National Library of Energy BETA

Sample records for nrel offshore wind

  1. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data acquisition system integrated for offshore...

  2. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to...

  3. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the

  4. NREL: Wind Research - NREL Supports Innovative Offshore Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for up to $46.7M Additional Funding An offshore wind turbine floating off the coast of Portugal, with no land in sight. WindFloat floating offshore foundation developed by Principle Power with a Vestas V-80 2-MW offshore wind turbine. Photo by Senu Sirnivas, NREL 27606 July 29, 2014 In December 2012, the U.S. Department of Energy (DOE) announced that it would fund seven offshore wind demonstration

  5. NREL Releases Estimate of National Offshore Wind Energy Potential - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Releases Estimate of National Offshore Wind Energy Potential September 10, 2010 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announces the release of a new report that assesses the electricity generating potential of offshore wind resources in the United States. According to the Assessment of Offshore Wind Energy Resources for the United States, 4,150 gigawatts of potential wind turbine nameplate capacity (maximum turbine capacity) from offshore

  6. NREL: Wind Research - Energy Analysis of Offshore Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis of Offshore Systems Chart of cost data for actual and projected offshore wind projects as reported by developers. Enlarge image NREL has a long history of successful research to understand and improve the cost of wind generation technology. As a research laboratory, NREL is a neutral, third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore wind. Market Analysis NREL's extensive research

  7. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  8. NREL: Wind Research - Offshore Design Tools and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations

  9. NREL: Wind Research - Grid Integration of Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in

  10. NREL Assesses National Design Standards for Offshore Wind (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of current and pending wind and offshore design standards and guidelines. The results of these analyses must then be synthesized with national offshore meteorological, ocean, and ...

  11. NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  12. Offshore Wind Balance-of-System Cost Modeling (Poster), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters, can yield a rise in BOS cost, such as the spike near 500 megawatts. Figure 4. Offshore wind fixed substructure BOS costs decrease as turbine rating increases, which is...

  13. NREL to Partner with University of Delaware on Offshore Wind Research -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL to Partner with University of Delaware on Offshore Wind Research June 15, 2010 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the University of Delaware (UD) today announced they will work to facilitate the potential establishment of a test site for commercial wind turbines off the Delaware coast. Under a Cooperative Research and Development Agreement (CRADA) worth $500,000 over the next five years, UD will work with federal and

  14. NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, CO 80401 303-275-3000 | www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. NWTC...

  15. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Archives - 2014 November 6, 2014 NREL Analyzes Floating Offshore Wind Technology for Statoil NREL engineers traveled to Oslo, Norway, to meet with Statoil representatives regarding NREL's analysis of Statoil's Hywind II offshore floating wind turbine design. November 3, 2014 NREL/DOE Develop Collaboration with Japan's Offshore Wind Programs A delegation from the offshore wind technical teams of the Energy Department and its National Renewable Energy Laboratory recently traveled to Japan to

  16. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    SciTech Connect (OSTI)

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore wind test sites.

  17. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Twitter Google + Vimeo GovDelivery SlideShare Offshore Wind ...

  18. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional ... * www.nrel.gov Offshore Wind Jobs and Economic Development Impacts in the United ...

  19. Offshore Wind Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  20. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  1. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See...

  2. NREL: Wind Research - New NREL Report Showcases Potential of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at the National Renewable Energy Laboratory (NREL)-Walt Musial, Aaron Smith, and Tyler Stehly-released the 2014-2015 Offshore Wind Technologies Market Report, which shows...

  3. NREL: Wind Research - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

  4. NREL: Wind Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The NREL wind research program develops publications about its R&D projects, accomplishments, and goals in wind energy technologies. Here you will find links to some...

  5. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  6. NREL: Wind Research - NREL and Clemson University Put Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Clemson University Put Wind Turbine Drivetrains to the Test A photo of a large dynamometer at the National Wind Technology Center. NREL's 5-megawatt dynamometer test...

  7. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 October 27, 2010 Offshore Wind Energy Poised to Play a Vital Role in Future U.S. Energy Markets A new report analyzes the current state of the offshore wind energy industry in the United States. October 7, 2010 DOE Releases Comprehensive Report on Offshore Wind Power in the United States U.S. Energy Secretary Steven Chu announced today the release of a report from the Department of Energy's National Renewable Energy Laboratory (NREL), which comprehensively analyzes the key factors impacting

  8. Offshore Wind Funding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Funding Offshore Wind Funding View All Maps Addthis

  9. Offshore Renewable Energy R&D (Fact Sheet), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and structural dynamics such as power take-off and control system responses. Offshore Wind Modeling Researchers at NREL have developed a new complex modeling and analysis tool...

  10. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive machines. Close NREL's work with industry has improved the efficiency and durability of turbine blades and gearboxes. Innovations include: Specialized airfoils Variable-speed turbines

  11. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained

  12. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  13. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  14. NREL: Wind Research - International Wind Resource Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were thought to exist. This page provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and

  15. A National Offshore Wind Strategy: Creating an Offshore Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. PDF icon A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. More Documents & Publications

  16. NREL Study Shows 20 Percent Wind is Possible by 2024 - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Study Shows 20 Percent Wind is Possible by 2024 Analysis Shows Transmission Upgrades, Offshore Wind, and Operational Changes Needed to Incorporate 20 to 30 Percent Wind January 20, 2010 Today, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) released the Eastern Wind Integration and Transmission Study (EWITS). This unprecedented two-and-a-half year technical study of future high-penetration wind scenarios was designed to analyze the economic, operational,

  17. NREL Software Models Performance of Wind Plants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This NREL Highlight is being developed for the 2015 February Alliance S&T Meeting, and describes NREL's Simulator for Offshore Wind Farm Applications (SOWFA) software in collaboration with Norway-based Statoil, to optimize layouts and controls of wind plants arrays.

  18. NREL: Wind Research - NREL-Statoil Collaborate to Make the First...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL-Statoil Collaborate to Make the First Multi-Turbine Floating Offshore Array a Reality A photo of a floating wind turbine in the middle of open water. A Hywind floating...

  19. NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Costs NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013 Wind energy research conducted at the National Wind technology Center (NWTC) at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) during the last decade has earned the lab two patents, one for adaptive pitch control and one for a resonance blade test system that will ultimately help its industry partners increase the efficiency of wind technologies and reduce the cost of wind

  20. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Power in the United States ASSESSMENT OF OPPORTUNITIES AND BARRIERS September 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  1. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  2. NREL SBV Pilot Wind Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to develop everything at one location-from small residential wind turbines and components to utility-scale offshore wind technologies. With the NWTC, partners...

  3. Maryland Offshore Wind Annual Meeting

    Broader source: Energy.gov [DOE]

    This event will provide updates on regional offshore wind projects and will help attendees understand Maryland's offshore wind project and the team members required. Participants will also learn...

  4. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind

  5. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas

  6. Large-Scale Offshore Wind Power in the United States: Executive Summary

    SciTech Connect (OSTI)

    Musial, W.; Ram, B.

    2010-09-01

    This document provides a summary of a 236-page NREL report that provides a broad understanding of today's offshore wind industry, the offshore wind resource, and the associated technology challenges, economics, permitting procedures, and potential risks and benefits.

  7. SWAY/NREL Collaboration on Offshore Wind System Testing and Analysis: Cooperative Research and Development Final Report, CRADA Number CRD-11-459

    SciTech Connect (OSTI)

    Robertson, Amy

    2015-02-01

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory and SWAY. Under the terms and conditions described in this CRADA agreement, NREL and SWAY will collaborate on the SWAY 1/5th-scale floating wind turbine demonstration project in Norway. NREL and SWAY will work together to obtain measurement data from the demonstration system to perform model validation.

  8. NREL: Wind Research - NREL Researchers Advance Wind Energy Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Researchers Advance Wind Energy Systems Engineering A photo of several round tables with people sitting around them and two screens at the front of the rooms projecting a...

  9. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about Offshore Wind Wind Measurement Buoy Advances Offshore Wind Energy A next-generation buoy will provide unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations. October 27, 2015 Articles about Offshore Wind Innovative Study Helps Offshore Wind Developers

  10. NREL: Wind Research - @NWTC Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    @NWTC Newsletter @NWTC is a newsletter from the U.S. Department of Energy's (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL). The vision of the NWTC is to be an essential partner for the technical development and deployment of wind and water power. This newsletter provides information about the NWTC's research and development projects, its accomplishments, upcoming events, and recent publications. Summer 2015 Issue Project and Program Updates NREL

  11. Offshore Wind Energy Systems Engineering Curriculum Development

    SciTech Connect (OSTI)

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  12. NREL and Alstom Celebrate Wind Turbine Installation - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Alstom Celebrate Wind Turbine Installation 3 MW, 60 Hz Alstom ECO 100 Now Fully Operational at National Wind Technology Center April 26, 2011 Golden, Colo., April 26, 2011 - Officials from the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL), along with officials from Alstom, today commemorated the successful installation and full capacity operation of a 3 megawatt Alstom ECO 100 wind turbine at NREL's National Wind Technology Center. This event

  13. New Model Demonstrates Offshore Wind Industry's Job Growth Potential |

    Office of Environmental Management (EM)

    Department of Energy February 12, 2015 - 1:12pm Addthis The Energy Department's National Renewable Energy Laboratory (NREL) has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States. The modeling tool, which illustrates the potential economic impact and number of jobs associated with fixed-bottom offshore wind technology development, applies to areas of the country that have waters shallow enough for fixed-bottom offshore

  14. NREL: Wind Research - Accredited Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accredited Testing NREL has testing capabilities that are accredited by the American Association of Laboratory Accreditation (A2LA). Currently, NREL is one of only two facilities in the United States that are A2LA accredited. Small and large wind turbines are given a suite of tests that test acoustic noise emissions, duration, load, power performance, power quality, and safety and function. Each of the tests is briefly described below. Tests are performed to International Electrotechnical

  15. NREL: Wind Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Research The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at NREL is at the forefront of energy innovation. For more than three decades, our researchers have spent countless hours building unparalleled expertise in renewable energy technologies while supporting the vision that wind and water can create clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and

  16. NREL: Learning - Student Resources on Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Photo of a girl and a boy standing beneath a large wind turbine. Students can learn about wind energy by visiting a wind farm. The following resources can provide you with more information on wind energy. NREL National Wind Technology Center Wind Energy Basics U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy Small Wind Electric Systems U.S. Department of Energy's Energy Savers Program American Wind Energy Association NREL Wind Research: Publications

  17. Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-11-01

    NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

  18. Offshore Wind Balance-of-System Cost Modeling

    SciTech Connect (OSTI)

    Maness, Michael; Stehly, Tyler; Maples, Ben; Mone, Christopher

    2015-09-29

    Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.

  19. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As shown in these videos, the center's impact is industry-wide, ranging from the creation and testing of award-winning components to helping partners develop the nation's most commercially successful renewable energy technologies. Overview NREL Supports Small Businesses in the Wind and Water Power Sectors Next Generation

  20. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 December 14, 2006 NREL and Xcel Energy Dedicate Wind-Powered Hydrogen Generator DOE's National Renewable Energy Laboratory (NREL) and Xcel Energy dedicated a new system to convert wind power into hydrogen on December 14th. The system, located at NREL's National Wind Technology Center, links two wind turbines to devices called electrolyzers, which pass the electricity through water to split the liquid into hydrogen and oxygen. December 14, 2006 Experimental "Wind to Hydrogen" System

  1. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - ...

  2. Offshore Wind Accelerator | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy....

  3. Norfolk Offshore Wind NOW | Open Energy Information

    Open Energy Info (EERE)

    Norfolk Offshore Wind NOW Jump to: navigation, search Name: Norfolk Offshore Wind (NOW) Place: United Kingdom Sector: Wind energy Product: Formed to develop the 100MW Cromer...

  4. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A...

  5. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center (NWTC), the country's premier wind energy technology research facility. September 23, 2015 Small Businesses Invited to Participate in DOE National...

  6. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  7. NREL Research Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name NREL Research Wind Farm II Facility NREL Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  8. NREL Research Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name NREL Research Wind Farm I Facility NREL Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  9. NREL: Wind Research - NREL and Partners Review Key Issues, Lessons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Partners Review Key Issues, Lessons Learned from U.S. Wind Integration Studies and Operating Practices April 17, 2015 As a complement to DOE's recently released Wind...

  10. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about...

  11. Energy from Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  12. Rhode Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rhode Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  13. Mustang Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  14. Mexico-NREL Wind Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    NREL Wind Resource Assessments Jump to: navigation, search Logo: Mexico-NREL Initiatives Name Mexico-NREL Initiatives AgencyCompany Organization National Renewable Energy...

  15. NREL Wind Turbine Design Codes Certified - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Design Codes Certified August 2, 2005 Golden, Colo. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) announced today that its wind turbine design codes-termed FAST and ADAMS-can now be used for worldwide turbine certification. Through a joint effort by the NREL and Germanischer Lloyd (GL) of Hamburg, Germany, the world's foremost certifying body for wind turbines, both codes were approved for calculating onshore wind turbine loads for design and

  16. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  17. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  18. New Model Demonstrates Offshore Wind Industry's Job Growth Potential |

    Office of Environmental Management (EM)

    Department of Energy May 18, 2015 - 3:11pm Addthis The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States. The modeling tool, which illustrates the potential economic impact and number of jobs associated with fixed-bottom offshore wind development, applies to areas of the country that have waters shallow enough for this technology. To

  19. 2014-2015 Offshore Wind Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2014-2015 Offshore Wind Technologies Market Report 2014-2015 Offshore Wind Technologies Market Report Aaron Smith, Tyler Stehly, and Walter Musial National Renewable Energy Laboratory Prepared under Task No. WE14.CG02 Link to Data Tables NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy,

  20. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  1. NREL: Wind Research - Structural Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Testing Laboratory Photo of NREL's Wind Research User Facility. Shown in front are several test bays that protect proprietary information while companies disassemble turbines to analyze, test, and modify individual components. NREL's Structural Testing Laboratory includes office space for industry researchers, houses experimental laboratories, computer facilities, space for assembling turbines, components, and blades for testing. Credit: Patrick Corkery. NREL's Structural Testing

  2. NREL: Wind Research - Gearbox Reliability Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impact on the cost of wind farm operations. In 2007, NREL initiated the Gearbox Reliability Collaborative (GRC). The project combines analysis, field testing, dynamometer...

  3. NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

  4. NREL: Wind Research - Utility-Scale Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-Scale Wind Turbine Research NWTC Researchers in the nacelle of a Siemen's 2.3-MW, 80 meter wind turbine at NREL's National Wind Technology Center in Boulder County, Colorado. Photo by Dennis Schroeder NREL's utility-scale wind turbine research addresses performance and reliability issues that large wind turbines experience throughout their lifespan and reduces system costs through innovative technology development. NREL helps industry partners design larger, more efficient rotors by

  5. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September ...

