National Library of Energy BETA

Sample records for np-15 cob mead

  1. Mead Westaco | Open Energy Information

    Open Energy Info (EERE)

    Partnership with NREL Yes Partnership Type MOU Partnering Center within NREL National Bioenergy Center Partnership Year 2004 Mead Westaco is a company located in Richmond, VA....

  2. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Mead Biofuel Place: Eastsound, Washington State Zip: 98245 Product: Distributor of biodiesel throughout the San Juan Islands, Washington....

  3. EIS-0343: COB Energy Facility

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support the COB Energy Facility, a subsidiary of Peoples Energy Resources Corporation (PERC), to construct a 1,160-megawatt (MW) natural gas-fired, combined-cycle electric generating plant in Klamath County, Oregon, near the city of Bonanza.

  4. Belle Mead Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Belle Mead Solar Project Facility Belle Mead Solar Project Sector Solar Facility Type Ground-mount fixed tilt solar array Owner EnXco Developer...

  5. Mead, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mead, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2333174, -104.9985899 Show Map Loading map... "minzoom":false,"mappingservic...

  6. Mead, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Mead is a town in Clark County, Wisconsin.1 References US Census Bureau Incorporated...

  7. Meade County RECC- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Meade County RECC offers rebates to residential members who install energy-efficient systems and equipment. New homebuilders can also access rebates for installing energy-efficient equipment...

  8. Belle Mead, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Belle Mead, New Jersey: Energy Resources Jump to: navigation, search Name Belle Mead, New Jersey Equivalent URI DBpedia GeoNames ID 5095545 Coordinates 40.4667713, -74.6607144...

  9. RAPID/Roadmap/3-CO-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-CO-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  10. RAPID/Roadmap/6-CO-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap6-CO-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  11. RAPID/Roadmap/14-CO-b | Open Energy Information

    Open Energy Info (EERE)

    of the water discharge, groundwater data, and reasonably available existing water quality data of the affected waters. 5 CCR 1002-61.4(1)(j-k) 14-CO-b.3 - Publish Notice of...

  12. Meade County Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E C C Jump to: navigation, search Name: Meade County Rural E C C Place: Kentucky Phone Number: 1.877.276.5353 or Brandenburg: 270.422.2162, Hardinsburg: 270.756.5172...

  13. Lake Meade, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Lake Meade is a census-designated place in Adams County, Pennsylvania.1 References US Census Bureau 2005 Place to 2006 CBSA...

  14. File:03-CO-b - ROW Process for State Land Board Land.pdf | Open...

    Open Energy Info (EERE)

    CO-b - ROW Process for State Land Board Land.pdf Jump to: navigation, search File File history File usage Metadata File:03-CO-b - ROW Process for State Land Board Land.pdf Size of...

  15. WMU Power Generation Study Task 2.0 Corn Cob Co-Combustion Study

    SciTech Connect (OSTI)

    2009-09-30

    Much attention has been focused on renewable energy use in large-scale utilities and very small scale distributed energy systems. However, there is little information available regarding renewable energy options for midscale municipal utilities. The Willmar Municipal Utilities Corn Cob-Coal Co-Combustion Project was initiated to investigate opportunities available for small to midscale municipal utilities to "go green". The overall goal of the Project was to understand the current t'enewable energy research and energy efficiency projects that are or have been implemented at both larger and smaller scale and determine the applicability to midscale municipal utilities. More specific objectives for Task 2.0 of this project were to determine the technical feasibility of co-combusting com cobs with coal in the existing WMU boiler, and to identify any regulatory issues that might need to be addressed if WMU were to obtain a significant portion of its heat from such co-combustion. This report addresses the issues as laid out in the study proposal. The study investigated the feasibility of and demonstrated the technical effectiveness of co-combusting corn cobs with coal in the Willmar Municipal Utilities stoker boiler steam generation power plant. The results of the WMU Co-Combustion Project will serve as a model for other midscale utilities who wish to use corn cobs to generate renewable electrical energy. As a result of the Co-Combustion Project, the WMU plans to upgrade their stoker boiler to accept whole corn cobs as well as other types of biomass, while still allowing the fuel delivery system to use 100% coal as needed. Benefits of co-combustion will include: energy security, reduced Hg and CO2 air emissions, improved ash chemistry, potential future carbon credit sales, an immediate positive effect on the local economy, and positive attention focused on the WMU and the City of Willmar. The first step in the study was to complete a feasibility analysis. The feasibility analysis anticipated only positive results from the combustion of corn cobs with coal in the WMU power plant boiler, and therefore recommended that the project proceed. The study proceeded with a review of the existing WMU Power Plant configuration; cob fuel analyses; an application for an Air Quality Permit from the Minnesota Pollution Control Agency to conduct the co-combustion test burns; identification of and a site visit to a similar facility in Iowa; an evaluation of cob grinding machines; and agreements with a corn grower, a cob harvester, and the City of Willmar to procure, harvest, and store cobs. The WMU power plant staff constructed a temporary cob feed system whereby the cobs could be injected into the #3 Boiler firebox, at rates up to 40% of the boiler total heat input. Test burns were conducted, during which air emissions were monitored and fuel and ash samples analyzed. The results of the test burns indicated that the monitored flue gas quality improved slightly during the test burns. The WMU was able to determine that modifications to the #3 Boiler fuel feed system to accept com cobs on a permanent basis would be technically feasible and would enable the WMU to generate electricity from renewable fuels on a dispatchable basis.

  16. Record of Decision for the Electrical Interconnection of the COB Energy Facility (DOE/EIS-0343)

    SciTech Connect (OSTI)

    N /A

    2004-08-20

    The COB Energy Facility would be constructed on a site near the rural community of Bonanza, in Klamath County, Oregon. Generating components of the project would be constructed in either one or two phases, including four air-cooled combustion turbine generators fueled with natural gas, four heat recovery steam generators, and two steam turbines. Additional facilities include a new 7.2-mile-long 500-kV transmission line, a new 4.1-mile-long natural gas pipeline, a 2.8-mile-long water pipeline, a 20-acre wastewater evaporation pond or a 3,770-foot-long irrigation pipeline to deliver wastewater to a 31-acre pasture, a 4.7-acre stormwater infiltration basin, a 1.5-acre stormwater retention pond, and various tanks, buildings, exhaust stacks, parking, and storage areas. Natural gas to fuel the combustion turbines would be supplied by way of a new 4.1-mile-long, 20-inch-diameter pipeline from a Gas Transmission Northwest's Bonanza Compressor Station. The new pipeline would be constructed within private easements adjacent to or near Klamath County road rights-of-way. Although COB Energy Facility generators would use air-cooled condensers, the project would use an average of 72 gallons per minute for steam production and station service, up to a maximum of 210 gallons per minute. The source of this water would be one existing and two new wells near the project site, drawing from a deep aquifer consistent with a State of Oregon water right permit expected to be incorporated into the State energy facility site certificate. Process wastewater would either be used to irrigate pasture or held in a lined pond to evaporate. Sanitary water would be routed to an onsite septic tank then discharged to a leach field. No wastewater would be discharged to surface waters. The COB Energy Facility would interconnect to the FCRTS at Captain Jack Substation, 7.2 miles south of the project site. PERC would construct a new 500-kV transmission line from the project site to Captain Jack Substation. Part of the transmission line would cross public land managed by the Bureau of Land Management. BPA would install additional electrical equipment at Captain Jack Substation. At this time, PERC has not requested specific points of delivery.

  17. Industrial cogeneration case study No. 3: Mead Corporation Paper Mill, Kingsport, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    The design, operation, performance, economics and energy efficiency of the 25,000 kW co-generating power plant at the Mead Co. paper mill in Kingsport, TN are described, and compared with the efficiency of producing only process heat at the plant while importing electric power from a local utility. It was established that on-site co-generation consumed 2/3 of the energy that would have been required for on-site process heat generation plus purchased off-site-generated electric power and that co-generation resulted in more than $2.8 million saved during the period from 1975 through 1978. (LCL)

  18. Pulse radiolysis studies of the reaction of nitrogen dioxide with the vitamin B₁₂ complexes Cob(II)alamin and nitrocobalamin

    SciTech Connect (OSTI)

    Brasch, Nicola E.; Cabelli, Diane E.; Dassanayake, Rohan S.

    2014-10-06

    Although now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there few studies on the reactivity of ˙NO2, including the reactions between ˙NO2 and transition metal complexes. We report kinetic studies on the reaction of ˙NO2 with two forms of vitamin B12 – cob(II)alamin and nitrocobalamin. UV-vis spectroscopy and HPLC analysis of the product solution show that ˙NO2 cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of (3.5 ± 0.3) × 10⁸ M⁻¹ s ⁻¹ (pH 7.0 and 9.0, RT, I = 0.20 M). The stoichiometry of the reaction is 1:1. No reaction is detected by UV-vis spectroscopy and by HPLC analysis of the product solution when nitrocobalamin is exposed to up to 2.0 mol equiv.˙NO2.

  19. Pulse radiolysis studies of the reaction of nitrogen dioxide with the vitamin B₁₂ complexes Cob(II)alamin and nitrocobalamin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brasch, Nicola E.; Cabelli, Diane E.; Dassanayake, Rohan S.

