National Library of Energy BETA

Sample records for npcc mapp miso

  1. Property:EIA/861/NercNpcc | Open Energy Information

    Open Energy Info (EERE)

    Description: Nerc Npcc Entity conducts business operations within the NPCC region (Y or N) 1 References EIA Form EIA-861 Final Data File for 2008 - F861 File...

  2. QER- Comment of MISO

    Broader source: Energy.gov [DOE]

    The Midcontinent Independent System Operator, Inc. (MISO), respectfully submits two studies to the Department of Energy (DOE) for consideration in preparing its Quadrennial Energy Review (QER) on transmission, storage and distribution infrastructure. MISO also presented to DOE on the QER at the Newark, NJ public session held on September 8, 2014. MISO appreciates that opportunity. In addition to the material presented in Newark, MISO recently completed two studies on transmission and energy storage in the MISO footprint, which covers all or parts of 15 states in the middle of the Unites States.

  3. MISO_Renewable_template

    Office of Environmental Management (EM)

    8,2011 MISO Comments for the DOE Congestion Workshop 2 MISO Guiding Principles from BOD Conditions Precedent to Build Transmission Transmission Corridor Identification Process Using the Congestion Study Information * Set of planning principles - EISPC-State regulatory, Governor's offices inputs - National policy ? * Studies provide information to make decisions for the above processes - 2012 Congestion Study- actual and regional study results to show where the congestion is and the cost of

  4. EA-343 Midwest Independent Transmission Operator (MISO) | Department of

    Energy Savers [EERE]

    Energy 3 Midwest Independent Transmission Operator (MISO) EA-343 Midwest Independent Transmission Operator (MISO) Order authorizing Midwest Independent Transmission Operator (MISO) to export electric energy to Canada PDF icon EA-343 Midwest Independent Transmission Operator (MISO) More Documents & Publications Application for Presidential Permit OE Docket No. PP-230-4 International Transmission Co: Answer to NYISO from MISO and IESO EA-227-A New York Independent System Operator

  5. Application for Presidential Permit OE Docket No. PP-230-4 International Transmission Co: Answer to NYISO from MISO and IESO

    Broader source: Energy.gov [DOE]

    The Midwest Independent Transmission System Operator (MISO) and the Independent Electricity System Operator (IESO) submit joint comments in response to the intervene and request for comment by New...

  6. HQ Energy Services (US), Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 21249 Utility Location Yes Ownership W NERC Location NPCC NERC NPCC Yes RTO PJM Yes ISO NY Yes ISO MISO Yes ISO NE Yes Activity Generation Yes Activity Buying...

  7. The generation fleet in MISO is being affected by time, fuel prices and multiple phases of environmental regulations

    Broader source: Energy.gov (indexed) [DOE]

    September 8, 2014 1 MISO's Scope * End-use Customers: 42 million * Maximum Demand: 133,000 MW * Transmission (69 - 500kV): 66,000 miles * Generation: 201,000 MW * Market Participants: 401 * Gross Market Charges: $20.3 billion (2013) Reliability Footprint 2 * Resource Adequacy / Changing Fleet - Renewables Integration - Coal Retirements - Nuclear Challenges - Gas Growth and Cost Reduction * Gas - Electric Coordination - To address growing reliance on gas as a generation fuel * Seams Optimization

  8. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect (OSTI)

    Allain, Jean-Paul

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  9. JP Morgan | Open Energy Information

    Open Energy Info (EERE)

    NPCC Yes NERC RFC Yes NERC SERC Yes NERC SPP Yes NERC WECC Yes ISO CA Yes ISO Ercot Yes RTO PJM Yes ISO NY Yes RTO SPP Yes ISO MISO Yes ISO NE Yes ISO Other Yes Activity Retail...

  10. Nick's Utility | Open Energy Information

    Open Energy Info (EERE)

    Ownership F NERC Location WECC, MAPP NERC MRO Yes NERC SPP Yes NERC WECC Yes ISO CA Yes RTO SPP Yes ISO MISO Yes ISO Other Yes Activity Generation Yes Activity Transmission Yes...

  11. EA-343_MISO_Emergency_Temp.pdf

    Office of Environmental Management (EM)

  12. Property:EIA/861/IsoMiso | Open Energy Information

    Open Energy Info (EERE)

    + Bremen Electric Light & Power Co + true + Brodhead Water & Lighting Comm + true + Butler Rural Electric Coop Inc + true + C Cannelton Utilities + true + Carroll County REMC +...

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.12a Electric Noncoincident Peak Load and Capacity Margin: Summer Peak Period, 1986-2011 (Megawatts, Except as Noted) Year Noncoincident Peak Load 1 by North American Electric Reliability Corporation (NERC) 2 Regional Assessment Area Capacity Margin 21 (percent) Eastern Interconnection ERCOT 4 Western Inter- connection All Inter- connections FRCC 5 NPCC 6 Balance of Eastern Region 3 ECAR 7,8 MAAC 8,9 MAIN 8,10 MAPP 11

  14. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and 2004 through 2008 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"ECAR",,,"FRCC",,,"MAAC",,,"MAIN",,,"MAPP/MRO",,,"NPCC",,,"SERC",,,"SPP",,,"ERCOT",,,"WECC" "

  15. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and 2005 through 2009 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"ECAR",,,"FRCC",,,"MAAC",,,"MAIN",,,"MAPP/MRO",,,"NPCC",,,"SERC",,,"SPP",,,"ERCOT",,,"WECC" "

  16. ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    d. Historical Noncoincident Winter Peak Load, Actual by North American Electric Reliability Council Region, 1990 through 2004 " ,"(Megawatts)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,,"Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.)

  17. monthly_peak_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    O Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, 1996 through 2003 and Projected 2004 through 2005 (Megawatts and 2003 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid ECAR FRCC MAAC MAIN MAPP/MR NPCC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW)

  18. monthly_peak_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, 1996 through 2004 and Projected 2005 through 2006 (Megawatts and 2004 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid ECAR FRCC MAAC MAIN MAPP/MRO NPCC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour

  19. winter_peak_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    ) Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 2b . Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, 1990 through 2003 and Projected 2004 through 2008 (Megawatts and 2003 Base Year) Winter Noncoincident Peak Load Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP (U.S. NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990/1991 484,231 67,097

  20. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data sources to identify congestion in the Midwest * MISO LMP's * MISO Top Congested Flowgate Study * MISO MTEP and CMVPs * Interconnection and queue requests * NREL Studies: JCSP, ...

  1. The generation fleet in MISO is being affected by time, fuel...

    Broader source: Energy.gov (indexed) [DOE]

    MATS CSAPR & CWIS Clean Power Plan 111(b) & (d) Nature of Regulation Mercury and Air Toxics Standards Cross State Air Pollution Rule and Cooling Water Regulations (316(b)) New air ...

  2. Microsoft PowerPoint - MISO-SPP Market Impacts HydPwrConf 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slide 7 Southwestern Power Administration early afternoon operating day prior. Customer Electrical Demand Loads Transmission System ConditionsOutages Electrical System Operations ...

  3. net_energy_load_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 (Thousands of Megawatthours and 2003 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 2,886,496 442,507 142,502 221,099 197,326 127,102 250,681 485,205 252,037 209,789 558,248 1991 2,941,669 450,586 146,903 228,588 205,880 129,826 253,701 501,794 257,434 211,568 555,389 1992 2,942,910 450,853 147,464

  4. net_energy_load_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 (Thousands of Megawatthours and 2004 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP/MRO (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 2,886,496 442,507 142,502 221,099 197,326 127,102 250,681 485,205 252,037 209,789 558,248 1991 2,941,669 450,586 146,903 228,588 205,880 129,826 253,701 501,794 257,434 211,568 555,389 1992 2,942,910 450,853

  5. summer_peak_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 (Megawatts and 2003 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 546,331 79,258 27,266 42,613 40,740 24,994 44,116 94,677 52,541 42,737 97,389 1991 551,418 81,224 28,818 45,937 41,598 25,498 46,594 95,968 51,885 41,870 92,026 1992 548,707 78,550 30,601 43,658 38,819 22,638 43,658 97,635 51,324 42,619

  6. summer_peak_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 (Megawatts and 2004 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP/MRO (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 546,331 79,258 27,266 42,613 40,740 24,994 44,116 94,677 52,541 42,737 97,389 1991 551,418 81,224 28,818 45,937 41,598 25,498 46,594 95,968 51,885 41,870 92,026 1992 548,707 78,550 30,601 43,658 38,819 22,638 43,658 97,635 51,324

  7. President Obama Announces More Key Administration Posts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... He served as a Board Member, Secretary and President of the Organization of Midwest Independent System Operator (MISO) States as well as Chairman of the MISO Demand Response ...

  8. EIS-0465: Pepco Holdings, Inc. Mid-Atlantic Power Path (MAPP) Project, Prince George's, Calvert, and Wicomico Counties, Maryland, and Sussex County, Delaware

    Broader source: Energy.gov [DOE]

    Pepco Holdings, Inc., cancelled its proposed Phase II of the Mid-Atlantic Power Pathway transmission line project and DOE cancelled preparation of an EIS on the potential environmental impacts of a proposed federal loan guarantee for the project.