  6. NREL GIS Data: Bhutan High Resolution Wind Resource - Datasets...

    Open Energy Info (EERE)

    NREL GIS Data: Bhutan High Resolution Wind Resource This shapefile containing 50 meter height data has been validated by NREL and wind energy meteorological consultants. However,...

  7. Assessment of Offshore Wind Energy Potential in the United States (Poster)

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Musial, W.

    2011-05-01

    The development of an offshore wind resource database is one of the first steps necessary to understand the magnitude of the resource and to plan the distribution and development of future offshore wind power facilities. The U.S. Department of Energy supported the production of offshore wind resource maps and potential estimates for much of the United States. This presentation discusses NREL's 2010 offshore wind resources report; current U.S., regional, and state offshore maps; methodology for the wind mapping and validation; wind potential estimates; the Geographic Information Systems database; and future work and conclusions.

  8. NREL: Wind Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us NREL works with industry in a public-private contracting environment to research, design, and build advanced wind energy technologies. We have an outstanding performance record for working with the wind industry to advance wind turbine science and lower the cost of wind-generated electricity. Companies partner with NREL when they have particular design challenges, when they wish to cost-share development of state-of-the-art wind turbines, and when they want to document their

  9. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  10. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 December 2, 2013 NREL and EPRI Actively Embrace Active Power Control Systems for Wind Power The Second Workshop on Active Power Control (APC) cohosted by the National Renewable Energy Laboratory (NREL) and the Electric Power Research Institute (EPRI) in Broomfield, Colorado, last May drew more than 60 industry experts from around the world to participate in a comprehensive discussion about the need for and impacts of active power controls from wind plants. December 2, 2013 NREL Analysis

  11. NREL: Wind Research - Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Test Centers To increase the availability of small wind turbine testing and share field expertise, the U.S. Department of Energy (DOE) and NREL initiated the Regional Test Center (RTC) project in 2009. The project ended in early 2016. During the project, DOE and NREL subsidized certification testing of two small wind turbines at each RTC. In addition, NREL provided technical assistance during the testing and data analysis process. The project goal is for the RTCs to be self-sustaining,

  12. U.S. Department of Energy and SWAY Collaborate on Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Project | Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project October 1, 2012 - 12:13pm Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is collaborating with SWAY, a renewable energy company from Norway, on an offshore wind

  13. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  14. NREL: Wind Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Wind Research Home Research & Development Facilities Research Staff Working with Us Publications Data & Resources Awards News Did you find what you needed? Yes 1 No 0 Thank you

  15. Michigan Offshore Wind Pilot Project | Open Energy Information

    Open Energy Info (EERE)

    Michigan Offshore Wind Pilot Project Jump to: navigation, search Name Michigan Offshore Wind Pilot Project Facility Michigan Offshore Wind Pilot Project Sector Wind energy Facility...

  16. NREL: Wind Research - Field Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC

  17. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 June 27, 2007 U.S., Danish laboratories to cooperate on wind energy research NREL and Denmark's Risø National Laboratory, Technical University of Denmark (DTU), have signed an agreement to cooperate closely on improving wind energy technologies. June 25, 2007 Large Wind Turbine Blade Test Facilities to be in Mass., Texas NREL will work with consortiums from Texas and Massachusetts to design, build and operate new facilities to test the next generation of giant wind turbine blades. March 9,

  18. Assessment of Offshore Wind Energy Resources for the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-500-45889 June

  19. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2015. PDF icon Offshore Wind Projects 2006-2015 More Documents & Publications Wind Integration, Transmission, and Resource Assessment and Characterization Projects Testing, Manufacturing, and Component Development Projects Environmental Wind Projects

  20. Wind Offshore Port Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Port Readiness Wind Offshore Port Readiness This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. PDF icon Assessment of Ports for Offshore Wind Development in the United States More Documents & Publications U.S. Offshore Wind Port Readiness

  1. Stakeholder Engagement and Outreach Webinar: Jobs and Economic Development Impacts of Offshore Wind

    Broader source: Energy.gov [DOE]

    Starting more than a year ago, NREL initiated work to expand the Jobs and Economic Development Impacts (JEDI) model to include fixed-bottom offshore wind technology. Following the completion of the...

  2. NREL Wind Researcher Named IEEE Fellow - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Wind Researcher Named IEEE Fellow January 28, 2010 Dr. Eduard Muljadi, a researcher at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), has been elected fellow of the Institute of Electrical and Electronics Engineering (IEEE). Recognizing the achievements of its members is an important part of the mission of IEEE. Each year, after a rigorous evaluation procedure, the IEEE Fellow Committee recommends a select group of recipients for one of the institute's

  3. NREL: Wind Research - Market Acceleration and Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration and Deployment Three participants in the Collegiate Wind Competition work on computer components of a small wind turbine. Photo by U.S. Department of Energy NREL's market acceleration and deployment team provides accurate information that articulates the potential impacts and benefits of wind and water power technologies to state and local communities. In addition, NREL's WINDExchange team focuses its outreach efforts on education, rural economic development, public power

  4. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  5. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine For Cape Wind, Summer Breeze Makes ... one of the world's largest wind farms, the Department's Loan Programs Office ...

  6. Offshore Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Offshore Wind Power Place: St Albans, United Kingdom Zip: AL1 3AW Sector: Wind energy Product: Formed to develop offshore wind farms around the coast of Great Britain. References:...

  7. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Wildlife Impacts Literature Database (WILD) What is WILD? The Wind-Wildlife Impacts Literature Database (WILD), developed and main- tained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic power systems, power lines, and communication and television towers on wildlife. For the wind energy sector, WILD serves as an

  8. Offshore Ostsee Wind AG | Open Energy Information

    Open Energy Info (EERE)

    Ostsee Wind AG Jump to: navigation, search Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint...

  9. NREL: Wind Research - Small Wind Turbine Independent Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Independent Testing One of the barriers for the small wind market has been the lack of small wind turbine systems that are independently tested and certified. To help industry provide consumers with more certified small wind turbine systems, the National Renewable Energy Laboratory and the U.S. Department of Energy (NREL/DOE) launched the Independent Testing project in 2007. Through a competitive solicitation, NREL selected five commercially available small wind turbine

  10. NREL: Technology Transfer - New NREL Report Showcases Potential...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New NREL Report Showcases Potential of Domestic Offshore Wind Industry October 5, 2015 Several researchers at the National Wind Technology Center at the National Renewable Energy...

  11. Accelerating Offshore Wind Development | Department of Energy

    Energy Savers [EERE]

    Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the

  12. NREL: Wind Research - Research Staff Biographies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... He serves as a strategist and spokesperson for the national research programs to develop offshore renewables, such as wind, wave, tidal, and ocean current. Bob has received ...

  13. NREL: Wind Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources Small wind turbine in a field at sunset with three buffalo in the foreground. Photo by Northwest Seed For more than 35 years, NREL researchers have spent...

  14. New Wind Turbine Dynamometer Test Facility Dedicated at NREL - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the Energy Department (DOE) and its National Renewable Energy Laboratory (NREL) dedicated a new 5-megawatt (MW) Dynamometer Test Facility at NREL's National Wind Technology Center (NWTC). The $20 million facility enables NREL to work closely with industry engineers to enhance the drive trains and other electrical systems in the country's largest land based wind turbines. "Although wind

  15. Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can play a vital role in future U.S. energy markets.

  16. NREL: Technology Deployment - National Collegiate Wind Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Collegiate Wind Competition The National Collegiate Wind Competition, managed by NREL for the U.S. Department of Energy (DOE), is a forum for undergraduate college students of multiple disciplines to investigate innovative wind energy concepts; gain experience designing, building, and testing a wind turbine to perform according to a customized market data-derived business plan; and increase their knowledge of wind industry barriers. Successful teams will gain and then demonstrate

  17. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  18. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 29, 2014 New Reports Highlight Major Potential in Offshore Wind Energy The Energy Department today announced a new report showing steady progress for the U.S. offshore wind...

  19. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-offshore,http:c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  20. Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a...

  1. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 10, 2013 Energy Department Announces Offshore Wind Demonstration Awardees This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter....

  2. NREL: Wind Research - Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Development A crew of researchers gather around a wind turbine site as they prepared to assemble and test a new turbine. Photo by Dennis Schroeder NREL has pioneered many of the components and systems that have taken wind energy technologies to the next level. The lab currently holds 20 patents for wind technologies and has received numerous awards recognizing the National Wind Technology Center's (NWTC's) innovation and excellent performance. Through our expertise and one-of-a-kind

  3. Garden State Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Garden State Offshore Energy Location Offshore from Avalon NJ Coordinates 39.08, -74.310556...

  4. Energy Department Announces Offshore Wind Demonstration Awardees |

    Office of Environmental Management (EM)

    Department of Energy Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) Wind Program recently announced seven technology demonstration partnerships with broad consortia that are developing breakthrough offshore wind energy generation projects. The primary goals of these projects

  5. DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation

    Office of Environmental Management (EM)

    Project | Department of Energy Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - 3:26pm Addthis The U.S. Department of Energy (DOE) recently announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The project could be the first

  6. Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Hughes, S.

    2010-07-20

    Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

  7. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  8. NREL-International Wind Resource Maps | Open Energy Information

    Open Energy Info (EERE)

    Shenyang 50m Wind Power China Tianjin 50m Wind Power China Yinchuan 50m Wind Power East China Map Reference Eastern Visayas Philippines Wind Speed 100m-01 NREL-30m-US-Wind...

  9. New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

  10. NREL Names New Wind Center Director - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Names New Wind Center Director Fort Felker to begin new position May 18, 2009 May 14, 2009 Dr. Fort F. Felker has been named director of the National Wind Technology Center at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). Felker, a co-founder of Winglet Technology LLC, and former director of engineering analysis and test at Kenetech Windpower, begins his new position May 18. "Dr. Felker's 30 years of aeronautical and mechanical engineering research and

  11. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    Energy Savers [EERE]

    Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios S. Tegen, D. Keyser, and F. Flores-Espino National Renewable Energy Laboratory J. Miles and D. Zammit James Madison University D. Loomis Great Lakes Wind Network Technical Report NREL/TP-5000-61315 February 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  12. NREL: Wind-Wildlife Impacts Literature Database (WILD) Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL - National Renewable Energy Laboratory Wind-Wildlife Impacts Literature Database (WILD) Wind Research WILD WILD Browse By Reset All Geography Africa (45) Apply Africa filter...

  13. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & ...

  14. NREL Software Models Performance of Wind Plants (Fact Sheet)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulator fOr Wind Farm Applications helps optimize layouts and controls of wind plant arrays. In 2014, researchers from the National Renewable Energy Laboratory (NREL) launched...

  15. Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

  16. Foundation for Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    for Offshore Wind Energy Jump to: navigation, search Name: Foundation for Offshore Wind Energy Place: Varel, Germany Zip: D-26316 Sector: Wind energy Product: Foundation...

  17. NREL Announces Partnership Opportunity for Multimegawatt Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drivetrain Testing - News Releases | NREL Announces Partnership Opportunity for Multimegawatt Wind Turbine Drivetrain Testing March 23, 2011 Golden, Colo., March 21, 2011 - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has released its first call for proposals from wind industry companies interested in forming a partnership with NREL to test a multimegawatt wind turbine drivetrain. The drivetrain will be tested in NREL's new 5 megawatt drivetrain test facility,

  18. A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. February 2011 -Page intentionally left blank- A National Offshore Wind Strategy Creating an Offshore Wind Energy Industry in the United States U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind & Water Power Program U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation, and Enforcement February 7, 2011 i Alphabetical List of Contributing

  19. Energy Department Releases New Land-Based/Offshore Wind Resource Map |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Releases New Land-Based/Offshore Wind Resource Map Energy Department Releases New Land-Based/Offshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. The Energy Department recently released a new wind resource map compiled by the National Renewable Energy Laboratory (NREL) and AWS Truepower that combines land-based with offshore resources. The new combined map, posted on the

  20. NREL Enters Wind Energy Research Partnership in Hawaii - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL Enters Wind Energy Research Partnership in Hawaii April 1, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has signed a memorandum of understanding with UPC Wind to establish a Remote Research Affiliate Partner Site at UPC Wind's Kaheawa Wind Farm on Maui. It is the first such partner site for the National Renewable Energy Laboratory's wind technology program outside of its base in Colorado. Hawaii Gov. Linda Lingle announced the collaborative

  1. Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

  2. NREL: Wind Research - Wind and Water Power Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Fact Sheets The capabilities for research at the National Wind Technology Center (NWTC) are numerous. Below you will find fact sheets about the many facilities and capabilities at the NWTC, including field testing research, modeling and simulation, and the Wind-Wildlife Impacts Literature Database. Fact Sheet Cover 35 Years of Innovation: Leading the Way to a Clean Energy Future Fact Sheet Cover Wind-Wildlife Impacts Literature Database (WILD) Fact Sheet Cover NREL Software

  3. NREL: Wind Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Dave Corbus Program Integration, Wind and Water Power Program Gene Holland Albert LiVecchi Dana Scholbrock Teresa Robinson Director, National Wind Technology Center...

  4. Accelerating Offshore Wind Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up

  5. Jobs and Economic Development Impact (JEDI) Model: Offshore Wind User Reference Guide

    SciTech Connect (OSTI)

    Lantz, E.; Goldberg, M.; Keyser, D.

    2013-06-01

    The Offshore Wind Jobs and Economic Development Impact (JEDI) model, developed by NREL and MRG & Associates, is a spreadsheet based input-output tool. JEDI is meant to be a user friendly and transparent tool to estimate potential economic impacts supported by the development and operation of offshore wind projects. This guide describes how to use the model as well as technical information such as methodology, limitations, and data sources.

  6. Oregon Department of Energy Webinar: Offshore Wind

    Broader source: Energy.gov [DOE]

    The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

  7. WINDExchange Webinar: Offshore Wind Market Update

    Broader source: Energy.gov [DOE]

    Aaron Smith, an energy analyst at the National Renewable Energy Laboratory, will present an overview and update of the U.S. offshore wind market.

  8. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  9. NREL Readies New Wind Turbine Drivetrain for Commercialization | Department

    Office of Environmental Management (EM)

    of Energy NREL Readies New Wind Turbine Drivetrain for Commercialization NREL Readies New Wind Turbine Drivetrain for Commercialization May 18, 2015 - 3:52pm Addthis Illustration of a wind turbine drivetrain with a transparent case that shows the internal gears. In February, engineers at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) assembled the innovative, medium-speed, medium-voltage wind turbine drivetrain that was the result of a study funded by

  10. NREL: Wind Research - New Video Shows How NREL Is Redefining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Video Shows How NREL Is Redefining What's Possible for Renewable Energy Through Grid Integration January 23, 2015 NREL is spearheading engineering innovations that will help...