    2014-10-06

    Although now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there few studies on the reactivity of ˙NO2, including the reactions between ˙NO2 and transition metal complexes. We report kinetic studies on the reaction of ˙NO2 with two forms of vitamin B12 – cob(II)alamin and nitrocobalamin. UV-vis spectroscopy and HPLC analysis of the product solution show that ˙NO2 cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of (3.5 ± 0.3) × 10⁸ M⁻¹ s ⁻¹ (pH 7.0 and 9.0, RT, Imore » = 0.20 M). The stoichiometry of the reaction is 1:1. No reaction is detected by UV-vis spectroscopy and by HPLC analysis of the product solution when nitrocobalamin is exposed to up to 2.0 mol equiv.˙NO2.« less

  20. Belle Mead Solar Project | Open Energy Information

    Open Energy Info (EERE)

    kW 1,900,000 W 1,900,000,000 mW 0.0019 GW Commercial Online Date 2009 References enXco Signs Power Purchase Agreement with Carrier Clinic for Solar Array1 Loading map......

  1. Iowa farmer hopes corn cobs will bring in extra cash

    Broader source: Energy.gov [DOE]

    Todd Mathisen is at the forefront of American farmers helping to supply the United States with a biofuel that may have a promising future: cellulosic ethanol.

  2. RAPID/Roadmap/19-CO-b | Open Energy Information

    Open Energy Info (EERE)

    and Laramie-Fox Hills aquifers) is a geologic formation in which aquifers lie on top of each other in layers with confining layers separating the aquifers. The ground...

  3. RAPID/Roadmap/18-CO-b | Open Energy Information

    Open Energy Info (EERE)

    permitting process. Because of the inherent danger of fire, explosion or evolution of toxic gases involved in thermal treatment and treatment of reactive wastes, these are...

  4. RAPID/Roadmap/11-CO-b | Open Energy Information

    Open Energy Info (EERE)

    the sheriff, the coroner, or the land managing agency official will request the forensic anthropologist of the Colorado Bureau of Investigation to assist in making such...

  5. City of Meade, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 12242 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes This article is a stub....

  6. 17 - Comment from Governor Matthew H Mead Wyoming.pdf

    Energy Savers [EERE]

    Rulemakings - Implementation Report: Energy Conservation Standards Activities | Department of Energy 6th Semi-Annual Report to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 16th Semi-Annual Report to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities This document is the Sixteenth Semi-Annual Report to Congress on Appliance Energy Efficiency Rulemakings

  7. Meade County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.2698449, -100.3497895 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  8. Materials Data on Th2CoB10 (SG:55) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-03-07

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on CoB4O7 (SG:61) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. EIS-0107: Mead-Phoenix +500-kV Direct Current Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration (WAPA) prepared this statement to analyze the potential environmental and socioeconomic impacts arising from WAPA and regional project sponsors’ proposal to construct a 500 kilovolt (kV) alternating current (AC) transmission line with the capability to be upgraded later to 500kV direct current (DC), connecting the Westwing Substation, located north of Phoenix, Arizona, with a new McCullough II Substation, located approximately 14 miles west of Boulder City, Nevada. This statement modifies a previously prepared federal statement from which the participants' election to proceed had not occurred at the time this statement was prepared.

  11. Meade, R. A. (Roger A.) 99 GENERAL AND MISCELLANEOUS//MATHEMATICS...

    Office of Scientific and Technical Information (OSTI)

    SCIENCE; FREEDOM OF INFORMATION ACT; HISTORICAL ASPECTS; LOS ALAMOS; RESEARCH PROGRAMS; WEAPONS; SECRECY PROTECTION The secrecy required by nuclear research during the Second...

  12. EIS-0343: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Environmental Impact Statement EIS-0343: Draft Environmental Impact Statement COB Energy Facility COB Energy Facility, a subsidiary of Peoples Energy Resources Corporation...

  13. EIS-0343: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0343: Final Environmental Impact Statement COB Energy Facility COB Energy Facility, LLC, a subsidiary of Peoples Energy Resources Company...

  14. Sustainable Nanomaterials Industry Perspective

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by MeadWestvaco Corporation held on June 26, 2012

  15. EIS-0354: Record of Decision

    Broader source: Energy.gov [DOE]

    Western Area Power Administration Valley Electric Association Interconnection of Ivanpah Energy Center to Mead Substation

  16. Power Services Account Executives (AE's)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    541-318-1680 debloyer@bpa.gov Larry Felton Richland, WA 509-392-2069 lxfelton@bpa.gov Hope Ross Mead, WA 509-822-4590 heross@bpa.gov Nancy Schimmels Mead, WA 509-822-4591...

  17. EA-1595: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Davis-Mead 230-kV Transmission Line from Western's Davis substation near Bullhead City, Mohave County, Arizona to its Mead substation near Boulder City, Clark County, Nevada. ...

  18. Adams County, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Meade, Pennsylvania Littlestown, Pennsylvania McSherrystown, Pennsylvania New Oxford, Pennsylvania Orrtanna, Pennsylvania York Springs, Pennsylvania Retrieved from "http:...

  19. Bryan County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Bennington, Oklahoma Bokchito, Oklahoma Caddo, Oklahoma Calera, Oklahoma Colbert, Oklahoma Durant, Oklahoma Hendrix, Oklahoma Kemp, Oklahoma Kenefic, Oklahoma Mead,...

  20. Weld County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado Hudson, Colorado Johnstown, Colorado Keenesburg, Colorado Kersey, Colorado La Salle, Colorado Lochbuie, Colorado Longmont, Colorado Mead, Colorado Milliken, Colorado...

  1. EA-1595: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Davis-Mead 230-kV Transmission Line Reconductor Project, Mohave County, Arizona and Clark County, Nevada

  2. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Little Boy weaponeer William "Deak" Parsons, wartime Los Alamos division leader, focus of next 70th anniversary lecture August 8, 2013 Former Laboratory historian Roger Meade to...

  3. Saunders County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ceresco, Nebraska Colon, Nebraska Ithaca, Nebraska Leshara, Nebraska Malmo, Nebraska Mead, Nebraska Memphis, Nebraska Morse Bluff, Nebraska Prague, Nebraska Valparaiso, Nebraska...

  4. Detecting regular sound changes in linguistics as events of concerted...

    Office of Scientific and Technical Information (OSTI)

    other evolving group. less Authors: Hruschka, Daniel J. 1 ; Branford, Simon 2 ; Smith, Eric D. 3 ; Wilkins, Jon 4 ; Meade, Andrew 2 ; Pagel, Mark 5 ; Bhattacharya,...

  5. EIS-0343: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision EIS-0343: Record of Decision Electrical Interconnection of the COB Energy Facility The Bonneville Power Administration (BPA) has decided to offer contract terms...

  6. EA-1595: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Mitigation Action Plan EA-1595: Mitigation Action Plan Davis-Mead 230-kV Transmission Line Reconductor Project Western Area Power Administration proposes to reconductor approximately 61 miles of 230-kV transmission line from the Davis Substation at Davis Dam near Bullhead City, Arizona, to the Mead Substation near Boulder City in southern Nevada. PDF icon Mitigation Action Plan for the Davis-Mead 230-kV Transmission Line Reconductor Project, DOE/EA-1595 (November 2007) More Documents &

  7. CX-013771: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mead Substation Stage 15- Foundation Rebuilds and Transformer Connections CX(s) Applied: B4.6Date: 04/23/2015 Location(s): NevadaOffices(s): Western Area Power Administration-Desert Southwest Region

  8. Microsoft Word - WACR_calibration_report_final_DOE-SC-ARM-TR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point FFT; 2; 160 spectra averaged. J Mead, March 2010, DOESC-ARMTR-089 12 1.4.3 Propagation Losses WACR reflectivity is not compensated for propagation losses. Propagation...

  9. CX-012743: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mead Substation Service Building Repairs CX(s) Applied: B1.3Date: 41879 Location(s): NevadaOffices(s): Western Area Power Administration-Desert Southwest Region

  10. CX-007155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mead-Perkins Avian Nest Removal & Access Road MaintenanceCX(s) Applied: B1.3Date: 05/10/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  11. CX-010674: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mead KU2A Emergency Bushing Replacement CX(s) Applied: B1.3 Date: 07/02/2013 Location(s): Nevada Offices(s): Western Area Power Administration-Desert Southwest Region

  12. Present Day Kinematics of the Eastern California Shear Zone from...

    Open Energy Info (EERE)

    Abstract unavailable. Authors S.C. McClusky, S.C. Bjomstad, B. H. Hager, R. W. King, B. J. Meade, M. M. Miller, F. C. Monastero and B. J. Souter Published Journal Geophysical...

  13. Microsoft Word - 2005 CCR- Nellis AFB _2_.RTF

    National Nuclear Security Administration (NNSA)

    All the water drawn from Lake Mead is sent to the Alfred Merritt Smith or River Mountains ... The Alfred Merritt Smith Water Treatment Facility has been recognized by the National ...

  14. CANTON LAKESHORE CANTON E BEST CON NEAUT GIDD INGS EAST N ELLSWORT

    U.S. Energy Information Administration (EIA) Indexed Site

    ... WAT SON -DU HRIN G EVERGREEN KELLY HILL RED BRUSH WEILER SVILLE MEAD VI LLE LAM AR TINE ROSS LEET SDALE RPD-R ICHLAND -4 CROWS RUN WAT TSVILLE S GLADE R UN WIN ESBU RG HAT CH CORN ...