  9. Village of Solvay, New York (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Id 17512 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  10. New York Mun Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Id 13539 Utility Location Yes Ownership A NERC Location NPCC NERC NPCC Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  11. Vermont Yankee Nucl Pwr Corp | Open Energy Information

    Open Energy Info (EERE)

    Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  12. Town of Boylston, Massachusetts (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    2010 - File1a1 EIA Form 861 Data Utility Id 2086 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity...

  13. Energy Coop of New York, Inc | Open Energy Information

    Open Energy Info (EERE)

    2010 - File1a1 EIA Form 861 Data Utility Id 5880 Utility Location Yes Ownership R NERC Location NPCC NERC NPCC Yes Activity Retail Marketing Yes This article is a stub. You can...

  14. Town of Wakefield, Massachusetts (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 19979 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Buying Transmission Yes Activity Distribution Yes...

  15. Rockland Electric Co | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 16213 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes This article is a stub. You...

  16. Energetix | Open Energy Information

    Open Energy Info (EERE)

    Utility Location Yes Ownership R NERC Location NPCC NERC NPCC Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by...

  17. Sempra Energy Trading Corp | Open Energy Information

    Open Energy Info (EERE)

    Location Yes Ownership R NERC Location NPCC Activity Buying Transmission Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes This article is a stub. You can help...

  18. Massachusetts Bay Trans Auth | Open Energy Information

    Open Energy Info (EERE)

    NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes This...

  19. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also...

  20. AES Eastern Energy LP | Open Energy Information

    Open Energy Info (EERE)

    NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  1. Connecticut Municipal Electric Energy Cooperative | Open Energy...

    Open Energy Info (EERE)

    NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it....

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    A. U.S. Transmission Circuit Outages by Type and NERC region, 2013 Outage Type FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages...

  3. Agway Energy Services, LLC | Open Energy Information

    Open Energy Info (EERE)

    2010 - File1a1 EIA Form 861 Data Utility Id 113 Utility Location Yes Ownership R NERC Location NPCC ISO NY Yes Activity Retail Marketing Yes This article is a stub. You can...

  4. Major Energy Electric Services | Open Energy Information

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 56504 Utility Location Yes Ownership R NERC Location NPCC ISO NY Yes Activity Retail Marketing Yes This article is a stub. You can...

  5. Glacial Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id 54871 Utility Location Yes Ownership R NERC ERCOT Yes NERC MRO Yes NERC NPCC Yes NERC RFC Yes Activity...

  6. Robison Energy, LLC | Open Energy Information

    Open Energy Info (EERE)

    EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id 16177 Utility Location Yes Ownership R NERC NPCC Yes Activity Retail Marketing Yes This article is a...

  7. Application for Presidential Permit OE Docket No. PP-400 TDI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Power Coordinating Council, Inc. (NPCC) submits its Motion to Intervene the New England Clean Power Link Project pursuant to Rules 212 and 214 of the Rules of Practice ...

  8. NYSEG Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Utility Id 26650 Utility Location Yes Ownership R NERC NPCC Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by...

  9. Atkinson County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Atkinson County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2932161, -82.8640623 Show Map Loading map... "minzoom":false,"mapp...

  10. Quartz Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Quartz Hill, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6452645, -118.2181308 Show Map Loading map... "minzoom":false,"mapp...

  11. Moffat County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moffat County, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6138379, -108.2377519 Show Map Loading map... "minzoom":false,"mapp...

  12. Hoffman Estates, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hoffman Estates, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0428051, -88.079795 Show Map Loading map... "minzoom":false,"mapp...

  13. University Heights, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    University Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4978306, -81.5373456 Show Map Loading map... "minzoom":false,"mapp...

  14. Vermillion, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vermillion, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7794417, -96.9292104 Show Map Loading map... "minzoom":false,"mapp...

  15. Onondaga County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Onondaga County, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.026819, -76.1783739 Show Map Loading map... "minzoom":false,"mapp...

  16. Doctor Phillips, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Doctor Phillips, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4494501, -81.4922945 Show Map Loading map... "minzoom":false,"mapp...

  17. Brookhaven, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brookhaven, West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6117487, -79.904506 Show Map Loading map... "minzoom":false,"mapp...

  18. Waimanalo Beach, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Waimanalo Beach, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3402778, -157.7027778 Show Map Loading map... "minzoom":false,"mapp...

  19. Pondera County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pondera County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.2321517, -112.2886317 Show Map Loading map... "minzoom":false,"mapp...

  20. Granite County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Granite County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.3374643, -113.4647823 Show Map Loading map... "minzoom":false,"mapp...

  1. Daniels County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Daniels County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.7744137, -105.7248763 Show Map Loading map... "minzoom":false,"mapp...

  2. Rosebud County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rosebud County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.3904836, -106.5944313 Show Map Loading map... "minzoom":false,"mapp...

  3. Cascade County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cascade County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4688355, -111.5453228 Show Map Loading map... "minzoom":false,"mapp...

  4. Inyo County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inyo County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3091865, -117.5495846 Show Map Loading map... "minzoom":false,"mapp...

  5. Napa County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Napa County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.5024689, -122.2653887 Show Map Loading map... "minzoom":false,"mapp...

  6. Yolo County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yolo County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7646021, -121.9017954 Show Map Loading map... "minzoom":false,"mapp...

  7. Mass Energy Consumers Alliance | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Zip: 02130 Region: Greater Boston Area Website: www.massenergy.comindex.html Coordinates: 42.3123967, -71.1141461 Show Map Loading map... "minzoom":false,"mapp...

  8. Hampstead, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hampstead, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8745323, -71.1811714 Show Map Loading map... "minzoom":false,"mapp...

  9. Greenland, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Greenland, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0361995, -70.8328322 Show Map Loading map... "minzoom":false,"mapp...

  10. Woodstock, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Woodstock, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9775681, -71.6850802 Show Map Loading map... "minzoom":false,"mapp...

  11. Haverhill, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Haverhill, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0345102, -72.0639781 Show Map Loading map... "minzoom":false,"mapp...

  12. Littleton, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Littleton, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3061725, -71.7700885 Show Map Loading map... "minzoom":false,"mapp...

  13. Franconia, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Franconia, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2270075, -71.7478646 Show Map Loading map... "minzoom":false,"mapp...

  14. Newmarket, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Newmarket, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2778549, -71.8734139 Show Map Loading map... "minzoom":false,"mapp...

  15. Newington, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Newington, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1000871, -70.8336668 Show Map Loading map... "minzoom":false,"mapp...

  16. Deerfield, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Deerfield, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2306195, -71.6170274 Show Map Loading map... "minzoom":false,"mapp...

  17. Livermore, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Livermore, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0745127, -71.3772971 Show Map Loading map... "minzoom":false,"mapp...

  18. Merrimack, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Merrimack, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8650864, -71.4934004 Show Map Loading map... "minzoom":false,"mapp...

  19. Nottingham, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nottingham, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1145285, -71.099784 Show Map Loading map... "minzoom":false,"mapp...

  20. Newfields, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Newfields, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0370316, -70.9383906 Show Map Loading map... "minzoom":false,"mapp...

  1. Brentwood, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brentwood, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9786981, -71.0728369 Show Map Loading map... "minzoom":false,"mapp...

  2. Shelburne, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Shelburne, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4011722, -71.0747975 Show Map Loading map... "minzoom":false,"mapp...

  3. Mountain View, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain View, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7744311, -105.0555389 Show Map Loading map... "minzoom":false,"mapp...

  4. Battle Mountain, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Battle Mountain, Nevada: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6421334, -116.9342671 Show Map Loading map... "minzoom":false,"mapp...

  5. Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8053663, -94.7674486 Show Map Loading map... "minzoom":false,"mapp...

  6. Savage-Guilford, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Savage-Guilford, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.144487, -76.8317325 Show Map Loading map... "minzoom":false,"mapp...

  7. Sustec Schwarze Pumpe GmbH SVZ | Open Energy Information

    Open Energy Info (EERE)

    Pumpe turns various components such as - plastics, wood and municipal waste - into methanol. Coordinates: 51.505621, 14.335806 Show Map Loading map... "minzoom":false,"mapp...

  8. Great Bend, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Great Bend, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1538473, -96.8020228 Show Map Loading map... "minzoom":false,"mapp...

  9. Augusta County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Augusta County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.2004562, -79.2451149 Show Map Loading map... "minzoom":false,"mapp...

  10. Amherst County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Amherst County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.5588285, -79.1096901 Show Map Loading map... "minzoom":false,"mapp...

  11. Hanover County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hanover County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7772071, -77.5160788 Show Map Loading map... "minzoom":false,"mapp...

  12. Cumberland Center, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cumberland Center, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7964679, -70.2589388 Show Map Loading map... "minzoom":false,"mapp...

  13. Falmouth Foreside, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Falmouth Foreside, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7348031, -70.2078262 Show Map Loading map... "minzoom":false,"mapp...

  14. Albuquerque, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Albuquerque, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0844909, -106.6511367 Show Map Loading map... "minzoom":false,"mapp...

  15. Alfalfa County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7435919, -98.3964938 Show Map Loading map... "minzoom":false,"mapp...

  16. Broad Brook, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Broad Brook, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9123195, -72.5450873 Show Map Loading map... "minzoom":false,"mapp...

  17. Eclipse | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Adair IA Coordinates 41.53604897, -94.65567112 Show Map Loading map... "minzoom":false,"mapp...

  18. Roeder Farms | Open Energy Information

    Open Energy Info (EERE)

    Developer 5045 Wind Partners Energy Purchaser Alliant Energy Location Des Moines IA Coordinates 43.29729211, -93.28315258 Show Map Loading map... "minzoom":false,"mapp...

  19. Laurel | Open Energy Information

    Open Energy Info (EERE)

    RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Haverhill IA Coordinates 41.89096884, -92.97214508 Show Map Loading map... "minzoom":false,"mapp...

  20. Morning Light | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Casey IA Coordinates 41.44819506, -94.58280087 Show Map Loading map... "minzoom":false,"mapp...

  1. Bulldog | Open Energy Information

    Open Energy Info (EERE)

    Bulldog LLC Energy Purchaser Farmers' Cooperative of Greenfield Location Greenfield IA Coordinates 41.22708706, -94.43487167 Show Map Loading map... "minzoom":false,"mapp...

  2. Wolverine | Open Energy Information

    Open Energy Info (EERE)

    Wolverine LLC Energy Purchaser Farmers' Cooperative of Greenfield Location Greenfield IA Coordinates 41.39310112, -94.44487095 Show Map Loading map... "minzoom":false,"mapp...

  3. Pioneer Grove | Open Energy Information

    Open Energy Info (EERE)

    Acciona Energy Energy Purchaser Central Iowa Power Cooperative Location Mechanicsville IA Coordinates 41.85086289, -91.23407364 Show Map Loading map... "minzoom":false,"mapp...

  4. Meadow Ridge | Open Energy Information

    Open Energy Info (EERE)

    (community owned) Energy Purchaser Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.39004255, -94.44637299 Show Map Loading map... "minzoom":false,"mapp...

  5. Cumberland Rose | Open Energy Information

    Open Energy Info (EERE)

    Purchaser City of Fontanelle - excess to Central Iowa Power Coopeative Location Orient IA Coordinates 41.22534409, -94.44139481 Show Map Loading map... "minzoom":false,"mapp...

  6. Kirkwood Community College | Open Energy Information

    Open Energy Info (EERE)

    Kirkwood Community College Energy Purchaser Alliant Energy Location Cedar Rapids IA Coordinates 41.91674479, -91.65078163 Show Map Loading map... "minzoom":false,"mapp...

  7. New Harvest | Open Energy Information

    Open Energy Info (EERE)

    Iberdrola Renewables Energy Purchaser ComEd and Ameren Illinois Location Schleswig IA Coordinates 42.16197194, -95.44696569 Show Map Loading map... "minzoom":false,"mapp...

  8. Elk | Open Energy Information

    Open Energy Info (EERE)

    Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Greeley IA Coordinates 42.58659755, -91.36861324 Show Map Loading map... "minzoom":false,"mapp...

  9. New London | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Developer Shermco Industries Location New London IA Coordinates 40.95478446, -91.39509201 Show Map Loading map... "minzoom":false,"mapp...

  10. Hawkeye | Open Energy Information

    Open Energy Info (EERE)

    Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Rippey IA Coordinates 42.92513165, -92.02989578 Show Map Loading map... "minzoom":false,"mapp...

  11. ALD Vacuum Technologies GmbH | Open Energy Information

    Open Energy Info (EERE)

    vacuum process equipment, including polycrystalline silicon furnaces for PV feedstock recycling. Coordinates: 50.135387, 8.916574 Show Map Loading map... "minzoom":false,"mapp...

  12. CoastalXethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Savannah, Georgia Product: Focused on development of ethanol plants. Coordinates: 35.224485, -88.245639 Show Map Loading map... "minzoom":false,"mapp...

  13. Vista Center, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vista Center, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.1592798, -74.3179248 Show Map Loading map... "minzoom":false,"mapp...

  14. Mingyang | Open Energy Information

    Open Energy Info (EERE)

    search Name: Mingyang Place: Beijing, China Sector: Wind energy Product: Wind Turbines Coordinates: 39.904667, 116.408198 Show Map Loading map... "minzoom":false,"mapp...

  15. Canadian Hills (Repower) | Open Energy Information

    Open Energy Info (EERE)

    Energy Energy Purchaser Oklahoma Municipal Power Authority SWEPCO Location Calumet OK Coordinates 35.66212553, -98.12820911 Show Map Loading map... "minzoom":false,"mapp...

  16. Blackwell | Open Energy Information

    Open Energy Info (EERE)

    Energy Purchaser Oklahoma State University via Oklahoma Gas & Electric Location Nardin OK Coordinates 36.85261694, -97.43310928 Show Map Loading map... "minzoom":false,"mapp...

  17. Canadian Hills (Mitsubishi) | Open Energy Information

    Open Energy Info (EERE)

    Energy Energy Purchaser Oklahoma Municipal Power Authority SWEPCO Location Calumet OK Coordinates 35.69756036, -98.20438385 Show Map Loading map... "minzoom":false,"mapp...

  18. Minco III | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Energy Purchaser Golden Spread Electric Cooperative Location Minco OK Coordinates 35.35444115, -98.13928127 Show Map Loading map... "minzoom":false,"mapp...

  19. Chisolm View | Open Energy Information

    Open Energy Info (EERE)

    Developer TradeWind Energy Energy Purchaser Alabama Power Company Location Hunter OK Coordinates 36.59527057, -97.54501104 Show Map Loading map... "minzoom":false,"mapp...

  20. Bitter Springs, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bitter Springs, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6285991, -111.6543255 Show Map Loading map... "minzoom":false,"mapp...

  1. Germencik Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Facility Power Plant Sector Geothermal energy Location Information Location Aydin, Turkey Coordinates 37.878694084384, 27.608050344279 Loading map... "minzoom":false,"mapp...

  2. Gumuskoy Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant, ORC Sector Geothermal energy Location Information Location Ortaklar, Aydin, Turkey Coordinates 37.859153868187, 27.476995463949 Loading map... "minzoom":false,"mapp...

  3. South Park Township, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Park Township, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.29695, -79.993864 Show Map Loading map... "minzoom":false,"mapp...

  4. Sunland Park, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sunland Park, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.796496, -106.5799891 Show Map Loading map... "minzoom":false,"mapp...

  5. Eddy County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eddy County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4170622, -104.4723301 Show Map Loading map... "minzoom":false,"mapp...

  6. Quay County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Quay County, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9569924, -103.7289167 Show Map Loading map... "minzoom":false,"mapp...

  7. New Kingman-Butler, Arizona: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Kingman-Butler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2593696, -114.0190671 Show Map Loading map... "minzoom":false,"mapp...

  8. Brimfield, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brimfield, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1228721, -72.2009117 Show Map Loading map... "minzoom":false,"mapp...

  9. Wilbraham, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wilbraham, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1237053, -72.4314731 Show Map Loading map... "minzoom":false,"mapp...

  10. Weweantic, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Weweantic, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7353817, -70.7319794 Show Map Loading map... "minzoom":false,"mapp...

  11. Blandford, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Blandford, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1806463, -72.9273224 Show Map Loading map... "minzoom":false,"mapp...

  12. Lynnfield, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lynnfield, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.5389836, -71.0481084 Show Map Loading map... "minzoom":false,"mapp...

  13. Brookline, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brookline, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.3317642, -71.1211635 Show Map Loading map... "minzoom":false,"mapp...

  14. Sturbridge, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sturbridge, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.108428, -72.0786871 Show Map Loading map... "minzoom":false,"mapp...

  15. Topsfield, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Topsfield, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6375935, -70.9494966 Show Map Loading map... "minzoom":false,"mapp...

  16. Watertown, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Watertown, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.3709299, -71.1828321 Show Map Loading map... "minzoom":false,"mapp...

  17. Wellesley, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wellesley, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.2964859, -71.2925571 Show Map Loading map... "minzoom":false,"mapp...

  18. Southwick, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Southwick, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0548167, -72.7703724 Show Map Loading map... "minzoom":false,"mapp...

  19. Royalston, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Royalston, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6775856, -72.1878604 Show Map Loading map... "minzoom":false,"mapp...

  20. Granville, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Granville, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0667605, -72.8614874 Show Map Loading map... "minzoom":false,"mapp...

  1. Washington County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington County, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.548737, -85.684578 Show Map Loading map... "minzoom":false,"mapp...

  2. Washington County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.962702, -82.820974 Show Map Loading map... "minzoom":false,"mapp...

  3. Lemon Grove, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lemon Grove, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7425516, -117.0314172 Show Map Loading map... "minzoom":false,"mapp...

  4. French Camp, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    French Camp, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8840922, -121.2710555 Show Map Loading map... "minzoom":false,"mapp...

  5. Wabaunsee County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wabaunsee County, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9092089, -96.1526985 Show Map Loading map... "minzoom":false,"mapp...

  6. Yucca Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yucca Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1141743, -116.432235 Show Map Loading map... "minzoom":false,"mapp...

  7. Clendenin, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Clendenin, West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.4887089, -81.3481745 Show Map Loading map... "minzoom":false,"mapp...

  8. Morgantown, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Morgantown, West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.629526, -79.9558968 Show Map Loading map... "minzoom":false,"mapp...

  9. Simsbury Center, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Simsbury Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.88295, -72.81138 Show Map Loading map... "minzoom":false,"mapp...

  10. Essex Village, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Essex Village, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.355949, -72.389488 Show Map Loading map... "minzoom":false,"mapp...

  11. Southington, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Southington, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5964869, -72.8776013 Show Map Loading map... "minzoom":false,"mapp...

  12. Hazardville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hazardville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9873187, -72.5448093 Show Map Loading map... "minzoom":false,"mapp...

  13. New Britain, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Britain, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6612104, -72.7795419 Show Map Loading map... "minzoom":false,"mapp...

  14. Tariffville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tariffville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9087087, -72.7600951 Show Map Loading map... "minzoom":false,"mapp...

  15. Willimantic, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Willimantic, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7106543, -72.2081338 Show Map Loading map... "minzoom":false,"mapp...

  16. El Dorado Hills, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dorado Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.6857367, -121.082167 Show Map Loading map... "minzoom":false,"mapp...

  17. Abita Springs, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Abita Springs, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.4785257, -90.0375755 Show Map Loading map... "minzoom":false,"mapp...

  18. Carrboro, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carrboro, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9101438, -79.0752895 Show Map Loading map... "minzoom":false,"mapp...

  19. Alamance, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alamance, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.0351361, -79.4858549 Show Map Loading map... "minzoom":false,"mapp...

  20. Matthews, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Matthews, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1168131, -80.7236804 Show Map Loading map... "minzoom":false,"mapp...

  1. Asheville, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Asheville, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6009452, -82.554015 Show Map Loading map... "minzoom":false,"mapp...

  2. Genesee County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Genesee County, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9837843, -78.1564432 Show Map Loading map... "minzoom":false,"mapp...

  3. Val Verde County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Val Verde County, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.8687682, -101.1617356 Show Map Loading map... "minzoom":false,"mapp...

  4. Nantucket School | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Nantucket School Energy Purchaser Nantucket School Location Nantucket MA Coordinates 41.27214604, -70.09777308 Show Map Loading map... "minzoom":false,"mapp...

  5. Town of Barnstable | Open Energy Information

    Open Energy Info (EERE)

    Service Owner Town of Barnstable Energy Purchaser Town of Barnstable Location Barnstable MA Coordinates 41.66402376, -70.30557185 Show Map Loading map... "minzoom":false,"mapp...

  6. Hanover | Open Energy Information

    Open Energy Info (EERE)

    Under Construction Owner City of Hanover Developer City of Hanover Location Hanover MA Coordinates 42.13095657, -70.83262324 Show Map Loading map... "minzoom":false,"mapp...

  7. Clarian Power | Open Energy Information

    Open Energy Info (EERE)

    Power Place: Seattle, Washington Sector: Solar Website: www.clariantechnologies.comma Coordinates: 47.6062095, -122.3320708 Show Map Loading map... "minzoom":false,"mapp...

  8. Ipswich | Open Energy Information

    Open Energy Info (EERE)

    Purchaser Ipswich Municipal Light Department Ipswich Public Schools Location Ipswich MA Coordinates 42.71649202, -70.84198147 Show Map Loading map... "minzoom":false,"mapp...

  9. Berkshire East Ski Area | Open Energy Information

    Open Energy Info (EERE)

    Energy Development Energy Purchaser Berkshire East Ski Area Location Charlemont MA Coordinates 42.61621237, -72.86660671 Show Map Loading map... "minzoom":false,"mapp...

  10. Hernando County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hernando County, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5578826, -82.4752757 Show Map Loading map... "minzoom":false,"mapp...

  11. EAC Recommendations for DOE Action on Non-Wires Solutions - October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... amount of generation or DSM that would eliminate the need for the transmission upgrade. ... MISO - As per the 2011 ISORTO Metrics report 5 and the 2011 MTEP report 6 , impact of DR ...

  12. J319.xls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NA indicates no constriants have been found based on the scope of the feasilbity screening. Page 1 of 3 February 10, 2014 MISO Project Number J319 Point of Interconnection Holland ...

  13. Wabash Valley Power Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Utility Id 40211 Utility Location Yes Ownership C NERC Location RFC,SERC NERC RFC Yes RTO PJM Yes ISO MISO Yes Activity Generation Yes Activity Transmission Yes Activity Buying...

  14. Conectiv Energy Supply Inc. | Open Energy Information

    Open Energy Info (EERE)

    EIA Form 861 Data Utility Id 4318 Utility Location Yes Ownership W NERC RFC Yes RTO PJM Yes ISO NY Yes ISO MISO Yes ISO NE Yes Activity Buying Transmission Yes Activity...

  15. Basin Electric Power Coop | Open Energy Information

    Open Energy Info (EERE)

    Location Yes Ownership C NERC Location WECC&MRO NERC MRO Yes NERC SPP Yes NERC WECC Yes RTO SPP Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity...

  16. Liberty Power Corp. | Open Energy Information

    Open Energy Info (EERE)

    Form 861 Data Utility Id 55781 Utility Location Yes Ownership R ISO CA Yes ISO Ercot Yes RTO PJM Yes ISO NY Yes ISO MISO Yes ISO NE Yes Activity Retail Marketing Yes This article...

  17. Kansas Gas & Electric Co | Open Energy Information

    Open Energy Info (EERE)

    SPP NERC ERCOT Yes NERC MRO Yes NERC RFC Yes NERC SERC Yes NERC SPP Yes ISO Ercot Yes RTO PJM Yes RTO SPP Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes...

  18. American Mun Power-Ohio, Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 40577 Utility Location Yes Ownership A NERC Location RFC NERC RFC Yes RTO PJM Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity...

  19. Champion Energy Services | Open Energy Information

    Open Energy Info (EERE)

    Id 54862 Utility Location Yes Ownership R NERC ERCOT Yes NERC RFC Yes ISO Ercot Yes RTO PJM Yes ISO MISO Yes Activity Retail Marketing Yes This article is a stub. You can help...

  20. DTE Energy Trading, Inc | Open Energy Information

    Open Energy Info (EERE)

    Id 25262 Utility Location Yes Ownership W NERC Location RFC NERC ERCOT Yes NERC RFC Yes ISO Ercot Yes RTO PJM Yes ISO NY Yes ISO MISO Yes ISO NE Yes Activity Wholesale Marketing...

  1. Village of Eldorado, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5752 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  2. Miami Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 12323 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes This article is a stub. You can help OpenEI by...

  3. Consumers Energy | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 11788 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes This...

  4. Midwest Transmission Workshop II Summary

    SciTech Connect (OSTI)

    Kevin Bryan

    2002-12-05

    OAK-B135 After introductions of all participants, Abby Arnold, RESOLVE, reviewed the purpose of the meeting and the agenda. The purpose of the workshop was to share the results of the Midwest Independent System Operator (MISO) scenario development for wind and other fuel sources and the corresponding implications for transmission throughout the MISO control area. The workshop agenda is included in Attachment A.

  5. net_energy_load_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2006 and Projected 2007 through 2011 (Thousands of Megawatthours and 2006 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2006 3,911,914 230,115 222,748 294,319 926,279 1,011,173 201,521 305,672 720,087 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC

  6. summer_peak_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    a . Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, 2005 and Projected 2006 through 2010 (Megawatts and 2005 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2005 758,876 46,396 39,918 58,960 190,200 190,705 41,727 60,210 130,760 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP

  7. summer_peak_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    a . Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2006 and Projected 2007 through 2011 (Megawatts and 2006 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2006 789,475 45,751 42,194 63,241 191,920 199,052 42,882 62,339 142,096 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC

  8. The potential impacts of a competitive wholesale market in the midwest: A preliminary examination of centralized dispatch

    SciTech Connect (OSTI)

    Lesieutre, Bernard C.; Bartholomew, Emily; Eto, Joseph H.; Hale, Douglas; Luong, Thanh

    2004-07-01

    In March 2005, the Midwest Independent System Operator (MISO) will begin operating the first-ever wholesale market for electricity in the central and upper Midwestern portion of the United States. Region-wide, centralized, security-constrained, bid-based dispatch will replace the current system of decentralized dispatch by individual utilities and control areas. This report focuses on how the operation of generators may change under centralized dispatch. We analyze a stylized example of these changes by comparing a base case dispatch based on a ''snapshot'' taken from MISO's state estimator for an actual, historical dispatch (4 p.m., July 7, 2003) to a hypothetical, centralized dispatch that seeks to minimize the total system cost of production, using estimated cost data collected by the EIA. Based on these changes in dispatch, we calculate locational marginal prices, which in turn reveals the location of congestion within MISO's footprint, as well as the distribution of congestion revenues. We also consider two sensitivity scenarios that examine (1) the effect of changes in MISO membership (2003 vs. 2004 membership lists), and (2) different load and electrical data, based on a snapshot from a different date and time (1 p.m., Feb. 18, 2004). Although our analysis offers important insights into how the MISO market could operate when it opens, we do not address the question of the total benefits or costs of creating a wholesale market in the Midwest.

  9. TiSol | Open Energy Information

    Open Energy Info (EERE)

    Product: California-based start up focused on the production of dye sensitized solar cells. Coordinates: 29.690847, -95.196308 Show Map Loading map... "minzoom":false,"mapp...

  10. Motech Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Motech Industries Inc Place: Hsin, Taiwan Product: Taiwan-based manufacturer of PV cells. Coordinates: 38.401501, 112.730118 Show Map Loading map... "minzoom":false,"mapp...

  11. KODE Novus Phase II | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner DeWind Developer DeWind Energy Purchaser Xcel Energy Location Guymon OK Coordinates 36.53170885, -101.3325691 Show Map Loading map... "minzoom":false,"mapp...

  12. Frisco | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Owner DeWind Developer DeWind Location Guymon OK Coordinates 36.49783848, -101.4879227 Show Map Loading map... "minzoom":false,"mapp...

  13. Vanguard Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    thin-film PV start up focused on the development of a low-cost flexible, thin-film PV material. Coordinates: 43.79863, -73.205035 Show Map Loading map... "minzoom":false,"mapp...

  14. Energy4All | Open Energy Information

    Open Energy Info (EERE)

    energy co-operatives in the UK as an integral part of our transition to a low carbon economy. Coordinates: 54.111089, -3.225847 Show Map Loading map... "minzoom":false,"mapp...

  15. The Climate Group | Open Energy Information

    Open Energy Info (EERE)

    smart policies and technologies to cut global emissions and accelerate a low carbon economy. Coordinates: 51.506325, -0.127144 Show Map Loading map... "minzoom":false,"mapp...

  16. Scandia Wind Southwest LLC | Open Energy Information

    Open Energy Info (EERE)

    partners include; Alpha Wind Energy Aps of Denmark and Havgul clean energy AS of Norway. Coordinates: 44.457965, -88.545764 Show Map Loading map... "minzoom":false,"mapp...

  17. DH Blattner | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Avon MN Coordinates 45.604755, -94.443096 Show Map Loading map... "minzoom":false,"mapp...

  18. Microsoft PowerPoint - Hydro Conf 6-15.pptx [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value of Flexibility in the Markets June 2015 1 2 Value of Flexibility in the Markets * Basic overview of the SPP and MISO markets * Potential benefit to some SPA customers of using markets to schedule energy * Increasing need for ancillary services, and the value of ancillary services in the markets 3 4 4 MISO/SPP 5 5 SPP Locational Marginal Prices SPA - SPP Prices June 1 - June 7, 2015 -20 0 20 40 60 80 100 6/1/2015 6/2/2015 6/3/2015 6/4/2015 6/5/2015 6/6/2015 6/7/2015 $/MWh Day Ahead Real

  19. net_energy_load_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 (Thousands of Megawatthours and 2005 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2005 3,900,461 226,544 216,633 303,607 1,005,226 962,054 201,548 299,225 685,624 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) In 2005 for 2006 3,926,389 232,561 220,006 301,893 992,742

  20. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and 2006 through 2010 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"FRCC",,,"MRO",,,"NPCC",,,"RFC",,,"SERC",,,"SPP",,,"ERCOT",,,"WECC" " ",,,"Net Internal Demand

  1. Microsoft PowerPoint - Till.ppt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TVA Inter-Regional Planning Technical Workshop in Support of DOE 2009 Congestion Study March 26, 2009 Chicago David Till - bdtill@tva.gov TVA Interconnections Electric Energy Inc.* SMEPA Entergy* Southern Company* Duke Energy* Progress Energy Carolinas* American Electric Power* East Kentucky Power Cooperative* Louisville Gas & Electric/Kentucky Utilities (E.ON)* TVA Big Rivers Electric Coop Ameren* AECI Batesville Balancing Authority NPCC MRO RFC SPP SERC FRCC Central TVA & CPPP -

  2. summer_nid_cr_cm_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    d Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 2005 and 2006 through 2010 (Megawatts and Percent) Projected Year Base Year Summer Eastern Power Grid Contiguous U.S. FRCC MRO NPCC RFC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW)

  3. summer_nid_cr_cm_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    h c Form EIA-411 for 2006 Released: February 7, 2008 Next Update: October 2008 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2006 and 2007 throug (Megawatts and Percent) Projected Year Base Year Summer Eastern Power Grid Contiguous U.S. FRCC MRO NPCC RFC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW)

  4. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New

    Energy Savers [EERE]

    England Clean Power Link Project: Motion to Intervene of The Northeast Power Coordinating Council, Inc. | Department of Energy Project: Motion to Intervene of The Northeast Power Coordinating Council, Inc. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New England Clean Power Link Project: Motion to Intervene of The Northeast Power Coordinating Council, Inc. Northeast Power Coordinating Council, Inc. (NPCC) submits its Motion to Intervene the New England Clean Power Link

  5. National Electric Transmission Study 2006 Western Interconnection Analysis

    Office of Environmental Management (EM)

    Western Interconnection 2006 Congestion Assessment Study Prepared by the Western Congestion Analysis Task Force May 08, 2006 2 Western Interconnection 2006 Congestion Study - DOE Task 3 - 1. 2008 Modeling Study 2. 2015 Modeling Study - 2015 Planned Resource Development (IRPs and RPS) 3. W.I. Historical Path Usage Studies - 1999 thru 2005 - Physical congestion - Commercial congestion 3 WCATF Modeling Studies ABB Gridview Model * Model uses WECC 2005 L&R load forecast, modified with NPCC data

  6. EIS-0300: Minnesota Agri-Power Project: Biomass for Rural Development, Granite Falls, Minnesota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE and the Minnesota Environmental Quality Boards' [MEQB, a Minnesota State agency] decision to support a proposal by the Minnesota Valley Alfalfa Producers (MnVAP) to construct and operate a 75‚Äď103 megawatt biomass fueled gasifier and electric generating facility, known as the Minnesota Agri-Power Plant (MAPP), and associated transmission lines and alfalfa processing facilities.

  7. ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual by North American Electric Reliability Corporation Region, 2005 through 2009 " ,"(Megawatts)",,," " " " ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,,,,"FRCC"," MRO (U.S.)","NPCC (U.S.)","RFC","SERC","SPP","TRE (ERCOT)","WECC

  8. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and 2006 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.)

  9. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","ERCOT","WECC (U.S.) "

  10. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  11. Next Update: October 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Released: February 2009 Next Update: October 2009 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region (Megawatts and 2007 Base Year) Texas Power Grid Western Power Grid FRCC MRO NPCC RFC SERC SPP TRE (ERCOT) WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) 2007 613,068

  12. Next Update: October 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2010 Next Update: October 2010 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, (Megawatts and 2008 Base Year) Texas Power Grid Western Power Grid FRCC MRO NPCC RFC SERC SPP TRE WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) 2008 635,911 41,705 34,462 46,803

  13. monthly_peak_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, 2005 and Projected 2006 through 2010 (Megawatts and 2005 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid FRCC MRO NPCC RFC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak

  14. monthly_peak_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Released: February 7, 2008 Next Update: October 2008 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region 2006 and Projected 2007 through 2011 (Megawatts and 2006 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid FRCC MRO NPCC RFC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak

  15. Preparation and characterization of composites based on poly(lactic acid) and CaCO{sub 3} nanofiller

    SciTech Connect (OSTI)

    Moreno, JanaŪna Fernandes; Silva, Ana Lķcia N. da E-mail: ananazareth@ima.ufrj.br; Sousa, Ana Maria F. de

    2015-05-22

    In recent years, extensive studies have been conducted on the study of the poly(lactic acid) (PLA) properties, because of its being a typical biobased and biodegradable polymer, with good mechanical properties. However, its toughness and gas barrier properties are not satisfactory and can be improved by the addition of nanofillers, such as calcium carbonate (n-CaCO{sub 3}). The present work PLA composites with nano-sized precipitated calcium carbonate (n-NPCC) were prepared by melt extrusion. Thermal, mechanical and flow properties of the composites were evaluated by using a factorial design.The results showed that the addition of the nanofiller in the PLA matrix didnít improve thethermal and mechanical properties of the matrix significantly. This behavior is probably due to the presence of the stearic acid that is coating on the n-NPCC particles, resulting in a weak polymer-particle interaction. Beyond this, it was also observed a decrease in MFI of the composites when nanofiller was added and at a higher screw speed.

  16. Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report For the Performance Period May 1, 2008 through April 30, 2009.

    SciTech Connect (OSTI)

    Sampson, Melvin R.

    2009-07-30

    The Yakima-Klickitat Fisheries Project (YKFP) is a joint project of the Yakama Nation (lead entity) and the Washington State Department of Fish and Wildlife (WDFW) and is sponsored in large part by the Bonneville Power Administration (BPA) with oversight and guidance from the Northwest Power and Conservation Council (NPCC). It is among the largest and most complex fisheries management projects in the Columbia Basin in terms of data collection and management, physical facilities, habitat enhancement and management, and experimental design and research on fisheries resources. Using principles of adaptive management, the YKFP is attempting to evaluate all stocks historically present in the Yakima subbasin and apply a combination of habitat restoration and hatchery supplementation or reintroduction, to restore the Yakima Subbasin ecosystem with sustainable and harvestable populations of salmon, steelhead and other at-risk species. The original impetus for the YKFP resulted from the landmark fishing disputes of the 1970s, the ensuing legal decisions in United States versus Washington and United States versus Oregon, and the region's realization that lost natural production needed to be mitigated in upriver areas where these losses primarily occurred. The YKFP was first identified in the NPCC's 1982 Fish and Wildlife Program (FWP) and supported in the U.S. v Oregon 1988 Columbia River Fish Management Plan (CRFMP). A draft Master Plan was presented to the NPCC in 1987 and the Preliminary Design Report was presented in 1990. In both circumstances, the NPCC instructed the Yakama Nation, WDFW and BPA to carry out planning functions that addressed uncertainties in regard to the adequacy of hatchery supplementation for meeting production objectives and limiting adverse ecological and genetic impacts. At the same time, the NPCC underscored the importance of using adaptive management principles to manage the direction of the Project. The 1994 FWP reiterated the importance of proceeding with the YKFP because of the added production and learning potential the project would provide. The YKFP is unique in having been designed to rigorously test the efficacy of hatchery supplementation. Given the current dire situation of many salmon and steelhead stocks, and the heavy reliance on artificial propagation as a recovery tool, YKFP monitoring results will have great region-wide significance. Supplementation is envisioned as a means to enhance and sustain the abundance of wild and naturally-spawning populations at levels exceeding the cumulative mortality burden imposed on those populations by habitat degradation and by natural cycles in environmental conditions. A supplementation hatchery is properly operated as an adjunct to the natural production system in a watershed. By fully integrating the hatchery with a naturally-producing population, high survival rates for the component of the population in the hatchery can raise the average abundance of the total population (hatchery component + naturally-producing component) to a level that compensates for the high mortalities imposed by human development activities and fully seeds the natural environment. The objectives of the YKFP are to: use Ecosystem Diagnosis and Treatment (EDT) and other modeling tools to facilitate planning for project activities, enhance existing stocks, re-introduce extirpated stocks, protect and restore habitat in the Yakima Subbasin, and operate using a scientifically rigorous process that will foster application of the knowledge gained about hatchery supplementation and habitat restoration throughout the Columbia River Basin. The YKFP is still in the early stages of evaluation, and as such the data and findings presented in this report should be considered preliminary until results are published in the peer-reviewed literature. The following is a brief summary of current YKFP activities by species.

  17. Next Update: October 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    a . Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2007 and Projected 2008 through 2012 (Megawatts and 2007 Base Year) 2007 782,227 46,676 41,684 58,314 181,700 209,109 43,167 62,188 139,389 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE (ERCOT) WECC (U.S.) 789,915 47,364 41,222 61,779 184,000 204,791 43,800 64,927 142,032 806,672 48,181 43,208 62,647 187,100 209,288 44,784 66,247 145,217 822,889 49,093 44,737 63,399

  18. Next Update: October 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 2b . Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2008 and Projected 2009 through 2013 (Megawatts and 2008 Base Year) 2008/2009 643,557 45,275 36,029 46,043 142,395 179,596 32,809 47,806 113,605 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 642,383 44,446 36,571 47,098 145,800 181,045 32,636 43,463 111,324 651,534 45,099 36,884 47,076 148,000 183,608 33,308 44,463 113,096 664,867 46,140 37,613

  19. Next Update: November 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Next Update: November 2013 megawatts January NERC Regional Assesment Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 FRCC 39,860 37,127 27,122 38,581 37,521 40,258 39,675 45,033 35,545 41,247 34,464 38,352 41,705 44,945 53,093 46,086 NPCC 41,680 41,208 40,009 44,199 45,227 43,553 42,039 45,987 66,215 47,041 43,661 45,002 46,803 45,047 43,849 45,395 Balance of Eastern Region 322,095 335,954 307,784 343,981 347,724 349,937 340,525 377,419 371,550 381,698

  20. monthly_peak_bymonth_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area, 1996-2010 Actual, 2011-2012 Projected (Megawatts) January NERC Regional Assesment Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011E 2012E FRCC 39,860 37,127 27,122 38,581 37,521 40,258 39,675 45,033 35,545 41,247 34,464 38,352 41,705 44,945 53,093 46,839 47,613 NPCC 41,680 41,208 40,009 44,199 45,227 43,553 42,039 45,987 66,215 47,041 43,661 45,002 46,803

  1. net_energy_load_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Thousands of Megawatthours) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 FRCC 142,502 146,903 147,464 153,468 159,861 169,021 173,377 175,557 188,384 188,598 196,561 200,134 211,116 NPCC 250,681 253,701 252,256 257,447 259,947 261,235 263,125 264,464 268,309 277,902 281,518 282,670

  2. peak_load_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Noncoincident Peak Load, by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Megawatts) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 NPCC 44,116 46,594 43,658 46,706 47,581 47,705 45,094 49,269 49,566 52,855

  3. summer_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 FRCC 27,162 27,773 28,898 29,435 30,537 31,649 31,868 32,874 34,562 34,832 35,666 38,932 37,951 40,387 42,243 45,950 45,345 46,434 44,660 46,263 NPCC 46,016 45,952 46,007 46,380 47,465 48,290 48,950 50,240 51,760 53,450 54,270 55,888 55,164 53,936 51,580 57,402 60,879 58,221 59,896 55,730 Balance of Eastern Region 332,679 337,297 341,869 349,984

  4. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    9 2009 Peak Load and Capacity Margin, Summer and Winter by NERC Region (MW) NERC Region Capacity Margin Capacity Margin TRE 16.7% 19.1% FRCC 6.0% 2.0% MRO (U.S.) 24.6% 26.8% NPCC (U.S.) 29.1% 43.2% RFC 25.2% 33.3% SERC 24.6% 26.2% SPP 16.4% 34.6% WECC 19.4% 29.6% U.S. TOTAL 22.2% 28.5% Note(s): Source(s): 128,245 109,565 725,958 668,818 1) Summer Demand includes the months of June, July, August, and September. 2) Winter Demand includes December of the previous year and January-March of the

  5. Liquid Lithium Divertor and Scrape-Off-Layer Interactions on the National Spherical Torus Experiment: 2010 ? 2013 Progress Report

    SciTech Connect (OSTI)

    2013-08-27

    The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not be used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.

  6. Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.

    SciTech Connect (OSTI)

    Connor, Jason M.; McLellan, Jason G.; Butler, Chris

    2003-09-01

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

  7. Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Connor, Jason M.; McLellan, Jason G.; Butler, Chris

    2006-02-01

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

  8. Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Connor, Jason M.; McLellan, Jason G.; Butler, Chris

    2005-11-01

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

  9. Evaluation of the Biological Effects of the Northwest Power Conservation Council's Mainstem Amendment on the Fisheries Upstream and Downstream of Libby Dam, Montana, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Sylvester, Ryan; Stephens, Brian; Tohtz, Joel

    2009-04-03

    A new project began in 2005 to monitor the biological and physical effects of improved operations of Hungry Horse and Libby Dams, Montana, called for by the Northwest Power and Conservation Council (NPCC) Mainstem Amendment. This operating strategy was designed to benefit resident fish impacted by hydropower and flood control operations. Under the new operating guidelines, July through September reservoir drafts will be limited to 10 feet from full pool during the highest 80% of water supply years and 20 feet from full pool during the lowest 20% of water supply (drought) years. Limits were also established on how rapidly discharge from the dams can be increased or decreased depending on the season. The NPCC also directed the federal agencies that operate Libby and Hungry Horse Dams to implement a new flood control strategy (VARQ) and directed Montana Fish, Wildlife & Parks to evaluate biological responses to this operating strategy. The Mainstem Amendment operating strategy has not been fully implemented at the Montana dams as of June 2008 but the strategy will be implemented in 2009. This report highlights the monitoring methods used to monitor the effects of the Mainstem Amendment operations on fishes, habitat, and aquatic invertebrates upstream and downstream of Libby Dam. We also present initial assessments of data and the effects of various operating strategies on physical and biological components of the systems upstream and downstream of Libby Dam. Annual electrofishing surveys in the Kootenai River and selected tributaries, along with gill net surveys in the reservoir, are being used to quantify the impacts of dam operations on fish populations upstream and downstream of Libby Dam. Scales and otoliths are being used to determine the age structure and growth of focal species. Annual population estimates and tagging experiments provide estimates of survival and growth in the mainstem Kootenai River and selected tributaries. Radio telemetry will be used to validate an existing Instream Flow Incremental Methodology (IFIM) model developed for the Kootenai River and will also be used to assess the effect of changes in discharge on fish movements and habitat use downstream of Libby Dam. Passive integrated transponder (PIT) tags will be injected into rainbow, bull, and cutthroat trout throughout the mainstem Kootenai River and selected tributaries to provide information on growth, survival, and migration patterns in relation to abiotic and biotic variables. Model simulations (RIVBIO) are used to calculate the effects of dam operations on the wetted perimeter and benthic biomass in the Kootenai River below Libby Dam. Additional models (IFIM) will also be used to evaluate the impacts of dam operations on the amount of available habitat for different life stages of rainbow and bull trout in the Kootenai River.

  10. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    SciTech Connect (OSTI)

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

    2007-01-10

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilitiesí resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRIís Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DERís integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operatorís use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offers can be made electronically without human intervention. A suite of software was developed by DR SOC enabling DER usage in real time and day-ahead: Generation information file exchange with PI and the utility power flow A utility day-ahead information file Energy Offer Web Service Market Result Web Service Real-Time Meter Data Web Service Real-Time Notification Web Service Registered over 20 DER with MISO in Demand Response Market and demonstrated electronic sale to MISO.

  11. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  12. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  13. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  14. Addressing the challenges of plasma-surface interactions in NSTX-U*

    SciTech Connect (OSTI)

    Kaita, Robert; Abrams, Tyler; Jaworski, Michael; Lucia, Matthew; Nichols, Jacob H.; Skinner, Charles H.; Stotler, Daren; Allain, Jean Paul; Bedoya, Felipe

    2015-04-01

    The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamak environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.

  15. Addressing the challenges of plasma-surface interactions in NSTX-U*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaita, Robert; Abrams, Tyler; Jaworski, Michael; Lucia, Matthew; Nichols, Jacob H.; Skinner, Charles H.; Stotler, Daren; Allain, Jean Paul; Bedoya, Felipe

    2015-04-01

    The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamakmore¬†¬Ľ environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.¬ę¬†less

  16. Regulatory Policy and Markets for Energy Storage in North America

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW

    2014-05-14

    The last 5 years have been one of the most exciting times for the energy storage industry. We have seen significant advancements in the regulatory process to make accommodations for valuing and monetizing energy storage for what it provides to the grid. The most impactful regulatory decision for the energy storage industry has come from California, where the California Public Utilities Commission issued a decision that mandates procurement requirements of 1.325 GW for energy storage to 3 investor-own utilities in 4 stages: in 2014, 2016, 2018, and 2020. Furthermore, at the Federal level, FERCís Order 755, requires the transmission operators to develop pay for performance tariffs for ancillary services. This has had direct impact on the market design of US competitive wholesale markets and the monetization of fast responding grid assets. While this order is technology neutral, it clearly plays into the fast-responding capability of energy storage technologies. Today PJM, CAISO, MISO, NYISO, and NE-ISO have implemented Order 755 and offer new tariff for regulation services based on pay-for-performance principles. Furthermore, FERC Order 784, issued in July 2013 requires transmission providers to consider speed and accuracy in determining the requirements for ancillary services. In November 2013, FERC issued Order 972, which revises the small generator interconnection agreement which declares energy storage as a power source. This order puts energy storage on par with existing generators. This paper will discuss the implementation of FERCís Pay for Performance Regulation order at all ISOs in the U.S. under FERC regulatory authority (this excludes ERCOT). Also discussed will be the market impacts and overall impacts on the NERC regulation performance indexes. The paper will end with a discussion on the California and Ontario, Canada procurement mandates and the opportunity that it may present to the energy storage industry.

  17. Selected Area Fishery Evaluation Project Economic Analysis Study Final Report, Final Draft Revision 4: November 10, 2006.

    SciTech Connect (OSTI)

    Bonneville Power Administration; Washington Department of Fish and Wildlife; Oregon Department of Fish and Wildlife

    2006-11-01

    The purpose of this Study is to provide an economic review of current and proposed changes to the Select Area Fishery Evaluation Project (SAFE or Project). The Study results are the information requested in comments made on the Project by a joint review dated March 2005 by the Northwest Power and Conservation Council (NPCC) Independent Scientific Review Panel (ISRP) and Independent Economic Analysis Board (IEAB). North et al. (2006) addressed technical questions about operations and plans, and this report contains the response information for comments concerning Project economics. This report can be considered an economic feasibility review meeting guidelines for cost-effective analysis developed by the IEAB (2003). It also contains other economic measurement descriptions to illustrate the economic effects of SAFE. The SAFE is an expansion of a hatchery project (locally called the Clatsop Economic Development Council Fisheries Project or CEDC) started in 1977 that released an early run coho (COH) stock into the Youngs River. The Youngs River entrance to the Columbia River at River Mile 12 is called Youngs Bay, which is located near Astoria, Oregon. The purpose of the hatchery project was to provide increased fishing opportunities for the in-river commercial fishing gillnet fleet. Instead of just releasing fish at the hatchery, a small scale net pen acclimation project in Youngs Bay was tried in 1987. Hirose et al. (1998) found that 1991-1992 COH broodstock over-wintered at the net pens had double the smolt-to-adult return rate (SAR) of traditional hatchery release, less than one percent stray rates, and 99 percent fishery harvests. It was surmised that smolts from other Columbia River hatcheries could be hauled to the net pens for acclimation and release to take advantage of the SAR's and fishing rates. Proposals were tendered to Bonneville Power Administration (BPA) and other agencies to fund the expansion for using other hatcheries smolts and other off-channel release sites. The BPA, who had been providing funds to the Project since 1982, greatly increased their financial participation for the experimental expansion of the net pen operations in 1993. Instead of just being a funding partner in CEDC operations, the BPA became a major financing source for other hatchery production operations. The BPA has viewed the 10 plus years of funding since then as an explorative project with two phases: a 'research' phase ending in 1993, and a 'development' phase ending in 2006. The next phase is referred to in proposals to BPA for continued funding as an 'establishment' phase to be started in 2007. There are three components of SAFE: (1) The CEDC owns and operates the net pens in the Columbia River estuary on the Oregon side. The CEDC also owns and operates a hatchery on the South Fork Klaskanine River. (2) There are many other hatcheries contributing smolts to the net pen operations. The present suite of hatcheries are operated by the Washington Department of Fish and Wildlife (WDFW) and Oregon Department of Fish and Wildlife (ODFW). The WDFW owns and operates the net pens at Deep River on the Washington side of the Columbia River. (3) The monitoring and evaluation (M&E) responsibilities are performed by employees of WDFW and ODFW. BPA provides funding for all three components as part of NPCC Project No. 199306000. The CEDC and other contributing hatcheries have other sources of funds that also support the SAFE. BPA's minor share (less than 10 percent) of CEDC funding in 1982 grew to about 55 percent in 1993 with the beginning of the development phase of the Project. The balance of the CEDC budget over the years has been from other federal, state, and local government programs. It has also included a 10 percent fee assessment (five percent of ex-vessel value received by harvesters plus five percent of purchase value made by processors) on harvests that take place in off-channel locations near the release sites. The CEDC total annual budget in the last several years has been in the $600 to $700 thousand range. The Project over the years also has relied on heavy volunteer participation and other agency in-kind support. The CEDC budget is exclusive of WDFW and ODFW M&E costs, and all non-CEDC hatchery smolt production costs. The annual estimated operation and management costs for SAFE except for the value of volunteer time and donated materials is in the $2.4 million range. Of this amount, BPA annual funding has been in the $1.6 million or two thirds range in recent years. Depreciation on capital assets (or an equivalent amount for annual contributions to a capital improvement fund) would be in addition to these operation and management costs. North et al. (2006) documented results through the second of three phases and described potential capacities. Full capacity as defined in early planning for the project (TRG 1996) was not reached by the time the second phase ended.

  18. Adding Data Management Services to Parallel File Systems

    SciTech Connect (OSTI)

    Brandt, Scott

    2015-03-04

    The objective of this project, called DAMASC for ‚ÄúData Management in Scientific Computing‚ÄĚ, is to coalesce data management with parallel file system management to present a declarative interface to scientists for managing, querying, and analyzing extremely large data sets efficiently and predictably. Managing extremely large data sets is a key challenge of exascale computing. The overhead, energy, and cost of moving massive volumes of data demand designs where computation is close to storage. In current architectures, compute/analysis clusters access data in a physically separate parallel file system and largely leave it scientist to reduce data movement. Over the past decades the high-end computing community has adopted middleware with multiple layers of abstractions and specialized file formats such as NetCDF-4 and HDF5. These abstractions provide a limited set of high-level data processing functions, but have inherent functionality and performance limitations: middleware that provides access to the highly structured contents of scientific data files stored in the (unstructured) file systems can only optimize to the extent that file system interfaces permit; the highly structured formats of these files often impedes native file system performance optimizations. We are developing Damasc, an enhanced high-performance file system with native rich data management services. Damasc will enable efficient queries and updates over files stored in their native byte-stream format while retaining the inherent performance of file system data storage via declarative queries and updates over views of underlying files. Damasc has four key benefits for the development of data-intensive scientific code: (1) applications can use important data-management services, such as declarative queries, views, and provenance tracking, that are currently available only within database systems; (2) the use of these services becomes easier, as they are provided within a familiar file-based ecosystem; (3) common optimizations, e.g., indexing and caching, are readily supported across several file formats, avoiding effort duplication; and (4) performance improves significantly, as data processing is integrated more tightly with data storage. Our key contributions are: SciHadoop which explores changes to MapReduce assumption by taking advantage of semantics of structured data while preserving MapReduce‚Äôs failure and resource management; DataMods which extends common abstractions of parallel file systems so they become programmable such that they can be extended to natively support a variety of data models and can be hooked into emerging distributed runtimes such as Stanford‚Äôs Legion; and Miso which combines Hadoop and relational data warehousing to minimize time to insight, taking into account the overhead of ingesting data into data warehousing.

  19. Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) - Year 5 : Annual Report for FY 2008.

    SciTech Connect (OSTI)

    Marmorek, David R.; Porter, Marc; Pickard, Darcy; Wieckowski, Katherine

    2008-11-19

    The Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) is a coordinated effort to improve the quality, consistency, and focus of fish population and habitat data to answer key monitoring and evaluation questions relevant to major decisions in the Columbia River Basin. CSMEP was initiated by the Columbia Basin Fish and Wildlife Authority (CBFWA) in October 2003. The project is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's Fish and Wildlife Program (NPCC). CSMEP is a major effort of the federal state and Tribal fish and wildlife managers to develop regionally integrated monitoring and evaluation (M&E) across the Columbia River Basin. CSMEP has focused its work on five monitoring domains: status and trends monitoring of populations and action effectiveness monitoring of habitat, harvest, hatcheries, and the hydrosystem. CSMEP's specific goals are to: (1) interact with federal, state and tribal programmatic and technical entities responsible for M&E of fish and wildlife, to ensure that work plans developed and executed under this project are well integrated with ongoing work by these entities; (2) document, integrate, and make available existing monitoring data on listed salmon, steelhead, bull trout and other fish species of concern; (3) critically assess strengths and weaknesses of these data for answering key monitoring questions; and (4) collaboratively design, implement and evaluate improved M&E methods with other programmatic entities in the Pacific Northwest. During FY2008 CSMEP biologists continued their reviews of the strengths and weaknesses (S&W) of existing subbasin inventory data for addressing monitoring questions about population status and trends at different spatial and temporal scales. Work was focused on Lower Columbia Chinook and steelhead, Snake River fall Chinook, Upper Columbia Spring Chinook and steelhead, and Middle Columbia River Chinook and steelhead. These FY2008 data assessments and others assembled over the years of the CSMEP project can be accessed on the CBFWA public website. The CSMEP web database (http://csmep.streamnet.org/) houses metadata inventories from S&W assessments of Columbia River Basin watersheds that were completed prior to FY2008. These older S&W assessments are maintained by StreamNet, but budget cutbacks prevented us from adding the new FY2008 assessments into the database. Progress was made in FY2008 on CSMEP's goals of collaborative design of improved M&E methods. CSMEP convened two monitoring design workshops in Portland (December 5 and 6, 2007 and February 11 and 12, 2008) to continue exploration of how best to integrate the most robust features of existing M&E programs with new approaches. CSMEP continued to build on this information to develop improved designs and analytical tools for monitoring the status and trends of fish populations and the effectiveness of hatchery and hydrosystem recovery actions within the Columbia River Basin. CSMEP did not do any new work on habitat or harvest effectiveness monitoring designs in FY2008 due to budget cutbacks. CSMEP presented the results of the Snake Basin Pilot Study to the Independent Scientific Review Panel (ISRP) in Portland on December 7, 2008. This study is the finalization of CSMEP's pilot exercise of developing design alternatives across different M&E domains within the Snake River Basin spring/summer Chinook ESU. This work has been summarized in two linked reports (CSMEP 2007a and CSMEP 2007b). CSMEP participants presented many of the analyses developed for the Snake Basin Pilot work at the Western Division American Fisheries Society (AFS) conference in Portland on May 4 to 7, 2008. For the AFS conference CSMEP organized a symposium on regional monitoring and evaluation approaches. A presentation on CSMEP's Cost Integration Database Tool and Salmon Viability Monitoring Simulation Model developed for the Snake Basin Pilot Study was also given to the Pacific Northwest Aquatic monitoring Partnership (PNAMP) stee

  20. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Contor, Craig R.; Harris, Robin; King, Marty

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho salmon (O. kisutch), and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (Bureau of Reclamation, BOR 1988). The most notable development was the construction and operation of Three Mile Falls Dam (TMD) and other irrigation projects which dewatered the Umatilla River during salmon migrations. CTUIR and ODFW developed the Umatilla Hatchery Master Plan to restore fisheries to the basin. The plan was completed in 1990 and included the following objectives which were updated in 1999: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Increase annual returns to Three Mile Falls Dam to 31,500 adult salmon and steelhead. In the past the M&E project conducted long-term monitoring activities as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations, habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), and genetic monitoring (Currens & Schreck 1995, Narum et al. 2004). The project's goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. The status of completion of each of BPA's standardized work element was reported in 'Pisces'(March 2008) and is summarized.

  1. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

  2. Spinning Reserve From Responsive Loads

    SciTech Connect (OSTI)

    Kirby, B.J.

    2003-04-08

    Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial reward for supplying spinning reserve than for supplying the other reserve services as a result of the higher spinning reserve prices. The LIPAedge program (LIPA's demand reduction program using Carrier ComfortChoice thermostats) provides an opportunity to test the use of responsive load for spinning reserve. With potentially 75 MW of spinning reserve capability already installed, this test program can also make an important contribution to the capacity needs of Long Island during the summer of 2003. Testing could also be done at ConEd ({approx}30 MW), SCE ({approx}15 MW), and/or SDG&E ({approx}15 MW). This paper is divided into six chapters. Chapter 2 discusses the contingency reserve ancillary services, their functions in supporting power system reliability, and their technical requirements. It also discusses the policy and tariff requirements and attempts to distinguish between ones that are genuinely necessary and ones that are artifacts of the technologies that were historically used to provide the services. Chapter 3 discusses how responsive load could provide contingency reserves (especially spinning reserve) for the power system. Chapter 4 specifically discusses the Carrier ComfortChoice responsive thermostat technology, the LIPAedge experience with that technology, and how the technology could be used to supply spinning reserve. Chapter 5 discusses a number of unresolved issues and suggests areas for further research. Chapter 6 offers conclusions and recommendations.

  3. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  4. Columbia River Hatchery Reform System-Wide Report.

    SciTech Connect (OSTI)

    Warren, Dan

    2009-04-16

    The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Significant Unit (ESU), Distinct Population Segment (MPG) or Major Population Group (MPG) reviewed, the HSRG presents its findings and recommendations in the form of an HSRG solution. This package of recommended changes to current hatchery and harvest program design and operation is intended to demonstrate how the programs could be managed to significantly increase the likelihood of meeting the managers goals for both harvest and conservation of the ESU/DPS/MPG. The 'HSRG solution' also highlights the biological principles that the HSRG believes must form the foundation for successful use of hatcheries and fisheries as management tools.

  5. Comparative Survival Study (CSS) of PIT-Tagged Spring/Summer Chinook and Summer Steelhead : 2008 Annual Report.

    SciTech Connect (OSTI)

    Comparative Survival Study Oversight Committee and Fish Passage Center

    2008-12-02

    The Comparative Survival Study (CSS; BPA Project 199602000) began in 1996 with the objective of establishing a long term dataset of the survival rate of annual generations of salmon from their outmigration as smolts to their return to freshwater as adults to spawn (smolt-to-adult return rate; SAR). The study was implemented with the express need to address the question whether collecting juvenile fish at dams and transporting them downstream in barges and trucks and releasing them downstream of Bonneville Dam was compensating for the effect of the Federal Columbia River Power System (FCRPS) on survival of Snake Basin spring/summer Chinook salmon migrating through the hydrosystem. The Completion of this annual report for the CSS signifies the 12th outmigration year of hatchery spring/summer Chinook salmon marked with Passive Integrated Transponder (PIT) tags as part of the CSS and the 9th complete brood year return as adults of those PIT-tagged fish (report covers adult returns from 1997-2006 hatchery Chinook juvenile migrations). In addition, the CSS has provided PIT-tags to on-going tagging operations for wild Chinook since 2002 (report covers adult returns from 1994-2006 wild Chinook juvenile migrations). The CSS tags wild steelhead on the lower Clearwater River and utilized wild and hatchery steelhead from other tagging operations in evaluations of transportation (report covers adult returns from 1997-2005 wild and hatchery steelhead migrations). The primary purpose of this report is to update the time series of smolt-to-adult survival rate data and related parameters with additional years of data since the completion of the CSS 10-yr retrospective analysis report (Schaller et al 2007). The 10-yr report provided a synthesis of the results from this ongoing study, the analytical approaches employed, and the evolving improvements incorporated into the study as reported in CSS annual progress reports. This current report specifically addresses the constructive comments of the most recent regional technical review conducted by the Independent Scientific Advisory Board and Independent Scientific Review Panel (ISAB and ISRP 2007). This report completes the 3-salt returns from migration years 2004 for wild and hatchery Chinook and steelhead (all returns are to Lower Granite Dam). For wild and hatchery Chinook, this report also provides 3-salt returns from migration year 2005 and 2-salt returns from migration year 2006 through a cutoff date of August 13, 2008. For wild and hatchery steelhead, it provides completed 2-salt returns for wild and hatchery steelhead that outmigrated in 2005 (any 3-salt returns of PIT-tagged steelhead are few, but will occur after July 1, 2008). All of the Chinook salmon evaluated in the CSS study exhibit a stream-type life history. All study fish used in this report were uniquely identifiable based on a PIT-tag implanted in the body cavity during (or before) the smolt life stage and retained through their return as adults. These tagged fish can then be detected as juveniles and adults at several locations of the Snake and Columbia rivers. Reductions in the number of individuals detected as the tagged fish grow older provide estimates of survival. This allows comparisons of survival over different life stages between fish with different experiences in the hydrosystem (e.g. transportation vs. in-river migrants and migration through various numbers of dams) as illustrated in Figure 1.1. The CSS is a long term study within the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (NPCC FWP) and is funded by Bonneville Power Administration (BPA). Study design and analyses are conducted through a CSS Oversight Committee with representation from Columbia River Inter-Tribal Fish Commission (CRITFC), Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), U.S. Fish and Wildlife Service (USFWS), and Washington Department of Fish and Wildlife (WDFW). The Fish Passage Center (FPC) coordinates the PIT-tagging efforts, data management and preparation