  11. NREL: Learning - Wind Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines

  12. NREL: Wind Research - NREL's WIND Toolkit Provides the Data Needed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the numerical model. Barometric pressure, wind speed and direction (at 100 m above ground level), relative humidity, temperature, and air density data are available via an...

  13. International Effort Advances Offshore Wind Turbine Design Codes...

    Office of Environmental Management (EM)

    that can simulate incident waves, sea current, hydrodynamics, foundation dynamics of ... In June, NREL hosted a meeting in conjunction with the Ocean, Offshore, and Arctic ...

  14. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and...

  15. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  16. Offshore Wind Research, Development, and Deployment Projects | Department

    Office of Environmental Management (EM)

    of Energy Offshore Wind Research, Development, and Deployment Projects Offshore Wind Research, Development, and Deployment Projects Offshore Wind Research, Development, and Deployment Projects View All Maps Addthis

  17. Blyth Offshore Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    Product: Blyth Offshore Wind Limited, comprising Border Wind, PowerGen Renewables (a joint venture between Abbot Group and PowerGen), Nuon UK and Shell Renewables built the...

  18. Deepwater Offshore Wind Technology Research Requirements (Poster)

    SciTech Connect (OSTI)

    Musial, W.

    2005-05-01

    A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

  19. Offshore Wind Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Offshore Wind Research and Development Offshore Wind Research and Development The offshore wind projects map provides information about progress around the country. The offshore wind projects map provides information about progress around the country. The U.S. Department of Energy's Wind Program funds research nationwide to develop and deploy offshore wind technologies that can capture wind resources off the coasts of the United States and convert that wind into

  20. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  1. NREL: Wind Research - Site Tours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Tours Get the Adobe Flash Player to see this video. This is a simulated tour of the National Wind Technology Center showing its location in the state, elevation, and its facilities. Two site simulation tours of the National Wind Technology Center (NWTC) illustrate the NWTC's location, facilities, and wind resource. Site Simulation Showing Elevation This 40-second simulation begins with an overview of the entire state of Colorado, zooms in on the NWTC, and then flies around the site. This

  2. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More ...

  3. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Office of Environmental Management (EM)

    0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape ...

  4. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of ...

  5. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  6. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    offshore wind development in the United States. The modeling tool, which illustrates the potential economic impact and number of jobs associated with fixed-bottom offshore wind ...

  7. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    impacts of a proposal to support research on floating offshore wind turbine platforms. ... Development of offshore wind energy technologies would help the nation reduce its ...

  8. New Report Highlights Trends in Offshore Wind with 14 Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced ...

  9. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Releases Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 -...

  10. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - ...

  11. New Report Shows Trend Toward Larger Offshore Wind Systems, with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects ... in offshore wind farms, increasing the amount of electricity delivered to consumers. ...

  12. Offshore Wind Market Acceleration Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of offshore wind technology research, development, and demonstration projects. Offshore Wind Energy Resources and the Environment Establishing environmental parameters is an...

  13. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the

  14. Offshore Wind Market and Economic Analysis Report 2013 | Department of

    Energy Savers [EERE]

    Energy Offshore Wind Market and Economic Analysis Report 2013 Offshore Wind Market and Economic Analysis Report 2013 Offshore Wind Market and Economic Analysis Report 2013 Analysis of the U.S. wind market, including analysis of developments in wind technology, changes in policy, and effect on economic impact, regional development, and job creation. Published in October 2013. PDF icon offshore_wind_market_and_economic_analysis_10_2013.pdf More Documents & Publications 2014 Offshore Wind

  15. From the Start: NREL Nurtures a Growing Wind Industry - Continuum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magazine | NREL Photo of a wind turbine nacelle bolted to a coupling device that, in turn, is connected to a large electric motor via a shaft. NREL's newest dynamometer is capable of testing wind turbines up to 5 megawatts in-capacity. The device exposes the wind turbine's drivetrain and generator-housed in the white nacelle on the left-to the loads and torques that they may experience in the field. Photo by Dennis Schroeder, NREL From the Start: NREL Nurtures a Growing Wind Industry The

  16. Wind Measurement Buoy Advances Offshore Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement Buoy Advances Offshore Wind Energy Wind Measurement Buoy Advances Offshore Wind Energy December 7, 2015 - 1:52pm Addthis Wind Measurement Buoy Advances Offshore Wind Energy Alana Duerr Alana Duerr Ph.D., Ocean Engineer (New West Technologies) Seen here at a visit to the Energy Department's headquarters in Washington D.C., the Axys WindSentinel buoy is now deployed at its final destination off the coast of New Jersey. Photo courtesy: U.S. Department of Energy. The United States is a

  17. U.S. Offshore Wind Port Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Port Readiness U.S. Offshore Wind Port Readiness Report that reviews the current capability of U.S. ports to support offshore wind project development and assesses the challenges and opportunities related to upgrading this capability to support as much as 54 gigawatts of offshore wind by 2030. PDF icon Assessment of Ports for Offshore Wind Development in the United States.pdf More Documents & Publications Wind Offshore Port Readiness Assessment of Vessel Requirements for the U.S. Offshore

  18. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet), Innovation Impact: Wind, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Wind Farm Aerodynamics to Improve Siting NREL researchers are using advanced remote sensing instruments and high- performance computing to understand atmospheric turbulence and turbine wake behavior-a key to improving wind turbine design and siting within wind farms. As turbines and wind farms grow in size, they create bigger wakes and present more complex challenges to wind turbine and wind farm designers and operators. NREL researchers have confirmed through both observation and

  19. NREL: Technology Deployment - NREL Helps U.S. Virgin Islands Install Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Equipment NREL Helps U.S. Virgin Islands Install Wind Testing Equipment Photo of wind turbines being erected. NREL's analysis and technical expertise is helping the U.S. Virgin Islands find ways to reduce fossil fuel use by 60% through the development of utility-scale wind opportunities. January 10, 2013 With the help of NREL, the U.S. Virgin Islands (USVI) recently marked a major milestone on the way toward its goal of a 60% reduction in fossil fuel use by 2025. In December, NREL

  20. NREL, Clemson University Collaborate on Wind Energy Testing Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL, Clemson University Collaborate on Wind Energy Testing Facilities NREL, Clemson University Collaborate on Wind Energy Testing Facilities September 16, 2015 - 6:55pm Addthis A photo of a large dynamometer in a warehouse. In May, two of our nation's most advanced wind research and test facilities joined forces to help the wind energy industry improve the performance of wind turbine drivetrains and better understand how the turbines can integrate effectively with the

  1. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  2. NWTC Helps Guide U.S. Offshore R&D (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. Design, Modeling, and Analysis Tools NWTC ...

  3. Offshore Wind Energy Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Offshore Wind Energy Projects from 2006 to 2014.

  4. INFOGRAPHIC: Offshore Wind Outlook | Department of Energy

    Office of Environmental Management (EM)

    INFOGRAPHIC: Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic resource could support up to 200,000 manufacturing, construction, operation and supply chain jobs across the country and drive over $70 billion in annual investments by 2030. Infographic by <a href="node/379579">Sarah Gerrity</a>.

  5. DOE and NREL Announce Inaugural Collegiate Wind Competition Teams - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL DOE and NREL Announce Inaugural Collegiate Wind Competition Teams April 11, 2013 The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) are pleased to announce the teams selected to take part in the inaugural DOE Collegiate Wind Competition. The following 10 student teams were selected through a competitive process to compete in the inaugural competition: Boise State University California Maritime Academy Colorado School of Mines James Madison

  6. NREL: News - Innovative Utility Takes to the Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Utility Takes to the Wind Golden, Colo., July 19, 2002 Waverly Wins National Award Named for NREL's Founding Director Waverly Light and Power, the municipal utility for Waverly, Iowa, which has helped lead the way for wind energy development across the Midwest, has been awarded the 2002 Paul Rappaport Renewable Energy and Energy Efficiency Award by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). NREL inaugurated the national award this year in celebration

  7. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  8. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    offshore Atlantic City, New Jersey | Department of Energy 0: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey SUMMARY DOE is proposing to provide funding to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the

  9. NREL, Clemson University Collaborate on Wind Energy Testing Facilities...

    Broader source: Energy.gov (indexed) [DOE]

    In May, two of our nation's most advanced wind research and test facilities joined forces ... Read more about NREL's test facilities and wind energy research. Read more about the ...

  10. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  11. File:NREL-bhutan-wind.pdf | Open Energy Information

    Open Energy Info (EERE)

    File Edit with form History File:NREL-bhutan-wind.pdf Jump to: navigation, search File File history File usage Bhutan - 50m Wind Power Size of this preview: 776 600 pixels. Full...

  12. U.S. Offshore Wind Port Readiness

    SciTech Connect (OSTI)

    C. Elkinton, A. Blatiak, H. Ameen

    2013-10-13

    This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations.

  13. A National Offshore Wind Strategy. Creating an Offshore Wind Energy Industry in the United States

    SciTech Connect (OSTI)

    Beaudry-Losique, Jacques; Boling, Ted; Brown-Saracino, Jocelyn; Gilman, Patrick; Hahn, Michael; Hart, Chris; Johnson, Jesse; McCluer, Megan; Morton, Laura; Naughton, Brian; Norton, Gary; Ram, Bonnie; Redding, Tim; Wallace, Wendy

    2011-02-01

    This document outlines the Department of Energy's strategy for accelerating the responsible development of offshore wind energy in the United States.

  14. NREL: Technology Deployment - Wind Energy Deployment and Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformation Wind Energy Deployment and Market Transformation NREL experts have a broad range of wind energy deployment and market transformation capabilities spanning more than 20 years of direct experience that help stakeholders understand and accelerate wind energy deployment in both the United States and internationally. Because NREL is a Federally Funded Research and Development Center, we undertake projects that fall outside of the services typically provided by high-end wind

  15. NREL, Clemson University Collaborate on Wind Energy Testing Facilities -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL, Clemson University Collaborate on Wind Energy Testing Facilities June 8, 2015 Two of our nation's most advanced wind energy research and test facilities have joined forces to help the wind energy industry improve the performance of wind turbine drivetrains and better understand how the turbines can integrate more effectively with the electrical grid. Through a Cooperative Research and Development Agreement (CRADA), the Energy Department's National Renewable Energy

  16. Engineering Challenges for Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

    2007-09-01

    The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

  17. 2014 Offshore Wind Market and Economic Analysis

    SciTech Connect (OSTI)

    Hamilton, Bruce

    2014-08-25

    The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.This 3rd annual report focuses on new developments that have occurred in 2014. The report provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. Available for download are both the full report and the report's underlying data.

  18. Offshore Wind Market and Economic Analysis

    Energy Savers [EERE]

    February 22, 2013 Offshore Wind Market and Economic Analysis Page ii Document Number DE-EE0005360 U.S. Offshore Wind Market and Economic Analysis Annual Market Assessment Document Number DE-EE0005360 Prepared for: U.S. Department of Energy Michael Hahn Patrick Gilman Prepared by: Navigant Consulting, Inc. Lisa Frantzis, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Bruce Hamilton Aris Karcanias Birger Madsen Jay Paidipati Andy Wickless Feng Zhao Navigant

  19. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Broader source: Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  20. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.

  1. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  2. Offshore Wind Technologie GmbH OWT | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Offshore Wind Technologie GmbH (OWT) Place: Leer, Germany Zip: 26789 Sector: Wind energy Product: Germany-based wind project developer....

  3. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nautical miles offshore of Virginia Beach, Virginia | Department of Energy 85: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia SUMMARY DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project

  4. Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean

    Energy Savers [EERE]

    Energy | Department of Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm Addthis Watch the Energy 101 video above to learn about how wind turbines capture wind energy on land and offshore. Greg Matzat Senior Advisor on Offshore Wind Technologies, Wind Program With almost 80% of the U.S. electricity demand coming from cities and towns located in coastal states,

  5. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a shortage of critical data on the nature of offshore wind resources and the ocean environment. Current plans are for the Reference Facility for Offshore Renewable Energy (RFORE) ...

  6. American Wind Energy Association Offshore WINDPOWER Conference & Exhibition

    Broader source: Energy.gov [DOE]

    AWEA Offshore WINDPOWER 2014 Conference & Exhibition is the largest offshore wind energy event in North America. The conference and exhibition will be held at the Atlantic City Convention...

  7. Salazar, Chu Announce Major Offshore Wind Initiatives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Major Offshore Wind Initiatives Salazar, Chu Announce Major Offshore Wind Initiatives February 7, 2011 - 12:00am Addthis NORFOLK, VA - Unveiling a coordinated strategic plan to accelerate the development of offshore wind energy, Secretary of the Interior Ken Salazar and Secretary of Energy Steven Chu today announced major steps forward in support of offshore wind energy in the United States, including new funding opportunities for up to $50.5 million for projects that support offshore

  8. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Resources Wind Prospector A web-based GIS applications designed to support resource assessment and data exploration associated with wind development. Wind Maps NREL's Geospatial Data Science Team offers both a national wind resource assessment of the United States and high-resolution wind data. The national wind resource assessment was created for the U.S. Department of Energy in 1986 by the Pacific Northwest Laboratory and is documented in the Wind Energy Resource Atlas of the United

  9. Offshore Wind Market Acceleration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Offshore Wind » Offshore Wind Market Acceleration Projects Offshore Wind Market Acceleration Projects The program supports market acceleration projects intended to mitigate market barriers to the development of the U.S. offshore wind market. These projects address both environmental and supply chain-related issues, and are broken down into seven categories: Wind resource characterization and design conditions Environmental surveys, monitoring tools, and resources

  10. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  11. NREL Hosts Free Workshops on Solar and Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL also will sponsor an exhibit for the duration of the Stock Show with free literature on solar and wind energy in the Hall of Education. The workshops are free with admission ...

  12. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  13. OAHU Wind Integration And Transmission Study: Summary Report, NREL

    Energy Savers [EERE]

    (National Renewable Energy Laboratory) | Department of Energy OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) This study was composed of several smaller studies done in cooperation with other local entities and experts, all of which are summarized in this report. PDF icon 48632.pdf More Documents & Publications Phase 2 Report:

  14. Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Offshore Rotor Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  15. Improving Design Methods for Fixed-Foundation Offshore Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems October 1, 2013 - 3:10pm ...

  16. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  17. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases New Land-BasedOffshore Wind Resource Map Energy Department Releases New Land-BasedOffshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the ...

  18. United States Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an ...

  19. University of Michigan Gets Offshore Wind Ready for Winter on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michigan Gets Offshore Wind Ready for Winter on Lake Michigan University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am Addthis The ...

