Sample records for nrel offshore wind

  1. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  2. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 DecemberWind Resource

  3. NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  4. NREL: Wind Research - New Report Characterizes Existing Offshore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a three-year collaborative investigation with positive outlooks for U.S.-based offshore wind potential by 2030. September 4, 2014 The Energy Department has released the first...

  5. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  6. NREL GIS Data: Global Offshore Wind - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    bleenergylaboratorynrel National Renewable Energy Laboratory (NREL) There is no description for this organization Social Google+ Twitter Facebook License License Not Specified...

  7. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Energy Savers [EERE]

    systems cost. Suzanne Tegen, National Renewable Energy Laboratory (NREL): Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios. This presentation...

  8. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

  9. innovati nNREL Computer Models Integrate Wind Turbines with

    E-Print Network [OSTI]

    innovati nNREL Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore

  10. NREL Software Models Performance of Wind Plants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    This NREL Highlight is being developed for the 2015 February Alliance S&T Meeting, and describes NREL's Simulator for Offshore Wind Farm Applications (SOWFA) software in collaboration with Norway-based Statoil, to optimize layouts and controls of wind plants arrays.

  11. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  12. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  13. Large-Scale Offshore Wind Power in the United States: Executive Summary

    SciTech Connect (OSTI)

    Musial, W.; Ram, B.

    2010-09-01T23:59:59.000Z

    This document provides a summary of a 236-page NREL report that provides a broad understanding of today's offshore wind industry, the offshore wind resource, and the associated technology challenges, economics, permitting procedures, and potential risks and benefits.

  14. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  15. Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-11-01T23:59:59.000Z

    NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

  16. Sandia Energy - Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Rotor Development Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Offshore Wind RD&D: Large Offshore Rotor Development Offshore Wind RD&D:...

  17. Sandia Energy - Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind RD&D: Large Offshore Rotor Development Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Offshore Wind RD&D: Large Offshore Rotor...

  18. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    SciTech Connect (OSTI)

    Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

    2009-02-01T23:59:59.000Z

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  19. NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

  20. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLargefor High Offshore

  1. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.

  2. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  3. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  4. Cost of Offshore Wind Energy Charlene Nalubega

    E-Print Network [OSTI]

    Mountziaris, T. J.

    water as well as on land based wind farms. The specific offshore wind energy case under consideration, most of the offshore wind farms are in Europe, which started being developed in the early 1990's Cost of Offshore Wind Energy

  5. Energy from Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01T23:59:59.000Z

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  6. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  7. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  8. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. nationaloffshorewindstrategy.pdf More Documents & Publications Southeast...

  9. Stakeholder Engagement and Outreach Webinar: Jobs and Economic Development Impacts of Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE)

    Starting more than a year ago, NREL initiated work to expand the Jobs and Economic Development Impacts (JEDI) model to include fixed-bottom offshore wind technology. Following the completion of the...

  10. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01T23:59:59.000Z

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  11. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar Energy Menu HomeWind

  12. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven inThe National Wind

  13. American Wind Energy Association Offshore WINDPOWER Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Offshore WINDPOWER Conference & Exhibition American Wind Energy Association Offshore WINDPOWER Conference & Exhibition October 7, 2014 9:00AM EDT...

  14. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September...

  15. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducationOffshore wind

  16. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  17. Sandia Energy - Offshore Wind RD&D: Sediment Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Offshore Wind RD&D: Sediment Transport Offshore Wind RD&D: Sediment TransportTara...

  18. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Offshore Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine...

  19. Offshore Wind Turbines: Some Technical Challenges

    E-Print Network [OSTI]

    Houlsby, Guy T.

    1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil University Civil Engineering Offshore wind power · Scale of offshore wind power developments · Engineering

  20. Federal Wind Energy Assistance through NREL (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

  1. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 prior to the construction of an offshore wind farm at Horns Rev, situated approximately 15 km off

  2. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration...

  3. Sandia National Laboratories: Offshore Wind Energy Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

  4. Offshore Wind Power Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Power Farm Environmental Impact Assessment on Water Quality #12;Prepared with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would for the preparation of EIA studies for offshore wind farms." Horns Rev is situated off Blåvands Huk, which is Denmark

  5. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  6. NREL: Systems Engineering - 2015 Wind Energy Systems Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Systems Engineering Printable Version 2015 Wind Energy Systems Engineering Workshop The third NREL Wind Energy Systems Engineering Workshop took place on the 14th and 15th...

  7. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

  8. New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

  9. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2013-07-01T23:59:59.000Z

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  10. Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

  11. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 13 May 2004 Prepared: Michael Bech

  12. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 to establish an offshore wind farm with an output of 150 MW in the waters of Horns Rev, approximately 15 km off to some environmental guidelines for offshore wind farms prepared by the Dani

  13. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine Rotors Innovative...

  14. OFFSHORE WIND FARMS Guidance note for Environmental

    E-Print Network [OSTI]

    OFFSHORE WIND FARMS Guidance note for Environmental Impact Assessment In respect of FEPA and CPA requirements Version 2 - June 2004 #12;Offshore Wind Farms: Guidance Note for Environmental Impact Assessment 2004 #12;Offshore Wind Farms: Guidance Note for Environmental Impact Assessment in Respect of FEPA

  15. CONMOW: Condition Monitoring for Offshore Wind Farms

    E-Print Network [OSTI]

    1 CONMOW: Condition Monitoring for Offshore Wind Farms Edwin Wiggelinkhuizen, Theo Verbruggen, Henk in practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November for Offshore Wind Farms) was started in November 2002. This paper briefly describes the CONMOW project approach

  16. Offshore wind resource assessment through satellite images

    E-Print Network [OSTI]

    1 Slide no. 4 Offshore wind resource assessment through satellite images Charlotte Bay Hasager images for offshore wind ressource assessment in lieu of in-situ mast observations #12;4 Slide no Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps in the North

  17. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2004 Published: 21 April-2004................................................. 48 Wind farm area (Turbine), Reference area (Ref

  18. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven inThe

  19. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 December

  20. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, LtdQuantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic

  1. Jobs and Economic Development Impact (JEDI) Model: Offshore Wind User Reference Guide

    SciTech Connect (OSTI)

    Lantz, E.; Goldberg, M.; Keyser, D.

    2013-06-01T23:59:59.000Z

    The Offshore Wind Jobs and Economic Development Impact (JEDI) model, developed by NREL and MRG & Associates, is a spreadsheet based input-output tool. JEDI is meant to be a user friendly and transparent tool to estimate potential economic impacts supported by the development and operation of offshore wind projects. This guide describes how to use the model as well as technical information such as methodology, limitations, and data sources.

  2. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30T23:59:59.000Z

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  3. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  4. Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

  5. SciTech Connect: Offshore Wind Jobs and Economic Development...

    Office of Scientific and Technical Information (OSTI)

    Technologies Office Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY OFFSHORE WIND JOBS; OFFSHORE WIND...

  6. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  7. NREL: Wind Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in theState

  8. Offshore Wind Market and Economic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ilities-through-uk-acquisition>. Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A. (2012). 2010 Cost of Wind Energy Review. NREL TP-5000-52920. Golden, CO:...

  9. NREL: News Feature - NREL Software Tool a Boon for Wind Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperatures, and other variables alter the air flow and energy production at wind farms. Photo by Dennis Schroeder, NREL Wind energy is blowing away skeptics-it's so close to...

  10. NREL: Wind Research - NREL Supports Innovative Offshore Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photo

  11. Virginia Offshore Wind Development Authority (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other...

  12. Offshore Wind in NY State (New York)

    Broader source: Energy.gov [DOE]

    NYSERDA has expressed support for the development of offshore wind and committed funding to several publicly-available assessments that measure the potential energy benefits and environmental...

  13. Energy Department Announces Offshore Wind Demonstration Awardees...

    Broader source: Energy.gov (indexed) [DOE]

    demonstration partnerships with broad consortia that are developing breakthrough offshore wind energy generation projects. The primary goals of these projects are to...

  14. Oregon Department of Energy Webinar: Offshore Wind

    Broader source: Energy.gov [DOE]

    The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

  15. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01T23:59:59.000Z

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  16. NREL GIS Data: U.S. Atlantic Coast Offshore Windspeed 90m Height...

    Open Energy Info (EERE)

    offshore regions of the United States. To learn more, please see the Assessment of Offshore Wind Energy Resources for the United States. These data were produced in...

  17. ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource

    E-Print Network [OSTI]

    Pryor, Sara C.

    ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource Assessment in European Seas A. M installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind. Keywords Wind energy Á Offshore Á Resources assessment Á European seas Á Wind mapping Á Wind climatology Á

  18. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  19. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  20. innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine

    E-Print Network [OSTI]

    innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine The Skystream 3.7 wind (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew. Engineers at NREL's National Wind Technology Center (NWTC) began working with Southwest Windpower in 2001

  1. NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S. Wind

  2. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  3. Offshore Wind Jobs and Economic Development Impacts in the United...

    Energy Savers [EERE]

    the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore wind deployment scenarios in different regions of the...

  4. Advanced Offshore Wind Tech: Accelerating New Opportunities for...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

  5. WINDExchange Webinar: Economic Impacts of Offshore Wind: Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will moderate, and the following speakers will discuss recent developments in the economics of offshore wind: Bruce Hamilton, Navigant: Offshore Wind Market Report. This...

  6. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10,...

  7. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More...

  8. DOE Announces Webinars on an Offshore Wind Economic Impacts Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for...

  9. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of Energy's (DOE)...

  10. Assessment of Offshore Wind Energy Resources for the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The...

  11. NREL: National Wind Technology Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar1855 m,NREL: National Wind

  12. NREL: Learning - Student Resources on Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking withFuelSolar Energy TheWind

  13. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  14. Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms

    E-Print Network [OSTI]

    Pryor, Sara C.

    -situ and remote sensing data from offshore wind farms in Denmark, are used to examine both horizontal and vertical the area of the wind farm appear to be small and negligible. 1. INTRODUCTION As large offshore wind farmsOffshore Coastal Wind Speed Gradients: issues for the design and development of large offshore

  15. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01T23:59:59.000Z

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  16. OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION C. N. Elkinton* , J. F focused on land-based wind farms, rather than on offshore farms. The conventional method used to lay out that distinguish offshore wind farms from their onshore counterparts, the Offshore Wind Farm Layout Optimization

  17. Quantifying the hurricane risk to offshore wind turbines

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Quantifying the hurricane risk to offshore wind turbines Stephen Rosea , Paulina Jaramilloa,1. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind

  18. Using satellite data for mapping offshore wind resources and wakes

    E-Print Network [OSTI]

    (no wind) Horns Rev Offshore Wind Farm Blaavandshuk Met. mast N #12;Wind Horns Rev Wind speed map from · Wake near large offshore wind farms is quantified in space and time · Software for usersUsing satellite data for mapping offshore wind resources and wakes Charlotte Bay Hasager, Merete

  19. Challenges in Predicting Power Output from Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

  20. The wind speed profile at offshore wind farm sites Bernhard Lange(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    The wind speed profile at offshore wind farm sites Bernhard Lange(1) , Søren E. Larsen(2) , Jørgen in Europe will come from offshore sites. The first large offshore wind farms are #12;currently being built feasibility of offshore wind power utilisation depends on the favourable wind conditions offshore compared

  1. Wind and Solar Energy Curtailment Practices (Presentation), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Solar Energy Curtailment Practices Lori Bird, Co-authors: Jaquelin Cochran, Xi Wang, NREL UVIG October 17, 2014 San Antonio, Texas NRELPR-6A20-63054 2 Goals of Project *...

  2. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Broader source: Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  3. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenandWebmasterWind

  4. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind Resource

  5. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind ResourceSmall

  6. Engineering Challenges for Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

    2007-09-01T23:59:59.000Z

    The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

  7. NREL Innovations Help Drive Wind Industry Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    For nearly 30 years, NREL has helped the wind turbine industry through design and research innovations. The comprehensive capabilities of the National Wind Technology Center (NWTC), ranging from specialized computer simulation tools to unique test facilities, has been used to design, develop, and deploy several generations of advanced wind energy technology.

  8. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

    Broader source: Energy.gov (indexed) [DOE]

    offshore wind power in U.S. waters, a major step in harnessing the nation's offshore wind potential. Generating electricity from offshore wind yields multiple benefits for the...

  9. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  10. Offshore Series Wind Turbine Variable Hub heights & rotor diameters

    E-Print Network [OSTI]

    Firestone, Jeremy

    3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

  11. Offshore wind profile measurements from remote sensing instruments

    E-Print Network [OSTI]

    Offshore wind profile measurements from remote sensing instruments Ioannis Antoniou (1) , Hans E) have been mounted on top of a transformer platform situated offshore close to the Nysted wind farm offshore wind energy potential depends greatly on the ability to make offshore windfarms economically

  12. American Wind Energy Association Offshore WINDPOWER Conference & Exhibition

    Broader source: Energy.gov [DOE]

    AWEA Offshore WINDPOWER 2014 Conference & Exhibition is the largest offshore wind energy event in North America. The conference and exhibition will be held at the Atlantic City Convention...

  13. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Offshore wind turbines have the potential to generateuncover potential problems that exist with offshore windwind turbines in operation, this technology has the potential

  14. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01T23:59:59.000Z

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  15. ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER

    E-Print Network [OSTI]

    Firestone, Jeremy

    ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

  16. Ris National Laboratory Satellite SAR applied in offshore wind

    E-Print Network [OSTI]

    Risø National Laboratory Satellite SAR applied in offshore wind ressource mapping: possibilities is to quantify the regional offshore wind climate for wind energy application based on satellite SAR ·Study of 85SAR(m/s) Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps

  17. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01T23:59:59.000Z

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  18. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  19. NREL: News - NREL, Clemson University Collaborate on Wind Energy Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar1855 m,NREL:3014

  20. Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

  1. Improving Design Methods for Fixed-Foundation Offshore Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems October 1, 2013 - 3:10pm...

  2. Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 14 May 2004

  3. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model Demonstrates Offshore Wind Industry's Job Growth Potential New Model Demonstrates Offshore Wind Industry's Job Growth Potential May 18, 2015 - 3:11pm Addthis The U.S....

  4. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Broader source: Energy.gov (indexed) [DOE]

    up to 50 nautical miles from shore. It allows users to easily compare land-based with offshore wind resources. For example, it shows that the offshore wind resource of the...

  5. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    in Europe will come from offshore sites. The first large offshore wind farms are currently being builtMODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND for conditions important for offshore wind energy utilisation are compared and tested: Four models

  6. Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms

    E-Print Network [OSTI]

    #12;Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms Annual Report 2004 Horns Rev Offshore Wind Farm Published: May 2005 Prepared by: Christian B. Hvidt Lars Brünner Frank Reier farms Horns Rev Offshore Wind Farm 2004 2519-03-003-rev3.doc TABLE OF CONTENTS PAGE 1. Introduction

  7. REVIEW Open Access Assessing environmental impacts of offshore wind

    E-Print Network [OSTI]

    Aberdeen, University of

    REVIEW Open Access Assessing environmental impacts of offshore wind farms: lessons learned offshore wind farm, Horns Rev 1 (160 MW with 80 turbines of 2 MW), became operational in 2002. The aver- age capacity of turbines and size of offshore wind farms have been increasing since then

  8. Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results Christopher N. Elkinton the layout of an offshore wind farm presents a significant engineering challenge. Most of the optimization literature to date has focused on land-based wind farms, rather than on offshore farms. Typically, energy

  9. Review report 2004 The Danish Offshore Wind Farm

    E-Print Network [OSTI]

    - 1 - Review report 2004 The Danish Offshore Wind Farm Demonstration Project: Horns Rev and Nysted Offshore Wind Farms Environmental impact assessment and monitoring Prepared for The Environmental Group By Elsam Engineering and ENERGI E2 October 2005 #12;- 2 - Review Report 2004 The Danish Offshore Wind Farm

  10. Offshore Wind Power Experiences, Potential and Key Issues for

    E-Print Network [OSTI]

    offshore wind farms are installed in British, Swedish and Danish waters, and present-day costs in 2015, 2030 and 2050 14 3.1 Offshore wind farms under construction and in planning stage 14 3Offshore Wind Power Experiences, Potential and Key Issues for Deployment Jørgen Lemming, Poul Erik

  11. Scour around an offshore wind turbine W.F. Louwersheimer

    E-Print Network [OSTI]

    Langendoen, Koen

    Scour around an offshore wind turbine MSc Thesis W.F. Louwersheimer January, 2007 Delft University #12;Scour around an offshore wind turbine Delft University of Technology Ballast Nedam - Egmond iii Scour around an offshore wind turbine W.F. Louwersheimer Student number 1067419 January, 2007

  12. Assessing Novel Foundation Options for Offshore Wind Turbines

    E-Print Network [OSTI]

    Byrne, Byron

    Assessing Novel Foundation Options for Offshore Wind Turbines B.W. Byrne, BE(Hons), BCom, MA, DPhil G.T. Houlsby, MA, DSc, FREng, FICE Oxford University, UK SYNOPSIS Offshore wind farms, and of these wind power is the only one to be exploited on a commercial scale at present. Three major offshore

  13. FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT Prepared by Jon Lilley, Blaise Sheridan, Dawn.......................................................................................................................... 25 FERC Clarification as Applied to Offshore Wind........................................................................................................................ 28 #12; 3 Feed-in Tariffs and Offshore Wind Power Development Prepared Pursuant to DOE Grant Em

  14. Wave Models for Offshore Wind Turbines Puneet Agarwal

    E-Print Network [OSTI]

    Manuel, Lance

    Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil. These wave modeling assumptions do not adequately represent waves in shallow waters where most offshore wind for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility

  15. Extreme Loads for an Offshore Wind Turbine using Statistical

    E-Print Network [OSTI]

    Manuel, Lance

    Extreme Loads for an Offshore Wind Turbine using Statistical Extrapolation from Limited Field Data,itiscommontoeithercarry out extensive simulation studies or undertake a field measurement campaign. At the Blyth offshore wind here is to estimate extreme loads for an offshore wind turbine for which the environmental and load

  16. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 to site) Potential interconnection to future offshore PNWCA intertie 4 #12;5 Ave wind speed >= 10 m. (2010) Large-scale Offshore Wind Power in the United States National Renewable Energy Laboratory. (2012

  17. Electric power from offshore wind via synoptic-scale interconnection

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric power from offshore wind via synoptic-scale interconnection Willett Kemptona,1 , Felipe M regional estimate, Kempton et al. (2) calculated that two-thirds of the offshore wind power off the U in the U.S. Atlantic region is already underway. Fig. 1 shows as black squares offshore wind developments

  18. Sandia Energy - Quantifying Offshore Wind Scour with Sandia's...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Environmental Fluid Dynamics Code (SNL---EFDC) Home Renewable Energy Energy News Wind Energy News & Events Computational Modeling & Simulation Quantifying Offshore Wind...

  19. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Environmental Management (EM)

    to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical...

  20. Obama Administration Hosts Great Lakes Offshore Wind Workshop...

    Office of Environmental Management (EM)

    wind development in the Great Lakes closer to fruition." "The country's vast offshore wind resources have the potential to dramatically reduce America's dependence on fossil...

  1. NREL: Community - NREL Researchers Advance Wind Energy Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gave a large improvement in computational efficiency, suggesting that there is potential in using advanced statistical methods to analyze wind turbine fatigue and...

  2. Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Saur, G.; Maples, B.; Meadows, B.; Hand, M.; Musial, W.; Elkington, C.; Clayton, J.

    2012-09-01T23:59:59.000Z

    With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW and offshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from US offshore wind plants.

  3. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23T23:59:59.000Z

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  4. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01T23:59:59.000Z

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  5. Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms Sten Frandsen*, Rebecca areas.As is often the need for offshore wind farms, the model handles a regular array geometry for offshore wind farms, the model handles a priori a regular array geometry with straight rows of wind

  6. Improvement of Offshore Wind Resource Modeling in the Mid-

    E-Print Network [OSTI]

    Firestone, Jeremy

    Improvement of Offshore Wind Resource Modeling in the Mid- Atlantic Bight Wind Energy Symposium Sienkiewicz , Chris Hughes 26 February 2013 #12;Improving Atmospheric Models for Offshore Wind Resource Interaction Tower ­ 23 m NOAA Buzzard's Bay Tower ­ 25 m Cape Wind Tower (60 m from 2003-2011; just platform

  7. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01T23:59:59.000Z

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  8. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...

    Broader source: Energy.gov (indexed) [DOE]

    According to a new study funded by DOE, the United States has sufficient offshore wind energy resources to legitimize the installation of at least 54 gigawatts (GW) of offshore...

  9. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    E-Print Network [OSTI]

    Heinemann, Detlev

    Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence intensities are not modelled satisfactorily. Keywords: Offshore, wind farm, wake model, Vindeby, turbulence intensity

  10. LiDAR observations of offshore winds at future wind turbine operating heights

    E-Print Network [OSTI]

    at the Horns Rev offshore wind farm. The influence of atmospheric stability on the surface layer wind shear of offshore wind farms in the coming years. In contrast with the situation over land, the knowledge turbine manufacturers and wind farm developers, although the offshore environment represents other

  11. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

  12. Wind resources and wind farm wake effects offshore observed from satellite

    E-Print Network [OSTI]

    Wind resources and wind farm wake effects offshore observed from satellite Charlotte Bay Hasager to quantify the wake effect at two large offshore wind farms in Denmark. It is found that the wake velocity further. There is fast progress on planning and installation of offshore wind farms in the European waters

  13. U.S. Offshore Wind Manufacturing and Supply Chain Development

    Office of Environmental Management (EM)

    Accessed March 1, 2012. Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A. (2012). "2010 Cost of Wind Energy Review." NREL TP-5000-52920. Golden, CO:...

  14. NREL: Wind Research - NREL, Collaborators Complete Gearbox of Innovative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S. WindDrivetrain

  15. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn1(BENEFIT)GridOffshore Wind

  16. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01T23:59:59.000Z

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  17. Taming Hurricanes With Arrays of Offshore Wind Turbines

    E-Print Network [OSTI]

    Firestone, Jeremy

    Taming Hurricanes With Arrays of Offshore Wind Turbines Mark Z. Jacobson Cristina Archer, Willet) or 50 m/s (destruction) speed. Can Walls of Offshore Wind Turbines Dissipate Hurricanes? #12;Katrina Kempton Wind Energy Symposium University of Delaware February 27, 2013 145 mph; Jeff Schmaltz, NASA GSFC

  18. RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT)

    E-Print Network [OSTI]

    Bernstein, Joseph B.

    RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT) Yizhou Lu, T. M. Delorm, A. Christou of survivor functions R(t) of drive-trains, after 1 year of operation, between Offshore Wind Turbine (OWT) vs of the reliability of these 5 Types Surrogate failure rate data Onshore wind turbines (OT) 1-1.5MW CONCLUSIONS

  19. NREL Develops Simulations for Wind Plant Power and Turbine Loads (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    NREL researchers are the first to use a high-performance computing tool for a large-eddy simulation of an entire wind plant.

  20. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16T23:59:59.000Z

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  1. Horns Rev Offshore Wind Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Farm Environmental Impact Assessment of Sea Bottom and Marine Biology #12 Design ApS 01.03.2000 #12;Bio/consult A/S Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1........................................................................................................................................................... 36 #12;Bio/consult A/S ELSAM Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1 Page 4

  2. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01T23:59:59.000Z

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  3. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Broader source: Energy.gov (indexed) [DOE]

    This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals...

  4. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Broader source: Energy.gov (indexed) [DOE]

    has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States. The modeling tool, which illustrates the potential...

  5. University of Michigan Gets Offshore Wind Ready for Winter on...

    Energy Savers [EERE]

    Receive Energy Department Funding United States Launches First Grid-Connected Offshore Wind Turbine Mitigating Potential Environmental Impacts of Energy Development Project...

  6. New Report Highlights Trends in Offshore Wind with 14 Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the advanced stages of development- together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further, this year's report...

  7. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind...

    Energy Savers [EERE]

    monitoring birds, bats, and aquatic animals such as marine mammals, sea turtles, and fish in the offshore wind farm environment. Informed by monitoring results and research...

  8. Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.

  9. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 December 14, 2006 NREL

  10. Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms

    E-Print Network [OSTI]

    Houlsby, Guy T.

    Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms Prof. Guy Houlsby, Dr Byron Byrne, Dr Chris Martin Oxford University #12;Oxford each turbine does not generate all the time, say 3000) #12;Oxford University Civil Engineering Wind

  11. NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

  12. Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.

    2013-06-01T23:59:59.000Z

    The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.

  13. Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005

    E-Print Network [OSTI]

    Boyer, Edmond

    financial risks associated to the installation of offshore wind farms. Usually, for evaluating the resourceBen Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005 1 Using several data sources for offshore wind

  14. UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND

    E-Print Network [OSTI]

    Firestone, Jeremy

    UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS FOR STATE ENERGY POLICY by Jacqueline D Piero Approved ................................................................................................. 3 Offshore wind: a new option in the United States.............................................. 4

  15. Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Jair. Curran Crawford, Supervisor (Department of Mechanical Engineering) ABSTRACT Floating offshore wind

  16. NREL: Wind Research - Systems Engineering Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illustration of a wind farm with a town in the background and a crane lifting the turbine blades onto the last turbine. A complete wind energy system includes the plant's...

  17. NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive-responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

  18. NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive -- responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

  19. Multi-hazard Reliability Assessment of Offshore Wind Turbines

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04T23:59:59.000Z

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  20. Multi-hazard Reliability Assessment of Offshore Wind Turbines 

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04T23:59:59.000Z

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  1. Offshore Wind Market Acceleration Projects | Department of Energy

    Energy Savers [EERE]

    to connect this offshore wind energy to the grid. The University of Delaware is examining potential effects of wind penetration on the Mid-Atlantic electric grid and facilitating...

  2. FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION

    E-Print Network [OSTI]

    Firestone, Jeremy

    FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION 2010 Amardeep Dhanju All Rights Reserved #12;FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT

  3. Offshore Wind Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, JulyIssueOffshore Wind Projects

  4. Norfolk Offshore Wind NOW | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniXInformationNongqishiNorfolk Offshore Wind

  5. Offshore Wind Energy | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG JumpOffshore Wind

  6. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty Ltd Jump to:Offshore Wind Farm Jump

  7. NREL: Wind Research - Grid Integration of Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photo ofResearchFAST Revs Up

  8. NREL: Continuum Magazine - From the Start: NREL Nurtures a Growing Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustry Photo of a wind turbine

  9. Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with Emphasis of offshore wind turbines Defense: 09.12.2012 2012 - : Structural Engineer in Det Norske Veritas (DNV) 2007 and higher wind speed, and less visual disturbance and noise for offshore wind energy. Offshore wind

  10. Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)

    SciTech Connect (OSTI)

    Sinclair, K.; Bowen, A.

    2008-06-01T23:59:59.000Z

    WindPower 2008 conference sponsored by AWEA held in Houston, Texas on June 1-4, 2008. This poster describes four small wind electric systems that were tested to IEC and AWEA standards at NREL's NWTC.

  11. Hurricane wind fields needed to assess risk to offshore wind farms

    E-Print Network [OSTI]

    Jaramillo, Paulina

    LETTER Hurricane wind fields needed to assess risk to offshore wind farms In their paper in PNAS losses attributable to hurricane activity at four hypothetical offshore wind farm sites. We found one a 20-y typical wind farm lifetime. They combined a county annual landfall frequency probability density

  12. Importance of thermal effects and sea surface roughness for wind resource and wind shear at offshore sites

    E-Print Network [OSTI]

    Heinemann, Detlev

    at offshore sites Bernhard Lange*, Søren Larsen# , Jørgen Højstrup# , Rebecca Barthelmie# *ForWind - Centre of offshore wind power utilisation depends on the favourable wind conditions offshore as compared to sites for this flow. It's applicability for wind power prediction at offshore sites is investigated using data from

  13. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01T23:59:59.000Z

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  14. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  15. Fluctuations of offshore wind generation -Statistical modelling , L.E.A. Christensen, H. Madsen

    E-Print Network [OSTI]

    of power fluctuations at large offshore wind farms has a significant impact on the control and management of their parameters. Simulation results are given for the case of the Horns Rev and Nysted offshore wind farms. An overview of offshore wind energy in Europe is given in [1]. Such large offshore wind farms concentrate

  16. Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008

    E-Print Network [OSTI]

    Firestone, Jeremy

    Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008 Revised 10 October@udel.edu Class web site with lecture notes: www.udel.edu/sakai UD offshore wind research: http, plan, regulate, and develop offshore wind resources for large-scale power production. Offshore wind

  17. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01T23:59:59.000Z

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  18. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy PhaseWind

  19. NREL: Wind Research - Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 DecemberWind

  20. NREL: Wind Research - Research Staff Biographies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 DecemberWindResearch

  1. NREL: Wind Research - Structural Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site WindStructural

  2. NREL Innovations Contribute to an Award-Winning Small Wind Turbine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    The Skystream 3.7 wind turbine is the result of a decade-long collaboration between the National Renewable Energy Laboratory (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew heavily on its research experience to incorporate innovations into the Skystream 3.7, including a unique blade design that makes the wind turbine more efficient and quieter than most.

  3. Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    #12;Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm 2004 Survey Report No. 1 March protection and at the wind turbine towers at six turbine sites. Video recordings were planned at different- scription. 2. Methodology Weather and wind conditions as well as hydrographical data such as current

  4. Use of synthetic aperture radar for offshore wind resource assessment and wind farm development in the UK 

    E-Print Network [OSTI]

    Cameron, Iain Dickson

    2008-01-01T23:59:59.000Z

    The UK has an abundant offshore wind resource with offshore wind farming set to grow rapidly over the coming years. Optimisation of energy production is of the utmost importance and accurate estimates of wind speed distributions are critical...

  5. NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

  6. Coupled Dynamic Analysis of Large-Scale Mono-Column Offshore Wind Turbine with a Single Tether Hinged in Seabed

    E-Print Network [OSTI]

    Chen, Jieyan

    2012-10-19T23:59:59.000Z

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  7. Coupled Dynamic Analysis of Large-Scale Mono-Column Offshore Wind Turbine with a Single Tether Hinged in Seabed 

    E-Print Network [OSTI]

    Chen, Jieyan

    2012-10-19T23:59:59.000Z

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  8. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2007-08-01T23:59:59.000Z

    This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

  9. New Report Shows Trend Toward Larger Offshore Wind Systems, with...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for...

  10. Rhode Island to Build First Offshore Wind Farm

    Broader source: Energy.gov [DOE]

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  11. Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine

    E-Print Network [OSTI]

    Bae, Yoon Hyeok

    2013-04-23T23:59:59.000Z

    In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control...

  12. "Design of Offshore Wind Turbines for Hurricane Resilience" Graduate Seminar

    E-Print Network [OSTI]

    Connor, Ed

    "Design of Offshore Wind Turbines for Hurricane Resilience" Graduate Seminar Thursday, December 5, 2013, 12pm ­ 1pm Andrew Myers, Ph.D. Northeastern University. "Computational Methods for Evolving

  13. Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine 

    E-Print Network [OSTI]

    Bae, Yoon Hyeok

    2013-04-23T23:59:59.000Z

    In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control...

  14. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  15. A REAL OPTIONS OPTIMIZATION MODEL TO MEET AVAILABILITY REQUIREMENTS FOR OFFSHORE WIND TURBINES

    E-Print Network [OSTI]

    Sandborn, Peter

    wind farm with prognostic capabilities. Alternative energy sources such as offshore wind turbines-based maintenance. This is especially important for offshore wind farms that require non- traditional resources for a Typical Baseline Offshore Wind Project [2] Wind farms are capital intensive projects, and the economics

  16. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in Europe. For the planning of offshore wind farms the vertical wind speed profile is needed for two main reasons: WindEVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

  17. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01T23:59:59.000Z

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  18. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    will come from offshore sites. The first large offshore wind farms are currently being built in severalEVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface

  19. Method for computing efficient electrical indicators for offshore wind turbine monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by offshore deployment of wind farms. The offshore turbines have much lower accessibility(1) so maintenanceMethod for computing efficient electrical indicators for offshore wind turbine monitoring Georgia.cablea, pierre.granjon, christophe.berenguer} @gipsa-lab.grenoble-inp.fr Abstract Offshore wind turbines

  20. Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)

    SciTech Connect (OSTI)

    Bowen, A.; Huskey, A.; Hur, J.; Jager, D.; van Dam, J.; Smith, J.

    2010-05-01T23:59:59.000Z

    Poster presented at the AWEA 2010 conference illustrates NREL's testing of five small wind turbines in the first round of its independent testing project. Tests include power performance, noise, duration, safety and function, and power quality (where applicable).

  1. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01T23:59:59.000Z

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  2. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan [Navigant Consulting, Inc.

    2013-02-22T23:59:59.000Z

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

  3. Short-term Wind Power Prediction for Offshore Wind Farms -Evaluation of Fuzzy-Neural Network Based Models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Short-term Wind Power Prediction for Offshore Wind Farms - Evaluation of Fuzzy-Neural Network Based of offshore farms and their secure integration to the grid. Modeling the behavior of large wind farms presents the new considerations that have to be made when dealing with large offshore wind farms

  4. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  5. NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

    E-Print Network [OSTI]

    cost. Researchers at the National Wind Technology Center (NWTC) at the National Renewable EnergyNREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms. Today's utility-scale wind turbine structures are more complex and their compo- nents more

  6. NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy.

    E-Print Network [OSTI]

    the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm will result in increased gearbox reliability and an overall reduction in the cost of wind energy. ProjectNREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering

  7. innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power

    E-Print Network [OSTI]

    innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power To fully harvest a database of potential wind power sites and detailed, time-dependent estimates of the power that would the nation's bountiful wind and solar resources, it is critical to know how much electrical power from

  8. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect (OSTI)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01T23:59:59.000Z

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  9. Coupled dynamic analysis of floating offshore wind farms

    E-Print Network [OSTI]

    Shim, Sangyun

    2009-05-15T23:59:59.000Z

    it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

  10. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01T23:59:59.000Z

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  11. Coupled dynamic analysis of floating offshore wind farms 

    E-Print Network [OSTI]

    Shim, Sangyun

    2009-05-15T23:59:59.000Z

    it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

  12. California offshore wind energy potential Michael J. Dvorak a,*, Cristina L. Archer b

    E-Print Network [OSTI]

    California (CA). The siting of an offshore wind farm is limited by water depth, with shallow water being generally preferable economically. Acceptable depths for offshore wind farms are divided into three based wind farms which peak at night, the offshore winds near Cape Mendocino are consistently fast

  13. Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach

    E-Print Network [OSTI]

    Boyer, Edmond

    Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU- sponsored EnerGEO project, aiming, and its use for the evaluation of environmental impacts of wind energy. The effects of offshore wind farms

  14. RECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE ENVIRONMENTAL EFFECTS

    E-Print Network [OSTI]

    phases of new wind turbines. There are plans about offshore wind farms in many countries e.g. in northernRECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES ­ AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE and an analysis of future removal and recycling processes of offshore wind turbines. The method is process

  15. GEOL 663 -GEOLOGICAL ASPECTS OF OFFSHORE WIND COURSE SYLLABUS 2014 Fall Semester

    E-Print Network [OSTI]

    Delaware, University of

    GEOL 663 - GEOLOGICAL ASPECTS OF OFFSHORE WIND COURSE SYLLABUS ­ 2014 Fall Semester Course Meets will be designed around geological and geotechnical topics that are relevant to the development of offshore wind wind turbine foundations; 2) A review of existing, or under construction, offshore wind projects; and 3

  16. Offshore wind resources from satellite SAR Charlotte Bay Hasager, Merete Bruun Christiansen, Morten Nielsen,

    E-Print Network [OSTI]

    Offshore wind resources from satellite SAR Charlotte Bay Hasager, Merete Bruun Christiansen, Morten ocean wind maps were described. For offshore wind resource estimation based on satellite observations and the near-coastal zone (up to 40 km offshore) is not mapped. In contrast, Envisat ASAR wind maps can

  17. MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND POWER PLANT U off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter offshore wind power plants (WPP) because they offer higher energy yield due to a superior wind profile

  18. St h ti d i l i fStochastic dynamic analysis of offshore wind turbines

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    1 St h ti d i l i fStochastic dynamic analysis of offshore wind turbines ­ with emphasis on fatigue Co te ts · Overview of offshore wind technology · Modelling of environmental conditions · Dynamic analysis of offshore bottom-fixed wind turbines · Modelling and dynamic analysis of floating wind turbines

  19. Development of Offshore Wind Recommended Practice for U.S. Waters: Preprint

    SciTech Connect (OSTI)

    Musial, W. D.; Sheppard, R. E.; Dolan, D.; Naughton, B.

    2013-04-01T23:59:59.000Z

    This paper discusses how the American Petroleum Institute oil and gas standards were interfaced with International Electrotechnical Commission and other wind turbine and offshore industry standards to provide guidance for reliable engineering design practices for offshore wind energy systems.

  20. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Environmental Management (EM)

    DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

  1. First U.S. Grid-Connected Offshore Wind Turbine Installed Off...

    Office of Environmental Management (EM)

    First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 -...

  2. U.S. Department of Energy and SWAY Collaborate on Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project October...

  3. NREL: Wind Research - Small Wind Turbine Independent Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind

  4. NREL: Wind Research - Utility-Scale Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6SiteUtility-Scale Wind

  5. NREL: Wind Research - Wind and Water Power Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6SiteUtility-ScaleWind

  6. NREL, Clemson University Collaborate on Wind Energy Testing Facilities -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NREL Refines Method tofor SolarNREL'sNREL'sNews

  7. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  8. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  9. NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques to triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009.

  10. Incorporation of Multi-Member Substructure Capabilities in FAST for Analysis of Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Song, H.; Robertson, A.; Jonkman, J.; Sewell, D.

    2012-05-01T23:59:59.000Z

    FAST, developed by the National Renewable Energy Laboratory (NREL), is an aero-hydro-servo-elastic tool widely used for analyzing onshore and offshore wind turbines. This paper discusses recent modifications made to FAST to enable the examination of offshore wind turbines with fixed-bottom, multi-member support structures (which are commonly used in transitional-depth waters).; This paper addresses the methods used for incorporating the hydrostatic and hydrodynamic loading on multi-member structures in FAST through its hydronamic loading module, HydroDyn. Modeling of the hydrodynamic loads was accomplished through the incorporation of Morison and buoyancy loads on the support structures. Issues addressed include how to model loads at the joints of intersecting members and on tapered and tilted members of the support structure. Three example structures are modeled to test and verify the solutions generated by the modifications to HydroDyn, including a monopile, tripod, and jacket structure. Verification is achieved through comparison of the results to a computational fluid dynamics (CFD)-derived solution using the commercial software tool STAR-CCM+.

  11. 1 1 1 1 1 1 2 2 Network of offshore wind farms connected by

    E-Print Network [OSTI]

    Heinemann, Detlev

    2 33 3 3 1 1 1 1 1 1 2 2 Network of offshore wind farms connected by gas insulated transmission of connecting these offshore wind farms by gas in- sulated transmission lines (GIL) is investigated. Aim, Germany Corresponding author: anja.drews@forwind.de Offshore wind parks in different stages.Green- in op

  12. Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen, Merete Bruun Christiansen

    E-Print Network [OSTI]

    Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen for an offshore wind farm in a coastal location. Spatial gradients and vertical profiles between 25 m and 70 m offshore wind farms tend to be placed within the coastal zone, the region within around 50km from

  13. TRANSMISSION OPTIONS FOR OFFSHORE WIND FARMS IN THE UNITED STATES Sally D. Wright, PE

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    TRANSMISSION OPTIONS FOR OFFSHORE WIND FARMS IN THE UNITED STATES Sally D. Wright, PE Anthony L@ecs.umass.edu, rerl@ecs.umass.edu Abstract While offshore wind farms have been installed in Europe for over a decade an introduction to transmission issues for offshore wind farms in North America, aimed towards non

  14. ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN

    E-Print Network [OSTI]

    Sweetman, Bert

    revolution that enables economic development of wind farms in very challenging deepwater offshore locationsA-1 ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY surrounding Europe, and plans are in place for offshore developments in the US. Locating these wind turbines

  15. RWT TOOL: OFFSHORE WIND ENERGY MAPPING FROM SAR C. B. Hasager, M. Nielsen, M. B. Christiansen

    E-Print Network [OSTI]

    much interest during the last decade. The adventure started in 1991 when the first offshore wind farm. New development plans near Horns Rev and Nysted are ongoing. Offshore wind farms are in development the highest spatial detail (~500 m by 500 m grid cells) and are observed within the offshore `wind-farming

  16. Influence of Nonlinear Irregular Waves on the Fatigue Loads of an Offshore Wind Turbine

    E-Print Network [OSTI]

    Papalambros, Panos

    it acts as a bottleneck to the realization of offshore wind farms that can compete with traditional energy sources [3]. Currently, offshore wind farms are typically sited in coastal areas with water depths aroundInfluence of Nonlinear Irregular Waves on the Fatigue Loads of an Offshore Wind Turbine Michiel B

  17. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in EuropeImportance of thermal effects and sea surface roughness for offshore wind resource assessment National Laboratory, Roskilde, Denmark Abstract The economic feasibility of offshore wind power utilisation

  18. Offshore Wind Turbine Design: Addressing Uncertainty Drivers Sten Frandsen Niels Jacob Tarp-Johansen

    E-Print Network [OSTI]

    the next generation of offshore wind farms are designed. The aim of this paper is to discuss existingOffshore Wind Turbine Design: Addressing Uncertainty Drivers Sten Frandsen Niels Jacob Tarp@civil.auc.dk leje@elsam-eng.com Abstract: Current offshore wind turbine design methods have matured to a 1st

  19. Optimal Selection of AC Cables for Large Scale Offshore Wind Farms

    E-Print Network [OSTI]

    Hu, Weihao

    Optimal Selection of AC Cables for Large Scale Offshore Wind Farms Peng Hou, Weihao Hu, Zhe Chen@et.aau.dk, whu@iet.aau.dk, zch@iet.aau.dk Abstract--The investment of large scale offshore wind farms is high the operational requirements of the offshore wind farms and the connected power systems. In this paper, a new cost

  20. Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J to the large dimensions of offshore wind farms, their electricity production must be known well in advance networks) models were calibrated on power data from two offshore wind farms: Tunoe and Middelgrunden

  1. Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar

    E-Print Network [OSTI]

    Pryor, Sara C.

    a ship-mounted sodar at a small offshore wind farm. The experiments were conducted at varying distances Offshore wind farms have increased in size from the first phase of installation with up to 20 turbinesComparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar R

  2. A FETCH DEPENDENT MODEL OF SEA SURFACE ROUGHNESS FOR OFFSHORE WIND POWER UTILISATION

    E-Print Network [OSTI]

    Heinemann, Detlev

    , Resources, Roughness, Coastal Sea Areas, Waves, Rødsand 1 INTRODUCTION Large offshore wind farms are beingA FETCH DEPENDENT MODEL OF SEA SURFACE ROUGHNESS FOR OFFSHORE WIND POWER UTILISATION Bernhard Lange wind conditions of offshore sites, since the higher energy yield has to compensate the additional

  3. GEOL 467/667/MAST 667 -GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS

    E-Print Network [OSTI]

    Firestone, Jeremy

    GEOL 467/667/MAST 667 - GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS Description: Investigation of the geological and geotechnical aspects of offshore wind projects. Emphasis will be designed around geological and geotechnical topics that are relevant to the development of offshore wind

  4. PREDICTION OF WAVES, WAKES AND OFFSHORE WIND THE RESULTS OF THE POW'WOW PROJECT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PREDICTION OF WAVES, WAKES AND OFFSHORE WIND ­ THE RESULTS OF THE POW'WOW PROJECT Gregor Giebel: The POWWOW project (Prediction of Waves, Wakes and Offshore Wind, a EU Coordination Action) aimed to develop. Keywords: Wind resource, wave resource, offshore, short-term prediction, wakes 1 Introduction The nearly

  5. From the SelectedWorks of George R. Parsons Valuing the Visual Disamenity of Offshore Wind

    E-Print Network [OSTI]

    Delaware, University of

    From the SelectedWorks of George R. Parsons May 2011 Valuing the Visual Disamenity of Offshore Wind of Offshore Wind Power Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline Andrew D. Krueger, George R. Parsons, and Jeremy Firestone ABSTRACT. Several offshore wind power projects

  6. From%laggard%to%leader:%% Explaining%offshore%wind%developments%in%

    E-Print Network [OSTI]

    Sussex, University of

    From%laggard%to%leader:%% Explaining%offshore%wind%developments%in% the%UK% Florian!laggard!to!leader:!Explaining! offshore!wind!developments!in!the!UK! Florian Kern1* , Adrian Smith1 , Chris Shaw1 , Rob Raven2 and Bram for publication in Energy Policy, 19 Feb 2014 Abstract Offshore wind technology has recently undergone rapid

  7. | | | | |Monday, July 16, 2012 Three Northeast Ohio offshore wind power projects

    E-Print Network [OSTI]

    Rollins, Andrew M.

    | | | | |Monday, July 16, 2012 Home Three Northeast Ohio offshore wind power projects secure federal money By SCOTT SUTTELL 1:52 pm, September 9, 2011 Three Northeast Ohio offshore wind power to "speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy

  8. Energy Policy 35 (2007) 15841598 Public opinion about large offshore wind power: Underlying factors

    E-Print Network [OSTI]

    Firestone, Jeremy

    2007-01-01T23:59:59.000Z

    Energy Policy 35 (2007) 1584­1598 Public opinion about large offshore wind power: Underlying opinion regarding offshore wind power based on a survey of residents near a proposed development off Cape, the first offshore wind proposal in North America, in Nantucket Sound (MA, USA) has generated a strong

  9. Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters

    E-Print Network [OSTI]

    Heinemann, Detlev

    Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters Teruo to evaluate the accuracy of offshore wind simulation with the mesoscale model MM5, long-term simulations to simulate offshore wind conditions in the Japanese coastal waters even using a mesoscale model, compared

  10. Investigations of migratory birds during operation of Horns rev offshore wind

    E-Print Network [OSTI]

    Investigations of migratory birds during operation of Horns rev offshore wind farm: Preliminary analyses of bird studies conducted during spring 2004 in relation to the offshore wind farm at Horns Rev of the Horns Rev offshore wind farm - preliminary note on the issue of potential habitat loss. Christensen, T

  11. Effects on birds of an offshore wind park at Horns Rev: Environmental

    E-Print Network [OSTI]

    Effects on birds of an offshore wind park at Horns Rev: Environmental impact assessment NERI Report Environmental Research Institute Effects on birds of an offshore wind park at Horns Rev: Environmental impact of an offshore wind park at Horns Rev: Environmental impact assessment Authors: Henning Noer, Thomas Kjær

  12. www.cesos.ntnu.no Author Centre for Ships and Ocean Structures Offshore Wind Turbine Operation

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    1 www.cesos.ntnu.no Author ­ Centre for Ships and Ocean Structures Offshore Wind Turbine Operation Structures Deep Water Offshore Wind Economic Production Cost WT Life Time : 20 Years Introduction Vast icing for offshore Wind Turbines ? · Wherever there is sea icing ! · Temperature bellow zero degree

  13. SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES-based Damage Detec- tion (SSDD) method on model structures for an utilization of this approach on offshore wind damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection

  14. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy an electricity storage for a 5000 inhabitants island supplied by both marine renewables (offshore wind and waves community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables

  15. Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound@ecs.umass.edu ABSTRACT Simultaneous wind resource and oceanographic data are available from an offshore monitoring tower how oceanographic data can be used to aid offshore wind resource assessment evaluations. This study

  16. CONTINUOUS FATIGUE ASSESSMENT OF AN OFFSHORE WIND TURBINE USING A LIMITED NUMBER OF VIBRATION SENSORS

    E-Print Network [OSTI]

    Boyer, Edmond

    CONTINUOUS FATIGUE ASSESSMENT OF AN OFFSHORE WIND TURBINE USING A LIMITED NUMBER OF VIBRATION, Modal decomposition and expansion, Finite Element Model INTRODUCTION Offshore wind turbines are exposed locations along the structure. This is not the case though in monopile offshore wind turbines, where fatigue

  17. THE INFLUENCE OF WAVES ON THE OFFSHORE WIND Bernhard Lange, Jrgen Hjstrup*

    E-Print Network [OSTI]

    Heinemann, Detlev

    THE INFLUENCE OF WAVES ON THE OFFSHORE WIND RESOURCE Bernhard Lange, Jørgen Højstrup* Risø National and waves and thus in air-sea interaction in general. For predicting the offshore wind climate'8&7,21 The favourable wind resource at offshore compared to land sites is caused by the very low surface roughness

  18. MAST628 Syllabus-8/12/2014 p. 1 Offshore Wind Power: Science, engineering, and policy

    E-Print Network [OSTI]

    Delaware, University of

    MAST628 Syllabus- 8/12/2014 p. 1 Offshore Wind Power: Science, engineering, and policy MAST 628-4842, dveron@udel.edu, Robinson 114B Class web site with lecture notes: www.udel.edu/sakai UD offshore wind the multiple disciplines required to understand, plan, regulate, and develop offshore wind resources for large

  19. A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D. James F at Amherst Amherst, MA 01003 The utilization of offshore winds for generating electricity was first proposed that offshore wind development anywhere would be unlikely. More recently, a number of European countries have

  20. LEEDCo awarded $4 million to launch offshore wind development on Lake Erie

    E-Print Network [OSTI]

    Rollins, Andrew M.

    LEEDCo awarded $4 million to launch offshore wind development on Lake Erie By Teresa Dixon Murray in the United States, the Lake Erie Energy Development Corp. of Cleveland will launch an offshore wind, Democrat of Ohio, who has pushed for such alternative energy projects for years, said offshore wind could

  1. Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines Puneet, and Environmental Engineering The University of Texas, Austin, TX 78712 Design of an offshore wind turbine requires on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular

  2. AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL

    E-Print Network [OSTI]

    Firestone, Jeremy

    AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL POWER. Jarvis All Rights Reserved #12;AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT in offshore wind energy. I would also like to thank my committee members, Dr. Jeremy Firestone

  3. American Institute of Aeronautics and Astronautics Foundation Models for Offshore Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    American Institute of Aeronautics and Astronautics 1 Foundation Models for Offshore Wind Turbines of alternative models for monopile pile foundations for shallow-water offshore wind turbines has on extreme loads) is the most common type of foundation used today for offshore wind turbines; the support structure connects

  4. 1 Copyright 2007 by ASME SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR

    E-Print Network [OSTI]

    Manuel, Lance

    1 Copyright © 2007 by ASME SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR EXTREME LIMIT STATES P loads for an offshore wind turbine using simulation, statistical extrapolation is the method of choice in the design of offshore wind turbines against ultimate limit states, and a recent draft [1] of design

  5. DATA NORMALIZATION FOR FOUNDATION SHM OF AN OFFSHORE WIND TURBINE : A REAL-LIFE CASE STUDY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DATA NORMALIZATION FOR FOUNDATION SHM OF AN OFFSHORE WIND TURBINE : A REAL-LIFE CASE STUDY Wout the first results in the development of a SHM approach for the foun- dations of an offshore wind turbine the performance of the presented approach. KEYWORDS : Foundation Monitoring, Offshore Wind Turbine, Operational

  6. A MODULAR SHM-SCHEME FOR ENGINEERING STRUCTURES UNDER CHANGING CONDITIONS: APPLICATION TO AN OFFSHORE WIND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TO AN OFFSHORE WIND TURBINE Moritz W. H¨ackell1, Raimund Rolfes1 1 Institute of Structural Analysis, Leibniz in common. A shift from fossil to renewable energy source is the logical con- sequence. (Offshore) wind : Offshore Wind Turbine, Machine Learning, Condition Parameter, Control Charts, Affinity Propagation

  7. Grid Simulator for Testing MW-Scale Wind Turbines at NREL (Poster)

    SciTech Connect (OSTI)

    Gevorgian, V.; McDade, M.; Wallen, R.; Mendoza, I.; Shirazi, M.

    2011-05-01T23:59:59.000Z

    As described, an initiative by NREL to design and construct a 9-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

  8. NREL: Wind Research - NREL's WIND Toolkit Provides the Data Needed to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S. Wind IntegrationConduct

  9. Probability distributions for offshore wind speeds Eugene C. Morgan a,*, Matthew Lackner b

    E-Print Network [OSTI]

    Vogel, Richard M.

    Probability distributions for offshore wind speeds Eugene C. Morgan a,*, Matthew Lackner b Wind turbine energy output Weibull distribution Extreme wind a b s t r a c t In planning offshore wind farms, short-term wind speeds play a central role in estimating various engi- neering parameters

  10. NREL: Wind Research - Energy Analysis of Offshore Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photo ofResearch StaffBuilding

  11. NREL: Wind Research - Offshore Design Tools and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 December 14,3Design

  12. Master's thesis: "Wind speed measurements in an offshore wind farm by remote sensing: Comparison of radar satellite TerraSAR-X and ground-based

    E-Print Network [OSTI]

    Peinke, Joachim

    Master's thesis: "Wind speed measurements in an offshore wind farm by remote sensing: Comparison of the Offshore wind farm alpha ventus with 12 wind turbines, substation and met mast Fino1. Southerly winds cause (wake) caused by wind farms and especially for the interaction of large offshore wind farms, which can

  13. Basic Integrative Models for Offshore Wind Turbine Systems 

    E-Print Network [OSTI]

    Aljeeran, Fares

    2012-07-16T23:59:59.000Z

    were modeled using apparent fixity level, Randolph elastic continuum, and modified cone models. The offshore wind turbine structures were developed using a finite element formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity...

  14. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  15. 7th International Workshop on Large-Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms Models for HLI analysis of power systems with

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    for Offshore Wind Farms 1 Models for HLI analysis of power systems with offshore wind farms and distributed power plants, distributed generation and offshore wind farms. Particular attention is paid to the latter]-[4], but there is a lack of models of offshore wind farms, which introduce new issues for their representation, due to some

  16. Abstract--The offshore wind farm with installed back-to-back power converter in wind turbines is studied. As an

    E-Print Network [OSTI]

    Bak, Claus Leth

    Abstract--The offshore wind farm with installed back-to- back power converter in wind turbines is studied. As an example the Burbo Bank offshore wind farm with Siemens Wind Power wind turbines is taken are compared with measurement data from the Burbo Bank offshore wind farm. The delimitations of both power

  17. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01T23:59:59.000Z

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  18. Loading and Response of Offshore Wind Turbine Support Structures: Prediction with Comparison to Measured Data

    E-Print Network [OSTI]

    Sweetman, Bert

    Loading and Response of Offshore Wind Turbine Support Structures: Prediction with Comparison, offshore wind support platforms differ from oil platforms is several important ways: First, wind platforms is often closer to frequencies at which there is meaningful wave energy. Second, wind farms often include

  19. VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT APPROACH

    E-Print Network [OSTI]

    Firestone, Jeremy

    VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT APPROACH by Andrew D. Krueger All Rights Reserved #12;ii VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT thank you for your perspective on offshore renewable energy regulation. As committee members, your

  20. The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing

    E-Print Network [OSTI]

    Miami, University of

    The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing), The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing on the fate of topography, winddriven and eddydriven circulation on the offshore removal of plume waters. A realistically

  1. Offshore Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG JumpOffshore

  2. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulationInformation)CommissionOffshore Jump

  3. Offshore Code Comparison Collaboration Continuation (OC4), Phase I - Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure: Preprint

    SciTech Connect (OSTI)

    Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T. J.; Yde, A.; Saetertro, K.; Okstad, K. M.; Nichols, J.; Nygaard, T. A.; Gao, Z.; Manolas, D.; Kim, K.; Yu, Q.; Shi, W.; Park, H.; Vasquez-Rojas, A.

    2012-03-01T23:59:59.000Z

    This paper presents the results of the IEA Wind Task 30, Offshore Code Comparison Collaboration Continuation Project - Phase 1.

  4. ENDOW: EFFICIENT DEVELOPMENT OF OFFSHORE WINDFARMS Rebecca Barthelmie and Gunner Larsen, *Wind Energy Department, Ris National Laboratory, 4000 Roskilde,

    E-Print Network [OSTI]

    developers and turbine manufacturers to optimise power output from offshore wind farms through minimised wake offshore wind farms (Vindeby and Bockstigen) to undertake the first comprehensive evaluation of offshore with a mesoscale model focusing on boundary-layer development within and over a large offshore wind farm

  5. On Assessing the Accuracy of Offshore Wind Turbine Reliability-Based Design Loads from the Environmental Contour Method

    E-Print Network [OSTI]

    Manuel, Lance

    On Assessing the Accuracy of Offshore Wind Turbine Reliability-Based Design Loads from to derive design loads for an active stall-regulated offshore wind turbine. Two different Danish offshore contour method; wind turbine; offshore; reliability. INTRODUCTION Inverse reliability techniques

  6. Access Framework: Model Text (November 2011) An Act to Establish a Framework for Development of Offshore Wind Power

    E-Print Network [OSTI]

    Firestone, Jeremy

    of Offshore Wind Power Whereas, the offshore waters of [State] are ecologically and economically vital public, Whereas, offshore wind power provides utility-scale renewable energy at competitive costs, helps to meet consequences; and Whereas, offshore wind power, being a domestic source of energy enhances U.S. energy

  7. A Predictive Maintenance Policy Based on the Blade of Offshore Wind Wenjin Zhu, Troyes University of Technology

    E-Print Network [OSTI]

    McCalley, James D.

    A Predictive Maintenance Policy Based on the Blade of Offshore Wind Turbine Wenjin Zhu, Troyes onshore to offshore locations [1]. As offshore wind turbines are located at remote sites withlimited]. Operation and maintenance (O&M) costs of off-shore wind turbines contribute about 25-30% to the total energy

  8. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect (OSTI)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01T23:59:59.000Z

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  9. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Barahona, B.; Jonkman, J.; Damiani, R.; Robertson, A.; Hayman, G.

    2014-12-01T23:59:59.000Z

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshore Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.

  10. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    SciTech Connect (OSTI)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01T23:59:59.000Z

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  11. Transient Studies in Large Offshore Wind Farms, Taking Into Account Network Breaker Interaction

    E-Print Network [OSTI]

    Bak, Claus Leth

    Transient Studies in Large Offshore Wind Farms, Taking Into Account Network Breaker Interaction studies in offshore wind farms, PSCAD. I. INTRODUCTION IN OWF applications, the consequences of component) are considered a pos- sible source of experienced component failures in existing off- shore wind farms (OWFs

  12. HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current Research

    E-Print Network [OSTI]

    Bak, Claus Leth

    HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current Research Jakob Glasdam-of-the-art review on grid integration of large offshore wind power plants (OWPPs) using high voltage direct voltage Sørensen Wind Power, Electrical Systems DONG Energy Fredericia, Denmark jakgl@dongenergy.dk Mogens Blanke

  13. An Assessment of Converter Modelling Needs for Offshore Wind Power Plants Connected via VSC-

    E-Print Network [OSTI]

    Bak, Claus Leth

    An Assessment of Converter Modelling Needs for Offshore Wind Power Plants Connected via VSC- HVDC, especially in case of connection of offshore wind power plants (OWPPs). Modelling challenges are faced Networks Jakob Glasdam, Lorenzo Zeni, Jesper Hjerrild, Lukasz Kocewiak, Bo Hesselbaek Wind Power

  14. New report assesses offshore wind technology challenges and potential risks and benefits.

    E-Print Network [OSTI]

    New report assesses offshore wind technology challenges and potential risks and benefits. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater wind resources can provide many potential benefits, and with effective research, policies

  15. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet), Innovation Impact: Wind, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NREL Refines Method to

  16. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    SciTech Connect (OSTI)

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01T23:59:59.000Z

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  17. Offshore Ostsee Wind AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitianOstsee Wind AG Jump to: navigation,

  18. Offshore Wind Accelerator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitianOstsee Wind AG Jump to:

  19. INFOGRAPHIC: Offshore Wind Outlook | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmit ait'sII. GENERALOffshore Wind

  20. Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects...

    Energy Savers [EERE]

    The above map shows the headquarters locations of all 41 projects. Those shown in blue are focused on advancing offshore wind technologies, such as modeling and design of...

  1. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, W.; Ram, B.

    2010-09-01T23:59:59.000Z

    This paper assesses the potential for U.S. offshore wind to meet the energy needs of many coastal and Great Lakes states.

  2. Abstract--This paper presents the harmonic analysis of offshore wind farm (OWF) models with full converters

    E-Print Network [OSTI]

    Bak, Claus Leth

    Abstract--This paper presents the harmonic analysis of offshore wind farm (OWF) models with full will be discussed based on measurements from offshore wind farm. Index Terms--full-rating converters, harmonic analysis, offshore wind farm, wind turbine, validation with measurements I. INTRODUCTION HE tendency

  3. A review of the economics of offshore wind farms Rebecca J. Barthelmie1 and Sara Pryor2,1

    E-Print Network [OSTI]

    Pryor, Sara C.

    A review of the economics of offshore wind farms Rebecca J. Barthelmie1 and Sara Pryor2,1 1 prototype offshore wind farms, developed and installed during the 1990's, to the commercial wind farms offshore wind farms compete with moderate onshore locations. We summarise the transition to increasing

  4. Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic Coast

    E-Print Network [OSTI]

    Firestone, Jeremy

    Calculating the offshore wind power resource: Robust assessment methods applied to the U 2011 Available online xxx Keywords: Wind power Offshore wind power Resource assessment Marine spatial, annual energy output is calculated for a representative offshore wind turbine. The average power resource

  5. Paper No. 2006-JSC-397 Agarwal Design Loads for an Offshore Wind Turbine using Statistical Extrapolation from Limited Field Data

    E-Print Network [OSTI]

    Manuel, Lance

    Paper No. 2006-JSC-397 Agarwal Design Loads for an Offshore Wind Turbine using Statistical a field measurement campaign. At the Blyth offshore wind farm in the United Kingdom, a 2MW wind turbine of variability in the parameters for load distribution is investigated. KEY WORDS: Offshore wind turbines

  6. Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.

  7. NREL: Learning - National Wind Technology Center Video (Text Version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking withFuel Cell

  8. Presented on the European Wind Energy Conference & Exhibition, Brussels, Belgium, March, 31 Network of offshore wind farms connected by gas insulated

    E-Print Network [OSTI]

    Heinemann, Detlev

    ­April, 3 rd 2008. Network of offshore wind farms connected by gas insulated transmission lines? Anja Summary The offshore wind power industry faces two major challenges: the connection of wind farms to the high voltage grid onshore and a smart grid integration of this offshore generated wind power. In terms

  9. Novel Foundations for Offshore Wind Farms Research Proposal to EPSRC (August 2001)

    E-Print Network [OSTI]

    Byrne, Byron

    1 Novel Foundations for Offshore Wind Farms Research Proposal to EPSRC (August 2001) Prof G offshore foundations, in situ testing, tunnelling and reinforced soil). Only projects on shallow foundation grant GR/M55657 ( 17k) was for instrumentation of a field trial of an offshore caisson. Some preliminary

  10. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect (OSTI)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01T23:59:59.000Z

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  11. Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves

    E-Print Network [OSTI]

    Owens, Garrett Reese 1987-

    2012-11-26T23:59:59.000Z

    The majority of offshore wind farms utilize monopile substructures. As these wind farms are typically located in water depths less than 30 meters, the effect of breaking waves on these structures is of great concern to design engineers...

  12. Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves 

    E-Print Network [OSTI]

    Owens, Garrett Reese 1987-

    2012-11-26T23:59:59.000Z

    The majority of offshore wind farms utilize monopile substructures. As these wind farms are typically located in water depths less than 30 meters, the effect of breaking waves on these structures is of great concern to design engineers...

  13. Offshore Wind Technology Development Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, JulyIssueOffshore Wind

  14. U.S. Offshore Wind Port Readiness | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries | Department of EnergyU.S. Offshore Wind

  15. New Reports Chart Offshore Wind's Path Forward | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445Reports Chart Offshore Wind's

  16. DOE Announces Webinars on an Offshore Wind Economic Impacts Model,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy -StateOffshore Wind Economic ImpactsStudent

  17. Sandia Energy - Offshore Wind RD&D: Sediment Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D: Sediment Transport

  18. Maryland Offshore Wind Annual Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical Publications » MarketMaryland Offshore Wind Annual

  19. Mustang Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | OpenGAIsland Offshore Wind Farm Jump

  20. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump to: navigation, search

  1. Property:PotentialOffshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump to: navigation,

  2. World Energy Congress, Sydney, Australia September 5-9, 2004 OFFSHORE WIND POWER: EASING A RENEWABLE

    E-Print Network [OSTI]

    of wind energy are discussed. 2. Offshore wind energy potential Le potentiel de l'énergie éolienne When.0 0.2 0.4 0.6 0.8 1.0 1.2 Relativeenergy onshoreoffshore Figure 1: Wind energy potential at height 10019 th World Energy Congress, Sydney, Australia September 5-9, 2004 1 OFFSHORE WIND POWER: EASING

  3. NREL: Wind-Wildlife Impacts Literature Database (WILD) Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL - National Renewable

  4. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustryIssuePhoto

  5. NREL: International Activities - Philippines Wind Resource Maps and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking with Us Photo ofA map depicting

  6. Mexico-NREL Wind Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformationMexico CentralEnergyMexico) JumpNREL

  7. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,Energy NREL Job Task Analysis:Energy

  8. OC3 -- Benchmark Exercise of Aero-Elastic Offshore Wind Turbine Codes: Preprint

    SciTech Connect (OSTI)

    Passon, P.; Kuhn, M.; Butterfield, S.; Jonkman, J.; Camp, T.; Larsen, T. J.

    2007-08-01T23:59:59.000Z

    This paper introduces the work content and status of the first international investigation and verification of aero-elastic codes for offshore wind turbines as performed by the "Offshore Code Comparison Collaboration" (OC3) within the "IEA Wind Annex XXIII -- Subtask 2".

  9. Cyclic behaviour of monopile foundations for offshore wind turbines in clay

    E-Print Network [OSTI]

    Lau, Ben Hong

    2015-06-09T23:59:59.000Z

    Investment into offshore wind farms has been growing to address the growing threat of climate change. The majority of offshore wind turbines (both current and planned) are founded on monopiles, large circular steel pipe piles ranging from 4.0 m – 7...

  10. Social Acceptance of Wind: A Brief Overview (Presentation), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Social Acceptance of Wind: A Brief Overview AWEA State Wind Energy Forum Eric Lantz January 20, 2015 Lansing, Michigan NRELPR-6A20-63590 2 Presentation Overview 1. Concepts -...

  11. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  12. The Application of Suction Caisson Foundations to Offshore Wind Turbines Extracts from a proposal to the DTI

    E-Print Network [OSTI]

    Byrne, Byron

    The market for offshore wind farms in the UK is expected to be substantial. The initial sites proposed offshore wind farm development may require the installation of up to fifty similar or identical units for application on offshore wind farms for the following reasons: · Suction caissons are simple steel fabrications

  13. Framework for assessing impacts of pile-driving noise from offshore wind farm construction on a harbour seal population

    E-Print Network [OSTI]

    Aberdeen, University of

    Framework for assessing impacts of pile-driving noise from offshore wind farm construction farm Marine mammal Offshore wind farm developments may impact protected marine mammal populations (Jay, 2011; Toke, 2011). In the North Sea, many proposed wind farm sites are on submerged offshore

  14. OWEMES -Offshore Wind And Other Marine Renewable Energies In Mediterranean And European Seas Civitavecchia (Italy), 20th

    E-Print Network [OSTI]

    Heinemann, Detlev

    OWEMES - Offshore Wind And Other Marine Renewable Energies In Mediterranean And European Seas Civitavecchia (Italy), 20th -22th April 2006 How to avoid Biases in Offshore Wind Power Forecasting Lueder von, adaptive system, Neural Network, single site forecast, systematic error Abstract Large-scale offshore wind

  15. Satellite data for high resolution offshore wind resource mapping: A data fusion approach M.B. Ben Ticha a,*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Satellite data for high resolution offshore wind resource mapping: A data fusion approach M.B. Ben accurate high spatial and temporal resolutions wind measurements. Offshore, satellite data are an accurate radar, scatterometer, data fusion, offshore wind energy resource assessment. 1. INTRODUCTION Since

  16. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    E-Print Network [OSTI]

    Jacobson, Mark

    Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses Willett develop methods for assessing offshore wind resources, using a model of the vertical structure offshore wind power matched to inherent storage in energy end- uses, Geophys. Res. Lett., 34, L02817, doi

  17. Valuing Public Preferences for Offshore Wind Power Andrew D. Krueger, University of Delaware, College of Marine and Earth Studies

    E-Print Network [OSTI]

    Firestone, Jeremy

    Valuing Public Preferences for Offshore Wind Power Andrew D. Krueger, University of Delaware in Massachusetts, New York, Delaware, and Texas. For Delaware, offshore wind power is currently the only cost public opposition, regulatory obstacles, and lack of incentives. Table 1: Delaware Offshore Wind Power

  18. Journal of Marine Research. 47, 81-109, 1989 The response of the coastal ocean to strong offshore winds

    E-Print Network [OSTI]

    the response of the coastal ocean to strong offshore winds: a linear 11/2-layer model, and a nonlinear 11 the wind strengthens there is an ageostrophic current (not Ekman drift) that is directed offshore toward its initial state. Throughout the wind event, cyclonic and anticyclonic gyres spin up offshore

  19. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure. Dhanju, R. W. 26 Garvine, and M. Z. Jacobson (2007), Large CO2 reductions via 27 offshore wind power

  20. Assessment of the Southern New England Offshore Wind Energy Resource James F. Manwell, Anthony Rogers, Jon G. McGowan

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 Assessment of the Southern New England Offshore Wind Energy Resource James F. Manwell, Anthony the potential for the near term development of offshore wind energy projects in that region. The work summarized here consists of four aspects: 1) a review of existing offshore wind data, 2) the measurement of new

  1. NREL Collaborative Improves the Reliability of Wind Turbine Gearboxes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    Gearbox failures have a significant impact on the cost of wind farm operations. To help minimize gearbox failures, in 2007 the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which consists of manufacturers, owners, researchers, and consultants. Based on all the lessons learned from the past five years, the GRC has now produced a new and improved design, which is projected to yield an operating lifetime of 12 years, more than triple that of the previous redesigned gearbox. The GRC findings will result in increased gearbox reliability and an overall reduction in the cost of wind energy.

  2. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    SciTech Connect (OSTI)

    Wissemann, Chris [Freshwater Wind I, LLC] [Freshwater Wind I, LLC; White, Stanley M [Stanley White Engineering LLC] [Stanley White Engineering LLC

    2014-02-28T23:59:59.000Z

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. • Developed a cost model and “baseline” LCOE • Documented Site Conditions within Lake Erie • Developed Fabrication, Installation and Foundations Innovative Concept Designs • Evaluated LCOE Impact of Innovations • Developed Assembly line “Rail System” for GBF Construction and Staging • Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System • Developed GBF with “Penetration Skirt” • Developed Integrated GBF with Turbine Tower • Developed Turbine, Plant Layout and O&M Strategies The report details lowering LCOE by 22.3% and identified additional strategies that could further lower LCOE when building an utility scale wind farm in the Great Lakes.

  3. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    SciTech Connect (OSTI)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  4. Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Mai, T.; Coles, L.

    2012-09-01T23:59:59.000Z

    This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

  5. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    SciTech Connect (OSTI)

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01T23:59:59.000Z

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  6. DOE/NREL Advanced Wind Turbine Development Program

    SciTech Connect (OSTI)

    Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

    1993-05-01T23:59:59.000Z

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  7. NREL researchers are the first to use a high-performance com-puting tool for a large-eddy simulation of an entire wind plant.

    E-Print Network [OSTI]

    Denmark and Sweden and compared results with more than a year's worth of plant data.The simulated power at least 50% wastepaper, including 10% post consumer waste. NREL Develops Simulations forWind Plant Power-eddy simulation of an entire wind plant. Researchers at the National Renewable Energy Laboratory's (NREL) National

  8. NREL: Wind Research - NREL and Partners Review Key Issues, Lessons Learned

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S. Wind Integration

  9. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

  10. Fourth International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms,

    E-Print Network [OSTI]

    for Offshore Wind Farms, 20-21 October 2003, Billund, Denmark C. S. Nielsen, Hans F. Ravn, Camilla Schaumburg1 Fourth International Workshop on Large-Scale Integration of Wind Power and Transmission Networks of Denmark, B. 321, DK-2800 Lyngby, Denmark, csm@imm.dtu.dk Two wind power prognosis criteria and regulating

  11. Potential Economic Impacts from Offshore Wind in the Gulf of Mexico Region (Fact Sheet)

    SciTech Connect (OSTI)

    Flores, F.; Keyser, D.; Tegen, S.

    2014-01-01T23:59:59.000Z

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Gulf of Mexico region.

  12. Potential Economic Impacts from Offshore Wind in the Great Lakes Region (Fact Sheet)

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.

    2014-01-01T23:59:59.000Z

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by DOE's National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Great Lakes region.

  13. Potential Economic Impacts from Offshore Wind in the Mid-Atlantic Region (Fact Sheet)

    SciTech Connect (OSTI)

    Keyser, D.; Tegen, S.; Flores, F.; Zammit, D.; Kraemer, M.; Miles, J.

    2014-01-01T23:59:59.000Z

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Mid-Atlantic region.

  14. OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY

    E-Print Network [OSTI]

    Perez, Richard R.

    OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Richard Perez-shore wind and PV generation using the city of New York as a test case. While wind generation is not known one year's worth of hourly site & time-specific data including electrical demand PV and off-shore wind

  15. Comprehensive testing of Nedwind 12-Meter wind turbine blades at NREL

    SciTech Connect (OSTI)

    Larwood, S.; Musial, W.

    2000-03-13T23:59:59.000Z

    This paper describes the structural testing of two NedWind 25 12-m blades at the National Renewable Energy Laboratory (NREL). The tests were conducted under the Standards, Measurement and Testing (SMT) Program in conjunction with tests conducted by four European laboratories to develop a common database of blade testing methods. All of the laboratories tested duplicate copies of blades taken from series production. Blade properties, including weight, center of gravity, natural frequencies, stiffness, and damping, were determined. Static load tests were performed at 110% of the extreme design load for strain verification. NREL performed single-axis and two-axis fatigue tests using business-as-usual testing practices. The single-axis test combined equivalent life loading for the edge and flap spectra into a single resultant load. The two-axis test applied the edge and flap components independently at a phase angle of 90{degree}. Damage areas were observed at (1) the trailing edge, which cracked near the maximum chord; (2) between the steel root collar and the composite, where circumferential cracking was noted; and (3) along the top of the spar between the 2,500-mm and 4,200-mm stations, where a notable increase in acoustic emissions was detected. NREL observed that the onset of damage occurred earlier in the single-axis test.

  16. Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space

    E-Print Network [OSTI]

    Sweetman, Bert

    wind turbines in deep water, where environmental forcing could subject the rotor to meaningful angular relative to (X,Y,Z) CT Thrust coefficient, used to calculate wind force on the blade swept area 1Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space Bert Sweetman Texas A

  17. Quantifying Errors Associated with Satellite Sampling of Offshore Wind S.C. Pryor1,2

    E-Print Network [OSTI]

    1 Quantifying Errors Associated with Satellite Sampling of Offshore Wind Speeds S.C. Pryor1,2 , R, Bloomington, IN47405, USA. Tel: 1-812-855-5155. Fax: 1-812-855-1661 Email: spryor@indiana.edu 2 Dept. of Wind an attractive proposition for measuring wind speeds over the oceans because in principle they also offer

  18. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  19. Contested seascapes : space-related conflicts over offshore wind farms in Scotland and Germany 

    E-Print Network [OSTI]

    Rudolph, David Philipp

    2013-11-28T23:59:59.000Z

    Offshore wind farms are widely considered to become a cornerstone of energy transition for securing energy supply and tackling climate change simultaneously. But recent developments have demonstrated that the siting of ...

  20. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01T23:59:59.000Z

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  1. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

    2012-09-01T23:59:59.000Z

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  2. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Buhl, M. L., Jr.

    2007-06-01T23:59:59.000Z

    This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

  3. Multibody Dynamics Using Conservation of Momentum with Application to Compliant Offshore Floating Wind Turbines

    E-Print Network [OSTI]

    Wang, Lei

    2012-10-19T23:59:59.000Z

    Environmental, aesthetic and political pressures continue to push for siting off-shore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures is likely to be considered. Savings could potentially...

  4. A nonlinear wave load model for extreme and fatigue responses of offshore floating wind turbines

    E-Print Network [OSTI]

    Lee, Sungho, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Ocean energy is one of the most important sources of alternative energy and offshore floating wind turbines are considered viable and economical means of harnessing ocean energy. The accurate prediction of nonlinear ...

  5. Multibody Dynamics Using Conservation of Momentum with Application to Compliant Offshore Floating Wind Turbines 

    E-Print Network [OSTI]

    Wang, Lei

    2012-10-19T23:59:59.000Z

    Environmental, aesthetic and political pressures continue to push for siting off-shore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures is likely to be considered. Savings could potentially...

  6. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling

    SciTech Connect (OSTI)

    Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

    2009-01-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

  7. NREL: Awards and Honors - North Wind 100/20 Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NREL Refines MethodLightweight,Awards and

  8. Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

    2014-04-01T23:59:59.000Z

    Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

  9. Web tool for energy policy decision-making through geo-localized LCA models: A focus on offshore wind farms in Northern Europe

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . To illustrate this issue, a web map service enabling "geolocalized life cycle assessment" of offshore wind farms makers in assess- ing the global environmental impacts caused by an offshore wind farm in Northern Europe of configurations and locations of offshore wind farms. A special interest is given to Northern Europe as offshore

  10. \\\\server05\\productn\\C\\CJP\\14-1\\CJP102.txt unknown Seq: 1 24-FEB-05 17:48 REGULATING OFFSHORE WIND POWER AND

    E-Print Network [OSTI]

    Firestone, Jeremy

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 R C. DIFFERENCES IN THE E.U. AND U.S. WITH RESPECT TO OFFSHORE WIND FARMS\\\\server05\\productn\\C\\CJP\\14-1\\CJP102.txt unknown Seq: 1 24-FEB-05 17:48 REGULATING OFFSHORE WIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 R A. OFFSHORE AQUACULTURE (MARICULTURE) . . . . . . . . . . . 74 R B. OFFSHORE WIND POWER

  11. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The following solarWind Resource

  12. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01T23:59:59.000Z

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  13. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

    2013-07-01T23:59:59.000Z

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

  14. Abstract--This paper focuses on reviewing grid connection of large offshore wind farms (OWFs) employing current state-of-

    E-Print Network [OSTI]

    Bak, Claus Leth

    1 Abstract--This paper focuses on reviewing grid connection of large offshore wind farms (OWFs Farms. I. INTRODUCTION owadays, offshore wind penetration into the electrical grid is rapidly increasing grid connection in e.g. the UK. Index Terms--HVDC transmission, Pulse width modulation converters, Wind

  15. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01T23:59:59.000Z

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  16. Environmental Risk Evaluation System (ERES) for Offshore Wind - Mock-Up of ERES, Fiscal Year 2010 Progress Report

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-01T23:59:59.000Z

    The Environmental Risk Evaluation System (ERES) has been created to set priorities among the environmental risks from offshore wind development. This report follows the conceptual design for ERES and shows what the system would look like, using a web interface created as part of a Knowledge Management System (KMS) for offshore wind. The KMS, called Zephyrus, and ERES for offshore wind, will be populated and made operational in a later phase of the project.

  17. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

    2013-11-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and analysis needs of the offshore wind community.

  18. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

  19. Offshore wind resource assessment in European Seas, state-of-the art. A survey within the FP6 "POW'WOW" Coordination Action Project.

    E-Print Network [OSTI]

    , Germany (5) FORWIND, University of Oldenburg, Germany ABSTRACT To plan an offshore wind farm, a careful 1999, large wind farms with wind turbines up to 5 MW have been erected offshore especially in the NorthOffshore wind resource assessment in European Seas, state-of- the ­art. A survey within the FP6

  20. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09T23:59:59.000Z

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands School’s wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0°C and -20°C and wind speeds up to 40 miles per hour in the tunnel’s test section. The tunnel’s cooling unit maintained the tunnel temperature within ±0.2°C. The coatings evaluated in the study were Boyd Coatings Research Company’s CRC6040R3, MicroPhase Coatings Inc.’s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When compari

  1. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  2. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    SciTech Connect (OSTI)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  3. Assessment of Ports for Offshore Wind Development in the United States

    SciTech Connect (OSTI)

    Elkinton, Chris [DNV GL] [DNV GL; Blatiak, Alicia; Ameen, Hafsa

    2014-03-21T23:59:59.000Z

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carrying out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based on GL GH’s review of U.S. ports infrastructure and its readiness to support the development of proposed offshore wind projects in U.S. waters. Specific examples of facility costs and benefits are provided for five coastal regions (North Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Pacific) around the country. GL GH began this study by identifying the logistical requirements of offshore wind ports to service offshore wind. This review was based on lessons learned through industry practice in Northern Europe. A web-based port readiness assessment tool was developed to allow a capability gap analysis to be conducted on existing port facilities based on the identified requirements. Cost models were added to the assessment tool, which allowed GL GH to estimate the total upgrade cost to a port over the period 2014-2030 based on a set of regional project build-out scenarios. Port fee information was gathered from each port allowing an estimate of the potential revenue to the port under this same set of scenarios. The comparison of these revenue and improvement cost figures provides an initial indication of the level of offshore wind port readiness. To facilitate a more in-depth infrastructure analysis, six ports from different geographic regions, with varied levels of interest and preparedness towards offshore wind, were evaluated by modeling a range of installation strategies and port use types to identify gaps in capability and potential opportunities for economic development. Commonalities, trends, and specific examples from these case studies are presented and provide a summary of the current state of offshore wind port readiness in the U.S. and also illustrate the direction some ports have chosen to take to prepare for offshore wind projects. For example, the land area required for wind turbine and foundation manufacturing is substantial, particularly due to the large size of offshore wind components. Also, the necessary bearing capacities of the quayside and storage area are typically greater for offshore wind components than for more conventiona

  4. Potential Economic Impacts from Offshore Wind in the Southeast Region (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01T23:59:59.000Z

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Southeast (defined here as Georgia, South Carolina, North Carolina, and Virginia).

  5. NREL Improves System Efficiency and Increases Energy Transfer with Wind2H2 Project, Enabling Reduced Cost Electrolysis Production (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes NREL's accomplishments in improving energy transfer within a wind turbine-based hydrogen production system. Work was performed by the Wind2H2 Project team at the National Wind Technology Center in partnership with Xcel Energy.

  6. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01T23:59:59.000Z

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  7. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform

    SciTech Connect (OSTI)

    Gevorgian, V.

    2012-02-01T23:59:59.000Z

    An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

  8. Offshore Wind Project Surges Ahead in South Carolina

    Broader source: Energy.gov [DOE]

    The Center for Marine and Wetland Studies studies wind speed data from buoys, which have been measuring wind speed and direction for the past year.

  9. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Broader source: Energy.gov (indexed) [DOE]

    June 25, 2014 EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final General Conformity Determination, June 23, 2014 December...

  10. Two decades before launching Clipper, its founder, James Dehlsen, had started Zond, a pioneering U.S. wind power firm. Zond worked closely with NREL, and once it was acquired by

    E-Print Network [OSTI]

    Laboratory (NREL) and newly formed wind turbine builder, Clipper Windpower Inc., forged a partnership based, a pioneering U.S. wind power firm. Zond worked closely with NREL, and once it was acquired by another firm in the late 1990s, Dehlsen was free to pursue his latest wind turbine innovations. His new idea

  11. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

    2013-07-01T23:59:59.000Z

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  12. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  13. Adapting and calibration of existing wake models to meet the conditions inside offshore wind farms. Page 1 Adapting and calibration of existing wake models

    E-Print Network [OSTI]

    Adapting and calibration of existing wake models to meet the conditions inside offshore wind farms@emd.dk #12;Adapting and calibration of existing wake models to meet the conditions inside offshore wind farms inside offshore wind farms" has as purpose to improve the existing PARK models for calculating the wake

  14. COMPARISON OF SEA SURFACE ROUGHNESS MODELS FOR OFFSHORE WIND POWER UTILISATION Bernhard Lange(1), Jrgen Hjstrup(2), Sren Larsen(2), Rebecca Barthelmie(2)

    E-Print Network [OSTI]

    Heinemann, Detlev

    Large offshore wind farms are being built in several countries in Europe. The economic viabilityCOMPARISON OF SEA SURFACE ROUGHNESS MODELS FOR OFFSHORE WIND POWER UTILISATION Bernhard Lange(1 of such projects depends on the favourable wind conditions of offshore sites, since the higher energy yield has

  15. Houlsby, G. T., Kelly, R. B., Huxtable, J. & Byrne, B. W. (2006). Geotechnique 56, No. 1, 310 Field trials of suction caissons in sand for offshore wind turbine

    E-Print Network [OSTI]

    Byrne, Byron

    2006-01-01T23:59:59.000Z

    Field trials of suction caissons in sand for offshore wind turbine foundations G. T. HOULSBY*, R. B to the design of either monopod or quadruped foundations for offshore wind turbines. Records are presented conception de fonda- tions de turbines e´oliennes. INTRODUCTION The offshore wind energy industry is a very

  16. Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjrn Skaare*, Tor David Hanson*, Finn Gunnar Nielsen*, Rune Yttervik*, Anders Melchior Hansen**,

    E-Print Network [OSTI]

    Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjørn Skaare*, Tor David Hanson on land and in shallow waters offshore. Wind turbines at sea are a good solution because achieve better energy efficiency at sea than on land. Presently, offshore wind turbines are installed

  17. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  18. Offshore Wind Technologie GmbH OWT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG JumpOffshoreOffshore

  19. Extended tension leg platform design for offshore wind turbine systems

    E-Print Network [OSTI]

    Parker, Nicholas W. (Nicholas William)

    2007-01-01T23:59:59.000Z

    The rise of reliable wind energy application has become a primary alternative to conventional fossil fuel power plants in the United States and around the world. The feasibility of building large scale wind farms has become ...

  20. International Effort Advances Offshore Wind Turbine Design Codes...

    Broader source: Energy.gov (indexed) [DOE]

    with the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Germany to lead an international effort under the International Energy Agency's (IEA) Task 30...

  1. Offshore Wind Jobs and Economic Development Impacts in the United...

    Broader source: Energy.gov (indexed) [DOE]

    early201202061111769109 Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A. (2012). 2010 Cost of Wind Energy Review. NRELTP-5000-52920. National Renewable...

  2. Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Jason Magalen; Craig Jones

    2014-06-01T23:59:59.000Z

    This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of a wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.

  3. Prediction of wind speed profiles for short-term forecasting in the offshore environment R.J. Barthelmie and G. Giebel

    E-Print Network [OSTI]

    in planning of maintenance visits to offshore wind farms. In most cases the basis for the predictionPrediction of wind speed profiles for short-term forecasting in the offshore environment R wind farms. The main effects considered here are: wind speed gradients in the coastal zone, vertical

  4. NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140

    SciTech Connect (OSTI)

    Musial, W.

    2014-08-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

  5. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01T23:59:59.000Z

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  6. Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Ramachandran, G. K. V.; Robertson, A.; Jonkman, J. M.; Masciola, M. D.

    2013-07-01T23:59:59.000Z

    This paper examines the consistency between response amplitude operators (RAOs) computed from WAMIT, a linear frequency-domain tool, to RAOs derived from time-domain computations based on white-noise wave excitation using FAST, a nonlinear aero-hydro-servo-elastic tool. The RAO comparison is first made for a rigid floating wind turbine without wind excitation. The investigation is further extended to examine how these RAOs change for a flexible and operational wind turbine. The RAOs are computed for below-rated, rated, and above-rated wind conditions. The method is applied to a floating wind system composed of the OC3-Hywind spar buoy and NREL 5-MW wind turbine. The responses are compared between FAST and WAMIT to verify the FAST model and to understand the influence of structural flexibility, aerodynamic damping, control actions, and waves on the system responses. The results show that based on the RAO computation procedure implemented, the WAMIT- and FAST-computed RAOs are similar (as expected) for a rigid turbine subjected to waves only. However, WAMIT is unable to model the excitation from a flexible turbine. Further, the presence of aerodynamic damping decreased the platform surge and pitch responses, as computed by both WAMIT and FAST when wind was included. Additionally, the influence of gyroscopic excitation increased the yaw response, which was captured by both WAMIT and FAST.

  7. Garden State Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG22 Jump to: navigation,LogOffshore

  8. 2011 DOE Funded Offshore Wind Project Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell Technologies1 -2011 DOE Funded Offshore

  9. Offshore Wind Energy Market Installed Capacity is Anticipated to Reach

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns JumpsourceOffshore Lubricants Market Size Home52,120.9 MW by

  10. U.S. Offshore Wind Advanced Technology Demonstration Projects Public

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeedMeeting Transcript for Offshore

  11. Offshore Wind Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHomeJC3Minh LeOffice ofEnergyOfficeOffshore

  12. United States Offshore Wind Resource Map at 90 Meters

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducationOffshore

  13. NREL: News Feature - NREL Driving Research on Hydrogen Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center. Toyota, Hyundai, and Honda all have committed to putting fuel cell vehicles on the market by 2015. Photo by Dennis Schroeder, NREL Hydrogen fuel...

  14. NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear SecurityJune 4,ReportOffice of

  15. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect (OSTI)

    Ling, Hao [The University of Texas at Austin] [The University of Texas at Austin; Hamilton, Mark F. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Bhalla, Rajan [Science Applications International Corporation] [Science Applications International Corporation; Brown, Walter E. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Hay, Todd A. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Whitelonis, Nicholas J. [The University of Texas at Austin] [The University of Texas at Austin; Yang, Shang-Te [The University of Texas at Austin] [The University of Texas at Austin; Naqvi, Aale R. [The University of Texas at Austin] [The University of Texas at Austin

    2013-09-30T23:59:59.000Z

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  16. Basic Integrative Models for Offshore Wind Turbine Systems

    E-Print Network [OSTI]

    Aljeeran, Fares

    2012-07-16T23:59:59.000Z

    This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions...

  17. Assessment of Offshore Wind Energy Resources for the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind Siting Articles about Wind SitingBStatesDepartment

  18. Final Summary Report: Em-Powering Coastal States and Utilities through Model Offshore Wind Legislation and Outreach

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-11-30T23:59:59.000Z

    The final summary report summarizes the most significant findings from three project reports detailing: feed-in tariffs, model request for proposals for new generation, and model state offshore wind power legislation.

  19. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.

    2013-06-01T23:59:59.000Z

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  20. Structural health and prognostics management for offshore wind turbines : an initial roadmap.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C. [ATA Engineering, San Diego, CA

    2012-12-01T23:59:59.000Z

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blade's torsional stiffness due to the disbond, which also resulted in changes in the blade's local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  1. Offshore wind project surges ahead in South Carolina

    Broader source: Energy.gov [DOE]

    Researchers from Coastal Carolina University, working alongside Clemson University, Savannah River National Laboratory and the University of South Carolina, started collecting wind speeds, as well as current, wave and other oceanographic information, in July 2009 from near the coast to as far as 12 miles off shore.

  2. 2014 Offshore Wind Market and Economic Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment of Energy Information2012 AwardsWindDepartment2014

  3. NREL: NEWS - Features

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Falcon NREL and Laufer employ "Houdini" to teach radar how to detect birds near wind power plants. Assuring Solar Modules Will Last for Decades Assuring Solar Modules Will...

  4. Assessment of Offshore Wind Energy Resources for the United States

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducation PrintableWind2

  5. Foundation for Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarm Holdings LtdFormosunWind Energy

  6. New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

    Broader source: Energy.gov [DOE]

    The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects repre

  7. Mapping of offshore wind resources C. B. Hasager, P. Astrup, M. B. Christiansen, M. Nielsen, A. Pea

    E-Print Network [OSTI]

    Oct Nov Dec 1995 - 2005 5 6 7 8 9 10 11Windspeed[m/s] Baltic Sea North Sea Monthly profile of averageMapping of offshore wind resources C. B. Hasager, P. Astrup, M. B. Christiansen, M. Nielsen, A The European Wind Atlas, Risø Weibull fitting: A = scale parameter k = shape parameter #12;Horns Rev, Elsam A

  8. Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore R. J. BARTHELMIE,*,1 S. C. PRYOR,*,1 S. T. FRANDSEN,1 K. S. HANSEN,# J. G. SCHEPERS,@

    E-Print Network [OSTI]

    Pryor, Sara C.

    Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms R. J need to develop and optimize tools for designing large wind farm arrays for deployment offshore more accurate power output predictions for large offshore wind farms. Detailed data en- sembles

  9. Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow

    E-Print Network [OSTI]

    Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

    2013-01-01T23:59:59.000Z

    The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

  10. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  11. Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform

    SciTech Connect (OSTI)

    Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.

    2010-02-01T23:59:59.000Z

    This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.

  12. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01T23:59:59.000Z

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  13. NREL Assesses National Design Standards for Offshore Wind (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear SecurityJune 4,Report summarizes

  14. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Carbon Trust. (2008). Offshore Wind Power: Big Challenge,Financial Support for Offshore Wind. The UK Department ofCost Reduction Prospects for Offshore Wind Farms. ” Wind

  15. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01T23:59:59.000Z

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  16. NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData

  17. IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans-Peter Waldl(1)(2), Rebecca Barthelmie(3), Algert Gil Guerrero(1)(4), Detlev Heinemann(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans of atmospheric stability. Model results have been compared with measurements from the Danish offshore wind farm of large offshore wind farms, modelling of wake losses is an important part of the production estimation

  18. IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans-Peter Waldl(1)(2), Rebecca Barthelmie(3), Algert Gil Guerrero(1)(4), Detlev Heinemann(1)

    E-Print Network [OSTI]

    IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans of atmospheric stability. Model results have been compared with measurements from the Danish offshore wind farm offshore wind farms, modelling of wake losses is an important part of the production estimation

  19. This is a preprint of the following article, which is available from http://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published

    E-Print Network [OSTI]

    Papalambros, Panos

    ://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published article.A.M. van Kuik. Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy. Renewable Energy (In press), 2014 Multidisciplinary Design Optimization of Offshore Wind Turbines

  20. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  1. NREL's 91-Year-Old Palmer Carlin-a Wind Energy Pioneer | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13 Denver WestEnergy NREL's

  2. Summary of Conclusions and Recommendations Drawn from the DeepCWind Scaled Floating Offshore Wind System Test Campaign: Preprint

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.; Masciola, M. D.; Molta, P.; Goupee, A. J.; Coulling, A. J.; Prowell, I.; Browning, J.

    2013-07-01T23:59:59.000Z

    The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems, a tension-leg platform (TLP), a spar-buoy (spar), and a semisubmersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5 MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

  3. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  4. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  5. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction andof theoretical offshore wind farm on Jacksonville, Florida

  6. LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNLNREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 LBNLNREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 February 24, 2012 - 11:27am...

  7. OAHU Wind Integration And Transmission Study: Summary Report...

    Energy Savers [EERE]

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) OAHU Wind Integration And Transmission Study: Summary Report, NREL...

  8. Environmental data for the planning of off-shore wind parks from the EnerGEO Platform of Integrated Assessment (PIA)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GIS client tool. For a description of the LCA for the wind pilot see Blanc et al 2012. 1 BMT ARGOSSEnvironmental data for the planning of off-shore wind parks from the EnerGEO Platform of Integrated of renewable energy. One of the pillars of the project is the Wind Energy Pilot, addressing the effects

  9. Simulations of an offshore wind farm using large eddy simulation and a torque-controlled actuator disc model

    E-Print Network [OSTI]

    Creech, Angus; Maguire, A Eoghan

    2014-01-01T23:59:59.000Z

    We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the {\\O}resund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a Large-Eddy Simulation CFD solver, and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large scale flow structures around the wind farm, and local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates interactions between the wind, turbine rotors, and turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would ...

  10. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  11. Variables Affecting Economic Development of Wind Energy

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2008-07-01T23:59:59.000Z

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  12. EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site

    Broader source: Energy.gov [DOE]

    This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

  13. Novel Compressed Air Approach to Off-Shore Wind Energy Storage (NSF Grant #: EFRI-1038294)! Principal Investigators: Perry Li1,a, Terry Simon1,b, James Van de Ven1,c, Eric Loth2,d, Steve Crane3,e!

    E-Print Network [OSTI]

    Li, Perry Y.

    Novel Compressed Air Approach to Off-Shore Wind Energy Storage (NSF Grant #: EFRI-1038294@lightsailenergy.com! Options for Energy Storage Compatible with Wind Turbines:! Objective! Our objective is to create a cost effective local energy storage system for offshore wind turbines using an "open accumulator" high pressure

  14. Environmental Effects of Offshore Wind Development. Fiscal Year 2012 Progress Report

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.; Butner, R. Scott; Carlson, Thomas J.; Halvorsen, Michele B.; Duberstein, Corey A.; Matzner, Shari; Whiting, Jonathan M.; Blake, Kara M.; Stavole, Jessica

    2012-09-30T23:59:59.000Z

    Potential environmental effects of offshore wind (OSW) energy projects are not well understood, and regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. To examine the environmental risks associated with OSW developments in the U.S. Pacific Northwest National Laboratory (PNNL) focused on the following four priority research areas in FY 2012: • Environmental Risk Evaluation System (ERES) - Followed project developments on the two OSW projects that PNNL screened in FY 2011 for environmental consequence: Fishermen’s Energy off the coast of Atlantic City, NJ and LEEDCo. near Cleveland, OH in Lake Erie. • Tethys - Developed a smart knowledge base which houses environmental research, data and information pertaining to OSW energy: • Technical Assessment - Produced a new software to create an automated process of identifying and differentiating between flying organism such as birds and bats by using thermal imagery; and • North Atlantic Right Whales - Developed an environmental risk management system to mitigate the impacts on North Atlantic Right Whales (NARW) during installation and piledriving stages of OSW developments. By identifying and addressing the highest priority environmental risks for OSW devices and associated installations the ERES process assists project proponents, regulators, and stakeholders to engage in the most efficient and effective siting and permitting pathways.

  15. MODEL REQUEST FOR PROPOSALS TO PROVIDE ENERGY AND OTHER ATTRIBUTES FROM AN OFFSHORE WIND POWER PROJECT

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-10-22T23:59:59.000Z

    This document provides a model RFP for new generation. The 'base' RFP is for a single-source offshore wind RFP. Required modifications are noted should a state or utility seek multi-source bids (e.g., all renewables or all sources). The model is premised on proposals meeting threshold requirements (e.g., a MW range of generating capacity and a range in terms of years), RFP issuer preferences (e.g., likelihood of commercial operation by a date certain, price certainty, and reduction in congestion), and evaluation criteria, along with a series of plans (e.g., site, environmental effects, construction, community outreach, interconnection, etc.). The Model RFP places the most weight on project risk (45%), followed by project economics (35%), and environmental and social considerations (20%). However, if a multi-source RFP is put forward, the sponsor would need to either add per-MWh technology-specific, life-cycle climate (CO2), environmental and health impact costs to bid prices under the 'Project Economics' category or it should increase the weight given to the 'Environmental and Social Considerations' category.

  16. Screening Analysis for the Environmental Risk Evaluation System Fiscal Year 2011 Report Environmental Effects of Offshore Wind Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.

    2011-11-01T23:59:59.000Z

    Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energy devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.

  17. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  18. NedWind 25 Blade Testing at NREL for the European Standards Measurement and Testing Program

    SciTech Connect (OSTI)

    Larwood, S.; Musial, W.; Freebury, G.; Beattie, A.G.

    2001-04-19T23:59:59.000Z

    In the mid-90s the European community initiated the Standards, Measurements, and Testing (SMT) program to harmonize testing and measurement procedures in several industries. Within the program, a project was carried out called the European Wind Turbine Testing Procedure Development. The second part of that project, called Blade Test Methods and Techniques, included the United States and was devised to help blade-testing laboratories harmonize their testing methods. This report provides the results of those tests conducted by the National Renewable Energy Laboratory.

  19. OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU WIND INTEGRATION AND

  20. The Western Wind and Solar Integration Study Phase 2: Executive Summary, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth'sConnect,LLC THE WESTERN WIND AND SOLAR

  1. Assessing the Importance of Nonlinearities in the Development of a Substructure Model for the Wind Turbine CAE Tool FAST: Preprint

    SciTech Connect (OSTI)

    Damiani, R.; Jonkman, J.; Robertson, A.; Song, H.

    2013-03-01T23:59:59.000Z

    Design and analysis of wind turbines are performed using aero-servo-elastic tools that account for the nonlinear coupling between aerodynamics, controls, and structural response. The NREL-developed computer-aided engineering (CAE) tool FAST also resolves the hydrodynamics of fixed-bottom structures and floating platforms for offshore wind applications. This paper outlines the implementation of a structural-dynamics module (SubDyn) for offshore wind turbines with space-frame substructures into the current FAST framework, and focuses on the initial assessment of the importance of structural nonlinearities. Nonlinear effects include: large displacements, axial shortening due to bending, cross-sectional transverse shear effects, etc.

  2. arabian gulf offshore: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

  3. NREL: Publications Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Photo of the cover of several NREL publications. The NREL Publications Database contains bibliographic information about publications developed or written by NREL...

  4. Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

  5. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  6. EA-1914: National Renewable Energy Laboratory (NREL) National...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Laboratory (NREL) National Wind Technology Center (NWTC) Site-Wide Environmental Assessment, Golden, Colorado SUMMARY This Site-Wide EA evaluates the environmental impacts...

  7. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    those suitable for offshore wind farms. But foreign firms,technology for offshore wind farms. 111 Thus, although China

  8. Feasibility analysis of coordinated offshore wind project development in the U.S.

    E-Print Network [OSTI]

    Zhang, Mimi Q

    2008-01-01T23:59:59.000Z

    Wind energy is one of the cleanest and most available resources in the world, and advancements in wind technology are making it more cost effective. Though wind power is rapidly developing in many regions, its variable ...

  9. Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds

    E-Print Network [OSTI]

    Jin, Yufang; Randerson, James T; Faivre, Nicolas; Capps, Scott; Hall, Alex; Goulden, Michael L

    2014-01-01T23:59:59.000Z

    conditions, when strong offshore winds and low humidity leadat locations with high offshore wind speeds [Moritz et al. ,res, driven by sustained offshore extreme winds beginning 20

  10. Development of an Offshore Direct-Drive Wind Turbine Model by Using a Flexible Multibody Simulation (Poster)

    SciTech Connect (OSTI)

    Bergua, R.; Jove, J.; Campbell, J.; Guo, Y.; Van Dam, J.

    2014-05-01T23:59:59.000Z

    Modern wind turbines are complex, highly-coupled systems. The dynamic interaction between various components is especially pronounced for multi-megawatt wind turbines. As a result, design process is generally split in several phases. First step consists of creating a global aero-elastic model that includes essential dynamics of structural components using the minimum-possible number of degrees of freedom (d.o.f.). The most important simplifications concern drivetrain and rotor-nacelle assembly (RNA). This approach has been shown valid for several wind turbine configurations. Nevertheless, with increasing size of wind turbines, any simplified design approach must be validated. The present work deals with the comparison and validation of the two modeling approaches for directdrive offshore wind turbines. ARNA/drivetrain model idealized as collection of lumped masses and springs is compared to a detailed Finite Element Method (FEM) based model. The comparison between models focuses on dynamic loads concerning drivetrain system. The comparison is performed in several operational conditions in order to explore the range of validity of the simplified model. Finally, the paper proposes a numerical-based workflow to assess the validity of simplified models of RNA/drivetrain in an aero-elastic global WT model.

  11. Access Framework: Model Text (November 2011): An Act to Establish a Framework for Development of Offshore Wind Power

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-10-22T23:59:59.000Z

    The model offshore wind power legislation focused on two aspects: compensation for use of ocean space and environmental assessment. In particular, the model legislation recommends the adoption of a rent and royalty scheme that is premised on high rent and low royalties in order to stimulate qualified bids from developers who are motivated to begin production as early as possible and to discourage sham bidding. The model legislation also includes a provision that sets royalties at a lower rate in the early years of project operation, and that provides states with the discretion to waive or defer rent and/or royalties for a period of time to meet the goals and objectives of energy independence, job creation, reduced emissions of conventional pollutants and greenhouse gases and increased state requirements for electricity from renewable sources. The environmental impact assessment (EIA) is structured to provide a systematic and interdisciplinary evaluation of the potential positive and negative life-cycle effects of a proposed offshore wind project on the physical, biological, cultural and socio-economic attributes of the project.

  12. Energy Department Offers Conditional Commitment to Cape Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cape Wind Offshore Wind Generation Project Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project July 1, 2014 - 9:23am Addthis News Media...

  13. ASSESSMENT OF METHODS USED TO INVESTIGATE THE IMPACT OF OFFSHORE

    E-Print Network [OSTI]

    Aberdeen, University of

    ASSESSMENT OF METHODS USED TO INVESTIGATE THE IMPACT OF OFFSHORE WIND FARMS ON SEABIRDS Kate Louise....................................................................................2 Environmental impact assessments for offshore wind developments..................7 Study aims Chapter three: Offshore marine surveillance radar installation and methods for ensuring data quality

  14. NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive - responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

  15. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01T23:59:59.000Z

    has more than 30 offshore wind farms in operation oraway to be unheard, offshore wind farms can contain larger,turbines considered, offshore wind farms consisting of the

  16. NREL: Wind Research - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in front ofAwards

  17. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in frontData

  18. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven inThe National

  19. NREL: Wind Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven inThePublications

  20. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenand