray beam collimated with the spatial resolution as small as 3 x 3 {micro}m{sup 2}, a microscopic size comparable to the scale of common defects in CZT. This powerful tool enables us to investigate the effect of internal defects on charge transport properties of CZT in detail.

Yang,G.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; James, R.B.

2008-10-19T23:59:59.000Z

415

A FRONT END DESIGN FOR THE ADVANCED PHOTON SOURCE P. J. Viccaro  

E-Print Network (OSTI)

Center) Stanford University--SSRL (Stanford Synchro- tron Radiation Laboratory) Cornell University--NSLS Phase II Stanford University-- l-GeV FEL Storage Ring Stanford University, SSRL--SSRL Enhanced Photon National Laboratory--NSLS Phase III 6-GeV Facility Stanford University,SSRL--6-GeV-Ring Facility Summary

Kemner, Ken

416

National Synchrotron Light Source Activity Report 1998  

Science Conference Proceedings (OSTI)

National Synchrotron Light Source Activity Report for period October 1, 1997 through September 30, 1998

Rothman, Eva

1999-05-01T23:59:59.000Z

417

International Conference Synchrotron Radiation Instrumentation SRI `94  

SciTech Connect

This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

Not Available

1994-10-01T23:59:59.000Z

418

Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS) or on beamline 4-1 at theTc uptake in goethite (%) NSLS NA SSRL NA SSRL NA SSRL XAFSNA indicates not applicable; NSLS = National Synchrotron

Um, Wooyong

2013-01-01T23:59:59.000Z

419

Structure and Biochemistry of IKappaB Zeta : : A Nuclear IKappaB Protein  

E-Print Network (OSTI)

NF-?B Nuclear factor -?B NSLS National Synchrotron LightSynchrotron Light Source (NSLS) in Brookhaven. We used thePDB accession code NSLS#25 P65 Data in parentheses are for

Zhu, Norman L.

420

Single-bunch synchrotron shutter  

DOE Patents (OSTI)

An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4 {times} {pi} {times} r {times} such that a single pulse is selected for transmission through an open position of the shutter.

Norris, J.R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, M.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fast-switching elliptically polarized soft X-ray beam X13A at NSLS  

SciTech Connect

The X13A beamline at NSLS is dedicated to the generation and uses of fast-switching elliptically polarized soft X-ray radiation in the energy range from 250 to {approx}1600 eV. The source for this beamline is an elliptically polarized wiggler (EPW) that delivers linearly elliptically polarized soft X-rays at a switching rate, between right- and left-handed polarization, up to 100 Hz. The optical design is a spherical grating monochromator (SGM) that focuses and diffracts in plane orthogonal to the polarization switching direction. The X13A beamline scientific program is dedicated to spectroscopy and scattering studies of magnetism and magnetic materials. The fast-switching capability of the EPW enables the use of lock-in techniques, thereby greatly enhancing the detection sensitivity for small polarization-dependent signals.

Sanchez-Hanke, C.; Kao, C.; Hulbert, S.

2009-07-21T23:59:59.000Z

422

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Linac Coherent Light Source II at Stanford Linear 4: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

423

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

04: Linac Coherent Light Source II at Stanford Linear 04: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

424

California Stanford University of University Institute of University California of Southern  

E-Print Network (OSTI)

California Stanford University of University Institute of University California of Southern Technology California ____________________________________________________________ February 15, 2011 Dear Representative, As Congress considers funding options for the remainder of fiscal year (FY) 2011, California

Narayanan, Shrikanth S.

425

Stanford Universitys U.S. Department of Energy Solar Decathlon...  

NLE Websites -- All DOE Office Websites (Extended Search)

STANFORD POINTS APPROACH EQUALS EXCEEDS ECLIPSES 0-60% 61-80% 81-90% 91-100% A. LIVABILITY 1 Is the operation of the house's lighting, entertainment, and other controls intuitive?...

426

Synchrotron X-ray structure refinement of Zn4Sb3 G. J. Snyder1,2  

E-Print Network (OSTI)

reflection geometry at NSLS beamline X3B1. The sample was side-drifted onto a quartz zero-background holder of Materials (MRSEC program). NSLS beamline X3 was partially supported by the Department of Energy under grant

427

Photon Sciences | Operating the National Synchrotron Light Source...  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Construction Webcams Live Camera View 1 Live Camera View 2 Time-lapse Camera View 3 Time-lapse Camera View 4 Cam 5 Available Webcams You may click either the links below or...

428

SLAC National Accelerator Laboratory - Synchrotrons Play Role...  

NLE Websites -- All DOE Office Websites (Extended Search)

a longtime collaborator in Kobilka's work, is a member of the Photon Science faculty at SLAC and a professor of structural biology at Stanford University. He said, "Over the years,...

429

TIME-RESOLVED SPECTROSCOPY USING SYNCHROTRON RADIATION  

E-Print Network (OSTI)

Users Group Meeting, 1978 (SSRL Report No. 78/09), StanfordLorents~ and R. A. Gutchek~ SSRL Report 78/09 (1978). K. M.~adiation ~aboratory (SSRL). SpecificallYt all experiments

Poliakoff, E.D.

2010-01-01T23:59:59.000Z

430

int. j. radiat. biol 2002, vol. 78, no. 12, 1065 1067 Routine screening mammography: how important is the radiation-  

E-Print Network (OSTI)

- mended starting ages for routine mammography mightBrookhaven National Synchrotron Light Source (NSLS

431

NSLS II  

NLE Websites -- All DOE Office Websites (Extended Search)

Maldonado (T) C. Messana T. Stein C. Herbst T. Leighley J. Marshall B. Moebes P. Callejas-Lynn K. Loverro BUSINESS SYSTEMS DEVELOPMENT B. Bindert (SLA) MANAGER T. Campbell (SLA) A....

432

NSLS Detectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Detectors Multi-Element Silicon Detectors High-rate multi-element detector for fluorescence measurements Powder diffraction and x-ray scattering User interface Avalanche photodiode...

433

Optimization of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector  

E-Print Network (OSTI)

Optimization of blade type X-ray Beam Position Monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, configuration and operation principle was analyzed to improve XBPM performance. Optimization is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission blades, Diamond Detector Blade (DDB) was analyzed as XBPM signal source. Analyses revealed, that Diamond Detector Blade XBPM would allow overcoming drawbacks of the photoemission type XBPMs.

Ilinski, Petr

2013-01-01T23:59:59.000Z

434

Woods Institute for the Environment 429 Arguello Way, Encina Modular C Stanford, CA 94305 http://environment.stanford.edu/ideas/biofuels.html  

E-Print Network (OSTI)

· http://environment.stanford.edu/ideas/biofuels.html The Impacts of Large Scale Use of Biofuels on Food, Agriculture, and Trade One of the targets of the United Nation's Millennium Development Goals is to cut that target has been slow. If food availability or the ability to purchase food further declines, there could

Nur, Amos

435

Woods Institute for the Environment 429 Arguello Way, Encina Modular C Stanford, CA 94305 http://environment.stanford.edu/ideas/biofuels.html  

E-Print Network (OSTI)

· http://environment.stanford.edu/ideas/biofuels.html The Environmental, Resource, and Trade Implications of Biofuels This sheet summarizes some of the primary insights that arose from the Workshop on the Environmental, Resource and Trade Implications of Biofuels, which included 40 leading representatives

Nur, Amos

436

Woods Institute for the Environment 429 Arguello Way, Encina Modular C Stanford, CA 94305 http://environment.stanford.edu/ideas/biofuels.html  

E-Print Network (OSTI)

· http://environment.stanford.edu/ideas/biofuels.html The Impacts of Large-Scale Biofuel Use on Climate models (LCAs) of biofuels attempt to capture all of the GHG emissions associated with a fuel from sources facility; the conversion of the feedstock to a finished biofuel; the distribution of the finished biofuel

Nur, Amos

437

Woods Institute for the Environment 429 Arguello Way, Encina Modular C Stanford, CA 94305 http://environment.stanford.edu/ideas/biofuels.html  

E-Print Network (OSTI)

· http://environment.stanford.edu/ideas/biofuels.html The Impacts of Large-Scale Biofuel Use on Water in the Gulf of Mexico. 1. Over the next five years, large-scale use of biofuels could further degrade water quality. In the short term, the impact of biofuels on water quality is simply the impact of intensified

Nur, Amos

438

Synchrotron Mesodiffraction: A Tool for Understanding Turbine Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 B. L. Boyce,1 A. Mehta,2 J. O. Peters,3 and R. O. Ritchie4 1Sandia National Laboratories, PO Box 5800, MS: 0889, Albuquerque, NM 87185-0889 blboyce@sandia.gov 2Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 3Lufthansa Technik AG, HAM WR 124, Weg Beim Jäger 193, 22335 Hamburg, Germany janoke.peters@lht.dlh.de 4Lawrence Berkeley National Laboratory, MS: 62-203, 1 Cyclotron Rd., Berkeley, CA 94720 roritchie@lbl.gov Aircraft turbine engines routinely experience the ingestion of debris resulting in "foreign object damage" or FOD. Failures associated with foreign object damage have been estimated to cost the aerospace industry $4 billion per year. Often, FOD does not lead to sudden catastrophic failure, yet such damage can dramatically reduce the lifetime of components subjected to cyclic fatigue stresses. Turbine blades, for example, are susceptible to debris strikes and also experience significant fatigue loading. The current study seeks to develop insight into the driving forces and predictability of fatigue failures induced by foreign object damage. Such insight can be used to improve existing design methodologies for turbine engine components and inspection regimens.

439

Proposal Submittal and Scheduling Procedures for Research | Stanford  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Submittal and Scheduling Procedures for Research Proposal Submittal and Scheduling Procedures for Research New Proposals Standard GU Proposals Instructions for New Standard Proposals (Not LOI or Rapid Access) Tips for How to Wow Rapid Access Letter of Intent (LOI) Proposal Extension Requests X-ray/VUV Macromolecular Crystallography Beam Time Allocation/Scheduling How to Request Beam Time SSRL Access Policy SSRL Schedules New Proposals SSRL operates as a dedicated synchrotron radiation source for approximately nine months per year (usually from early November through early August). Submitting a proposal is the first step to access beam time at SSRL. SSRL scientists are available to help answer questions about the accelerator (SPEAR3), beam lines, capabilities, science or techniques to help users plan their experiments and their SSRL proposals.

440

EIGHT-TESLA SYNCHROTRON DIPOLES -- DESIGN ALTERNATIVES  

E-Print Network (OSTI)

14, 1979 LBL -8410 EIGHT-TESLA SYNCHROTRON DIPOLES -- DESIGNprivately owned rights. EIGHT-TESLA SYNCHROTRON DIPOLES --bending magnets in the 4 to 5 tesla field range have been,

Gilbert, W.S.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Femto-Second Pulses of Synchrotron Radiation  

E-Print Network (OSTI)

Pulses of Synchrotron Radiation" A. A. Zholents 1) and M. S.Pulses of Synchrotron Radiation' I) A. A. Zholents l , andpulses of syn- chrotron radiation is proposed. It is based

Zholents, A.A.

2011-01-01T23:59:59.000Z

442

DYNAMIC APERTURE OF THE ALS BOOSTER SYNCHROTRON  

E-Print Network (OSTI)

Nelson, "Magnetic Properties of the ALS noosler Synchrotron23,1989 Dynamic Aperture of the ALS Booster Synchrotron C.H.DYNAMIC APERTURE OF TIlE ALS BOOSTER SYNCIIROlRON CharI""

Kim, C.H.

2010-01-01T23:59:59.000Z

443

Synchrotron Ultraviolet Radiation Facility SURF III - Calculate ...  

Science Conference Proceedings (OSTI)

Far Ultraviolet Physics Group / Synchrotron Ultraviolet Radiation Facility SURF III The Far Ultraviolet Physics Group maintains and improves the ...

444

NREL: News - NREL and Stanford Team up on Peel-and-Stick Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

313 313 NREL and Stanford Team up on Peel-and-Stick Solar Cells Devices could charge battery-powered products in the future January 10, 2013 It may be possible soon to charge cell phones, change the tint on windows, or power small toys with peel-and-stick versions of solar cells, thanks to a partnership between Stanford University and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). A scientific paper, "Peel and Stick: Fabricating Thin Film Solar Cells on Universal Substrates," appears in the online version of Scientific Reports, a subsidiary of the British scientific journal Nature. Peel-and-stick, or water-assisted transfer printing (WTP), technologies were developed by the Stanford group and have been used before for nanowire

445

EA-1107: Construction and Operation of a Office Building at the Stanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Construction and Operation of a Office Building at the 7: Construction and Operation of a Office Building at the Stanford Linear Accelerator Center, Berkeley, California EA-1107: Construction and Operation of a Office Building at the Stanford Linear Accelerator Center, Berkeley, California SUMMARY This EA evaluates the environmental impacts of the proposed project to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments on a new Induction Linear Accelerator System. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 8, 1995 EA-1107: Finding of No Significant Impact Construction and Operation of a Office Building at the Stanford Linear Accelerator Center September 8, 1995 EA-1107: Final Environmental Assessment

446

http://www.slac.stanford.edu/~quarkpt/slaconly/lcc0121.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 August 2003 Sensitivity to Interaction Region Solenoid Horizontal Motion Peter Tenenbaum and Tor Raubenheimer Stanford Linear Accelerator Center Stanford University Stanford, CA Abstract: Horizontal motion of a linear collider's Interaction Region solenoid magnet will cause vertical motion of the beam at the collision point. An expression relating the two effects is derived, and a tolerance on the solenoid's position is estimated. Sensitivity to Interaction Region Solenoid Horizontal Motion P. Tenenbaum, T.O. Raubenheimer LCC-Note-0121 August 13, 2003 Abstract Horizontal motion of a linear collider's Interatction Region solenoid magnet will cause vertical motion of the beam at the collision point. An expression relating the two effects is derived, and a tolerance

447

Stanford Linear Accelerator Center, Order R2-2005-0022, May 18, 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN FRANCISCO BAY REGION ORDER No. R2-2005-0022 RESCISSION of: ORDER No. 85-88, WASTE DISCHARGE REQUIREMENTS and ADOPTION of: SITE CLEANUP REQUIREMENTS for: STANFORD UNIVERSITY and the UNITED STATES DEPARTMENT OF ENERGY for the property located at the: STANFORD LINEAR ACCELERATOR CENTER 2575 SAND HILL ROAD MENLO PARK, SAN MATEO COUNTY FINDINGS: The California Regional Water Quality Control Board, San Francisco Bay Region (Water Board) finds that: 1. Purpose of Order This Order establishes Site Cleanup Requirements for the investigation and remediation of impacted soil and groundwater resulting from historical spills and leaks that have occurred during the course of operations of the Stanford Linear

448

ARPA-E & Stanford University Explore the Hows and Whys of Energy Use |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Stanford University Explore the Hows and Whys of Energy & Stanford University Explore the Hows and Whys of Energy Use ARPA-E & Stanford University Explore the Hows and Whys of Energy Use May 25, 2011 - 3:45pm Addthis Members of Girl Scout Troop #61373 from Santa Clara, CA create an instructional video for home energy use. | Photo courtesy of Troop Leader Sylvia Kennedy Members of Girl Scout Troop #61373 from Santa Clara, CA create an instructional video for home energy use. | Photo courtesy of Troop Leader Sylvia Kennedy Kristina Pflanz Writer & Contractor, Advanced Research Projects Agency - Energy What does this project do? Researchers are seeking a breakthrough on the human behavioral side of energy use. They have made a long-term goal of reducing average residential energy use by over 20 percent.

449

Biofuels6a.doc Woods Institute for the Environment 429 Arguello Way, Encina Modular C Stanford, CA 94305  

E-Print Network (OSTI)

Biofuels6a.doc Woods Institute for the Environment · 429 Arguello Way, Encina Modular C · Stanford, CA 94305 · http://environment.stanford.edu/ideas/biofuels.html The Impacts of Large-Scale Biofuel Use practices can significantly influence the environmental effects of biofuels. The choices farmers make

Nur, Amos

450

Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS) will continue. In addition,NIH NMFECC NMR NRC NSAC NSF NSLS OASIS OECD OER OFA OHER

Various

1986-01-01T23:59:59.000Z

451

Lawrence Berkeley Laboratory Institutional Plan FY 1993-98  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS) and has been used in a largeNIH NMR NPDES NSCORT NSF NSLS OAA OER OFA OHER OPD ORNL OSHA

Chartock, Michael

2009-01-01T23:59:59.000Z

452

SUMMAR OF DISCUSSIONS OF USES OF THE ADVANCED LIGHT SOURCE (ALS) FOR EARTH SCIENCES RESEARCH: WORKSHOP REPORT OF THE ALS USERS' ASSOCIATION ANNUAL MEETING, LAWRENCE BERKELEY LABORATORY, BERKELEY,CA, JUNE 2-3, 1988  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS) an intensity of 3 x lo9be comparable to The those at NSLS. Using different sets of

Dillard, J.; Wallenberg, H.; Perry, D.

2008-01-01T23:59:59.000Z

453

Development of a new generation of optical slope measuring profiler  

E-Print Network (OSTI)

Synchrotron Light Source II (NSLS-II), the European X-FEL,3]. The beamlines for LCLS, NSLS-II, and planned upgrade to

Yashchuk, Valeriy V.

2010-01-01T23:59:59.000Z

454

Medical Applications of Synchrotron Radiation  

DOE R&D Accomplishments (OSTI)

Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

Thomlinson, W.

1991-10-00T23:59:59.000Z

455

Medical applications of synchrotron radiation  

SciTech Connect

Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

Thomlinson, W.

1991-10-01T23:59:59.000Z

456

NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.  

SciTech Connect

In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improved dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

ROTHMAN,E.

1999-05-01T23:59:59.000Z

457

(Stanford Linear Accelerator Center) annual environmental monitoring report, January--December 1989  

SciTech Connect

This progress report discusses environmental monitoring activities at the Stanford Linear Accelerator Center for 1989. Topics include climate, site geology, site water usage, land use, demography, unusual events or releases, radioactive and nonradioactive releases, compliance summary, environmental nonradiological program information, environmental radiological program information, groundwater protection monitoring ad quality assurance. 5 figs., 7 tabs. (KJD)

Not Available

1990-05-01T23:59:59.000Z

458

California Stanford University of University of Institute of University California Southern  

E-Print Network (OSTI)

California Stanford University of University of Institute of University California Southern Technology California March 13, 2012 The Honorable Dianne Feinstein 331 Hart Senate Office Building Washington, DC 20510-0504 Dear Senator Feinstein: On behalf of California's research universities, we write

Southern California, University of

459

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition Topics Transition Topics The Photon Sciences Directorate intends to run a full schedule (~5000 hours per year) of NSLS operations to the end of fiscal year 2014 (September 30, 2014). NSLS-II will be ramped up as rapidly as possible to serve our large and productive user community. The tabs below provide information related to various transition topics. If you have comments, suggestions or questions, please contact the Photon Sciences User Administrator, at gcisco@bnl.gov. News & Updates FAQs Techniques Across DOE DOE Partner Facilities Contact Us User Transition Forum, May 2012 The User Transition Planning Forum was held on May 21, 2012, as part of the annual NSLS/CFN Users' Meeting. Below are copies of slide presentations and notes taken during the Forum. Johnson Presentation

460

A SURF beamline for synchrotron source-based absolute ...  

Science Conference Proceedings (OSTI)

... This is con- sistent with the predictions from Schwinger's theory [2]. The radiation collected in the central valley is linearly ... (Stanford, California, 1999 ...

2010-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NIST SURF What is synchrotron radiation?  

Science Conference Proceedings (OSTI)

... the particle trajectories are bent by magnetic fields, synchrotron ... beam current 100 mA, electron energies from 416 ... nm at an electron energy of 380 ...

2011-10-04T23:59:59.000Z

462

Remote Synchrotron Light Instrumentation Using Optical Fibers  

E-Print Network (OSTI)

et al. , Fiberoptics-based Instrumentation for Storage RingSYNCHROTRON LIGHT INSTRUMENTATION USING OPTICAL FIBERS * S.beam diagnostic instrumentation that measures longitudinal

De Santis, S.

2010-01-01T23:59:59.000Z

463

Optics for Next Generation Synchrotron Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

synchrotron equipment including; High Precision Slits, Optical Tables, Lead Shielded Beam Pipes, Micro Ion Chambers, Split Two Axis Ion Chambers, Mirror Systems, Monochromators,...

464

Sure, a textbook can tell you about Bragg's Law and the x-ray absorption energies for any element in the periodic table, but it can't tell you how to plan and carry out an x-ray scattering experiment at one of the 50 or so synchrotron radiation facilitie  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report SSRL 6 th Annual School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application SSRL SR-XRS participants. Synchrotron-based X-ray scattering (SR-XRS) techniques offer the ability to probe nano- and atomic-scale structure that dictates the properties of advanced technological and environmental materials. Important materials studied at the Stanford Synchrotron Radiation Lightsource (SSRL) include organic and inorganic thin films and interfaces, nanoparticles, complex oxides, solutions, polymers, minerals and poorly crystalline materials. Good planning and a good working knowledge of beam lines and techniques are required to successfully conduct SR-XRS measurements. This sixth annual School at SSRL on Synchrotron X-ray

465

ALS Beamline Design Requirements - Revision 1  

E-Print Network (OSTI)

Source Photon Beam LinesBNL/NSLS XI Beamline Mirror SystemSynchrotron Light Source (NSLS) at Brookhaven NationalMay 1996. ' R Stefan, NSLS-BNL, personal communication.

Heimann, Phil

2010-01-01T23:59:59.000Z

466

High Performance Abrasion-Resistant Materials: Lessons from Nature  

E-Print Network (OSTI)

endstation X13B. The NSLS is supported under USDOE ContractSynchrotron Light Source (NSLS) in Brookhaven NationalX13B, Dr. Vesna Stanic of the NSLS in BNL for her help in

Wang, Qianqian

2012-01-01T23:59:59.000Z

467

Hydrological and Geochemical Investigations of Selenium Behavior at Kesterson Reservoir  

E-Print Network (OSTI)

Basic components of the SXRFM at NSLS (beamline X26A) FigureChicago), and the staff at NSLS; George Parks, John Bargar,Synchrotron Light Source (NSLS), Brookhaven National

Zawislanski, P.T.

2010-01-01T23:59:59.000Z

468

ALSNews 2007  

E-Print Network (OSTI)

in Paris, France; the NSLS (Brookhaven); CHESS (Cornell);Synchrotron Light Source (NSLS) user meeting at BrookhavenLab, ALBA in Spain, NSLS, and the Swiss Light Source, and

McCullough Ed., Julie

2009-01-01T23:59:59.000Z

469

Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils  

E-Print Network (OSTI)

Synchrotron Light Source (NSLS, Brookhaven, USA) and at theedge at 9659 eV). At NSLS, the Si(111) monochromator wasand Kumi Pandya (X11A, NSLS, USA) are acknowledged for their

Jacquat, Olivier

2009-01-01T23:59:59.000Z

470

DOE-NABIR Pi Workshop: Abstracts  

E-Print Network (OSTI)

and synchrotron-based FTIR at the NSLS. Ke- togluconic acidand by XANES and EXAFS at the NSLS. Studies on the effect ofspectroscopy performed at the NSLS revealed changes in the

Various

2003-01-01T23:59:59.000Z

471

DISTRIBUTION OF THE SYNCHROTRON RADIATION FROM BENDING MAGNETS  

NLE Websites -- All DOE Office Websites (Extended Search)

DISTRIBUTION OF THE SYNCHROTRON RADIATION FROM BENDING MAGNETS LS-91 S. Kim November 1988 NO DISTRIBUTION REFERENCE ONLY This note describes the distribution of the synchrotron...

472

Geothermal-reservoir engineering research at Stanford University. Second annual report, October 1, 1981-September 30, 1982  

DOE Green Energy (OSTI)

Progress in the following tasks is discussed: heat extraction from hydrothermal reservoirs, noncondensable gas reservoir engineering, well test analysis and bench-scale experiments, DOE-ENEL Cooperative Research, Stanford-IIE Cooperative Research, and workshop and seminars. (MHR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1982-09-01T23:59:59.000Z

473

NEPA CX Determination SS-SC-12-03 for the Stanford Research Computer Facility (SRCF)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 for the Stanford Research Computer Facility (SRCF) 3 for the Stanford Research Computer Facility (SRCF) National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination A. SSO NEPA Control #: SS-SC-12-03 AN12038 B. Brief Description of Proposed Action: The project scope includes the construction of a new computer facility (21,500 square feet) capable of providing 3 MW of data center potential. The new two-story facility will provide infrastructure for a multitude of server racks. There are three fenced service yards outside the building, one for chillers, one for new electrical substation equipment, and one for emergency generators. The ground floor will be utilized for electrical and receiving area; the second floor will have a server room, mechanical room, conference

474

Simulation of synchrotron motion with rf noise  

Science Conference Proceedings (OSTI)

The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

Leemann, B.T.; Forest, E.; Chattopadhyay, S.

1986-08-01T23:59:59.000Z

475

Synchrotron Infrared Unveils a Mysterious Microbial Community  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Infrared Unveils a Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her colleagues, including Advanced Light Source guest Alex Probst. Crucial microbial biochemistry was done at Berkeley Lab by Hoi-Ying Holman, director of the Berkeley Synchrotron Infrared Structural Biology facility, and her staff at the ALS, and by Phylochip inventors Todd DeSantis and Gary Anderson.

476

National Synchrotron Light Source annual report 1988  

SciTech Connect

This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

1988-01-01T23:59:59.000Z

477

Synchrotron SAXS of Reverted Al-4wt.%Cu during In Situ Artificial ...  

Science Conference Proceedings (OSTI)

Cu, which is a more stable than the as-quenched condition, was artificially aged in situ while probing with SAXS configured at beam-line X27C at NSLS. Results...

478

Stanford University  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Ernest Ryu, Civil Engineering Nicholas Tatonetti, Biomedical Informatics Basic Energy Sciences John Goodfellow, Engineering Michael Kozina, Applied Physics Artit...

479

X-Ray Microtomography  

Science Conference Proceedings (OSTI)

... generated at the National Synchrotron Light Source (NSLS) located at Brookhaven National Laboratory using Exxon's microtomography scanner ...

2004-07-28T23:59:59.000Z

480

STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305  

E-Print Network (OSTI)

delivered to the power plants is about 330 kg/s. Around 1,235 kg/s of residual (separated) geothermal water the second half of 2006. The geothermal reservoir conditions around PGM-29 seem to be somewhat different from geothermal field. #12;PRESSURE RESPONSE Reservoir pressure has been monitored routinely at the Miravalles

Stanford University

Note: This page contains sample records for the topic "nsls stanford synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Chemical applications of synchrotron radiation: Workshop report  

SciTech Connect

The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

Not Available

1989-04-01T23:59:59.000Z

482

Coherent Synchrotron Radiation: Theory and Simulations.  

Science Conference Proceedings (OSTI)

The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum achievable emittance in the synchrotron light sources for short bunches.

Novokhatski, Alexander; /SLAC

2012-03-29T23:59:59.000Z

483

Subscriber access provided by STANFORD UNIV GREEN LIBR Nano Letters is published by the American Chemical Society. 1155 Sixteenth  

E-Print Network (OSTI)

) was grown by hot wire chemical vapor deposition (HWCVD) on an indium-tin-oxide (ITO) coated glass substrate 94305, and National Renewable Energy Laboratory, 1617 Cole BouleVard., Golden, Colorado 80401 Received, Stanford University. National Renewable Energy Laboratory. NANO LETTERS 2009 Vol. 9, No. 1 279-282 10

Fan, Shanhui

484

SSRL and LCLS are national user facilities operated by Stanford University for the US Department of Energy.  

E-Print Network (OSTI)

SSRL Users' Organization Meeting Friday, August 12, 2011 The SSRL Users Organization Executive requested that the Klein award description on the SSRL website be clarified to distinguish the Spicer Young description will be modified accordingly: The Melvin P. Klein Scientific Development Award: https://www-conf.slac.stanford.edu/ssrl

Wechsler, Risa H.

485

Impact of Synchrotron Radiation on Macromolecular Crystallography: a Personal View  

SciTech Connect

The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled.

Dauter, Z.; Jaskolski, M; Wlodawer, A

2010-01-01T23:59:59.000Z

486

Geothermal reservoir engineering research at Stanford University. First annual report, October 1, 1980-September 30, 1981  

SciTech Connect

The work on energy extraction experiments concerns the efficiency with which the in-place heat and fluids can be produced. The work on noncondensable gas reservoir engineering covers both the completed and continuing work in these two interrelated research areas: radon emanation from the rock matrix of geothermal reservoirs, and radon and ammonia variations with time and space over geothermal reservoirs. Cooperative research programs with Italy and Mexico are described. The bench-scale experiments and well test analysis section covers both experimental and theoretical studies. The small core model continues to be used for the study of temperature effects on absolute permeability. The unconsolidated sand study was completed at the beginning of this contract period. The Appendices describe some of the Stanford Geothermal program activities that results in interactions with the geothermal community. These occur in the form of SGP Technical Reports, presentations at technical meetings and publications in the open literature.

Brigham, W.E.; Horne, R.N.; Kruger, P.; Miller, F.G.; Ramey, H.J. Jr.

1981-09-01T23:59:59.000Z

487

Microsoft PowerPoint - 04CifernoStanford - Capture Project Summary.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program US Perspective on CO 2 Capture and Separation Jared P. Ciferno - National Energy Technology Laboratory Global Climate and Energy Project April 27, 2004 Stanford University GCEP - JPC - 4/27/04 Presentation Outline * Carbon Sequestration Program * Pre-Combustion CO 2 Technologies * Post-Combustion CO 2 Technologies * Oxy-Fuel Technologies * Modeling and Assessment Tools * On-Site NETL R & D GCEP - JPC - 4/27/04 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 03 budget of $750 million National Energy Technology Laboratory GCEP - JPC - 4/27/04 Carbon Sequestration Program Structure Infrastructure 7 Regional Partnerships * Engage regional, state, local

488

In situ X-ray Characterization of Energy Storage Materials | Stanford  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Characterization of Energy Storage Materials X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel range, slow recharge, and costly price tag. Li-ion batteries promise the high specific capacity required for EVs to travel 300+ miles on a single charge with a number of possible earth abundant anode and cathode materials; however, set backs such as capacity fading hinder the full capability of these rechargeable batteries. In order to accurately characterize the dynamic electrochemical processes at the

489

ssrl_brochure_2007.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

LABORATORY The Stanford Synchrotron Radiation Laboratory (SSRL) at the Stanford Linear Ac- celerator Center (SLAC) has provided synchrotron radiation to the scientific community...

490

NEW SOURCES OF RADIATION  

E-Print Network (OSTI)

Stanford Synchrotron Radiation Project Report No. 75/07.IBL 79M0733 Fig. 20. Radiation emission pattern by electronsWinick, Stanford Synchrotron Radiation Laboratory. Fig. 21.

Schimmerling, W.

2010-01-01T23:59:59.000Z

491

Remote Synchrotron Light Instrumentation Using Optical Fibers  

Science Conference Proceedings (OSTI)

By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

De Santis, S.; Yin, Y.

2009-05-04T23:59:59.000Z

492

1:30 - 1:45  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: the Present and the Future Imaging and Spectro-microscopy: the Present and the Future Tuesday (10/8/02) J. Miao - Chair 1:30 - 1:45 K. Hodgson, Stanford Synchrotron Radiation Laboratory Welcome Remarks 1:45 - 2:15 J. Stöhr, Stanford Synchrotron Radiation Laboratory Real Space Imaging by Means of X-Ray Photoemission Electron Microscopy 2:15 - 2:45 J. Kirz, State University of New York at Stony Brook STXM and diffraction-imaging - the view from the NSLS 2:45 - 3:15 C. Fadley, University of California, Davis & Lawrence Berkeley National Laboratory Holographic Imaging of Local Atomic Structure: Where Is It and Where Can It Go? 3:15 - 3: 30 Break K. Hodgson - Chair 3:30 - 4:00 I. Robinson, University of Illinois at Urbana-Champaign Phasing of Three Dimensional Diffraction Patterns from Finite-Sized

493

MODULATION OF LOW ENERGY BEAM TO GENERATE PREDEFINED BUNCH TRAINS FOR THE NSLS-II TOP-OFF INJECTION  

SciTech Connect

The NSLS II linac will produce a bunch train, 80-150 bunches long with 2 ns bunch spacing. Having the ability to tailor the bunch train can lead to the smaller bunch to bunch charge variation in the storage ring. A stripline is planned to integrate into the linac baseline to achieve this tailoring. The stripline must have a fast field rise and fall time to tailor each bunch. The beam dynamics is minimally affected by including the extra space for the stripline. This paper discusses the linac beam dynamics with stripline, and the optimal design of the stripline. A stripline is to be integrated in the linac to match the storage ring uniform bunch charge requirement, which simplifies the gun pulser electronics and looses the edge uniform requirement. It is located at low energy to lower the stripline power supply requirement and limit the dumped electron radiation. By turning off the stripline, the beam dynamics through linac is comparable with the baseline design. More advanced ideas can be explored. If a DC corrector along with the stripline is used, the core bunch trains gets kick from the stripline while the head and the tail of bunch train just gets a DC kick. The stripline power supply waveform is a single flat top waveform with fast rise and drop and the pulse length is {approx}200 ns long or 100 bunches, which may be easier from the power supply view point. We are also considering the bunch by bunch charge manipulation to match the storage ring uniform bunch charge distribution requirement. By modulating the flat top waveform at 250 MHz with adjustable amplitude, each the bunch center is either at 45 degree or 135 degree. Only the head or tail of the bunch is trimmed out. Although each bunch center deviation from idea center is very different at low energy, it is gradually minimized with beam energy increase.

Wang, G.M.; Cheng, W.X.; Shaftan, T.; Fliller, R.; Heese, R.; Rose, J.

2011-03-28T23:59:59.000Z

494

Synchrotron Mossbauer Spectroscopy of powder samples  

SciTech Connect

Synchrotron Mossbauer Spectroscopy, SMS, is an emerging technique that allows fast and accurate determination of hyperfine field parameters similar to conventional Mossbauer spectroscopy with radioactive sources. This new technique, however, is qualitatively different from Mossbauer spectroscopy in terms of equipment, methodology, and analysis to warrant a new name. In this paper, the authors report on isomer shift and quadrupole splitting measurements of Mohr`s salt, Fe(NH{sub 4}){sub 2}(SO{sub 4}){sub 2}{center_dot}6H{sub 2}O for demonstration purposes. Theoretical calculations were performed and compared to experiments both in energy and time domain to demonstrate the influence of thickness distribution and preferential alignment of powder samples. Such measurements may prove to be useful when the data collection times are reduced to few seconds in the third generation, undulator based synchrotron radiation sources.

Alp, E.E.; Sturhahn, W.; Toellner, T.

1994-08-01T23:59:59.000Z

495

Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure  

E-Print Network (OSTI)

unlike the Advanced Photon Source (APS) or the StanfordReport ANL/APS/TB-30, Advanced Photon Source, Argonne

Prilliman, Gerald Stephen

2003-01-01T23:59:59.000Z

496

National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991  

Science Conference Proceedings (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. [eds.

1992-04-01T23:59:59.000Z

497

EA-1321: Proposed Upgrade and Improvement of The National Synchrotron...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York EA-1321: Proposed Upgrade and Improvement of...

498

Pixel and Microstrip detectors for current and future synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

rates. We are investigating the influence of synchrotron bunch structure effects on count rate corrections. A new concept to increase the count rate capability is presented. An...

499

Small-angle Synchrotron Diffraction Study of Partially Gasified Coal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Small-angle Synchrotron Diffraction Study of Partially Gasified Coal Chars. Author(s), Keith Gordon McLennan, Daniel Roberts, Richard...

500

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...