  20. Sixth North American Offshore Wind Development and Finance Summit

    Broader source: Energy.gov [DOE]

    Join leading offshore wind developers, Federal and State policy-makers, U.S. and European banks and investors and other key stakeholders at the 6th North American Offshore Wind Development &...

  1. New DOE Reports Assess Offshore Wind Market and Supply Chain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Offshore Wind Market and Economic Analysis: Annual Market Assessment 2012 provides the first comprehensive annual assessment of the U.S. offshore wind market and is a tool ...

  2. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 - 12:00am Addthis ...

  3. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  4. NREL Innovations Help Drive Wind Industry Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    For nearly 30 years, NREL has helped the wind turbine industry through design and research innovations. The comprehensive capabilities of the National Wind Technology Center (NWTC), ranging from specialized computer simulation tools to unique test facilities, has been used to design, develop, and deploy several generations of advanced wind energy technology.

  5. NREL: Wind Research - NREL Engineers Accomplish Training for Participation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Pilot Lab-Corps Program NREL Engineers Accomplish Training for Participation in Pilot Lab-Corps Program January 19, 2016 Katherine Dykes and Rick Damiani completed six weeks of training as part of the U.S. Department of Energy's pilot Lab-Corps program. Lab-Corps seeks to "help move innovative technologies from national labs into the marketplace." Dykes and Damiani competed against other teams to represent the National Renewable Energy Laboratory (NREL) in the Lab-Corps program

  6. Offshore Wind Market and Economic Analysis Report 2013

    SciTech Connect (OSTI)

    Frantzis, Lisa

    2013-10-01

    The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.

  7. U.S. Offshore Wind Manufacturing and Supply Chain Development...

    Broader source: Energy.gov (indexed) [DOE]

    an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential...

  8. New Report Characterizes Existing Offshore Wind Grid Interconnection

    Energy Savers [EERE]

    Capabilities | Department of Energy Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3, 2014 - 10:49am Addthis The Energy Department today released the first National Offshore Wind Energy Grid Interconnection Study (NOWEGIS). The NOWEGIS investigated the key economic and technological factors that will influence the integration of offshore wind energy onto the national grid.

  9. National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. PDF icon NOWEGIS Full Report.pdf PDF icon NOWEGIS Executive Summary.pdf More Documents &

  10. Offshore Wind Advanced Technology Demonstration Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, offshore wind is a crucial renewable resource to be incorporated in the country's clean energy mix. Designed to reduce the cost of offshore wind energy through the development and deployment of innovative technologies, the Department of Energy has selected three Offshore Wind Advanced Technology

  11. Chu, Salazar to Announce Major Offshore Wind Energy Initiatives |

    Office of Environmental Management (EM)

    Department of Energy Chu, Salazar to Announce Major Offshore Wind Energy Initiatives Chu, Salazar to Announce Major Offshore Wind Energy Initiatives February 4, 2011 - 12:00am Addthis NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. WHAT: Offshore Wind Energy News Conference WHEN: Monday, February 7, 11:00 AM

  12. New Reports Highlight Major Potential in Offshore Wind Energy | Department

    Office of Environmental Management (EM)

    of Energy Reports Highlight Major Potential in Offshore Wind Energy New Reports Highlight Major Potential in Offshore Wind Energy August 29, 2014 - 12:53pm Addthis The Energy Department today announced a new report showing steady progress for the U.S. offshore wind energy industry over the past year. The report highlights 14 projects in advanced stages of development, together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further,

  13. 2014 Offshore Wind Market and Economic Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Offshore Wind Market and Economic Analysis 2014 Offshore Wind Market and Economic Analysis The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.This 3rd annual report focuses on new developments that have occurred in 2014. The report provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. Available for download are both the full report and the

  14. 2015 Offshore Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Offshore Wind Market Report 2015 Offshore Wind Market Report This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers,

  15. United States Launches First Grid-Connected Offshore Wind Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an EERE investment, the University of Maine deployed the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. The university and its project partners conducted extensive design, engineering, and testing of floating offshore wind turbines, then

  16. NREL: Learning - National Wind Technology Center Video (Text Version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Video (Text Version) This is the text version for the National Wind Technology Center video. The video opens with spinning blades of wind turbines and the National Renewable Energy Laboratory logo. It then cuts to images of windmills turning on farms. The video cuts in between shots of wind turbines and face-to-face interviews of scientists from NREL's National Wind Technology Center. (Voiceover) It is a pure, plentiful natural resource. Jim Johnson, Senior

  17. Global Offshore Wind Farms Database | Open Energy Information

    Open Energy Info (EERE)

    Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website:...

  18. DOE Announces Webinars on an Offshore Wind Economic Impacts Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for ...

  19. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  20. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  1. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  2. File:NREL-ca-90m-offshore.pdf | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search File File history File usage California - 90 Meter Offshore Wind Speed Size of this preview: 463 599 pixels. Other resolution: 464 600...

  3. Offshore Wind Farm Model Development - Upcoming Release of the University

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Minnesota's Virtual Wind Simulator | Department of Energy Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's Virtual Wind Simulator Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's Virtual Wind Simulator September 16, 2015 - 1:14pm Addthis Large-eddy simulation of wind farms with parameterization of wind turbines is emerging as a powerful tool for improving the performance and lowering the maintenance cost of

  4. NREL Fills Leadership Role at Wind Technology Center - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Fills Leadership Role at Wind Technology Center October 2, 2015 Dr. Daniel Laird will join the Energy Department's National Renewable Energy Laboratory on Oct. 12 as director of the National Wind Technology Center (NWTC), the country's premier wind energy technology research facility. Laird, who earned his Ph.D. in mechanical engineering from the University of Madison-Wisconsin, is relocating from the Energy Department's Sandia National Laboratories in Albuquerque, New Mexico, where he is

  5. Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Saur, G.; Maples, B.; Meadows, B.; Hand, M.; Musial, W.; Elkington, C.; Clayton, J.

    2012-09-01

    With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW and offshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from US offshore wind plants.

  6. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Hybrids Show Best Potential | Department of Energy Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential February 24, 2012 - 11:30am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind Program R&D Newsletter. Adding offshore wind to the U.S. renewable energy portfolio promises access to a large,

  7. Innovative Study Helps Offshore Wind Developers Protect Wildlife |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Study Helps Offshore Wind Developers Protect Wildlife Innovative Study Helps Offshore Wind Developers Protect Wildlife October 27, 2015 - 9:33am Addthis Innovative Study Helps Offshore Wind Developers Protect Wildlife Jocelyn Brown-Saracino Jocelyn Brown-Saracino Environmental Research Manager, Wind and Water Power Technologies Office Thanks to a first-of-its-kind in-depth study of wildlife distribution and movements, the nation's Eastern Seaboard is better prepared than

  8. 2011 DOE Funded Offshore Wind Project Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 DOE Funded Offshore Wind Project Updates 2011 DOE Funded Offshore Wind Project Updates September 12, 2014 - 10:52am Addthis For the past few years, much of the U.S. Department of Energy's (DOE's) Wind Program research and development efforts have been focused on accelerating the development and deployment of offshore wind energy technology. In 2011, DOE awarded $43 million to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying

  9. NREL: Distributed Grid Integration - Wind2Battery Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind2Battery Project photo of the Wind2Battery site near Luverne, Minnesota. Wind2Battery site near Luverne, Minnesota. Courtesy of Xcel Energy NREL is working with Xcel Energy to test the storage of wind energy in batteries. This is the first installation of a battery as a direct wind energy storage device in the United States and is important for demonstrating the capability and economic potential of large-scale renewable energy coupled with energy storage. The test site is located at a wind

  10. Modeling the National Potential for Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.

    2007-06-01

    The Wind Deployment System (WinDS) model was created to assess the potential penetration of offshore wind in the United States under different technology development, cost, and policy scenarios.

  11. NREL: Technology Transfer - NREL-Statoil Collaborate to Make...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL-Statoil Collaborate to Make the First Multi-Turbine Floating Offshore Array a Reality A photo of a floating wind turbine in the middle of open water. A Hywind floating...

  12. Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Tegen, Suzanne

    2015-07-30

    A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.

  13. NREL's National Wind Technology Center Director Named ASME Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Director Named ASME Fellow For more information contact: Terry Monrad, (303) 275-4096 Golden, Colo., January 25, 1996 -- Dr. Robert W. Thresher, director of the National Wind Technology Center (NWTC), will receive the grade of Fellow from the American Society of Mechanical Engineers (ASME) in ceremonies Jan. 29, 1996, in Houston, Texas. The NWTC, part of the Department of Energy's National Renewable Energy Laboratory (NREL), conducts research on advanced wind

  14. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_ramsden.pdf More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  15. NREL: Wind Research - Building 251 and High Bay

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building 251 and High Bay Photo of an aerial shot of a large blue and grey building with parking lot and cars in the foreground. Building 251 at the NWTC houses administrative and research support offices and well as a high bay for testing wind turbine components. Building 251 is the hub of the National Wind Technology Center. In addition to housing administrative and research support offices, the facility's conference rooms enable NREL to host international wind power specialists, conferences,

  16. Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Great Lakes Wind Collaborative | Department of Energy Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the

  17. NREL: Wind Research - NREL, Collaborators Complete Gearbox of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can increase reliability, decrease mass, improve efficiency, and reduce the cost of wind energy. In addition, the design can scale up to ratings as high as 10 megawatts (MW) while...

  18. The National Wind Energy Skills Assessment and Preparing for the Future Wind Workforce; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Tegen, Suzanne

    2015-07-10

    A robust workforce is essential to growing domestic wind manufacturing capabilities. This presentation provides an overview of an NREL analysis of wind-focused education at American colleges and universities. The second part of the presentation discusses DOE/NREL workforce-related projects, such as the Wind Career Map, the Collegiate Wind Competition, and the Wind for Schools project.

  19. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Lemming, J.

    2005-11-01

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  20. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  1. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Funding | Department of Energy Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power

  2. Energy Department Announces Innovative Offshore Wind Energy Projects |

    Energy Savers [EERE]

    Department of Energy Innovative Offshore Wind Energy Projects Energy Department Announces Innovative Offshore Wind Energy Projects May 7, 2014 - 2:05pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- As a part of the Administration's all-of-the-above energy strategy, the Energy Department today announced the selection of three pioneering offshore wind demonstrations to receive up to $47 million each over the next four years to deploy innovative, grid-connected systems in federal and

  3. Assessment of Offshore Wind Energy Resources for the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is

  4. Offshore Wind Technology Development Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development Projects Offshore Wind Technology Development Projects The Wind Program invests in projects to develop the engineering modeling and analysis tools required to lower overall offshore facility costs and to design the next generation of innovative large-scale turbines optimized for installation and operation in the marine environment. Offshore wind turbines are frequently located far from shore, face greater potential for corrosion from exposure to seawater, are only

  5. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of

    Office of Environmental Management (EM)

    Massachusetts | Department of Energy 0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final General Conformity Determination, June 23, 2014 December 21, 2012 EIS-0470: Final Environmental Impact Statement Cape Wind Energy Project, Nantucket Sound, MA December 31, 2012 EIS-0470:

  6. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy ... Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ...

  7. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional ...

  8. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...

    Office of Environmental Management (EM)

    According to a new study funded by DOE, the United States has sufficient offshore wind energy ... the national annual electricity production costs by approximately 7.68 ...

  9. EERE Success Story-University of Michigan Gets Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Colorado-Boulder Researches Solar-Thermochemical Hydrogen Production 41 Offshore Wind Power R&D Projects Receive Energy Department Funding Project Overview Positive Impact ...

  10. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    The Energy Department today released the first National Offshore Wind Energy Grid ... the national annual electricity production costs by approximately 7.68 ...

  11. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For example, in the Gulf Coast region, analyses show that in using existing port and manufacturing infrastructure, a 500-megawatt offshore wind project has the potential to support ...

  12. New Reports Chart Offshore Wind's Path Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Chart Offshore Wind's Path Forward New Reports Chart Offshore Wind's Path Forward December 12, 2012 - 2:29pm Addthis Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. <a href=" http://energy.gov/articles/infographic-offshore-wind-outlook"> Click here</a> to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S.

  13. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric...

  14. Property:PotentialOffshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The...

  15. 2011 Grants for Offshore Wind Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Web Policies Home Social Media Article Guidance History Offices 2011 Grants for Offshore Wind Power View All Maps Addthis Careers & Internships Contact Us link to facebook link to...

  16. Blowing in the Wind ...Offshore | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore February 10, 2011 - 9:28am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What will this project do? The new offshore wind strategy lays out a path to potentially have 54 gigawatts of offshore wind capacity by 2030, enough to power more than 15 million homes with clean, renewable energy. Have you ever flown a kite at the beach? If you have, you know how breezy it can be. A few miles

  17. New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planned in U.S. Waters | Department of Energy Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters September 29, 2015 - 11:30am Addthis The Energy Department today released a new report showing strong progress for the U.S. offshore wind market-including the start of construction of the nation's first commercial-scale offshore wind farm, one of 21 projects

  18. New DOE Report Investigates Port Readiness for Offshore Wind

    Broader source: Energy.gov [DOE]

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind supply chain, because all plant and transport logistics must transit through these facilities. Therefore, it is important that federal and state policy-makers and port authorities understand offshore wind's ports requirements in planning future investments. The Department of Energy tasked the independent consultancy GL Garrad Hassan with reviewing the current capability of U.S. ports to support offshore wind project development and assessing the challenges and opportunities related to upgrading this capability to support the targeted capacity growth of as much as 54 gigawatts installed in U.S. waters by 2030.

  19. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  20. NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-to-Hydrogen Project Photo of person in hard hat working on equipment in a laboratory setting. NREL engineer inspects hydrogen-producing electrolyzer system at the National Wind Technology Center. Photo by Greg Martin, NREL Formed in partnership with Xcel Energy, NREL's wind-to-hydrogen (Wind2H2) demonstration project links wind turbines and photovoltaic (PV) arrays to electrolyzer stacks, which pass the generated electricity through water to split it into hydrogen and oxygen. The resulting

  1. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  2. NREL: Energy Analysis - Wind Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Hydropower Technology Analysis Wind and hydropower analysis supports advanced technologies that convert more of the nation's wind into electricity. Grid Operational Impact Analysis The wind program will address the variable, normally uncontrollable nature of wind power plant output, and the additional needs that its operation imposes on the overall grid. At present, the generation and transmission operational impacts that occur due to wind variability are not well quantified. This

  3. U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations

    Broader source: Energy.gov [DOE]

    Provides an account of the proceedings of public meeting DE-FOA-0000659 on February 7, 2012 in Washington, DC Contains discussion of the draft financial opportunity announcement DE-FOA-0000410-DRAFT Includes information on offshore wind and the national strategy of the U.S. Department of Energy

  4. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005, and 2006. These datasets were designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. For the...

  5. Long Island New York City Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Long Island New York City Offshore Wind Farm Jump to: navigation, search Name Long Island New York City Offshore Wind Farm Facility Long Island New York City Offshore Wind Farm...

  6. Developing Integrated National Design Standards for Offshore Wind Plants

    Broader source: Energy.gov [DOE]

    The DOE Wind Program and the National Renewable Energy Laboratory recently published a report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  7. DOE Wind Program Presentations and Posters at AWEA Offshore WINDPOWER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy's Wind Program will once again host a booth at the AWEA Offshore ... Location: Ballroom IV Addthis Related Articles Wind Program to Host Booth at WINDPOWER ...

  8. The November WINDExchange Webinar: Offshore Wind Market Update

    Broader source: Energy.gov [DOE]

    Aaron Smith, an energy analyst at the National Renewable Energy Laboratory, will present an overview and update of the U.S. offshore wind market. Stacy Tingley and Bryan Wilson of Deepwater Wind...

  9. Innovation Impact, Wind: NREL Collaborative Improves the Reliability of Wind Turbine Gearboxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Improves the Reliability of Wind Turbine Gearboxes Gearbox failures have a significant impact on the cost of wind farm operations. To help minimize gearbox failures, in 2007 the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which consists of manufacturers, owners, researchers, and consultants. The GRC was funded by the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. Gearbox deficiencies are the

  10. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 September 25, 2012 Wind Energy Research Institutes Join Forces at the Inaugural Meeting of the North American Wind Energy Academy The North American Wind Energy Academy held its inaugural meeting August 7-9, 2012, at the University of Massachusetts Amherst. The meeting drew 92 participants from 17 states and Canada, including 22 universities, eight commercial companies, and four government laboratories. September 25, 2012 DOE Wind Program Funds University of Wisconsin-Madison Wind Workforce

  11. NREL: Wind Research - Systems Engineering Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Wind Research The National Wind Technology Center (NWTC) wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. The initiative's goal is to

  12. AWEA and DOE Collaborate on Offshore Wind Recommended Practices |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy AWEA and DOE Collaborate on Offshore Wind Recommended Practices AWEA and DOE Collaborate on Offshore Wind Recommended Practices October 1, 2012 - 11:37am Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. In October 2009, the American Wind Energy Association (AWEA), in collaboration with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory, began an effort to develop recommended practices for

  13. U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY WIND AND WATER POWER PROGRAM + + + + + U.S. OFFSHORE WIND: ADVANCED TECHNOLOGY DEMONSTRATION PROJECTS + + + + + PUBLIC MEETING + + + + + TUESDAY FEBRUARY 7, 2012 + + + + + The Public Meeting Convened in Ballroom C & D of the L'Enfant Plaza Hotel, 480 L'Enfant Plaza, S.W., Washington, D.C., at 9:30 a.m., Jose Zayas, Program Manager, presiding. PRESENT : JOSE ZAYAS, Program Manager, Wind and Water Power Program, Office

  14. 2014-2015 Offshore Wind Technologies Market Report

    SciTech Connect (OSTI)

    Smith, Aaron

    2015-11-18

    This presentation provides an overview of progress toward offshore wind cost reduction in Europe and implications for the U.S. market. The presentation covers an overview of offshore wind developments, economic and performance trends, empirical evidence of LCOE reduction, and challenges and opportunities in the U.S. market.

  15. NREL: Transmission Grid Integration - Oahu Wind Integration and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Study Oahu Wind Integration and Transmission Study The Oahu Wind Integration and Transmission Study examined the integration of renewable energy as part of the Hawaii Clean Energy Initiative's Energy Agreement. The agreement includes a commitment to integrate up to 400 megawatts (MW) of offshore wind energy from Molokai or Lanai and transmit it to Oahu via undersea cable systems. The Hawaii Clean Energy Initiative also includes an aggressive mandate for the state of Hawaii to

  16. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop ... environment, while optimizing the total life-cycle cost of offshore wind farms. ...

  17. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, ... operating in the marine environment where offshore wind farms could be installed. ...

  18. Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.

    2013-06-01

    The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.

  19. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 ...

  20. NREL: Wind Research - Dynamometer Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamometer Test Facilities Dynamometer test configuration for a wind turbine drivetrain. Enlarge image Dynamometers enable industry and testing agencies to verify the performance and reliability of wind turbines drivetrain prototypes and commercial machines. Designs are tested by simulating operating field conditions in a laboratory environment. In a typical dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. Wind turbine dynamometer testing focuses on the

  1. NREL: Wind Research - National Wind Technology Center Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test the blades for endurance. To test the new, larger blades, NREL installed a larger blade test stand capable of testing blades up to 50 meters in length. At the STL, companies...

  2. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 December 9, 2011 Saving Farmland One Wind Energy Project at a Time Rich VanderVeen, president of Mackinaw Power, LLC in Michigan talks about wind power being an important wealth-building second crop for American farmers. November 22, 2011 New Database Assists with Wind Project Siting November 2, 2011 Wind Energy Has A Lot Riding on Programs up for Debate in Congress Lisa Daniels, Windustry executive director, talks about how wind energy has become a farm product and that clean energy program

  3. 2014 Offshore Wind Market & Economic Analysis Cover Photo | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Image icon Navigant 2014 Offshore Wind Market and Economic Analysis.JPG More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain Cover Photo Offshore Wind Projects 2014 Offshore Wind Market and Economic Analysis Wind Program Home About the Program Research & Development WINDExchange Financial Opportunities Information Resources News

  4. Making Offshore Wind Areas Available for Leasing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Offshore Wind Areas Available for Leasing Making Offshore Wind Areas Available for Leasing October 1, 2013 - 3:31pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. When the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) needed a process to delineate the bureau's proposed offshore Wind Energy Areas (WEAs) into auctionable leasing areas, the agency turned to the U.S. Department of Energy's (DOE's) National

  5. NREL: Wind Research - Field Verification Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Verification Project The mission of the Field Verification Project (FVP) was to enable U.S. industry to complete the research, testing, and field verification needed to fully develop advanced wind energy technologies that lead the world in cost-effectiveness and reliability. The project, completed in 2003, included cost-shared research with industry partners to lead to the development of advanced technology wind turbines and support for projects that verify performance of wind turbine

  6. NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

  7. NREL: Wind Research - Advanced Research Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the NWTC are used to test new control schemes and equipment for reducing loads on wind turbine components and meteorological towers upwind are instrumented to collect data....

  8. Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.

  9. Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC.

  10. 2014 WIND POWER PROGRAM PEER REVIEW-OFFSHORE DEMOS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Demos March 24, 2014 Wind Energy Technologies PR-5000-62152 2 Contents GOWind Demonstration Project-Ian Hatton, Baryonyx Corporation Fishermen's Atlantic City Windfarm: Birthplace of Offshore Wind in the Americas-Stanley M. White, Fishermen's Atlantic City Windfarm, LLC Project Icebreaker-Lorry Wagner, Lake Erie Energy Development Corporation WindFloat Pacific OSW Demo Project-Alla Weinstein, Principle Power, Inc. Hywind Maine-Trine Ingebjørg Ulla, Statoil New England Aqua Ventus

  11. International Effort Advances Offshore Wind Turbine Design Codes |

    Office of Environmental Management (EM)

    Department of Energy International Effort Advances Offshore Wind Turbine Design Codes International Effort Advances Offshore Wind Turbine Design Codes September 12, 2014 - 12:16pm Addthis For the past several years, the U.S. Department of Energy's National Renewable Energy Laboratory has teamed with the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Germany to lead an international effort under the International Energy Agency's (IEA) Task 30 to improve the tools

  12. NWTC Collaborative Increases Gearbox Reliability and Helps Reduce Cost of Wind Energy; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    A collaborative at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) leads to wind turbine gearbox reliability and lowers the cost of wind energy.

  13. DOE and NREL Issue Sources Sought for Wind for Schools Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Plan | Department of Energy and NREL Issue Sources Sought for Wind for Schools Project Sustainability Plan DOE and NREL Issue Sources Sought for Wind for Schools Project Sustainability Plan January 12, 2016 - 12:55pm Addthis The National Renewable Energy Laboratory (NREL), in collaboration with the U.S. Department of Energy (DOE), today issued a formal notice of intent for organizations interested in developing a Sustainability Plan for the Wind for Schools project. This

  14. NREL to Partner with RES Americas on Wind Balance-of-Plant Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL to Partner with RES Americas on Wind Balance-of-Plant Research June 17, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Renewable Energy Systems Americas, Inc. (RES Americas) have announced a partnership to evaluate the design and performance of vital wind energy support systems. Under a Cooperative Research and Development Agreement (CRADA), NREL and RES Americas will investigate structural loads on foundations of operating wind

  15. NREL, Xcel Energy Sign Wind to Hydrogen Research Agreement - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL, Xcel Energy Sign Wind to Hydrogen Research Agreement May 8, 2006 Golden, Colo. - The U.S. Department of Energy's (DOE), National Renewable Energy Laboratory (NREL) and Xcel Energy (NYSE: XEL) recently signed a cooperative agreement for an innovative "wind to hydrogen" research, development and demonstration project. Researchers will analyze and compare hydrogen production from wind power and the electric grid. The hydrogen will be produced through electrolysis-the

  16. NREL Report Redefines Wind as a Grid Stabilizer, Not a Liability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study explores how wind power can support power system reliability, and do so economically. The National Renewable Energy Laboratory (NREL), along with partners from the Electric...

  17. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  18. NREL Develops Simulations for Wind Plant Power and Turbine Loads (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL researchers are the first to use a high-performance computing tool for a large-eddy simulation of an entire wind plant.

  19. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 December 9, 2008 Colorado Study Confirms Low Grid Integration Costs for Wind A new study released this week once again adds to the body of peer-reviewed literature confirming that the cost of integrating wind energy with the electric grid is quite low. December 9, 2008 Extra-High-Voltage Line from AEP Would Connect Wind-Rich Dakotas American Electric Power is evaluating the feasibility of building a multi-state, extra-high-voltage transmission project across the Upper Midwest. December 2, 2008

  20. 2014-2015 Offshore Wind Technologies Market Report (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect SciTech Connect Search Results Technical Report: 2014-2015 Offshore Wind Technologies Market Report Citation Details In-Document Search Title: 2014-2015 Offshore Wind Technologies Market Report This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market

  1. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  2. Tackling the Challenges of Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tackling the Challenges of Offshore Wind Tackling the Challenges of Offshore Wind January 10, 2013 - 2:06pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Charlestown, Massachusetts-While electricity produced by land-based wind farms in the wind-rich regions of the United States is fast becoming cost competitive with traditional generation sources at $0.07 per kilowatt-hour (unsubsidized), cost estimates of $0.22 per kilowatt-hour for

  3. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  4. NREL: Wind Research - U.S. Virgin Islands Begins Collecting Wind Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data: A Wind Powering America Success Story U.S. Virgin Islands Begins Collecting Wind Resource Data: A Wind Powering America Success Story March 25, 2013 In the U.S. Virgin Islands (USVI), electricity is so expensive that families struggle to pay utility bills and businesses close due to high energy costs. With technical assistance from the U.S Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), the USVI Energy Office is preparing to develop the territory's first

  5. NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive-responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

  6. NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive -- responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

  7. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  8. DOE Wind Program to Host Booth at Offshore WINDPOWER

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Wind Program will once again host a booth at the AWEA Offshore WINDPOWER Conference and Exhibition in Atlantic City, New Jersey, October 7 and 8, 2014.

  9. Offshore Wind and Vehicle to Grid Power | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11, 2013, 4:30pm to 6:00pm Princeton University Computer Science Auditorium 104 Offshore Wind and Vehicle to Grid Power Professor Willett Kempton University of Delaware Professor...

  10. Rhode Island to Build First Offshore Wind Farm

    Broader source: Energy.gov [DOE]

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  11. New Report Shows Trend Toward Larger Offshore Wind Systems

    Broader source: Energy.gov [DOE]

    The Energy Department released a new report showing progress for the U.S. offshore wind energy market in 2012, including 11 commercial-scale U.S. projects reaching an advanced stage of development.

  12. Overcoming Challenges in America’s Offshore Wind Industry

    Broader source: Energy.gov [DOE]

    A year of progress, preparation and promise was the theme connecting two days of panels and presentations last month at the 2013 American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island.

  13. Offshore Wind Resource Characterization Buoy “Open-Hatch” Exposition

    Broader source: Energy.gov [DOE]

    Please join the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy for an “Open-Hatch” as one of the nation’s most advanced offshore wind resource characterization buoys...

  14. Visiting NREL | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting NREL To plan your visit, select the location below. Not sure? Contact your NREL host to confirm the location for your meeting. NREL Golden Campus, Laboratories, and Administrative Offices National Wind Technology Center Education Center Washington, D.C. Office Community Members and General Public Sign up for an NREL tour or group program. LEARN MORE

  15. 2014–2015 Offshore Wind Technologies Market Report

    SciTech Connect (OSTI)

    Smith, Aaron; Stehly, Tyler; Musial, Walter

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities.

  16. U.S. Offshore Wind Manufacturing and Supply Chain Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Offshore Wind Manufacturing and Supply Chain Development Prepared for: U.S. Department of Energy Navigant Consulting, Inc. 77 Bedford Street Suite 400 Burlington, MA 01803-5154 781.270.8314 www.navigant.com February 22, 2013 U.S. Offshore Wind Manufacturing and Supply Chain Development Document Number DE-EE0005364 Prepared for: U.S. Department of Energy Michael Hahn Cash Fitzpatrick Gary Norton Prepared by: Navigant Consulting, Inc. Bruce Hamilton, Principal Investigator Lindsay Battenberg

  17. DOE Announces Webinars on an Offshore Wind Economic Impacts Model,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources for Tribal Energy Efficiency Projects, and More | Department of Energy an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More November 20, 2013 - 11:54am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the

  18. Offshore Wind Market and Economic Analysis Report 2013

    Energy Savers [EERE]

    October 17, 2013 Offshore Wind Market and Economic Analysis Page ii Document Number DE-EE0005360 U.S. Offshore Wind Market and Economic Analysis Annual Market Assessment Document Number DE-EE0005360 Prepared for: U.S. Department of Energy Michael Hahn Patrick Gilman Prepared by: Navigant Consulting, Inc. Bruce Hamilton, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Lisa Frantzis Jay Paidipati Andy Wickless Feng Zhao Navigant Consortium Member Organizations

  19. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  20. DOE and NREL Issue Sources Sought for Wind for Schools Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sought for Wind for Schools Project Sustainability Plan DOE and NREL Issue Sources Sought for Wind for Schools Project Sustainability Plan January 12, 2016 - 12:55pm Addthis ...

  1. File:NREL-50m-Alaska-Wind-Map.pdf | Open Energy Information

    Open Energy Info (EERE)

    File Edit with form History File:NREL-50m-Alaska-Wind-Map.pdf Jump to: navigation, search File File history File usage Alaska 50m Wind Resource (PDF) Size of this preview: 776 ...

  2. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Phase 3 Research 3 Research All of the large-scale regional wind and solar integration studies performed by NREL and others have identified the lack of power system dynamic analysis as a significant research gap. Acceptable dynamic performance of the grid in the fractions of a second to one minute following a large disturbance (e.g., loss of a large power plant or a major transmission line) is critical to system reliability, thus there is a need to analyze the dynamic behavior of North

  3. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan

    2013-02-22

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

  4. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  5. Promoting Offshore Wind Along the "Fresh Coast" | Department of Energy

    Energy Savers [EERE]

    Promoting Offshore Wind Along the "Fresh Coast" Promoting Offshore Wind Along the "Fresh Coast" October 12, 2010 - 12:18pm Addthis Chris Hart Offshore Wind Team Lead, Wind & Water Power Program When people think about offshore wind power, the first location that comes to mind probably isn't Cleveland, Ohio. Most of the offshore wind turbines installed around the world are operating in salt water, like Europe's North Sea and Baltic Sea, and most of the offshore wind

  6. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  7. NREL: Wind Research - Meet a Wind Energy Expert Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet a Wind Energy Expert Archives The field of wind energy research and development is a diverse one. Our staff consists of a variety of backgrounds and disciplines. Here you will find some of the profiles of our wind energy experts. Maureen Hand Pat Moriarty Printable Version Wind Research Home Research & Development Facilities Research Staff Working with Us Publications Data & Resources Awards News Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to

  8. About NREL | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About NREL At NREL, we focus on creative answers to today's energy challenges. From breakthroughs in fundamental science to new clean technologies to integrated energy systems that power our lives, NREL researchers are transforming the way the nation and the world use energy. Take a photo tour through NREL's campus. Start the tour NREL Quick Facts 3 National Centers National Bioenergy Center National Center for Photovoltaics National Wind Technology Center 3 Collaborative Research Facilities

  9. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect (OSTI)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  10. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  11. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce

    2013-02-22

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s landbased wind market.

  12. LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 February 24, 2012 - 11:27am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind Program R&D Newsletter. A recent analysis conducted by the Lawrence Berkley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL) suggests that lower capital costs and continued increases in wind

  13. Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy's Wind Program will welcome visitors to its booth, #600, at AWEA's Offshore WINDPOWER Conference and Exhibition October 9 - 11, 2012, in Virginia Beach, Virginia. Visitors to the booth will have an opportunity to speak with Wind Program representatives, learn about the program's current and upcoming research and development projects, and pick up

  14. Offshore Wind Market and Economic Analysis

    Broader source: Energy.gov (indexed) [DOE]

    RPS renewable portfolio standard RTO regional transmission organization SAP site assessment plan UPR unsaturated polyester resin WAB Wind Agency Bremerhaven WEA Wind Energy...

  15. NREL: Wind Research - Small and Distributed Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility (SWiFT): SWiFT carries out studies to improve the efficiency of wind farms in areas including wake energy loss, wake-induced loads, advanced rotor development,...

  16. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generators (Poster) (Conference) | SciTech Connect Conference: NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) Citation Details In-Document Search Title: NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21

  17. NREL Study Shows Power Grid can Accommodate Large Increase in Wind and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Generation - News Releases | NREL Study Shows Power Grid can Accommodate Large Increase in Wind and Solar Generation Increased Coordination Over Wider Areas and More Frequent Scheduling Needed; Wind and Solar Significantly Reduce Carbon and Fuel Costs May 20, 2010 The National Renewable Energy Laboratory (NREL) today released an initial study assessing the operational impacts and economics of increased contributions from wind and solar energy producers on the power grid. The Western

  18. NREL's 91-Year-Old Palmer Carlin-a Wind Energy Pioneer | Department of

    Office of Environmental Management (EM)

    Energy NREL's 91-Year-Old Palmer Carlin-a Wind Energy Pioneer NREL's 91-Year-Old Palmer Carlin-a Wind Energy Pioneer July 2, 2015 - 11:57am Addthis A photo of an elderly man, Palmer Carlin, in the foreground and a solar array in the background. Three afternoons a week, 91-year-old Palmer Carlin comes into the Energy Department's National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), and begins having fun. That's where the senior engineer fields questions

  19. NREL: Wind Research - Get to Know a Wind Energy Expert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get to Know a Wind Energy Expert Some may know Shuangwen (Shawn) Sheng for his breakthrough work with the Gearbox Reliability Collaborative (GRC) and condition monitoring; others may know him through his successful gearbox failures database development efforts. But what many don't know about Shawn is that his passion for wind energy didn't develop until he already had a bachelor's degree, which was a feat unto itself given his childhood spent in a rural village in the Heilongjiang province. When

  20. 2014-2015 Offshore Wind Technologies Market Report (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect 2014-2015 Offshore Wind Technologies Market Report Citation Details In-Document Search Title: 2014-2015 Offshore Wind Technologies Market Report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  1. NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

  2. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

    Energy Savers [EERE]

    DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential May 20, 2011 - 1:34pm Addthis This is an ...

  3. Development of Offshore Wind Recommended Practice for U.S. Waters: Preprint

    SciTech Connect (OSTI)

    Musial, W. D.; Sheppard, R. E.; Dolan, D.; Naughton, B.

    2013-04-01

    This paper discusses how the American Petroleum Institute oil and gas standards were interfaced with International Electrotechnical Commission and other wind turbine and offshore industry standards to provide guidance for reliable engineering design practices for offshore wind energy systems.

  4. The Future of Offshore Wind Energy and Transmission in New Jersey...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 11, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium The Future of Offshore Wind Energy and Transmission in New Jersey Kris Ohleth The Atlantic Wind Connection Offshore...

  5. First U.S. Grid-Connected Offshore Wind Turbine Installed Off...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - ...

  6. NREL: Water Power Research - Device and Component Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Device and Component Testing NREL houses the nation's premier laboratory facilities for testing offshore wind and water power devices and maintains a staff of offshore-trained test engineers and technicians that conduct a wide range of field measurements to verify system performance and dynamic responses. Applying 35 years of wind turbine testing expertise, NREL has the capabilities to obtain high-resolution measurements in the laboratory and open water test sites. With the support of the U.S.

  7. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  8. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    © Douglas-Westwood Page 22 Overview of the Vessel-Related Aspects of the Offshore Wind Industry Part 1 Overview of the Vessel-Related Aspects of the Offshore Wind Industry © Douglas-Westwood Page 23 Introduction Only a handful of Western European countries (and to a lesser extent China) have so far developed significant amounts of offshore wind power generating capacities. Understanding the policy frameworks under which offshore wind has developed in these countries provides useful guidance

  9. 2014-2015 Offshore Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -2015 Offshore Wind Technologies Market Report 2014-2015 Offshore Wind Technologies Market Report 2014-2015-Offshore-Wind-Technologies-Market-Report.jpg This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help

  10. 41 Offshore Wind Power R&D Projects Receive Energy Department Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 41 Offshore Wind Power R&D Projects Receive Energy Department Funding 41 Offshore Wind Power R&D Projects Receive Energy Department Funding September 7, 2011 - 3:02pm Addthis Department of Energy Awards $43 Million to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. Applicant Location DOE Award Description U.S. Offshore Wind: Technology Development Funding Opportunity Modeling & Analysis Design

  11. Offshore Wind Jobs and Economic Development Impacts in the United States:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Four Regional Scenarios | Department of Energy Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore wind has tremendous potential in the United States as a clean, renewable source of electricity. This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore wind deployment

  12. 2012 & 2013 Offshore Wind Market & Economic Analysis Reports | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 & 2013 Offshore Wind Market & Economic Analysis Reports 2012 & 2013 Offshore Wind Market & Economic Analysis Reports The objective of these report is to provide a comprehensive annual assessment of the U.S. offshore wind market. Available for download are the 2012 & 2013 Offshore Wind Market & Economic Analysis full reports prepared by Navigant Consulting. The 2012 report contains the following significant analyses which are not present in the 2013 or 2014

  13. 2012-2014 Offshore Wind Market and Economic Analysis Reports | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -2014 Offshore Wind Market and Economic Analysis Reports 2012-2014 Offshore Wind Market and Economic Analysis Reports These reports authored by the Navigant Consortium provide a comprehensive annual assessment of the U.S. offshore wind market from 2012 to 2014. The reports provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. The 2012 edition contains significant policy and economic analyses,

  14. Facilitating the Development of Offshore Wind Energy in the United States |

    Office of Environmental Management (EM)

    Department of Energy Facilitating the Development of Offshore Wind Energy in the United States Facilitating the Development of Offshore Wind Energy in the United States May 14, 2015 - 1:10pm Addthis The Energy Department's Wind Program is seeking feedback from the wind industry, academia, research laboratories, government agencies, and other stakeholders regarding the key challenges currently facing offshore wind energy and the Wind Program's implementation of the Energy Department's

  15. DOE Looks to the Future of Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Looks to the Future of Offshore Wind DOE Looks to the Future of Offshore Wind September 10, 2015 - 6:11pm Addthis Turning the page on the largely successful 2011 joint offshore wind strategy developed in partnership with the U.S. Department of the Interior, the U.S. Department of Energy (DOE) Wind Program is now reaching ahead to develop a new offshore wind strategy that builds on the original. The objectives of the 2011 strategy were to reduce both the cost of offshore wind energy and the

  16. DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inflow Conditions | Department of Energy NREL and LLNL team with NOAA and University of Colorado to Study Wind Inflow Conditions DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind Inflow Conditions October 3, 2011 - 12:33pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. Invisible to the eye, wind wakes created by multimegawatt wind turbines can nevertheless strongly impact performance of other turbines

  17. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030

    Broader source: Energy.gov [DOE]

    DOE recently funded a study that finds the deployment of at least 54 gigawatts of offshore wind power to be technically possible by 2030. The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS), which focused on two DOE objectives in reducing barriers to deployment of offshore wind, cost of energy and timeline of deployment.

  18. Study Reveals Challenges and Opportunities Related to Vessels for U.S. Offshore Wind

    Broader source: Energy.gov [DOE]

    The installation of offshore wind farms requires a highly specialized fleet of vessels--but no such fleet currently exists in the United States. As part of a broader DOE initiative to accelerate the growth of the U.S. offshore wind industry, energy research group Douglas-Westwood identified national vessel requirements under several offshore wind industry growth scenarios.

  19. Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)

    SciTech Connect (OSTI)

    Bowen, A.; Huskey, A.; Hur, J.; Jager, D.; van Dam, J.; Smith, J.

    2010-05-01

    Poster presented at the AWEA 2010 conference illustrates NREL's testing of five small wind turbines in the first round of its independent testing project. Tests include power performance, noise, duration, safety and function, and power quality (where applicable).

  20. High-Resolution Computational Algorithms for Simulating Offshore Wind Farms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Algorithms for Simulating Offshore Wind Farms - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  1. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  2. NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability - News Releases | NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid Reliability January 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL), along with partners from the Electric Power Research Institute and the University of Colorado have completed a comprehensive study to understand how wind power technology can assist the power grid by controlling the active power output being placed onto the system. The rest of the power

  3. Where the wind blows: navigating offshore wind development, domestically and abroad

    SciTech Connect (OSTI)

    Colander, Brandi

    2010-04-15

    2010 is a defining year for offshore wind power globally. Many are watching with bated breath to see how the Department of Interior will handle the future of the industry in the United States. (author)

  4. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  5. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  6. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  7. Wind Power Siting: Public Acceptance and Land Use; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Tegen, Suzanne

    2015-06-17

    Suzanne Tegen presented this information as part of the June 17, 2015 WINDExchange webinar: Overcoming Wind Siting Challenges III: Public Acceptance and Land Use. This presentation provides an overview of current NREL research related to wind energy deployment considerations, the DOE Wind Vision as it relates to public acceptance and land use, why public acceptance of wind power matters, where the U.S. wind resource is best, and how those rich resource areas overlay with population centers.

  8. NWTC Helps Chart the World's Wind Resource Potential (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chart the World's Wind Resource Potential The potential wind capacity of the United States at a hub height of 140 meters. This resource map represents near-future technology options. It shows land area with a gross capacity factor of 35% and higher, which may be suitable for wind energy development. The darker the color, the larger the potentially developable area. Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry,

  9. An Update on the National Offshore Wind Strategy | Department of Energy

    Energy Savers [EERE]

    National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 11:27am Addthis Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating

  10. Incorporation of Multi-Member Substructure Capabilities in FAST for Analysis of Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Song, H.; Robertson, A.; Jonkman, J.; Sewell, D.

    2012-05-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is an aero-hydro-servo-elastic tool widely used for analyzing onshore and offshore wind turbines. This paper discusses recent modifications made to FAST to enable the examination of offshore wind turbines with fixed-bottom, multi-member support structures (which are commonly used in transitional-depth waters).; This paper addresses the methods used for incorporating the hydrostatic and hydrodynamic loading on multi-member structures in FAST through its hydronamic loading module, HydroDyn. Modeling of the hydrodynamic loads was accomplished through the incorporation of Morison and buoyancy loads on the support structures. Issues addressed include how to model loads at the joints of intersecting members and on tapered and tilted members of the support structure. Three example structures are modeled to test and verify the solutions generated by the modifications to HydroDyn, including a monopile, tripod, and jacket structure. Verification is achieved through comparison of the results to a computational fluid dynamics (CFD)-derived solution using the commercial software tool STAR-CCM+.

  11. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  12. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 June 15, 2010 NREL to Partner with University of Delaware on Offshore Wind Research The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the University of Delaware (UD) today announced they will work to facilitate the potential establishment of a test site for commercial wind turbines off the Delaware coast. June 10, 2010 EPRI Joins SolarTAC The Electric Power Research Institute (EPRI) has become a sponsoring member of the Solar Technology Acceleration Center

  13. Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems

    Energy Savers [EERE]

    | Department of Energy Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems October 1, 2013 - 3:10pm Addthis Pressure profile of a wave moving through an offshore structure. Courtesy of MMI Engineering Pressure profile of a wave moving through an offshore structure. Courtesy of MMI Engineering This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. The

  14. Energy Department Announces Offshore Wind Demonstration Awardees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baryonyx Corporation, based in Austin, Texas, plans to install three 6-megawatt direct-drive wind turbines in state waters near Port Isabel, Texas. The project will demonstrate an ...