  15. Energy Department Launches Better Buildings Alliance Indoor Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... TD Bank Capital One Brokers Laurie McMahon, DTZ Sally Wilson, Newmark Grubb Knight Frank Greta Garner, Green Coast Realty Meade Boutwell, CBRE Randolph (Randy) Harrell, CBRE Brant ...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Los Alamos National fission basis Keksis, August L ; Chadwick, Mark B ; Selby, Hugh D ; MacInnes, Michael R ; Barr, Don W ; Meade, Roger A ; Burns, Carol J ; Wallstrom, Timothy C ...

  17. Categorical Exclusion Determinations: Nevada | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Henderson-Mead Number 2 230-Kilovolt Transmission Line, Erosion Repair at Structure 24 ... Henderson 230 Kilovolt Switchyard (Erosion Control) CX(s) Applied: B1.3 Date: 02062014 ...

  18. EIS-0343: EPA Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    COB Energy Facility, Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined- Cycle Electric Generating Plant, Right- of-Way Permit across Federal Land under the Jurisdiction of BLM, Klamath Basin, Klamath County, OR

  19. Biochemical & Thermochemical High Throughput Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20 40 60 80 100 120 140 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 Frequency Corn Stover Corn Cob Miscanthus Wheat...

  20. Biochemical & Thermochemical High Throughput Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20 40 60 80 100 120 140 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 Frequency Corn Stover Corn Cob Miscanthus Wheat

  1. Little Boy weaponeer William "Deak" Parsons, wartime Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    division leader, focus of next 70th anniversary lecture 70th anniversary lecture Little Boy weaponeer William "Deak" Parsons, wartime Los Alamos division leader, focus of next 70th anniversary lecture Former Laboratory historian Roger Meade to present lecture. August 8, 2013 William S. "Deak" Parsons William S. "Deak" Parsons Contact Steve Sandoval Communications Office (505) 665-9206 Email Josh Dolin Communications Office (505) 665-4803 Email Meade said Los

  2. Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment

    SciTech Connect (OSTI)

    Cui, Z. F.; Wan, C. X.; Shi, J.; Sykes, R. W.; Li, Y. B.

    2012-05-30

    Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p < 0.05). For all fractions, xylan and glucan degradation followed a pattern similar to lignin degradation, with leaves having a significantly higher percentage of degradation (p < 0.05). Hydrolytic enzyme activity also revealed that the fungus was more active in the degradation of carbohydrates in leaves. As a result of fungal pretreatment, the highest sugar yield, however, was obtained with corn cobs.

  3. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Little Boy weaponeer William "Deak" Parsons, wartime Los Alamos division leader, focus of next 70th anniversary lecture August 8, 2013 Former Laboratory historian Roger Meade to talk about life, career, contributions to Lab, the nation by "The Last Commodore" LOS ALAMOS, N.M., Aug. 8, 2013-Los Alamos National Laboratory historian emeritus Roger Meade talks about William S. "Deak" Parsons, one of wartime Los Alamos' first division leaders and the contributions he

  4. Federal Energy and Water Management Awards 2014

    Energy Savers [EERE]

    H.G. Chissell, Anthony Karwoski, Dan Tobocman, Randy Williams U.S. Army Fort Meade, Maryland In FY 2013 the U.S. Army Fort Meade worked with American Water, Viridity Energy, and Sain Engineering Associates to implement a project to respond to electric grid frequency fluctuations for the Fort's water filtration plant, saving about 2.3 billion Btu and $75,000 in utility rebates annually. This was the first successful program at a large water filtration plant to use a new Source Control and Data

  5. CX-003590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Second Generation Biofuels: Carbon Sequestration and Life Cycle AnalysisCX(s) Applied: A9, B3.1, B3.6Date: 08/25/2010Location(s): Mead, NebraskaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  6. CX-010682: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Herbicide Application at Four Substations: Amargosa, Boulder City, Henderson, and Mead located in Nevada during Fiscal Year 2014 CX(s) Applied: B1.3 Date: 07/01/2013 Location(s): Nevada Offices(s): Western Area Power Administration-Desert Southwest Region

  7. CX-012742: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mead-Liberty 345 Kilovolt Transmission Line Access Road and Maintenance and Localized Vegetation Management Project CX(s) Applied: B1.3Date: 41878 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  8. CX-012090: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson-Mead Number 2 230-Kilovolt Transmission Line, Erosion Repair at Structure 2/4 CX(s) Applied: B1.3 Date: 09/11/2013 Location(s): Nevada, Nevada Offices(s): Western Area Power Administration-Desert Southwest Region

  9. Economic Impact of Harvesting Corn Stover under Time Constraint: The Case of North Dakota

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maung, Thein A.; Gustafson, Cole R.

    2013-01-01

    This study examines the impact of stochastic harvest field time on profit maximizing potential of corn cob/stover collection in North Dakota. Three harvest options are analyzed using mathematical programming models. Our findings show that under the first corn grain only harvest option, farmers are able to complete harvesting corn grain and achieve maximum net income in a fairly short amount of time with existing combine technology. However, under the second simultaneous corn grain and cob (one-pass) harvest option, farmers generate lower net income compared to the net income of the first option. This is due to the slowdown in combinemore » harvest capacity as a consequence of harvesting corn cobs. Under the third option of separate corn grain and stover (two-pass) harvest option, time allocation is the main challenge and our evidence shows that with limited harvest field time available, farmers find it optimal to allocate most of their time harvesting grain and then proceed to harvest and bale stover if time permits at the end of harvest season. The overall findings suggest is that it would be more economically efficient to allow a firm that is specialized in collecting biomass feedstock to participate in cob/stover harvest business.« less

  10. Biomass IBR Fact Sheet: POET | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET Biomass IBR Fact Sheet: POET Design, construct, build, and operate a commercial processing plant as part of an integrated biorefinery to produce lignocellulosic ethanol primarily from corn cobs. PDF icon ibr_commercial_poet.pdf More Documents & Publications Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 Bioenergy Technologies Office FY 2016 Budget At-A-Glance POET Project Liberty, LLC

  11. thesis.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Resonance at E p = 127 keV in the 14 N(p ) 15 O Reaction by Stephen O. Nelson Department of Physics Duke University Date Approved: Henry R. Weller, Supervisor Thomas Phillips Calvin Howell Henry Greenside Stephen Teitsworth Dissertation submitted in partial ful llment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2002 Abstract (Physics { TUNL) Evidence for a Resonance at E p = 127 keV in the 14 N(p

  12. Neutrino Interaction Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making the First Neutrino Interaction Measurements on Argon at Low Energy with MicroBooNE Jason St. John University of Cincinnati 1 The µB Collaboration Brookhaven Lab Hucheng Chen Kai Chen (PD) Susan Duffin Jason Farell Francesco Lanni Yichen Li (PD) David Lissauer George Mahler Don Makowiecki Joseph Mead Veljko Radeka Sergio Rescia Andres Ruga Jack Sondericker Craig Thorn (IB) Bo Yu University of Chicago Will Foreman (GS) Johnny Ho (GS) David Schmitz (IB) University of Cincinnati Ryan Grosso

  13. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  14. Students from Pueblo Centennial High School Triumph in Colorado High School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl - News Releases | NREL Students from Pueblo Centennial High School Triumph in Colorado High School Science Bowl February 3, 2007 Photo of students holding a High School Science Bowl banner. (From left) Pueblo Centennial's Jesse Hovis, Lisa Marquez, Mitch Montoya, Meara Christian, Jay Mead (coach) and Benjamin Pacheco hold their trophy and banner after winning the 2007 High School Science Bowl at Dakota Ridge High School in Littleton, Colo. Students from Pueblo Centennial High

  15. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Proposal Addendum March 3, 2008 H. Chen, G. de Geronimo, J. Farrell, A. Kandasamy, F. Lanni, D. Lissauer, D. Makowiecki, J. Mead, V. Radeka, S. Rescia, J. Sondericker, B. Yu Brookhaven National Laboratory, Upton, NY L. Bugel, J. M. Conrad, Z. Djurcic, V. Nguyen, M. Shaevitz, W. Willis ‡ Columbia University, New York, NY C. James, S. Pordes, G. Rameika Fermi National Accelerator Laboratory, Batavia, IL C. Bromberg, D. Edmunds Michigan State University, Lansing, MI P. Nienaber St.

  16. EIS-0413: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Record of Decision EIS-0413: Record of Decision Searchlight Wind Energy Project, Searchlight, NV After considering potential environmental impacts, Western Area Power Administration announces its decision to allow the interconnection of the proposed Searchlight Wind Energy Project to Western's Davis-Mead 230-kilovolt transmission line and to construct, own, and operate a new switching station to accommodate the interconnection. PDF icon EIS-0413-ROD-2013.pdf More Documents & Publications

  17. NREL: Innovation Impact - Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration What is cellulosic biomass? Close Cellulosic biomass comprises all non-edible plants-trees, grasses, algae, and the indigestible parts of food crops, such as corn stalks, leaves, and cobs. What are drop-in biofuels? Close Most of today's biofuels require changes to the fuel

  18. Mr. John Kieling, Acting Chief Hazardous Waste Bureau Depa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depa rtm ent of En e rgy Carlsbad Fie ld Office P. O. Box 3090 Ca rlsbad , New Mexico 88221 JUN 2 2 2011 New Mexico Environment Department 2905 E. Rodeo Park Drive Building 1 Santa Fe, New Mexico 87505*6303 Subject: Annual Proposed Acceptable Knowledge Sufficiency Determination List Dear Mr. Kieling : Pursuant to Permit Cond ition Attachment C, Section C-Ob , Acceptable Knowledge Suffi ciency Determination (AKSD) . the Permittees are required to submit to Ihe New Mexico Environment Department a

  19. Design of the SLAC RCE Platform: A General Purpose ATCA Based Data

    Office of Scientific and Technical Information (OSTI)

    Acquisition System (Conference) | SciTech Connect Conference: Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System Citation Details In-Document Search Title: Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System The SLAC RCE platform is a general purpose clustered data acquisition system implemented on a custom ATCA compliant blade, called the Cluster On Board (COB). The core of the system is the Reconfigurable Cluster Element

  20. A=16F (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    77AJ02) (See Energy Level Diagrams for 16F) GENERAL: See also (1971AJ02) and Table 16.27 [Table of Energy Levels] (in PDF or PS). See (1972JA14, 1973LA1G, 1973LA1H, 1973RO1R, 1974VA24, 1975BE31). 1. (a) 14N(3He, n)16F Qm = -0.969 (b) 14N(3He, np)15O Qm = -0.421 Observed neutron groups and L-values derived from angular distribution measurements are displayed in Table 16.28 (in PDF or PS) [(1973BO50); E(3He) = 13 MeV]. See (1971AJ02) for the eariler work. See also (1971ADZZ, 1975OT01). For

  1. A=16F (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See Energy Level Diagrams for 16F) GENERAL: See also (1977AJ02) and Table 16.25 [Table of Energy Levels] (in PDF or PS). See (1977LA04, 1977SI1D, 1978WO1E, 1980HA35, 1981OS04). 1. (a) 14N(3He, n)16F Qm = -0.969 (b) 14N(3He, np)15O Qm = -0.421 Observed neutron groups and L-values derived from angular distribution measurements are displayed in Table 16.26 (in PDF or PS) (1973BO50). For the results from reaction (b) see Table 16.26 (in PDF or PS) (1976OT02). See also (1977AJ02). 2.

  2. A=16F (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See Energy Level Diagrams for 16F) GENERAL: See also (1982AJ01) and Table 16.24 [Table of Energy Levels] (in PDF or PS) here. For reactions involving pions see (1983AS01, 1984AS05) and reaction 2. See also (1982BR08, 1983ANZQ, 1983AN25, 1983CO15, 1983KO2B, 1986YA1Q, 1986YA1F). For a comparison of analog states in 16O and 16F see (1982FA06, 1983KE06, 1984ST10). See also (1985AN28, 1985HA01). 1. (a) 14N(3He, n)16F Qm = -0.957 (b) 14N(3He, np)15O Qm = -0.421 Observed neutron groups from

  3. A=16F (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See Energy Level Diagrams for 16F) GENERAL: See Table Prev. Table 16.29 preview 16.29 [General Table] (in PDF or PS) here. See also Table Prev. Table 16.30 preview 16.30 [Table of Energy Levels] (in PDF or PS) here. 1. (a) 14N(3He, n)16F Qm = -0.957 (b) 14N(3He, np)15O Qm = -0.421 Obserevd neutron groups from reaction (a) and results from reaction (b) are displayed in Table Prev. Table 16.31 preview 16.31 (in PDF or PS). A recent measurement of n-p angular correlations from 14N(3He,

  4. Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minutes Minutes Minutes of the June 1997 ERSUG Meeting An ERSUG meeting was held at Princeton Plasma Physics Laboratory June 5-6, 1997. Here is the summary by the ExERSUG secretary. The meeting opened with a welcoming word from Dale Meade, associate director of PPPL, and a brief description of the PPPL local computing facilities by Charles Karney. PPPL has a cluster of workstations and Xterminals, with a DEC 2100/4 and several Sun Ultra2/2200 at the high end. They share filesystems with NERSC

  5. The Inforum LIFT Model

    U.S. Energy Information Administration (EIA) Indexed Site

    Inforum LIFT Model U.S. Energy and Economic Outlook Douglas S. Meade 2011 EIA Energy Conference Overview  The Inforum LIFT Model  Treatment of energy flows and emissions in LIFT.  Calibrating to AEO  Model extensions  U.S. Energy and Macroeconomic Outlook  Modeling of energy and environmental regulation April 26, 2011 2 2011 EIA Energy Conference LIFT: An Interindustry Macro (IM) Model  Input-Output (IO) relationships form the core of LIFT, both for output and price

  6. No Slide Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey on Instrument/ Translator Resources Greg McFarquhar and Mike Jensen Cloud Properties Working Group Meeting March 27, 2006 Albuquerque NM 130 to 145 Wiscombe, 145 to 200 Wiscombe, 200 to 215 DeVore, 215 to 230 Vogelman, 230 to 245 Jensen, 245 to 300 Schumaker, 300 to 315 DeMott, 325 to 350 BREAK 350 to 405 Mead, 405 to 430 McFarquhar/Jensen, 430 to 530 Open Discussion Motivation of Survey * Respondents asked to identify importance of and rank priority of VAPs and instrument needs - This

  7. Mr. Carl Schafer Director of Environmental Policy

    Office of Legacy Management (LM)

    Cont'dl DEPARTMENT OF THE DEFENSE INSTALLATIONS/FACILITIES Installation/Facility MED/AEC Activity Naval Research Laboratory (Former Anacostia Naval Air Station) Washington,. DC Nellis Air Force,Base (*I Las Vegas, NV Conducted research and.development activi,ties on thermal diffusion. A.pilot plant (S-50 Plant).was built at the former Anacostia Naval ./Y Air Station to separate uranium isotopes by ;,~!,c liquid thermal diffusion. A letter dated 26 Aug 1969 from the Commanding Officer, Lake Mead

  8. EIS-0315: Caithness Big Sandy Project, Wikieup, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Big Sandy Energy to interconnect a proposed 720-MW generating facility near Wikieup, Ariz., with the Mead-Phoenix Project 500-kV transmission line. The powerplant plan includes a proposed high-pressure natural gas pipeline, permanent access road and water pipelines that would cross BLM-administered land. Because the project could 'significantly affect the quality of the human environment,' studies must be done to identify environmental effects. WAPA is partnering with the Bureau of Land Management in Kingman on this project. BLM and Western have delayed issuing the Supplemental Draft EIS at the request of the applicant, Caithness Energy."

  9. Runaway Geneeration In Disruptions Of Plasmas In TFTR

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Bell, M. G.; Taylor, G.; Medley, S. S.

    2014-03-31

    Many disruptions in the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24] produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lasting runaway plasmas, Parail-Pogutse instabilities were observed.

  10. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-88

    W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest National Laboratory Richland, Washington J. B. Mead ProSensing, Inc. Amherst, Massachusetts Abstract The Atmospheric Radiation Measurement (ARM) Program and ProSensing, Inc. have teamed to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. The WACR will be co- located with the ARM millimeter wave cloud radar (MMCR) with planned operation to begin in early 2005. This radar

  11. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, James ProSensing Inc. Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM Cloud Radars (WACR) have been developed for the SGP and the ARM Mobile Facility (AMF) by ProSensing. The SGP WACR was successfully deployed in the same shelter as the MMCR in 2005. It is currently collecting co-polarization and cross-polarization spectral moments (reflectivity, Doppler velocity,

  12. Protection Program Operations (for Information Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-29

    This draft has been scheduled for final review before the Directives Review Board on 6-18-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 6-17-15.

  13. Asset Revitalization Guide for Asset Management and Reuse (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-29

    This draft has been scheduled for final review before the Directives Review Board on 6-18-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 6-17-15.

  14. Federal Sustainable Print Management (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-09-21

    This draft has been scheduled for final review before the Directives Review Board on 10-1-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 9-29-15.

  15. Independent Oversight Program (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-07-29

    This draft has been scheduled for final review before the Directives Review Board on 8-6-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 8-5-15.

  16. Information Technology Project Execution Model Guide for Small and Medium Projects (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-09-21

    This draft has been scheduled for final review before the Directives Review Board on 10-1-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 9-29-15.

  17. Hazardous Materials Packaging and Transportation Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-23

    This draft has been scheduled for final review before the Directives Review Board on 11-4-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 11-2-15.

  18. POET-DSM: Project Liberty

    Broader source: Energy.gov [DOE]

    Project LIBERTY, POET-DSM’s new biorefinery in Emmetsburg, Iowa, is scheduled to begin producing cellulosic ethanol from corn stover later this summer. This state-of-the-art facility uses a biological process to convert post-harvest corn stover (cobs, leaves, husks, and upper stalks) into a biofuel that will help build U.S. fuel independence, reduce climate impacts, and create new jobs. The U.S. Department of Energy contributed $100 million in cost-shared support for the development, design, and construction of this pioneer facility, which has the capacity to produce up to 25 million gallons of cellulosic ethanol annually.

  19. Nuclear Explosive and Weapon Surety Program (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-21

    This draft has been scheduled for final review before the Directives Review Board on 12-4-2014. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 12-2-2014.

  20. Strategic Partnership Projects [Formerly Known as Work for Others (Non Department of Energy Funded Work)] (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-23

    This draft has been scheduled for final review before the Directives Review Board on 11-4-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Emily Stanton (Emily.Stanton@hq.doe.gov; 202-287-5641). All major comments and concerns should be submitted by COB 11-2-15.

  1. Facility Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-04

    This draft has been scheduled for final review before the Directives Review Board on 12/18/14. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 12/16/2014.

  2. Insider Threat Program (For Informational Purposes)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-03-10

    This draft has been scheduled for final review before the Directives Review Board on 03/20/14. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 03/18/2014.

  3. Security and Use Control of Nuclear Explosives and Nuclear Weapons (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-24

    This draft has been scheduled for final review before the Directives Review Board on 3-5-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 3-3-15.

  4. Radiant flash pyrolysis of biomass using a xenon flashtube

    SciTech Connect (OSTI)

    Hopkins, M.W.; Antal, M.J. Jr.

    1984-06-01

    Biomass materials, including lignin, redwood, corn cob, Calotropis Procera, Leucaena wood, Kraft paper, newsprint, cow manure, D-glucose, and D-cellobiose, were pyrolyzed in vacuum by the visible radiant flux emitted from a Xenon flashtube. The flux density exceeded 8 kW/cm/sup 2/ during the 1 ms flash. Sirup yields were low (avg 25%), while the gas yield was high (avg 32%). The gaseous products were composed primarily of CO and CO/sub 2/. The high relative yields of CO establish the existence of a high temperature fragmentation pathway active during the flash pyrolysis of all biomass materials. 39 references, 2 figures, 5 tables.

  5. Nonlinear optical crystal optimized for Ytterbium laser host wavelengths

    DOE Patents [OSTI]

    Ebbers, Christopher A.; Schaffers, Kathleen I.

    2007-02-20

    A material for harmonic generation has been made by substitutional changes to the crystal LaCa.sub.4 (BO.sub.3).sub.3 also known as LaCOB in the form Re1.sub.xRe2.sub.yRe3.sub.zCa.sub.4(BO.sub.3).sub.3O where Re1 and Re2, (rare earth ion 1 and rare earth ion 2) are selected from the group consisting of Sc, Yttrium, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; Re3 is Lanthanum; and x+y+z=1.

  6. Nonlinear optical crystal optimized for ytterbium laser host wavelengths

    DOE Patents [OSTI]

    Ebbers, Christopher A.; Schaffers, Kathleen I.

    2007-08-21

    A material for harmonic generation has been made by substitutional changes to the crystal LaCa.sub.4(BO.sub.3).sub.3 also known as LaCOB in the form Re1.sub.xRe2.sub.yRe3.sub.zCa.sub.4(B0.sub.3).sub.3O where Re1 and Re2, (rare earth ion 1 and rare earth ion 2) are selected from the group consisting of Sc, Yttrium, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; Re3 is Lanthanum; and x+y+z=1.

  7. Nonlinear optical crystal optimized for Ytterbium laser host wavelengths

    DOE Patents [OSTI]

    Ebbers, Christopher A.; Schaffers, Kathleen I.

    2008-05-27

    A material for harmonic generation has been made by substitutional changes to the crystal LaCa.sub.4 (BO.sub.3).sub.3 also known as LaCOB in the form Re1.sub.xRe2.sub.yRe3.sub.zCa.sub.4(B0.sub.3).sub.3O where Re1 and Re2, (rare earth ion 1 and rare earth ion 2) are selected from the group consisting of Sc, Yttrium, La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yb, and Lu; Re3 is Lanthanum; and x+y+z=1.

  8. Graphic1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2009 WIPP Quick Facts (As of 8-10-09) 7,653 Shipments received since opening (7,393 CH and 260 RH) 61,696 Cubic meters of waste disposed (61,575 CH and 121 RH) 118,203 Containers disposed in the underground (117,950 CH and 253 RH) Foreign Travel Notice: Please advise by COB August 18, 2009, if you or anyone if your office is planning on going on Foreign Travel for the first half of FY2010 (October 1, 2009 through March 31, 2010), please provide all of the information requested below to...

  9. BER-NERSC-YS invitation2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would like to offer my special invitation for you to participate in a workshop on "Large Scale Production Computing Requirements for Biological and Environmental Research." The workshop will be held at Hilton Rockville (in front of the Twinbrook Metro Station on the Red Line) in Maryland on May 7-8, 2009. Please respond to BER-workshop-committee@nersc.gov by COB March 9, 2009 (note the new due date), confirming your participation. The goal of this workshop is to accurately characterize

  10. Supersymmetry Breaking, Gauge Mediation, and the LHC

    SciTech Connect (OSTI)

    Shih, David

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  11. Summary for Policymakers IPCC Fourth Assessment Report, WorkingGroup III

    SciTech Connect (OSTI)

    Barker, Terry; Bashmakov, Igor; Bernstein, Lenny; Bogner,Jean; Bosch, Peter; Dave, Rutu; Davidson, Ogunlade; Fisher, Brian; Grubb,Michael; Gupta, Sujata; Halsnaes, Kirsten; Heij, Bertjan; Kahn Ribeiro,Suzana; Kobayashi, Shigeki; Levine, Mark; Martino, Daniel; MaseraCerutti, Omar; Metz, Bert; Meyer, Leo; Nabuurs, Gert-Jan; Najam, Adil; Nakicenovic, Nebojsa; Rogner, Hans Holger; Roy, Joyashree; Sathaye,Jayant; Schock, Robert; Shukla, Priyaradshi; Sims, Ralph; Smith, Pete; Swart, Rob; Tirpak, Dennis; Urge-Vorsatz, Diana; Zhou, Dadi

    2007-04-30

    A. Introduction 1. The Working Group III contribution to theIPCC Fourth Assessment Report (AR4) focuses on new literature on thescientific, technological, environmental, economic and social aspects ofmitigation of climate change, published since the IPCC Third AssessmentReport (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS)and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The following summary is organised into six sections after thisintroduction: - Greenhouse gas (GHG) emission trends, - Mitigation in theshort and medium term, across different economic sectors (until 2030), -Mitigation in the long-term (beyond 2030), - Policies, measures andinstruments to mitigate climate change, - Sustainable development andclimate change mitigation, - Gaps in knowledge. References to thecorresponding chapter sections are indicated at each paragraph in squarebrackets. An explanation of terms, acronyms and chemical symbols used inthis SPM can be found in the glossary to the main report.

  12. Acquisition Career Management Program (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-21

    This draft has been scheduled for final review before the Directives Review Board on 4-2-15 (delayed from 12-4-14 session). All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 3-31-15.

  13. Social and economic aspects of the introduction of gasification technology in rural areas of developing countries (Tanzania)

    SciTech Connect (OSTI)

    Groeneveld, M.J.; Westerterp, K.R.

    1980-01-01

    According to the evaluation criteria presented, the gasification of corn cobs is acceptable from the economical and agricultural point of view in the rural areas around Arusha (Tanzania). The gasification system is of relatively simple construction and local maintenance is possible. If the system is connected to the already existing corn mills in the villages, it is appropriate to the existing socio-cultural system. The economic calculations made clear that the use of gasification is attractive for both the owners of the corn mill and the government. The advantages for the government are the savings on imported oil and the extra income created for the users of the corn mill (inhabitants of the rural villages). The government loses income from taxes and from the production and transport of diesel oil. Evaluation methods presented can and should be used for gasification projects in other areas.

  14. Structural and chemical ordering of Heusler CoxMnyGez epitaxial films on Ge (111). Quantitative study using traditional and anomalous x-ray diffraction techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, B. A.; Chu, Y.; He, L.; Haskel, D.; Tsui, F.

    2015-12-14

    We found that epitaxial films of CoxMnyGez grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependence of multiple reflections acrossmore » each constituent absorption edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. Furthermore, the quantitative MEAD analysis reveals no detectable amount (<0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co 0.5 Mn 0.25 Ge 0.25 ) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less

  15. Structural and chemical ordering of Heusler CoxMnyGez epitaxial films on Ge (111). Quantitative study using traditional and anomalous x-ray diffraction techniques

    SciTech Connect (OSTI)

    Collins, B. A.; Chu, Y.; He, L.; Haskel, D.; Tsui, F.

    2015-12-14

    We found that epitaxial films of CoxMnyGez grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependence of multiple reflections across each constituent absorption edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. Furthermore, the quantitative MEAD analysis reveals no detectable amount (<0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co 0.5 Mn 0.25 Ge 0.25 ) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.

  16. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    SciTech Connect (OSTI)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  17. Toroidal Alfvn Eigenmodes in TFTR Deuterium-Tritium Plasmas

    SciTech Connect (OSTI)

    G.Y. Fu; H. Berk; R. Nazikian; S.H. Batha; Z. Chang; et al

    1998-01-01

    Purely alpha-particle-driven Toroidal Alfvn Eigenmodes (TAEs) with toroidal mode numbers n=1-6 have been observed in Deuterium-Tritium (D-T) plasmas on the Tokamak Fusion Test Reactor [D.J. Grove and D.M. Meade, Nucl. Fusion 25, 1167 (1985)]. The appearance of mode activity following termination of neutral beam injection in plasmas with q(0)>1 is generally consistent with theoretical predictions of TAE stability [G.Y. Fu et al., Phys. Plasmas 3, 4036 (1996]. Internal reflectometer measurements of TAE activity is compared with theoretical calculations of the radial mode structure. Core localization of the modes to the region of reduced central magnetic shear is confirmed, however the mode structure can deviate significantly from theoretical estimates. The peak measured TAE amplitude of delta n/n~10(superscript -4) at r/a~0.3-0.4 corresponds to delta B/B~10-5, while dB/B~10(superscript -8) is measured at the plasma edge. Enhanced alpha particle loss associated with TAE activity has not been observed.

  18. Airborne gamma-ray spectrometer and magnetometer survey: Peoria, Decater, Belleville Quadrangles, (IL). Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Peoria, Decatur, and Belleville, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton procession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results.

  19. The role of the Ganges-Brahmaputra mixing zone in supplying barium and [sup 226]Ra to the Bay of Bengal

    SciTech Connect (OSTI)

    Carroll, J. Univ. of Alaska, Fairbanks ); Falkner, K.K. CNES, Toulouse ); Brown, E.T. ); Moore, W.S. )

    1993-07-01

    The Ganges-Brahmaputra river system is ranked fourth among world rivers as a source of freshwater to the oceans and is believed to supply more sediment to the ocean than any other; 1.5 [times] 10[sup 12] kg/yr (Milliman and Meade, 1983). Barium and [sup 226]Ra are typically enriched in waters where sediment-laden rivers enter the ocean. As such, the Ganges-Brahmaputra is likely to produce globally significant barium and [sup 226]Ra fluxes to the ocean. Water samples for barium and [sup 226]Ra were collected within four major channels of the Ganges-Brahmaputra mixing zone during a period of low sediment and freshwater discharge. The data suggest that in addition to suspended sediments supplied directly from rivers, river sediments deposited during high discharge in mangroves and on islands are desorbing barium and [sup 226]Ra to seawater. The release of barium and [sup 226]Ra from these sediment deposits is out-of-phase with the direct supply of sediments from the rivers. Estimates of the annual fluxes of barium and [sup 226]Ra from the Ganges-Brahmaputra mixing zone were also derived. The fluxes of barium and [sup 226]Ra are 5.3 [times] 10[sup 8] mol barium/yr and 9.5 [times] 10[sub 14] dpm radium/yr. The first silicate and phosphate mixing profiles for this system are reported. 29 refs., 6 figs., 3 tabs.

  20. Imaging Hindered Rotations of Alkoxy Species on TiO2(110)

    SciTech Connect (OSTI)

    Zhang, Zhenrong; Rousseau, Roger J.; Gong, Jinlong; Kay, Bruce D.; Dohnalek, Zdenek

    2009-12-16

    We present the first study of the rotational dynamics of organic species on any oxide surface. Specifically, variable-temperature scanning tunneling microscopy (STM) and dispersion-corrected density functional theory are used to study the alkyl chain conformational disorder and dynamics of 1-, 2-, 3- and 4-octoxy on rutile TiO2(110). Initially, the geminate pairs of the octoxy and bridging hydroxyl species are created via octanol dissociation on bridging-oxygen (Ob) vacancy defects. The STM images provide time averaged snapshots of octoxy species rotating among multiple energetically nearly-degenerate configurations accessible at a given temperature. In the calculations we find that the underlying corrugated potential energy surface is a result of the interplay between attractive Van der Waals dispersion forces leading to weak attractive C...Ti and repulsive C...Ob interactions which lead to large barriers of 50-70kJmol-1 for the rotation of the octoxy alkyl chains across the Ob rows. In the presence of the germinal hydroxyl groups we find that the relative populations of the various conformations as well as the rotational barriers are perturbed by the presence of geminate hydroxyl due to additional C...hydroxyl repulsions.

  1. Functional Insights from Structural Genomics

    SciTech Connect (OSTI)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  2. Continuous radiant decomposition studies

    SciTech Connect (OSTI)

    Tabatabaie-Raissi, A.; Antal, M.J. Jr.

    1983-01-01

    To support ongoing research activities of the Renewable Resources Research Laboratory (R/sup 3/L), a double paraboloid downward facing beam arc image furnace was designed and fabricated in Princeton. The solar simulator was currently modified and upgraded to incorporate a 30 KW water-cooled, xenon compact arc lamp with all the associated electrical, optical and cooling systems. The solar furnace provides an intense light beam with a peak flux density as high as 1000 W/cm/sup 2/ (or 10,000 suns) at the focus of the concentrator. The parameters governing the design and operation of this solar furnace are described in detail. Considerable progress was made in the development of novel spouted/fluidized bed flash pyrolysis reactors which function as solar receivers. The reactors were employed at the focus of the arc image furnace under conditions of severe radiant energy transfer (with peak flux of about 1 KW/cm/sup 2/). The pyrolysis reactors employed under continuous radiant decomposition conditions performed well and provided sirup yields as high as 55% (by weight) using crushed corn cob particles (1000 > dp > 850 ..mu..m). Finally, an extensive literature search was carried out to compile the currently available data regarding decomposition of zinc sulfate. Several experiments using a Setaram Differential Scanning Calorimeter were preformed in order to investigate the mechanisms of ZnSO/sub 4/ decomposition under conditions of low heating rates.

  3. Experimental evaluation of a solar fired flash pyrolysis of biomass reactor

    SciTech Connect (OSTI)

    Antal, M.J. Jr.; Edwards, W.E.; Steenblik, R.A.; Brown, C.T.; Knight, J.A.; Elston, L.W.; Hurst, D.R.

    1981-01-01

    A Princeton-Georgia Institute of Technology flash pyrolysis of biomass test program was conducted at the DOE Advanced Components Test Facility (CTF) at Georgia Tech in August 1980. The 400 kWth solar thermal facility was used to provide a source of highly concentrated radiant energy for the flash pyrolysis of four types of biomass in a steam counterflow quartz reactor. The biomass materials were microcrystalline cellulose, hardwood sawdust, ground corn cob, and Kraft lignin. The experiments at Princeton and Georgia Tech suggest the use of concentrated radiant energy as a selective means for the production of either a hydrocarbon rich synthesis gas or sugar related syrups from biomass by flash pyrolysis. Experiments at Princeton have indicated that sugar related syrups are selectively produced when the biomass particles are rapidly heated by radiation in a cool gaseous environment. The gas temperatures in the reactor during the test program at Georgia Tech were relatively high, which selectively turned the chemistry toward the production of hydrocarbon rich synthesis gases.

  4. Biomass gasification at the focus of the Odeillo (France 1-MW (thermal) solar furnace

    SciTech Connect (OSTI)

    Antal, M.J. Jr.; Royere, C.; Vialaron, A.

    1980-01-01

    Experiments described in this paper were undertaken to explore the use of concentrated solar radiation for the flash pyrolysis of biomass. Biomass materials (powdered, microcrystalline cellulose and ground corn cob material) have been successfully gasified in a windowed chemical reactor operating at the focus of the Odeillo 1 MW/sub th/ solar furnace. The quartz window survived radiant flux levels in excess of 1000 W/cm/sup 2/; however impurities carried by the steam flow into the reactor ultimately clouded the window. Pyrolytic char yields of the Odeillo experimetns were quite low: ranging between one and four percent. Gas yields were also relatively low, but condensible yields were high. These results reflect the important role played by the gas phase chemistry (largely unaffected by the high solar flux) in the production of permanent gases from biomass. A consideration of the characteristic times for chemical kinetic and heat transfer phenomenon within a rapidly pyrolyzing particle indicate that heat transfer (not chemical kinetics) is the rate limiting step. However, the thermochemical and optical properties of biomass materials are poorly understood and much more experimental work must be completed before definitive conclusions in this important area can be made. Because the use of concentrated solar radiation for direct gasification of biomass materials results in the formation of little or no char without reliance on the water gas or Boudourad reactions, solar flash pyrolysis of biomass holds unusual promise for the economical production of liquid and gaseous fuels from renewable resources.

  5. HIGHLY ENERGY EFFICIENT D-GLU (DIRECTED-GREEN LIQ-UOR UTILIZATION) PULPING

    SciTech Connect (OSTI)

    Lucia, Lucian A

    2013-04-19

    Purpose: The purpose of the project was to retrofit the front end (pulp house) of a commercial kraft pulping mill to accommodate a mill green liquor (GL) impregna-tion/soak/exposure and accrue downstream physical and chemical benefits while prin-cipally reducing the energy footprint of the mill. A major player in the mill contrib-uting to excessive energy costs is the lime kiln. The project was intended to offload the energy (oil or natural gas) demands of the kiln by by-passing the causticization/slaking site in the recovery area and directly using green liquor as a pulping medium for wood. Scope: The project was run in two distinct, yet mutually compatible, phases: Phase 1 was the pre-commercial or laboratory phase in which NC State University and the Insti-tute of Paper Science and Technology (at the Georgia Institute of Technology) ran the pulping and associated experiments, while Phase 2 was the mill scale trial. The first tri-al was run at the now defunct Evergreen Pulp Mill in Samoa, CA and lead to a partial retrofit of the mill that was not completed because it went bankrupt and the work was no longer the low-hanging fruit on the tree for the new management. The second trial was run at the MeadWestvaco Pulp Mill in Evedale, TX which for all intents and pur-poses was a success. They were able to fully retrofit the mill, ran the trial, studied the pulp properties, and gave us conclusions.

  6. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; Westover, Tyler L.

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  7. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences

    SciTech Connect (OSTI)

    Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.; Fourcade, H. Matthew; Boore, Jeffrey L.

    2004-05-19

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.

  8. Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-08-09

    BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability standards that minimize risks to public safety and to equipment. BPA is considering two construction alternatives, the Agency Proposed Action and the Alternative Action. The Alternative Action would include all the components of the Preferred Action except a double-circuit line would be constructed in the Spokane area between a point about 2 miles west of the Spokane River and Bell Substation, a distance of about 9 miles. BPA is also considering the No Action Alternative.

  9. Extending the radial diffusion model of Falthammar to non-dipole background field

    SciTech Connect (OSTI)

    Cunningham, Gregory Scott

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic perturbations.

  10. Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO2(110)

    SciTech Connect (OSTI)

    Acharya, Danda P.; Yoon, Yeohoon; Li, Zhenjun; Zhang, Zhenrong; Lin, Xiao; Mu, Rentao; Chen, Long; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek

    2013-11-26

    The conversion of diols on partially reduced TiO2(110) at low coverage was studied using variable-temperature scanning tunneling microscopy, temperature programmed desorption and density functional theory calculations. We find, that below ~230 K, ethane-1,2-diol and propane-1,3-diol molecules adsorb predominantly on five-fold coordinated Ti5c atoms. The dynamic equilibrium between molecularly bound and dissociated species resulting from O-H bond scission and reformation is observed. As the diols start to diffuse on the Ti5c rows above ~230 K, they dissociate irreversibly upon encountering bridging oxygen (Ob) vacancy (VOs) defects. Two dissociation pathways, one via O-H and the other via C-O bond scission leading to identical surface intermediates, hydroxyalkoxy, Ob-(CH2)n-OH (n = 2, 3) and bridging hydroxyl, HOb, are seen. For O-H bond scission, the Ob-(CH2)n-OH is found on the position of the original VO, while for C-O scission it is found on the adjacent Ob site. Theoretical calculations suggest that the observed mixture of C-O/O-H bond breaking processes are a result of the steric factors enforced upon the diols by the second OH group that is bound to a Ti5c site. At room temperature, rich dissociation/reformation dynamics of the second, Ti5c-bound O-H leads to the formation of dioxo, Ob-(CH2)n-OTi, species. Above ~400 K, both Ob-(CH2)n-OH and Ob-(CH2)n-OTi species convert into a new intermediate, that is centered on Ob row. Combined experimental and theoretical evidence shows that this intermediate is most likely a new dioxo, Ob-(CH2)2-Ob, species. Further annealing leads to sequential C-Ob bond cleavage and alkene desorption above ~ 500 K. Simulations find that the sequential C-O bond breaking process follows a homolytic diradical pathway with the first C-O bond breaking event accompanied by a non-adiabatic electron transfer within the TiO2(110) substrate.

  11. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY_ID","UTILITY_NAME","TRANSLINE_NO","TERMINAL_LOC_FROM","TERMINAL_LOC_TO","PERCENT_OWNED","LINE_LENGTH","LINE_TYPE","VOLTAGE_TYPE","VOLTAGE_OPERATING","VOLTAGE_DESIGN","CONDUCTOR_SIZE","CONDUCTOR_MAT_TYPE","CONDUCTOR_CONFIG","CIRCUIT_PERSTRUCT_PRES","CIRCUIT_PERSTRUCT_ULT","POLE_TOWER_TYPE","RATED_CAPACITY","LAND_LANDRIGHT_COSTS","POLE_TOWER_FIXTURE_COSTS","CONDUCTOR_DEVICE_COSTS","CONSTRUCTION_ETC_COSTS","TOTAL_LINE_COSTS","IN_SERVICE_DATE" 2003,1015,"Austin City of",1,"Northland","Magnesium Plant",100,4.11,"OH","AC",138,138,795,"ACSR Drake/ACSS Rail","Single",1,2,"Steel & Wood Poles",215,0,17500,8000,19500,45000,"application/vnd.ms-excel" 2003,1015,"Austin City of",2,"Grove","Met Center",100,3.1,"OH","AC",138,138,795,"ASCR Drake","Double",1,1,"Steel Pole",430,0,30000,10000,35000,75000,"application/vnd.ms-excel" 2003,1015,"Austin City of",3,"Dessau","Daffin Gin",100,6.01,"OH","AC",138,138,795,"ASCR Drake","Single",1,1,"Steel Pole",215,0,60000,15000,40000,115000,"application/vnd.ms-excel" 2003,1015,"Austin City of",4,"Burleson","AMD",100,2.2,"OH","AC",138,138,795,"ACR Drake","Double",2,2,"Steel Pole",430,0,75000,55000,120000,250000,"application/vnd.ms-excel" 2003,1015,"Austin City of",5,"Bergstrom","Kingsberry",100,4.2,"OH","AC",138,138,795,"ASCR Drake/AAAC","Single",1,2,"Steel & Wood Poles",215,0,75000,35000,340000,450000,"application/vnd.ms-excel" 2003,1015,"Austin City of",6,"Mcneil","Magnesium Plant",100,3.24,"OH","AC",138,138,795,"ACSR Drake","Double",1,2,"Steel Pole & Steel Tower",430,0,380000,76000,644000,1100000,"application/vnd.ms-excel" 2003,1015,"Austin City of",7,"Summit","Magnesium Plant",100,2.18,"OH","AC",138,138,795,"ACSR Drake","Double",1,2,"Steel Pole & Steel Tower",430,0,265000,125000,410000,800000,"application/vnd.ms-excel" 2003,1307,"Basin Electric Power Coop",1,"Rapid City","New Underwood",65,18.55,"OH","AC",230,230,1272,"ACSR","Single",1,1,"Single Pole, Steel",460,0,0,0,5300000,5300000,"application/vnd.ms-excel" 2003,1586,"Bentonville City of",1,"AEP/SWEPCO","City Substation F",100,1,"OH","AC",161,161,477,"ACSR","Single",1,1,"Wood and Steel Single Pole",199,18000,81522,28082,214516,342120,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",1,"Coppell","Lewisville",100,7.03,"OH","AC",138,138,1033,"ACSR","Double",1,1,"Concrete/Steel Single Pole",485,17577.55,2527717,537265.96,956475.39,4039035.9,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",2,"Boyd","Newark",100,1.8,"OH","AC",138,138,795,"ACSR","Single",2,2,"Concrete/Steel Single Pole",215,133929.08,538282.3,131112.75,246577.6,1049901.73,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",3,"Cedar Hill","Sardis",100,5.1,"OH","AC",138,138,795,"ACSR","Single",1,1,"Concrete Si ngle Ploe",215,24515.26,652910.22,246676.96,560582.43,1484684.87,"application/vnd.ms-excel" 2003,5580,"East Kentucky Power Coop Inc",1,"Jamestown Tap","Jamestown Tap",100,0.47,"OH","AC",161,161,556.5,"ACSR","Single",1,1,"Wood Single Pole",292,43326,160508,68789,0,272623,"application/vnd.ms-excel" 2003,5580,"East Kentucky Power Coop Inc",2,"Pulaski Co. Tap","Pulaski Co. Tap",100,5.88,"OH","AC",161,161,795,"ACSR","Single",1,1,"Wood H-Frame Structure",367,494183,1092462,468198,0,2054843,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",1,"Shoal Creek","Spout Spring",100,10.83,"OH","AC",230,230,1351,"ACSR","Single",1,1,"Concrete, Single Pole & Steel",602,1277945,1685271,444690,6047603,9455509,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",2,"Dresden","Yellowdirt",100,9.5,"OH","AC",230,230,795,"ACSR","Double",1,1,"Concrete, Single Pole",866,870826,772876,375515,3649376,5668593,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",3,"East Moultrie","West Valdosta",100,38.46,"OH","AC",230,230,1622,"ACSR","Single",1,1,"Concrete, Single Pole",596,1191168,2829632,1476802,10279078,15776680,"application/vnd.ms-excel" 2003,7490,"Grand River Dam Authority",1,"Cowskin","Grove PSO",100,4.5,"OH","AC",138,138,795,"ACSR","Single/Twisted",1,1,"Wood Pole",223,287671,135402,156769,880890,1460732,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",1,"BASTROP","AUSTIN",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,9155828,155817297,37044659,47228709,249246493,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",2,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",3,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",4,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",5,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",6,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",7,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",8,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",9,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",10,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",11,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",12,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",13,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",14,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",15,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",16,"LOCKHART","DUMP HILL",100,1.6,"OH","AC",138,138,795,"ACSR","Single",1,1,"Concrete Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",17,"HILL POWER STATION","NUECES BAY",100,17.3,"OH","AC",138,138,795,"ACSR","Double",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",18,"NORTH OAK PARK","LON HILL",100,14.9,"OH","AC",138,138,795,"ACSR","Double",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",19,"STATE HIGHTWAY 80",,100,0.38,"OH","AC",138,138,211.5,"ACSR","Single",1,1,"Wood H-Frame Structure",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",20,"STATE HIGHWAY 80",,100,0.38,"OH","AC",138,138,211.5,"ACSR","Single",1,1,"Wood H-Frame Structure",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",21,"STERLING/MITCHELL LINE","TWINN BUTTES",100,135.08,"OH","AC",345,345,1590,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",22,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",23,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",24,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",25,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",26,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",27,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",28,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",29,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",30,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",31,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,15143,"Platte River Power Authority",1,"Rawhide","Timberline West",100,31.63,"OH","AC",230,230,954,"ACSR","Single",2,2,"Steel/Tower & Pole",378,5553,1928767,2385430,251850,4571600,"application/vnd.ms-excel" 2003,15159,"Plymouth City of",1,"Mullet River Sub","Sub # 1",100,0.8,"OH","AC",138,138,336.4,"ACSR","SINGLE",1,1,"Steel Double Pole",33,0,0,0,1492139,1492139,"application/vnd.ms-excel" 2003,16534,"Sacramento Municipal Util Dist",1,"Natomas","Elverta",100,4.3,"OH","AC",230,230,954,"Aluminum","Single",1,1,"Steel Tower",316,0,0,0,0,0,"application/vnd.ms-excel" 2003,17543,"South Carolina Pub Serv Auth",1,"Rainey - Anderson (Duke) #1","Rainey - Anderson (Duke) #1",100,9.51,"OH","AC",230,230,1272,"ACSR","Double",2,2,"Steel / Tower",956,840152,1230361,1207282,22364,3300159,"application/vnd.ms-excel" 2003,17543,"South Carolina Pub Serv Auth",2,"Rainey - Anderson (Duke) #2","Rainey - Anderson (Duke) #2",100,9.51,"OH","AC",230,230,1272,"ACSR","Double",2,2,"Steel / Tower",956,840152,1230361,1207282,22364,3300159,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",1,"West Ringgold","Center Point",100,7.94,"OH","AC",115,230,954,"ASCR","Single",1,2,"Steel Tower",,2086252,5658529,1502763,3053959,12301503,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",2,"NE Johnson City--Erwin 161kV T","Jonesborough 161 kV SS",100,0.28,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,11050,191917,894933,714987,1812887,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",3,"Elizabethton","Pandara-Shouns",100,15.12,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,282232,1797686,537733,2057572,4675223,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",4,"Sullivan","Blountville",100,0.63,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,547521,1134556,788061,1224067,3694205,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",5,"Pin Hook","Structure E 104A (NES)",100,1.74,"OH","DC",161,161,2034.5,"ASCR","Single",1,2,"Steel Tower",,179775,881877,641976,270782,1974410,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",6,"Dug Gap 115 kV SS","Center Point 230 kV SS",100,4.49,"OH","AC",115,230,954,"ASCR","Single",2,2,"Steel Tower",,3939251,3451555,545558,1026021,8962385,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",7,"Chickamauga-Ridgedale","Hawthorne 161 kV SS",100,2.82,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,87206,533582,342640,584799,1548227,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",8,"Ft. Loudoun-Elza 161 kV TL","Spallation Neutron Source 161",100,3.92,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,2972,639541,373150,469765,1485428,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",9,"Leake","Sebastapol SW STA 161 kV",100,0.77,"OH","AC",161,161,636,"ASCR","Single",2,2,"Steel Tower",,36158,236368,103374,167311,543211,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",10,"Sebasatpol 161 kV Switching St","Five Point 161 kV Substation",100,0.13,"OH","AC",161,230,954,"ASCR","Single",1,1,"Steel Tower",,917304,1772761,931352,1477668,5099085,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",11,"Structure 170A","Structure 174",100,0.73,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,0,445863,79638,194574,720075,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",12,"Ramer-Hickory Valley 161 kV TL","Middleton 46 kV SS",100,6.81,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,566805,1162854,447607,787813,2965079,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",13,"Lowndes-Miller","Valley View",100,0.46,"OH","AC",500,500,954,"ASCR","Triple",1,2,"Steel Tower",,0,688737,255237,341129,1285103,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",14,"Sweetwater 161 kV SS","Madisonville 161 kV SS",100,8.95,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,1066219,1474937,466681,797814,3805651,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",15,"East Point 500 kV SS","Hanceville 161 kV TL",100,11.25,"OH","AC",161,161,1351.5,"ASCR","Single",1,2,"Steel Tower",,1416513,1442382,606534,1427424,4892853,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",16,"W Cookeville-Crossville 161 kV","W. Crossville SS",100,4.37,"OH","AC",161,161,954,"ASCR","Single",1,2,"Steel Tower",,267463,1112667,651963,964407,2996500,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",17,"East Shelbyville-Unionville","Deason 161 kV SS",100,5.09,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,1071199,931797,430714,320721,2754431,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",18,"Kentucky Hydro","Barkley Hydro",100,2,"OH","AC",161,161,2034.5,"ACSR","Single",1,1,"Steel Tower",,2845,406947,90111,155401,655304,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",19,"MEC Sw Station","Trinity Substation",100,2.9,"OH","AC",161,161,954,"ACSS","Single",2,2,"Steel Tower",,0,604526,474640,608702,1687868,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",20,"Hickory Valley Selmer 161 kV T","North Selmer 161 kV SS",100,4.88,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,357578,632244,368993,899046,2257861,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",21,"Trinity","Morgan Energy Center",100,2.98,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,7155,647789,386671,513831,1555446,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",22,"MEC","Finley",100,0.61,"OH","AC",161,161,954,"ASCR","Single",1,2,"Steel Tower",,9879,303540,156165,181613,651197,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",23,"Pickwick-South Jackson","Magic Valley",100,1.38,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Pole",,78377,284367,113237,237716,713697,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",24,"Wolf Creek-Choctaw 500 kV TL","Reliant French Camp Gener Plt",100,0.11,"OH","AC",500,500,954,"ASCR","Triple",1,2,"Steel Tower",,0,863770,411493,891161,2166424,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",25,"Widows Creek Ft. Payne 161 kV","Flat Rock 161 kV SS",100,2.05,"OH","AC",161,161,397.5,"ASCR","Single",1,1,"Steel Tower",,130460,443384,182965,410228,1167037,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",26,"Volunteer-Cherokee HP 161 kV T","Oakland 161 kV SS",100,0.5,"OH","AC",161,161,1351,"ASCR","Single",1,2,"Steel Tower",,0,159020,71787,133784,364591,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",27,"Cordell-Hull-Carthage 161 kV","South Carthage 161 kV SS",100,1.68,"OH","AC",161,161,636,"ASCR","Single",1,2,"Steel Tower",,0,209664,102390,256537,568591,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",1,"Arco","Sprectrum",100,5.89,"OH","AC",138,138,336.4,"ACSR","Single",1,1,"Wood Pole",91,37547.56,399750.8,416067.16,0,853365.52,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",2,"Hazel Dell Jct","Hazel Dell",100,3.12,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",158,72967.09,417464.37,285659.16,0,776090.62,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",3,"Red River","Tenaska Kiowa Sw",100,75.75,"OH","AC",345,345,795,"ACSR","Single",1,1,"Combination Pole",158,0,0,0,47569327.23,47569327.23,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",4,"Washita Sw","Blue Canyon",100,23.96,"OH","AC",138,138,1590,"ACSR","Single",1,1,"Wood Pole",239,0,0,0,5092171.22,5092171.22,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",5,"Limestone Jct","Limestone",100,0.5,"OH","AC",138,138,336.4,"ACSR","Single",1,1,"Wood Pole",91,25673.08,159253.08,77468.07,0,262394.23,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",6,"OGE Sunset Jct","Sunset Corner",100,0.15,"OH","AC",161,161,336.4,"ACSR","Singel",1,1,"Wood Pole",91,0,29315.87,35224.01,0,64539.88,"application/vnd.ms-excel" 2003,27000,"Western Area Power Admin",1,"Shiprock","Four Corners",100,8.2,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",2,"Coolidge","Sundance 1 and 2",100,9.8,"OH","AC",230,230,954,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",3,"Structure 96/4","O/Banion 1",100,38,"OH","AC",230,230,,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",4,"Mead","Market Place",100,12.9,"OH","AC",525,525,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",5,"Bears Ears","Craig",100,1,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",6,"Glen Canyon Pumping Plant","Glen Canyon SW Yard",100,1,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",7,"Baker","Bowman",22.96,53.96,"OH","AC",230,230,954,"ASCR",,1,1,"Wood H",,0,0,0,0,0 2003,27000,"Western Area Power Admin",8,"Basin Tap #2","Washburn",100,2.23,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",9,"Craig","Rifle",100,96,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",10,"Garrison","Basin Tap #1",100,20.97,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",11,"Everta","Roseville",100,13.3,"OH","AC",230,230,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",12,"Griffith","McConnico",100,8,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",13,"McConnico","Peacock",100,29.4,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",14,"Liberty","Buckeye",100,6.7,"OH","AC",230,230,1272,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",15,"Liberty","Parker",100,118.7,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",16,"Liberty","Estrella",100,10.8,"OH","AC",230,230,954,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",17,"Liberty","Lone Batte",100,38.2,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",18,"Lone Butte","Sundance",100,38.4,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",19,"New Waddell","West Wing",100,10.1,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",20,"South Point","Topock #1",100,6.46,"OH","AC",230,230,1590,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",21,"South Point","Topock #2",100,6.34,"OH","AC",230,230,1590,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0