  15. Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Unveils 41 New Offshore Wind Power R&D Projects Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects September 8, 2011 - 11:13am Addthis Chris Hart Offshore Wind Team Lead, Wind & Water Power Program The $43 million dollars in offshore wind funding Secretary Chu announced today is part of a coordinated federal strategy to put the nation's wind resources to work and support innovation and jobs throughout the United States. The projects represent investments in

  16. Top 10 Things You Didn't Know About Offshore Wind Energy | Department of

    Energy Savers [EERE]

    Energy Offshore Wind Energy Top 10 Things You Didn't Know About Offshore Wind Energy May 6, 2014 - 2:28pm Addthis Watch the 2014 update to our Energy 101: Wind video, now highlighting opportunities to develop offshore wind in the U.S. Greg Matzat Senior Advisor on Offshore Wind Technologies, Wind Program The latest blog in our "Top Things You Didn't Know About..." series is brought to you by the Office of Energy Efficiency and Renewable Energy. Be sure to check back for more

  17. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential |

    Office of Environmental Management (EM)

    Department of Energy DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential May 20, 2011 - 1:34pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. Image of the EERE National Offshore Wind Strategy report cover featuring a photo of a receding line of offshore wind turbines in the ocean. The winds of change are blowing for renewable energy policy, and some of

  18. "Open Hatch" Tour of Offshore Wind Buoy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Open Hatch" Tour of Offshore Wind Buoy "Open Hatch" Tour of Offshore Wind Buoy Addthis Description Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development. Text Version Below is the text version for the "Open Hatch" Tour of Offshore Wind Buoy video. We're standing on top of one of the two

  19. Wind for Schools Program Adds Funding in Five States - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind for Schools Program Adds Funding in Five States Universities in Alaska, Arizona, Pennsylvania, North Carolina and Virginia to lead projects January 21, 2010 Today the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and DOE's Wind and Hydropower Technologies Program announced the selection of five additional states to each receive approximately $60,000 in funding per year for three years for activities supporting Wind Powering America's Wind for Schools project.

  20. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  1. Hunting Hurricanes...and Data to Help Build Better Offshore Wind Turbines |

    Office of Environmental Management (EM)

    Department of Energy Hunting Hurricanes...and Data to Help Build Better Offshore Wind Turbines Hunting Hurricanes...and Data to Help Build Better Offshore Wind Turbines June 2, 2014 - 12:21pm Addthis Flying high 1 of 4 Flying high P-3 aircraft are used by the National Oceanic and Atmospheric Administration (NOAA) to track the strength, temperature, pressure, and wind speed and direction of hurricanes. This information could be used to develop stronger offshore wind turbines and components,

  2. DOE Wind Program Presentations and Posters at AWEA Offshore WINDPOWER 2015

    Office of Environmental Management (EM)

    | Department of Energy Wind Program Presentations and Posters at AWEA Offshore WINDPOWER 2015 DOE Wind Program Presentations and Posters at AWEA Offshore WINDPOWER 2015 September 15, 2015 - 3:06pm Addthis The Department of Energy's Wind Program will once again host a booth at the AWEA Offshore WINDPOWER Conference and Exhibition in Baltimore Maryland, September 29-30, 2015. Stop by booth #303 to meet Wind Program personnel and learn about the latest DOE-funded research. Visitors can also

  3. “Open Hatch” Tour of Offshore Wind Buoy- Text Alt Version

    Broader source: Energy.gov [DOE]

    Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development.

  4. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect (OSTI)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  5. Geographic Information Systems in Support of Wind Energy Activities at NREL: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographic Information Systems in Support of Wind Energy Activities at NREL Preprint January 2001 * NREL/CP-500-29164 D.M. Heimiller S.R. Haymes To be presented at the 39 th AIAA Aerospace Sciences Meeting Reno, Nevada January 8-11, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted

  6. Offshore Code Comparison Collaboration Continuation (OC4), Phase I - Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure: Preprint

    SciTech Connect (OSTI)

    Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T. J.; Yde, A.; Saetertro, K.; Okstad, K. M.; Nichols, J.; Nygaard, T. A.; Gao, Z.; Manolas, D.; Kim, K.; Yu, Q.; Shi, W.; Park, H.; Vasquez-Rojas, A.

    2012-03-01

    This paper presents the results of the IEA Wind Task 30, Offshore Code Comparison Collaboration Continuation Project - Phase 1.

  7. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore...

  8. An Update on the National Offshore Wind Strategy | Department of Energy

    Office of Environmental Management (EM)

    An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 12:00am Addthis Off the shores of the United States and the Great Lakes is a power source with four times the energy potential of the entire U.S. electric power system: the wind. Offshore winds blow stronger and more uniformly than on land, resulting in greater potential to generate energy. The development of the United States' plentiful offshore wind resources could deliver

  9. Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States

    Broader source: Energy.gov [DOE]

    For the United States to ensure that the substantial rollout of offshore wind energy projects envisioned by the DOE is carried out in an efficient and cost-effective manner, it is important to observe the current and emerging practices in the international offshore wind energy industry. In this manner, the United States can draw from the experience already gained around the world, combined with experience from the sizeable U.S. land-based wind industry, to develop a strong offshore wind sector. The work detailed in this report will support that learning curve by enabling optimization of the cost-effectiveness of installation, operation, and maintenance activities for offshore wind farms.

  10. NREL: Transmission Grid Integration - Wind Integration National Dataset

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (WIND) Toolkit Wind Integration National Dataset (WIND) Toolkit Obtain the WIND Toolkit Please note: the WIND Toolkit is simulated wind power data to be used in renewable integration studies. Please read the associated validation reports and use the data appropriately. The Wind Integration National Dataset (WIND) Toolkit is an update and expansion of the Eastern and Western Wind Datasets, and is intended to support the next generation of integration studies. The WIND Toolkit includes

  11. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    SciTech Connect (OSTI)

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  12. Ready, Set, Go: New Tool and Report Help Offshore Wind Industry Take Off |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ready, Set, Go: New Tool and Report Help Offshore Wind Industry Take Off Ready, Set, Go: New Tool and Report Help Offshore Wind Industry Take Off April 30, 2014 - 3:47pm Addthis Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering,

  13. New DOE Modeling Tool Estimates Economic Benefits of Offshore Wind Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling Tool Estimates Economic Benefits of Offshore Wind Plants New DOE Modeling Tool Estimates Economic Benefits of Offshore Wind Plants October 1, 2013 - 3:28pm Addthis To help developers more readily estimate the economic benefits of offshore wind plants, the U.S. Department of Energy (DOE) recently released a new version of the Jobs and Economic Development Impact (JEDI) input-output modeling tool. The original tool was developed by the National Renewable Energy

  14. Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine

    Energy Savers [EERE]

    Platforms is Demonstrated | Department of Energy Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated August 17, 2015 - 10:04am Addthis Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Alana Duerr Alana Duerr Ph.D., Ocean Engineer (New West Technologies) More than 4,000 gigawatts of estimated

  15. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea

    Office of Environmental Management (EM)

    Surface, Subsurface and Airborne Electronic Systems | Department of Energy DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Report that assesses possible interference to various kinds of equipment operating in the marine environment where offshore wind farms could be installed. PDF icon

  16. New Report Highlights Trends in Offshore Wind with 14 Projects Currently In

    Office of Environmental Management (EM)

    Advanced Stages of Development | Department of Energy Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development September 3, 2014 - 10:57am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market over the past year, including two projects that have moved into the initial stages of

  17. U.S. Offshore Wind Manufacturing and Supply Chain Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy U.S. Offshore Wind Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current

  18. University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Michigan Gets Offshore Wind Ready for Winter on Lake Michigan University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am Addthis The University of Michigan received funding from EERE to develop a modeling tool to simulate surface water ice impact on offshore wind turbine designs, especially designs involving innovative substructures. The funding will be used to augment existing computer-aided engineering tools, used for

  19. EERE Success Story-University of Michigan Gets Offshore Wind Ready for

    Office of Environmental Management (EM)

    Winter on Lake Michigan | Department of Energy Michigan Gets Offshore Wind Ready for Winter on Lake Michigan EERE Success Story-University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am Addthis The University of Michigan received funding from EERE to develop a modeling tool to simulate surface water ice impact on offshore wind turbine designs, especially designs involving innovative substructures. The funding will be used to augment existing

  20. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stehly, Walt Musial Floating Substructure Sensitivities Global Market Trends * The global offshore wind industry is set to reach a deployment record with 4,000 megawatts (MW)...

  1. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, W.; Ram, B.

    2010-09-01

    This paper assesses the potential for U.S. offshore wind to meet the energy needs of many coastal and Great Lakes states.

  2. Large-scale Offshore Wind Power in the United States. Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, Walter; Ram, Bonnie

    2010-09-01

    This report describes the benefits of and barriers to large-scale deployment of offshore wind energy systems in U.S. waters.

  3. Energy Department Announces New Investments in Pioneering U.S. Offshore Wind Projects

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today announced seven offshore wind awards for projects in Maine, New Jersey, Ohio, Oregon, Texas and Virginia.

  4. DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms

    Office of Environmental Management (EM)

    | Department of Energy Funded Project Develops Safer Access to Offshore Wind Turbine Platforms DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms September 10, 2015 - 6:21pm Addthis More than 4,000 gigawatts of estimated gross offshore wind potential lies off the U.S. coastline-that's more than four times the current generation capacity of the United States. With the coastal and Great Lakes states consuming nearly 80% of our nation's electricity, offshore wind can

  5. Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.

  6. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Barahona, B.; Jonkman, J.; Damiani, R.; Robertson, A.; Hayman, G.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshore Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.

  7. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  8. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect (OSTI)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  9. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    SciTech Connect (OSTI)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  10. Aeroelastic Modeling of Large Off-shore Vertical-axis Wind Turbines: Development of the Offshore Wind Energy Simulation Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Downloaded by Daniel Griffith on April 12, 2013 | http://arc.aiaa.org | DOI: 10.2514/6.2013-1552 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference April 8-11, 2013, Boston, Massachusetts AIAA 2013-1552 This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. American Institute of Aeronautics and Astronautics 2 I. Introduction HE availability of offshore wind resources in coastal regions makes

  11. NREL: International Activities - Philippines Wind Resource Maps and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A map depicting wind resources at 100 meters of the republic of the Philippines. Additional Resources Wind Prospector A web-based GIS applications designed to support resource assessment and data exploration associated with wind development. Philippines Wind Viewer Tutorial Learn how to navigate, display, query and download Philippines data in the Wind Prospector. Philippines Geospatial Toolkit EXE 926.5 MB Philippines Wind Resource Maps and Data In 2014, under the Enhancing Capacity for Low

  12. NREL: Technology Deployment - Collegiate Wind Competition Prepares Students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Enter the Wind Energy Workforce Collegiate Wind Competition Prepares Students to Enter the Wind Energy Workforce News Energy Department Announces 2016 Collegiate Wind Competition Participants The Energy Department today announced the twelve collegiate teams that have been selected to participate in the Department's second Collegiate Wind Competition. Comeback Kids Win DOE's Collegiate Wind Competition Program Manager Jose Zayas talks about Penn State's come-from- behind victory in last

  13. NREL: Transmission Grid Integration - Eastern and Western Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datasets Eastern and Western Wind Integration Datasets These datasets were designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. Eastern Wind Dataset For the Eastern dataset, more than 1,326 simulated wind farms data points are available across the eastern United States. Western Wind Dataset For the Western dataset, more than 30,000 data points are available across the western United States. About the Eastern and

  14. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information Wind Resource Information Wind Data Models & Tools Publications...

  15. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resource data at various hub heights and spatial resolutions for both land-based and offshore data including the data used in the maps located at the WINDExchange and U.S. DOE...

  16. Department of Energy Awards $43 Million to Spur Offshore Wind Energy |

    Energy Savers [EERE]

    Department of Energy 3 Million to Spur Offshore Wind Energy Department of Energy Awards $43 Million to Spur Offshore Wind Energy September 8, 2011 - 9:46am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $43 million over the next five years to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The 41 projects across 20 states will advance wind turbine design tools and hardware, improve information about

  17. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    SciTech Connect (OSTI)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nations electricity from wind power by 2030. Achieving this 20% Wind Scenario in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nations wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  18. Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Mai, T.; Coles, L.

    2012-09-01

    This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

  19. NREL: Wind Research - NWTC Researchers Recognized for Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fOr Wind Farm Applications (SOWFA) and a second for their work with Siemens on blade aerodynamics. A third team received a patent award for their approach to wind turbine...

  20. NREL: Wind Research - Boise State University Wins Collegiate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boise State University Wins Collegiate Wind Competition 2015 A group of five men wearing blue shirts hold up their first place trophy in the center of the photo. Collegiate Wind...

  1. File:NREL-afg-wind.pdf | Open Energy Information

    Open Energy Info (EERE)

    afg-wind.pdf Jump to: navigation, search File File history File usage Afghanistan 50 m Wind Power (PDF) Size of this preview: 776 600 pixels. Full resolution (1,650 1,275...

  2. NREL: Transmission Grid Integration - Western Wind and Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Generation Integration Study Oahu Wind Integration & Transmission Study Hawaii Solar Integration Study Solar Integration National Dataset Toolkit Wholesale Electricity...

  3. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Miles, J.; Zammit, D.; Loomis, D.

    2015-02-01

    This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic. Researchers worked with developers and industry representatives in each region to create potential offshore wind deployment and supply chain growth scenarios, specific to their locations. These scenarios were used as inputs into the offshore JEDI model to estimate jobs and other gross economic impacts in each region.

  4. NREL: Wind Research - NREL to Play Pivotal Role in White House...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado-based Wind Turbine Technology Area will focus on developing advanced composites manufacturing processes for turbine components, including blades, hubs, and nacelles. By...

  5. DOE/NREL supported wind energy activities in Indonesia

    SciTech Connect (OSTI)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in village settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.

  6. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    SciTech Connect (OSTI)

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  7. Potential Economic Impacts from Offshore Wind in the Great Lakes Region (Fact Sheet)

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by DOE's National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Great Lakes region.

  8. Potential Economic Impacts from Offshore Wind in the Mid-Atlantic Region (Fact Sheet)

    SciTech Connect (OSTI)

    Keyser, D.; Tegen, S.; Flores, F.; Zammit, D.; Kraemer, M.; Miles, J.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Mid-Atlantic region.

  9. Potential Economic Impacts from Offshore Wind in the Gulf of Mexico Region (Fact Sheet)

    SciTech Connect (OSTI)

    Flores, F.; Keyser, D.; Tegen, S.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Gulf of Mexico region.

  10. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the

    Office of Environmental Management (EM)

    U.S. | Department of Energy Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating

  11. DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind

    Office of Environmental Management (EM)

    Development | Department of Energy Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development May 18, 2015 - 3:18pm Addthis The U.S. Department of Energy (DOE) is exploring the immense potential for offshore wind energy development off the Atlantic and Pacific coasts using high-tech research buoys. In December 2014, researchers from DOE's Pacific Northwest National Laboratory (PNNL) deployed one

  12. United States Offshore Wind Resource Map at 90 Meters

    Wind Powering America (EERE)

    Offshore Wind Speed at 90 m 10-JAN-2011 1.1.1 Wind Speed at 90 m m/s 11.5 - 12.0 11.0 - 11.5 10.5 - 11.0 10.0 - 10.5 9.5 - 10.0 9.0 - 9.5 8.5 - 9.0 8.0 - 8.5 7.5 - 8.0 7.0 - 7.5 6.5 - 7.0 6.0 - 6.5 0.0 - 6.0 mph 25.7 - 26.8 24.6 - 25.7 23.5 - 24.6 22.4 - 23.5 21.3 - 22.4 20.1 - 21.3 19.0 - 20.1 17.9 - 19.0 16.8 - 17.9 15.7 - 16.8 14.5 - 15.7 13.4 - 14.5 0.0 - 13.4

  13. NREL Identifies Investments for Wind Turbine Drivetrain Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and...

  14. NREL: Wind Research - New Study Reveals Potential 30% Penetration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Study Reveals Potential 30% Penetration of Wind and Solar for the Eastern Interconnection An illustrated map of the U.S. northeast and midwest showing transmission lines...

  15. NREL-Philippine Wind Farm Analysis and Site Selection Analysis...

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy, Wind Topics: Co-benefits assessment, - Energy Access, Low emission development...

  16. NREL: Wind Research - Energy Department Announces 2016 Collegiate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Department Announces 2016 Collegiate Wind Competition Participants February 18, 2015 The National Renewable Energy Laboratory is pleased to announce that the Energy...

  17. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York www.nrel.gov Baker and Belding installed a 10-kW Bergey Excel wind turbine in August 2011. Photo from Cross Island Farms, NREL/PIX 19923 Funding Summary * Total cost of wind turbine, including first developer: $82,000 * Total cost of wind turbine, excluding first developer: $73,000 * Total cost of solar: $40,000 * Propane generator: $8,000; including equipment, installation, and propane: $13,000 * USDA REAP grant:

  18. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  19. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  20. NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  2. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector

    Broader source: Energy.gov [DOE]

    Report that investigates the anticipated demand for various vessel types associated with offshore wind development in the United States through 2030 and assesses related market barriers and mitigating policy options.

  3. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As a pre-existing structure in a location with excellent offshore wind resources, the Chesapeake Light Tower provides a cost-effective alternative to building a new platform large...

  4. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Buhl, M. L., Jr.

    2007-06-01

    This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

  5. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

    2012-09-01

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  6. NREL Collaborative Improves the Reliability of Wind Turbine Gearboxes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    Gearbox failures have a significant impact on the cost of wind farm operations. To help minimize gearbox failures, in 2007 the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which consists of manufacturers, owners, researchers, and consultants. Based on all the lessons learned from the past five years, the GRC has now produced a new and improved design, which is projected to yield an operating lifetime of 12 years, more than triple that of the previous redesigned gearbox. The GRC findings will result in increased gearbox reliability and an overall reduction in the cost of wind energy.

  7. DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Programs, and More | Department of Energy Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More November 7, 2013 - 4:12pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration

  8. Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

    2014-04-01

    Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

  9. New Research Facility to Remove Hurdles to Offshore Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, 2013 - 1:59pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Virginia Beach, Virginia - A new U.S. Department of Energy (DOE) research facility could help bring the United States closer to generating power from the winds and

  10. First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of

    Office of Environmental Management (EM)

    Maine | Department of Energy First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - 12:33pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a floating platform in the ocean. Castine, Maine - On May 31, 2013, the University of Maine's

  11. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  12. 2004 Feature Stories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Feature Stories The following feature stories take an in-depth, behind-the-scenes look at how NREL is advancing energy efficiency and renewable energy technologies. December 2004 NREL - Keeping Up with the Rapidly Growing Wind Industry NREL - Keeping Up with the Rapidly Growing Wind Industry Wind energy-it's the fastest growing electricity-generating technology in the world. And thanks to the successful research and development partnerships between industry and DOE's Wind Program at NREL and

  13. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Phase 2 Research 2 Research Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) was initiated to determine the wear-and-tear costs and emissions impacts of cycling and to simulate grid operations to investigate the detailed impacts of wind and solar power on the fossil-fueled fleet in the West. Key Findings The negative impact of cycling on overall plant emissions is relatively small. The increase in plant emissions from cycling to accommodate variable renewables are more

  14. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

  15. Virginia Offshore Wind Technology Advancement Project on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... WEAs offshore New York and South Carolina. ... mammals, sea turtles, fishes, birds and other marine life; * Increased vessel ... However, it is possible that some tree bats may ...

  16. NREL: Wind Research - Subscribe to the @NWTC Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subscribe to the @NWTC Newsletter Subscribe or unsubscribe to @NWTC, the newsletter of the National Wind Technology Center. Subscribe Please provide and submit the following information to subscribe to the @NWTC newsletter. The mailing list addresses are never sold, rented, distributed, or disclosed in any way. Name (first & last): Organization/Affiliation: Email Address: Submit Clear Form Unsubscribe Please enter your email address to unsubscribe from the @NWTC mailing list. Email Address:

  17. Assessment of Ports for Offshore Wind Development in the United States

    SciTech Connect (OSTI)

    Elkinton, Chris; Blatiak, Alicia; Ameen, Hafsa

    2014-03-21

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carrying out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based on GL GH’s review of U.S. ports infrastructure and its readiness to support the development of proposed offshore wind projects in U.S. waters. Specific examples of facility costs and benefits are provided for five coastal regions (North Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Pacific) around the country. GL GH began this study by identifying the logistical requirements of offshore wind ports to service offshore wind. This review was based on lessons learned through industry practice in Northern Europe. A web-based port readiness assessment tool was developed to allow a capability gap analysis to be conducted on existing port facilities based on the identified requirements. Cost models were added to the assessment tool, which allowed GL GH to estimate the total upgrade cost to a port over the period 2014-2030 based on a set of regional project build-out scenarios. Port fee information was gathered from each port allowing an estimate of the potential revenue to the port under this same set of scenarios. The comparison of these revenue and improvement cost figures provides an initial indication of the level of offshore wind port readiness. To facilitate a more in-depth infrastructure analysis, six ports from different geographic regions, with varied levels of interest and preparedness towards offshore wind, were evaluated by modeling a range of installation strategies and port use types to identify gaps in capability and potential opportunities for economic development. Commonalities, trends, and specific examples from these case studies are presented and provide a summary of the current state of offshore wind port readiness in the U.S. and also illustrate the direction some ports have chosen to take to prepare for offshore wind projects. For example, the land area required for wind turbine and foundation manufacturing is substantial, particularly due to the large size of offshore wind components. Also, the necessary bearing capacities of the quayside and storage area are typically greater for offshore wind components than for more conventional cargo handling. As a result, most U.S. ports will likely require soil strength improvements before they can fully support offshore wind project construction. As U.S. ports and offshore wind developers look to work together on specific projects, they will encounter synergies and challenges. The challenges they face will include identifying sources of funding for the facility improvements required, and addressing ports’ typical desire to engage in long-term partnerships on the order of 10-20 years. Early projects will especially feel these challenges as they set the precedent for these partnerships in the United States. This study seeks to provide information about gaps, costs, and opportunities to aid these discussions.

  18. DOE Funds Advanced Magnet Lab and NREL to Develop Next-Generation

    Office of Environmental Management (EM)

    Drivetrains | Department of Energy Funds Advanced Magnet Lab and NREL to Develop Next-Generation Drivetrains DOE Funds Advanced Magnet Lab and NREL to Develop Next-Generation Drivetrains October 1, 2012 - 11:43am Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. Investing in next generation drivetrains can help lower the cost and improve the reliability of wind turbines, particularly in larger offshore applications. This includes both

  19. Environmental Risk Evaluation System (ERES) for Offshore Wind - Mock-Up of ERES, Fiscal Year 2010 Progress Report

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-01

    The Environmental Risk Evaluation System (ERES) has been created to set priorities among the environmental risks from offshore wind development. This report follows the conceptual design for ERES and shows what the system would look like, using a web interface created as part of a Knowledge Management System (KMS) for offshore wind. The KMS, called Zephyrus, and ERES for offshore wind, will be populated and made operational in a later phase of the project.

  20. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

    2013-11-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and analysis needs of the offshore wind community.

  1. Department of Energy Awards $43 Million to Spur Offshore Wind Energy |

    Office of Environmental Management (EM)

    Department of Energy Awards $43 Million to Spur Offshore Wind Energy Department of Energy Awards $43 Million to Spur Offshore Wind Energy October 3, 2011 - 12:00pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying

  2. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

  3. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The projects main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands Schools wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0C and -20C and wind speeds up to 40 miles per hour in the tunnels test section. The tunnels cooling unit maintained the tunnel temperature within 0.2C. The coatings evaluated in the study were Boyd Coatings Research Companys CRC6040R3, MicroPhase Coatings Inc.s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When comparing ice accumulation characteristics for the four coatings tested, for ice thickness during accumulation the CRC6040R3 had the least, followed by the ESL, Flex, and TP. However, when comparing the coatings ability to reduce ice adhesion, the Flex showed the highest adhesion reduction, followed by the ESL, TP and CRC 6040R3 coatings. The ice accumulated on the Flex coated surface shed under gravity when rotated 90 degrees following the tests while the other coatings required application of varying degrees of force to remove the ice. In conclusion, the ice coatings tested were not sufficient in preventing ice accumulation on all surfaces. However, Flex coating shows promise in mitigating ice on the rotor blades under the gravitational and centrifugal forces. Only the effect of gravity in shedding the ice was considered in this study. Further research will be needed to evaluate this coating on rotating blades in the icing tunnel to characterize its effectiveness. Lastly, the development of economic feasibility models used existing approaches adapted for offshore deployment in marine settings to one more suitable for Lake Erie deployment. Two different wind turbine models were tested and dynamic return on investment (ROI) model scenarios were generated. For the purpose of estimating power generation three bladed wind turbines of 3 MW capacity were selected including Model1- Leitwind LTW101-3.000-kW and Model2-Vostro V90-3.0 MW. The analysis were based on the revenue aspect of decision making of deploying wind turbines in the Ohio coastal region. The installation cost, maintenance and operational aspects were disregarded due to unavailability of data. The adjusted varying price (residential and industrial sector) and projected future price of electricity in different years suggested that the Leitwind model could generate $32.4 million of revenue in 25 years if the supply electricity is in the residential sector, while it would be $14.7million if the supply is in the industrial sector. For the Vostro model these figures are $28.6 million for residential sector and $12.9 million for industrial sector for 25 years.

  4. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  5. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  6. WindFloat Feasibility Study Support. Cooperative Research and Development Final Report, CRADA Number CRD-11-419

    SciTech Connect (OSTI)

    Sirnivas, Senu

    2015-05-07

    This shared resource CRADA defines research collaborations between the National Renewable Energy Laboratory and Principle Power, Inc. and its subsidiaries (“Principle Power”). Under the terms and conditions described in this CRADA agreement, NREL and Principle Power will collaborate on the DEMOWFLOAT project, a full-scale 2-MW demonstration project of a novel floating support structure for large offshore wind turbines, called WindFloat. The purpose of the project is to demonstrate the longterm field performance of the WindFloat design, thus enabling the future commercialized deployment of floating deepwater offshore wind power plants. NREL is the leading U.S. Department of Energy (DOE) laboratory for the development and advancement of renewable energy and has a strong interest in offshore wind and the development of deepwater offshore wind systems. NREL will provide expertise and resources to the DEMOWFLOAT project in assessing the environmental impacts, independent technical performance validation, and engineering analysis. Principle Power is a Seattle, Washington-based renewable energy company that owns all the intellectual property associated with the WindFloat. In return for NREL’s support of the DEMOWFLOAT project, Principle Power will provide NREL with valuable test data from the project that will be used to validate the numerical tools developed by NREL for analyzing offshore wind turbines. In addition, NREL will gain experience and knowledge in offshore wind designs and testing methods through this collaboration. 2 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. NREL and Principle Power will work together to advance floating offshore wind technology, and demonstrate its viability for supplying the world with a new clean energy source.

  7. Assessment of Offshore Wind Energy Resources for the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Hawaii, Alaska, and U.S. territories are handled separately. 3) Gulf of Mexico ... Wind Resource Estimates Annual average wind speeds are closely related to the available ...

  8. Offshore Wind Project Surges Ahead in South Carolina

    Broader source: Energy.gov [DOE]

    The Center for Marine and Wetland Studies studies wind speed data from buoys, which have been measuring wind speed and direction for the past year.

  9. 2014-2015 Offshore Wind Technologies Market Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consulting, the American Wind Energy Association, the Great Lakes Wind Collaborative, Green Giraffe Energy Bankers, Ocean and Coastal Consultants (a COWI company), and Tetra...

  10. NREL: Awards and Honors - North Wind 100/20 Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Wind 10020 Wind Turbine Developers: Gerry Nix and Brian Smith, National Renewable Energy Laboratory; Johnathan Lynch, Clint Coleman, Garrett Bywaters, and Rob Roland,...

  11. Potential Economic Impacts from Offshore Wind in the Southeast Region (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Southeast (defined here as Georgia, South Carolina, North Carolina, and Virginia).

  12. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform

    SciTech Connect (OSTI)

    Gevorgian, V.

    2012-02-01

    An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

  13. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  14. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

    2013-07-01

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  15. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    B. Maples, G. Saur, M. Hand (NREL), R. van de Pietermen and T. Obdam (Energy Research Centre)

    2013-07-09

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  16. Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power

    Energy Savers [EERE]

    | Department of Energy Deepwater Platform Aims to Harness Offshore Wind and Wave Power Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power March 28, 2011 - 5:55pm Addthis An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. |

  17. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    SciTech Connect (OSTI)

    Wissemann, Chris; White, Stanley M

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. • Developed a cost model and “baseline” LCOE • Documented Site Conditions within Lake Erie • Developed Fabrication, Installation and Foundations Innovative Concept Designs • Evaluated LCOE Impact of Innovations • Developed Assembly line “Rail System” for GBF Construction and Staging • Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System • Developed GBF with “Penetration Skirt” • Developed Integrated GBF with Turbine Tower • Developed Turbine, Plant Layout and O&M Strategies The report details lowering LCOE by 22.3% and identified additional strategies that could further lower LCOE when building an utility scale wind farm in the Great Lakes.

  18. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  19. Apex Offshore Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Apex Offshore Phase 2 Facility Apex Offshore Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind...

  20. Apex Offshore Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    1 Jump to: navigation, search Name Apex Offshore Phase 1 Facility Apex Offshore Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind...