National Library of Energy BETA

Sample records for nox particulate matter

  1. Particulate Matter Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate matter aerosols Particulate Matter Aerosols The study of atmospheric aerosols is important because of its adverse effects on health, air quality, visibility, cultural heritage, and Earth's radiation balance. Techniques that can help better characterize particulate matter are required to better understand the constituents, causes and sources of particulate matter (PM) aerosols. Carbon is one of the main constituents of atmospheric aerosols. Radiocarbon (14C) measurement performed on

  2. Rigid particulate matter sensor

    DOE Patents [OSTI]

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  3. Apparatus for particulate matter analysis

    DOE Patents [OSTI]

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  4. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics ...

  5. Advanced particulate matter control apparatus and methods

    DOE Patents [OSTI]

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  6. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer. PDF icon p-10gibbs.pdf More ...

  7. Diesel Particulate Filter Technology for Low-Temperature and Low-NOx/PM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Filter Technology for Low-Temperature and Low-NOx/PM Applications Diesel Particulate Filter Technology for Low-Temperature and Low-NOx/PM Applications 2004 DEER Conference Presentation: Johnson-Matthey Catalysts 2004_deer_chatterjee.pdf (613.95 KB) More Documents & Publications Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 Aftertreatment Modeling Status, Futur Potential,

  8. Particulate and Gaseous Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Recent research in the MFC has focused on char-NOx formation and reburn (Figure 2), NOx formation during oxy-fuel combustion of pulverized coal, and ultrafine particulate matter ...

  9. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  10. Particulate matter pollution in Mexico City

    SciTech Connect (OSTI)

    Vega R, E.; Mora P, V.; Mugica A, V.

    1998-12-31

    The levels of particulate matter are of concern since they may induce severe effects on public health and is the second atmospheric pollution problem in Mexico City. Another noticeable effect in large cities attributable to particulate matter, is the deterioration of visibility. In this paper the analysis of the data of TSP and PM10 during 1988 to 1996 is presented. The seasonal variation of particulate matter, the typical ratios of PM10/TSP and relationships of the two variables were determined. It was found that PM10 concentrations show an important tendency to decrease during this period, due to some control strategies, although this is not the case for TSP. The monthly trend exhibits a clear relationship with the dry (October through April) and wet (May through September) seasons. The particulate matter concentrations are lower during the wet season. The hourly behavior shows that the highest concentrations are correlated with the traffic rush hours. The most TSP polluted area was the northeast, meanwhile the southeast is the most PM10 polluted area. There is a clear evidence of the particulate matter transportation from these areas to other sites of the City.

  11. Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics

    Broader source: Energy.gov [DOE]

    Findings of important implications for aftertreatment devices such as EGR coolers and diesel particulate filters, of physico-chemical changes observed in particulate matter during advanced combustion.

  12. Active DPF for Off-Road Particulate Matter (PM) Control

    Broader source: Energy.gov [DOE]

    This presentation details how a possibly catalyzed active diesel particulate filter can be used to control off-road particulate matter.

  13. Particulate matter sensor with a heater

    DOE Patents [OSTI]

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  14. Investigation of Direct Injection Vehicle Particulate Matter Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Direct Injection Vehicle Particulate Matter Emissions Investigation of Direct Injection Vehicle Particulate Matter Emissions This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer. p-10_gibbs.pdf (851.22 KB) More Documents & Publications On-Road PM Mass Emission Measured with OBS-TRPM Performance of the Low-Efficiency Diesel Particulate Filter for Diesel PM Reduction Study of

  15. Reduction of Transient Particulate Matter Spikes with Decision...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control Using a non-parametric decision tree to measure transient PM could correctly identify 94% of high ...

  16. Fuel-Neutral Studies of Particulate Matter Transport Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace056stewart2011o.pdf More Documents & Publications Fuel-Neutral Studies of Particulate Matter ...

  17. Method for removing particulate matter from a gas stream

    DOE Patents [OSTI]

    Postma, Arlin K.

    1984-01-01

    Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

  18. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines 2009 DOE ...

  19. Particulate Matter Characteristics for Highly Dilute Stoichiometric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon p-24storey.pdf More Documents & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Effects of Advanced Combustion Technologies on Particulate ...

  20. Observations and Modeling of GoAmazon Particulate Matter and...

    Office of Scientific and Technical Information (OSTI)

    ENERGY Office of Science DOESC-ARM-15-059 Observations and Modeling of the Green Ocean Amazon (GOAMAZON): Particulate Matter and Gases Final Campaign Summary RHM Godoi CGG Barbosa ...

  1. Optical Backscatter Probe for Sensing Particulate Matter - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search Optical Backscatter Probe for Sensing Particulate Matter Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryTo provide emissions information for automotive engines, ORNL researchers developed a technology that enables very rapid measurement of particulate matter in gas emissions. This fiber optic-based probe can be

  2. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  3. Concentrations and Size Distributions of Particulate Matter Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel | Department of Energy Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel 2002 DEER Conference Presentation: West Virginia

  4. Particulate Matter Characteristics for Highly Dilute Stoichiometric GDI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Operations | Department of Energy Matter Characteristics for Highly Dilute Stoichiometric GDI Engine Operations Particulate Matter Characteristics for Highly Dilute Stoichiometric GDI Engine Operations The overall goal of this study is to help identify which conditions and potential mechanisms impede soot formation in GDI operations. p-24_storey.pdf (602.58 KB) More Documents & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Effects of Advanced

  5. Electrically heated particulate matter filter with recessed inlet end plugs

    DOE Patents [OSTI]

    Gonze, Eugene V.; Ament, Frank

    2012-02-21

    A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

  6. Inductively heated particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  7. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  8. Electrically heated particulate matter filter soot control system

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  9. Apparatus for removal of particulate matter from gas streams

    DOE Patents [OSTI]

    Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

    2000-01-01

    An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

  10. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  11. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  12. Low exhaust temperature electrically heated particulate matter filter system

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  13. Wireless zoned particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

    2011-10-04

    An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

  14. Filter-based control of particulate matter from a lean gasoline direct injection engine

    SciTech Connect (OSTI)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses; Prikhodko, Vitaly Y; Storey, John Morse

    2016-01-01

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The

  15. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  16. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect (OSTI)

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  17. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect (OSTI)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  18. The use of CETANER{trademark} for the reduction of particulate matter emissions in a turbocharged direct injection (TDI) diesel engine

    SciTech Connect (OSTI)

    Hess, H.S.; Chiodo, J.A.; Boehman, A.L.; Tijim, P.J.A.; Waller, F.J.

    1999-07-01

    In this experimental study, the effects of the addition of CETANER{trademark} to a premium diesel fuel at various blend levels (5%, 10% and 15% by weight) were evaluated using a 1.9 liter turbocharged direct injection diesel engine. CETANER{trademark}, a product developed by Air Products and Chemicals, Inc., can be manufactured from coal-derived syngas through a two-stage process: (i) Liquid Phase DiMethyl Ether synthesis (LPDME); and (ii) oxidative coupling of DiMethyl Ether (DME) to form long chain linear ethers. When compared to other oxygenated components currently being researched, CETANER has several key advantages: (1) it is derived from a non-petroleum feedstock; (2) it has a cetane number greater than 100; and (3) it will have a cost comparable to diesel fuel. Particulate matter emissions and exhaust gas composition (NOx and CO), were determined at six steady-state engine operating conditions. In addition, fuel properties (viscosity, cloud point, pour point, density, flash point and calorific value) of the various blends were also determined. Engine test results indicate that CETANER is effective in reducing particulate matter emissions at all blend levels tested, without any modifications to engine operating parameters. At the highest blend level (15% CETANER by weight), particulate matter emissions were reduced by greater than 20% when compared to premium diesel fuel.

  19. Removal of residual particulate matter from filter media

    DOE Patents [OSTI]

    Almlie, Jay C; Miller, Stanley J

    2014-11-11

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  20. Grooved impactor and inertial trap for sampling inhalable particulate matter

    DOE Patents [OSTI]

    Loo, Billy W.

    1984-01-01

    An inertial trap and grooved impactor for providing a sharp cutoff for particles over 15 microns from entering an inhalable particulate sampler. The impactor head has a tapered surface and is provided with V-shaped grooves. The tapered surface functions for reducing particle blow-off or reentrainment while the grooves prevent particle bounce. Water droplets and any resuspended material over the 15 micron size are collected by the inertial trap and deposited in a reservoir associated with the impactor.

  1. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    SciTech Connect (OSTI)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Shamy, Magdy; Muñoz, Manuel J.; and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  2. Development of a Low-Cost Particulate Matter Monitor

    SciTech Connect (OSTI)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic

  3. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect (OSTI)

    Chalvatzaki, E.; Kopanakis, I.; Kontaksakis, M.; Glytsos, T.; Kalogerakis, N.; Lazaridis, M.

    2010-11-15

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  4. Particulate matter emissions from combustion of wood in district heating applications

    SciTech Connect (OSTI)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Melin, Staffan

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

  5. Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales

    SciTech Connect (OSTI)

    Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis

    2010-09-15

    Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel

  6. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; et al

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrationsmore » were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.« less

  7. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M; Edwards, Kevin Dean; Smith, David E

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  8. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    SciTech Connect (OSTI)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  9. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    SciTech Connect (OSTI)

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G.; Bittman, Shabtai; Macdonald, Douglas J.

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  10. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  11. Apportionment of ambient primary and secondary fine particulate matter during a 2001 summer intensive study at the CMU Supersite and NETL Pittsburgh Site

    SciTech Connect (OSTI)

    Delbert J. Eatough; Nolan F. Mangelson; Richard R. Anderson

    2007-10-15

    Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO{sub 2}, and O{sub 3} concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest from sources including coal-fired power plants, coke processing plants and steel mills, (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. 27 refs., 16 figs., 1 tab.

  12. The contribution of lubricant to the formation of particulate matter with reactivity controlled compression ignition in light-duty diesel engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storey, John Morse; Curran, Scott; Dempsey, Adam B.; Lewis, Sr., Samuel Arthur; Reitz, Rolf; Walker, N. Ryan; Wright, Chris

    2014-12-25

    Reactivity controlled compression ignition (RCCI) has been shown in single- and multi-cylinder engine research to achieve high thermal efficiencies with ultra-low NOX and soot emissions. The nature of the particulate matter (PM) produced by RCCI operation has been shown in recent research to be different than that of conventional diesel combustion and even diesel low-temperature combustion. Previous research has shown that the PM from RCCI operation contains a large amount of organic material that is volatile and semi-volatile. However, it is unclear if the organic compounds are stemming from fuel or lubricant oil. The PM emissions from dual-fuel RCCI weremore » investigated in this study using two engine platforms, with an emphasis on the potential contribution of lubricant. Both engine platforms used the same base General Motors (GM) 1.9-L diesel engine geometry. The first study was conducted on a single-cylinder research engine with primary reference fuels (PRFs), n-heptane, and iso-octane. The second study was conducted on a four-cylinder GM 1.9-L ZDTH engine which was modified with a port fuel injection (PFI) system while maintaining the stock direct injection fuel system. Multi-cylinder RCCI experiments were run with PFI gasoline and direct injection of 2-ethylhexyl nitrate (EHN) mixed with gasoline at 5 % EHN by volume. In addition, comparison cases of conventional diesel combustion (CDC) were performed. Particulate size distributions were measured, and PM filter samples were collected for analysis of lube oil components. Triplicate PM filter samples (i.e., three individual filter samples) for both gas chromatography-mass spectroscopy (GC-MS; organic) analysis and X-ray fluorescence (XRF; metals) were obtained at each operating point and queued for analysis of both organic species and lubricant metals. Here, the results give a clear indication that lubricants do not contribute significantly to the formation of RCCI PM.« less

  13. Modeling regional/urban ozone and particulate matter in Beijing, China.

    SciTech Connect (OSTI)

    Fu, J.S.; Streets, D.G.; Jang, C.J.; Hao, J.; He, K.; Wang, L.; Zhang, Q.

    2009-01-15

    This paper examines Beijing air quality in the winter and summer of 2001 using an integrated air quality modeling system (Fifth Generation Mesoscale Meteorological Model (MM5)/Community Multiscale Air Quality (CMAQ)) in nested mode. The National Aeronautics and Space Administration (NASA) Transport and Chemical Evolution over the Pacific (TRACE-P) emission inventory is used in the 36- (East Asia), 12- (East China), and 4-km (greater Beijing area) domains. Furthermore, we develop a local Beijing emission inventory that is used in the 4-km domain. We also construct a corroborated mapping of chemical species between the TRACE-P inventory and the Carbon Bond IV (CB-IV) chemical mechanism before the integrated modeling system is applied to study ozone (O{sub 3}) and particulate matter (PM) in Beijing. Meteorological data for the integrated modeling runs are extracted from MM5. Model results show O{sub 3} hourly concentrations in the range of 80-159 parts per billion (ppb) during summer in the urban areas and up to 189 ppb downwind of the city. High fine PM (PM2.5) concentrations (monthly average of 75 {mu}g.m{sup -3} in summer and 150 {mu}g.m{sup -3} in winter) are simulated over the metropolitan and down-wind areas with significant secondary constituents. Major sources of particulates were biomass burning, coal combustion and industry. A comparison against available O{sub 3} and PM measurement data in Beijing is described. We recommend refinements to the developed local Beijing emission inventory to improve the simulation of Beijing's air quality. The 4-km modeling configuration is also recommended for the development of air pollution control strategies. 31 refs., 5 figs., 3 tabs.

  14. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  15. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  16. Evolution and current understanding of physicochemical characterization of particulate matter from reactivity controlled compression ignition combustion on a multicylinder light-duty engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.; Barone, Teresa L.; Dempsey, Adam B.; Moses-DeBusk, Melanie; Hanson, Reed M.; Prikhodko, Vitaly Y.; Northrop, William F.

    2016-08-04

    Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less

  17. Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control

    Broader source: Energy.gov [DOE]

    Using a non-parametric decision tree to measure transient PM could correctly identify 94% of high opacity spikes and used to take targeted action to reduce PM without affecting NOx.

  18. Cytotoxicity of settling particulate matter and sediments of the Neckar River (Germany) during a winter flood

    SciTech Connect (OSTI)

    Hollert, H.; Duerr, M.; Erdinger, L.; Braunbeck, T.

    2000-03-01

    To investigate the cytotoxic and genotoxic potentials of settling particulate matter (SPM) carried by the Neckar River, a well-studied model for a lock-regulated river in central Europe, during a flood, acute cytotoxicity was investigated using the fibroblast-like fish cell line RTG-2 with the neutral red retention, the succinic acid dehydrogenase (MTT), and the lactatedehydrogenase (LDH) release assays as well as microscopic inspection as endpoints. Genotoxicity of water, pore water, sediments, and SPM were assessed using the Ames test. Different extraction methods (Soxhlet extraction with solvents of variable polarity as well as a fluid/fluid extraction according to pH) in addition to a supplementation of biotests with 59 fractions from the liver of {beta}-naphthoflavone/phenobarbital-induced rats allowed a further characterization of the biological damage. Both sediments and SPM extracts caused cytotoxic effects in RTG-2 cells. Cytotoxicity was found to increase significantly with polarity of extracting solvents. Following extraction according to pH, cytotoxicity could be attributed mainly to neutral substances, whereas the slightly acid and basic fractions already showed little or no cytotoxicity. Samples taken during the period of flood rise showed the highest cytotoxic activities. Cytotoxicity was significantly enhanced by the addition of S9 preparations. In contrast, no genotoxic activity was found in native surface waters, pore waters, and SPM.

  19. Sub-micrometre Particulate Matter is Primarily in Liquid Form over Amazon Rainforests

    SciTech Connect (OSTI)

    Bateman, Adam P.; Gong, Z. H.; Liu, Pengfei; Sato, Bruno; Cirino, Glauber; Zhang, Yue; Artaxo, Paulo; Bertram, Allan K.; Manzi, A.; Rizzo, L. V.; Souza, Rodrigo A.; Zaveri, Rahul A.; Martin, Scot T.

    2016-01-01

    Particulate matter (PM) occurs in the Earth’s atmosphere both in liquid and non-liquid forms. The physical state affects the available physical and chemical mechanisms of growth and reactivity, ultimately affecting the number, size, and composition of the atmospheric particle population. Herein, the physical state, including the response to relative humidity (RH), was investigated on-line and in real time for PM (< 1 μm) over the tropical rain forest of central Amazonia during both the wet and dry seasons of 2013. The results show that the PM was liquid for RH > 80% across 296 to 300 K. These results, in conjunction with the distributions of RH and temperature in Amazonia, imply that near-surface submicron PM in Amazonia is liquid most of the time. The observations are consistent with laboratory experiments showing that PM produced by isoprene photo-oxidation is liquid across these meteorological conditions. The findings have implications for the mechanisms of new particle production in Amazonia, the growth of submicron particles and hence dynamics of the cloud life cycle, and the sensitivity of these processes to anthropogenic activities. An approach for inclusion of particle physical state in chemical transport models is presented.

  20. SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE

    SciTech Connect (OSTI)

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

    2003-07-31

    The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the dominant phase present

  1. Cashew nut roasting: Chemical characterization of particulate matter and genotocixity analysis

    SciTech Connect (OSTI)

    Oliveira Galvo, Marcos Felipe de; Melo Cabral, Thiago de; Andr, Paulo Afonso de; Ftima Andrade, Maria de; Miranda, Regina Maura de; Saldiva, Paulo Hilrio Nascimento; Castro Vasconcellos, Prola de; Batistuzzo de Medeiros, Silvia Regina

    2014-05-01

    Background: Particulate matter (PM) is potentially harmful to health and related to genotoxic events, an increase in the number of hospitalizations and mortality from respiratory and cardiovascular diseases. The present study conducted the first characterization of elemental composition and polycyclic aromatic hydrocarbon (PAH) analysis of PM, as well as the biomonitoring of genotoxic activity associated to artisanal cashew nut roasting, an important economic and social activity worldwide. Methods: The levels of PM{sub 2.5} and black carbon were also measured by gravimetric analysis and light reflectance. The elemental composition was determined using X-ray fluorescence spectrometry and PAH analysis was carried out by gas chromatographymass spectrometry. Genotoxic activity was measured by the Tradescantia pallida micronucleus bioassay (Trad-MCN). Other biomarkers of DNA damage, such as nucleoplasmic bridges and nuclear fragments, were also quantified. Results: The mean amount of PM{sub 2.5} accumulated in the filters (January 2124.2 g/m{sup 3}; May 1022.2 g/m{sup 3}; September 1291.9 g/m{sup 3}), black carbon (January 363.6 g/m{sup 3}; May 70 g/m{sup 3}; September 69.4 g/m{sup 3}) and concentrations of Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br and Pb were significantly higher than the non-exposed area. Biomass burning tracers K, Cl, and S were the major inorganic compounds found. Benzo[k]fluoranthene, indene[1,2,3-c,d]pyrene, benzo[ghi]perylene, phenanthrene and benzo[b]fluoranthene were the most abundant PAHs. Mean benzo[a]pyrene-equivalent carcinogenic power values showed a significant cancer risk. The Trad-MCN bioassay revealed an increase in micronucleus frequency, 27 times higher than the negative control and significantly higher in all the months analyzed, possibly related to the mutagenic PAHs found. Conclusions: This study demonstrated that artisanal cashew nut roasting is a serious occupational problem, with harmful effects on

  2. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    SciTech Connect (OSTI)

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  3. Source apportionment of particulate matter in the US and associations with lung inflammatory markers

    SciTech Connect (OSTI)

    Duvall, R.M.; Norris, G.A.; Dailey, L.A.; Burke, J.M.; McGee, J.K.; Gilmour, M.I.; Gordon, T.; Devlin, R.B.

    2008-07-01

    Size-fractionated particulate matter (PM) samples were collected from six U.S. cities and chemically analyzed as part of the Multiple Air Pollutant Study. Particles were administered to cultured lung cells and the production of three different proinflammatory markers was measured to explore the association between the health effect markers and PM. Ultrafine, fine, and coarse PM samples were collected between December 2003 and May 2004 over a 4-wk period in each city. Filters were pooled for each city and the PM samples were extracted then analyzed for trace metals, ions, and elemental carbon. Particle extracts were applied to cultured human primary airway epithelial cells, and the secreted levels of interleukin-8 (IL-8), heme oxygenase-1, and cyclooxygenase-2 were measured 1 and 24 h following exposure. Fine PM sources were quantified by the chemical mass balance (CMB) model. The relationship between toxicological measures, PM sources, and individual species were evaluated using linear regression. Ultrafine and fine PM mass were associated with increases in IL-8 (r{sup 2} = .80 for ultrafine and r{sup 2} = .52 for fine). Sources of fine PM and their relative contributions varied across the sampling sites and a strong linear association was observed between IL-8 and secondary sulfate from coal combustion (r{sup 2} = .79). Ultrafine vanadium, lead, copper, and sulfate were also associated with increases in IL-8. Increases in inflammatory markers were not observed for coarse PM mass and source markers. These findings suggest that certain PM size fractions and sources are associated with markers of lung injury or inflammation.

  4. Exposure assessment approaches to evaluate respiratory health effects of particulate matter and nitrogen dioxide

    SciTech Connect (OSTI)

    Quackenboss, J.J.; Krzyzanowski, M.; Lebowitz, M.D. )

    1991-01-01

    Several approaches can be taken to estimate or classify total personal exposures to air pollutants. While personal exposure monitoring (PEM) provides the most direct measurements, it is usually not practical for extended time periods or large populations. This paper describes the use of indirect approaches to estimate total personal exposure for NO2 and particulate matter (PM), summarizes the distributions of these estimates, and compares the effectiveness of these estimates with microenvironmental concentrations for evaluating effects on respiratory function and symptoms. Pollutant concentrations were measured at several indoor and outdoor locations for over 400 households participating in an epidemiological study in Tucson, Arizona. Central site monitoring data were significantly correlated with samples collected directly outside homes, but the former usually had higher pollutant concentrations. Integrated indices of daily total personal exposure were calculated using micro-environmental (ME) measurements or estimates and time-budget diary information. Peak expiratory flow rates (PEFR) were measured for up to four times a day during two-week study periods. In thirty children (ages 6-15 years) with current diagnosed asthma, a significant reduction in PEFR was associated with NO2 levels measured outside of their homes. Additional decrements of morning PEFR were found in those children sleeping in bedrooms with higher measured NO2 levels. Morning and noon PEFR decrements were also linked to higher morning NO2 levels that were measured at central monitoring stations. Effects of PM were also found, but were limited to morning PEFR. No effects were found in non-asthmatic children. The relationship of PEFR to the calculated indices of daily average total exposure were weaker than to the microenvironment concentrations.

  5. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size

  6. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    SciTech Connect (OSTI)

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 3.2 pg/mL to 83.9 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.51 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ? We studied very early events (0.51 hour) after giving

  7. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    DOE Patents [OSTI]

    Gonze, Eugene V.; Brown, David B.

    2010-02-02

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  8. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOE Patents [OSTI]

    Pinson, P.A.

    1998-02-24

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

  9. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOE Patents [OSTI]

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  10. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  11. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    SciTech Connect (OSTI)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement

  12. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company 2003_deer_hoard.pdf (210.07 KB) More Documents & Publications Plasma Assisted Catalysis System for NOx Reduction Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates

  13. Mechanisms of particulate matter formation in spark-ignition engines. 2: Effect of fuel, oil, and catalyst parameters

    SciTech Connect (OSTI)

    Kayes, D.; Hochgreb, S.

    1999-11-15

    A combined experimental and modeling effort was performed in order to understand how particulate matter (PM) is formed in spark-ignition (SI) internal combustion engines. Fuel type and fuel/air ratio strongly affect particle concentrations. PM emissions vary by up to 6 orders of magnitude between fuels at the same fuel/air ratio. Minimum PM concentrations are emitted at a global fuel/air ratio within 10% of stoichiometric, with the exact value depending on the particular fuel. Concentrations can increase by more than 3 orders of magnitude when the fuel/air ratio is either increased or decreased 30% from stoichiometric. Particles derived from oil consumption were found to be between 0 and 40% of the PM concentration for the oils used in the present experiments. Differences in PM emissions with and without the catalytic converter are not statistically significant. Particulate number and mass concentrations plus particle sizes are addressed in this paper, as is the correlation between PM and hydrocarbon (HC) emissions.

  14. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  15. Detailed Assessment of Particulate Characteristics from Low-Temperatur...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Engine Particulates Through Advanced Aerosol Methods Fuel-Neutral Studies of Particulate Matter Transport Emissions Development of Advanced Diesel Particulate ...

  16. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    SciTech Connect (OSTI)

    Strzelec, Andrea

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments

  17. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate

  18. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

  19. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition

  20. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments [OSTI]

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  1. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  2. Advances in exposure and toxicity assessment of particulate matter: An overview of presentations at the 2009 Toxicology and Risk Assessment Conference

    SciTech Connect (OSTI)

    Gunasekar, Palur G.; Stanek, Lindsay W.

    2011-07-15

    The 2009 Toxicology and Risk Assessment Conference (TRAC) session on 'Advances in Exposure and Toxicity Assessment of Particulate Matter' was held in April 2009 in West Chester, OH. The goal of this session was to bring together toxicology, geology and risk assessment experts from the Department of Defense and academia to examine issues in exposure assessment and report on recent epidemiological findings of health effects associated with particulate matter (PM) exposure. Important aspects of PM exposure research are to detect and monitor low levels of PM with various chemical compositions and to assess the health risks associated with these exposures. As part of the overall theme, some presenters discussed collection methods for sand and dust from Iraqi and Afghanistan regions, health issues among deployed personnel, and future directions for risk assessment research among these populations. The remaining speakers focused on the toxicity of ultrafine PM and the characterization of aerosols generated during ballistic impacts of tungsten heavy alloys.

  3. Investigation on continuous soot oxidation and NOx reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of CSI catalyst for NOx removal and soot oxidation. deer09iretskaya.pdf (2.63 MB) More Documents & Publications Development of SCR on Diesel Particulate Filter System ...

  4. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    SciTech Connect (OSTI)

    Dr. Charles E. Kolb Dr. Douglas R. Worsnop Dr. Manjula R. Canagaratna Dr. Scott C. Herndon Dr. John T. Jayne Dr. W. Berk Knighton Dr. Timothy B. Onasch Dr. Ezra C. Wood Dr. Miguel Zavala

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  5. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    SciTech Connect (OSTI)

    Jarvis, Ian W.H.; Bergvall, Christoffer; Bottai, Matteo; Westerholm, Roger; Stenius, Ulla; Dreij, Kristian

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ? Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ? Binary mixture of BP and DBP induced a more than additive DNA damage response. ? Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ? Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ? Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.

  6. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    SciTech Connect (OSTI)

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  7. Chemical changes to nonagrregtaed particulate soil organic matter following grassland-to woodland transition ina subtropical savanna.

    SciTech Connect (OSTI)

    Filley, T. R.; Boutton, T. W.; Liao, J. D.; Jastrow, J. D.; Gamblin, D. E.; Biosciences Division; Purdue Univ.; Texas A&M

    2008-07-19

    Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.

  8. Commercial introduction of the Advanced NOxTECH system

    SciTech Connect (OSTI)

    Sudduth, B.C.

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  9. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nick; Farron, Carrie; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs) from an aerosol sample. One method is a Dekati Thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented for this project in an engine test cell built around a direct injection spark ignited (DISI) engine. The engine was designed for stoichiometric, homogeneous combustion. Direct injection is of particular interest for improved fuel efficiency but this comes with the production of a significant amount of (PM) and may therefore be subject to the proposed number based regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition. The first interesting observation is that PM number distributions, acquired using a TSI SMPS, have a large accumulation mode (30-294 nm) but a very small nuclei mode (8-30 nm). This is understood to represent a lack of condensation particles meaning that neither the exhaust conditions nor the sample handling conditions are conducive to condensation. This lack of nuclei mode does not, however, represent a lack of VOCs in the sample. It has been observed, using mass spectral analysis (limited to PM>50 nm), that PM from the DISI engine has approximately 40% organic content through varying operating conditions. This begs the question of how effective different sample handling methods are at removing these VOCs. For one specific operating condition, called Cold Start, the un-treated PM was 40% organic. The TD

  10. Investigation on continuous soot oxidation and NOx reduction by SCR coated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DPF | Department of Energy on continuous soot oxidation and NOx reduction by SCR coated DPF Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Evaluation of CSI catalyst for NOx removal and soot oxidation. deer09_iretskaya.pdf (2.63 MB) More Documents & Publications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Two Catalyst Formulations - One Solution for NOx After-treatment Systems SCR-DPF Integrations for Diesel

  11. Electrically heated particulate filter restart strategy

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  12. Electrically heated particulate filter propagation support methods and systems

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  13. A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

    SciTech Connect (OSTI)

    Fang, Howard L.; Huang, Shyan C.; Yu, Robert C.; Wan, C. Z.; Howden, Ken

    2002-10-01

    Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the

  14. APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform

    SciTech Connect (OSTI)

    Tomazic, D; Tatur, M; Thornton, M

    2003-08-24

    A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percent nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.

  15. The contribution of lubricant to the formation of particulate matter with reactivity controlled compression ignition in light-duty diesel engines

    SciTech Connect (OSTI)

    Storey, John Morse; Curran, Scott; Dempsey, Adam B.; Lewis, Sr., Samuel Arthur; Reitz, Rolf; Walker, N. Ryan; Wright, Chris

    2014-12-25

    Reactivity controlled compression ignition (RCCI) has been shown in single- and multi-cylinder engine research to achieve high thermal efficiencies with ultra-low NOX and soot emissions. The nature of the particulate matter (PM) produced by RCCI operation has been shown in recent research to be different than that of conventional diesel combustion and even diesel low-temperature combustion. Previous research has shown that the PM from RCCI operation contains a large amount of organic material that is volatile and semi-volatile. However, it is unclear if the organic compounds are stemming from fuel or lubricant oil. The PM emissions from dual-fuel RCCI were investigated in this study using two engine platforms, with an emphasis on the potential contribution of lubricant. Both engine platforms used the same base General Motors (GM) 1.9-L diesel engine geometry. The first study was conducted on a single-cylinder research engine with primary reference fuels (PRFs), n-heptane, and iso-octane. The second study was conducted on a four-cylinder GM 1.9-L ZDTH engine which was modified with a port fuel injection (PFI) system while maintaining the stock direct injection fuel system. Multi-cylinder RCCI experiments were run with PFI gasoline and direct injection of 2-ethylhexyl nitrate (EHN) mixed with gasoline at 5 % EHN by volume. In addition, comparison cases of conventional diesel combustion (CDC) were performed. Particulate size distributions were measured, and PM filter samples were collected for analysis of lube oil components. Triplicate PM filter samples (i.e., three individual filter samples) for both gas chromatography-mass spectroscopy (GC-MS; organic) analysis and X-ray fluorescence (XRF; metals) were obtained at each operating point and queued for analysis of both organic species and lubricant metals. Here, the results give a clear indication that lubricants do not contribute significantly to the formation of RCCI PM.

  16. NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation

    SciTech Connect (OSTI)

    Hakim, N; Hoelzer, J.; Liu, Y.

    2002-08-25

    This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

  17. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect (OSTI)

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  18. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2008-10-21

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  19. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi; Hisashi , Bool, III; Lawrence E.

    2007-06-05

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  20. Ceramatec NOx Sensor and NOx Catalyst Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramatec NOx Sensor and NOx Catalyst Technologies Ceramatec NOx Sensor and NOx Catalyst Technologies 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ceramatec, Inc., Advanced Ionic Technologies 2004_deer_nair.pdf (195.74 KB) More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Pt-free, Perovskite-based Lean NOx Trap Catalysts Active Soot Filter Regeneration

  1. EPA programs to reduce NO{sub x} and particulate matter emissions from electric utility sources and the possible impact of deregulation on those EPA programs

    SciTech Connect (OSTI)

    Field, A.B.

    1997-12-31

    At the same time that the electric utility industry is in the midst of deregulation, it could be hit with numerous additional regulatory burdens. For example, EPA now plans to decide by July 1997 whether to make major changes to the current ozone and particulate matter ambient standards -- changes which could force utilities to reduce significantly both their nitrogen oxide (NO{sub x}) and sulfur dioxide (SO{sub 2}) emissions. Even if EPA does not adopt new ambient standards, though, many electric utilities still face the prospect of making additional NO{sub x} reductions if they are found to be contributing to ozone levels in areas that are not meeting the current ozone ambient standards. Several multi-state groups -- notably the Ozone Transport Assessment Group (OTAG) and the Northeast Ozone Transport Commission (OTC) -- are evaluating programs that could lead to calls for additional NO{sub x} reductions from power plants in ozone nonattainment areas and from plants located outside the nonattainment areas but found to be contributing to ozone levels in those areas. And these multi-state groups are motivated not only by pollution levels they see now, but also by what they fear will be increased pollution levels as a result of deregulation. This paper examines the status of the major rulemakings now underway that could force substantial additional reductions in electric utility NO{sub x} and SO{sub 2} emissions. It also discusses the impacts that deregulation could have in those rulemakings.

  2. Requirements-Driven Diesel Catalyzed Particulate Trap Design and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization | Department of Energy Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_harris.pdf (388.49 KB) More Documents & Publications Diesel Emission Control Technology Review Investigation of Aging Mechanisms in Lean NOx Traps Diesel Particulate Filters: Market Introducution in Euro

  3. Microwave regenerated particulate trap

    SciTech Connect (OSTI)

    McDonald, A.C. Jr.; Yonushonis, T.M.; Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I.

    1997-12-31

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  4. Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production

    SciTech Connect (OSTI)

    D. w. Hahn; K. r. Hencken; H. A. Johnsen; J. R. Ross; P. M. Walsh

    1998-12-10

    Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 {micro}m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 {micro}g/m{sup 3}. The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 {micro}g/m{sup 3}, respectively. A possible source of silicon is the water injected into the

  5. Improved Model of Isoprene Emissions in Africa using Ozone Monitoring Instrument (OMI) Satellite Observations of Formaldehyde: Implications for Oxidants and Particulate Matter

    SciTech Connect (OSTI)

    Marais, E. A.; Jacob, D.; Guenther, Alex B.; Chance, K.; Kurosu, T. P.; Murphy, J. G.; Reeves, C. E.; Pye, H.

    2014-08-01

    We use a 2005-2009 record of isoprene emissions over Africa derived from OMI satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission on the scale of the continent and evaluate the impact of isoprene emissions on atmospheric composition in Africa. OMI-derived isoprene emissions show large seasonality over savannas driven by temperature and leaf area index (LAI), and much weaker seasonality over equatorial forests driven by temperature. The commonly used MEGAN (version 2.1) global 31 isoprene emission model reproduces this seasonality but is biased high, particularly for 32 equatorial forests, when compared to OMI and relaxed-eddy accumulation measurements. 33 Isoprene emissions in MEGAN are computed as the product of an emission factor Eo, LAI, and 34 activity factors dependent on environmental variables. We use the OMI-derived emissions to 35 provide improved estimates of Eo that are in good agreement with direct leaf measurements from 36 field campaigns (r = 0.55, bias = -19%). The largest downward corrections to MEGAN Eo values are for equatorial forests and semi-arid environments, and this is consistent with latitudinal transects of isoprene over West Africa from the AMMA aircraft campaign. Total emission of isoprene in Africa is estimated to be 77 Tg C a-1, compared to 104 Tg C a-1 in MEGAN. Simulations with the GEOS-Chem oxidant-aerosol model suggest that isoprene emissions increase mean surface ozone in West Africa by up to 8 ppbv, and particulate matter by up to 1.5 42 μg m-3, due to coupling with anthropogenic influences.

  6. Partitioning of Volatile Organics in Diesel Particulate and Exhaust |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partitioning of Volatile Organics in Diesel Particulate and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in diesel exhaust deer08_strzelec.pdf (209.9 KB) More Documents & Publications Trends in Particulate Nanostructure Method Development: Identification of the Soluble Organic Fraction of Particulate Matter on DPF Soot Diesel Particulate Oxidation

  7. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model

    SciTech Connect (OSTI)

    Yan, Yuan-Horng; Charles, Chou C.-K.; Wang, Jyh-Seng; Tung, Chun-Liang; Li, Ya-Ru; Lo, Kai; Cheng, Tsun-Jen

    2014-12-01

    Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM{sub 2.5} exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), to continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM{sub 2.5} in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m{sup 3}, respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic

  8. The State of the Science in Diesel Particulate Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Method Development: Identification of the Soluble Organic Fraction of Particulate Matter on DPF Soot Aftertreatment Research Prioritization: A CLEERS Industrial Survey Development ...

  9. Partitioning of Volatile Organics in Diesel Particulate and Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of how sampling details affect the measurement of volatile organic compounds in ... Identification of the Soluble Organic Fraction of Particulate Matter on DPF ...

  10. Compact Potentiometric NOx Sensor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potentiometric NOx Sensor Compact Potentiometric NOx Sensor 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pm023_singh_2011_p.pdf (1.09 MB) More Documents & Publications Compact Potentiometric O2/NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  11. Measurement and Characterization of NOx Adsorber Regeneration...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects

  12. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Further improvement of conventional diesel NOx aftertreatment concepts as pathway for ...

  13. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS

    SciTech Connect (OSTI)

    Bhatt, B.

    2000-08-20

    Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work

  14. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

  15. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    SciTech Connect (OSTI)

    Prieto, A.M.; Santos, A.G.; Csipak, A.R.; Caliri, C.M.; Silva, I.C.; Arbex, M.A.; Silva, F.S.; Marchi, M.R.R.

    2012-12-15

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract3.9, 7.5, or 15.0 mg/kg body weight (BW)or with casearin X0.3, 0.25, or 1.2 mg/kg BWafter which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ? We assessed DNA protection of C. sylvestris ethanolic extract. ? We assessed DNA protection of casearin X. ? We used Tradescantia pallida micronucleus test as screening. ? We used comet assay and micronucleus test in mice. ? The compounds protected DNA against sugar cane burning pollutants.

  16. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and ...

  17. Shielded regeneration heating element for a particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  18. 2007 Diesel Particulate Measurement Research (E-66 Project) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Diesel Particulate Measurement Research (E-66 Project) 2007 Diesel Particulate Measurement Research (E-66 Project) 2004 Diesel Engine Emissions Reduction (DEER) Conference: Southwest Research Institute 2004_deer_khalek.pdf (235.38 KB) More Documents & Publications Investigation of the Effects of Fuels and Aftertreatment Devices on the Emission Profiles of Trucks and Buses Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty

  19. DOE - Fossil Energy: Knocking the NOx Out of Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-Knocking Out NOx An Energy Lesson Cleaning Up Coal Knocking the NOx Out of Coal - How NOx Forms - Formation of NOx - Air is mostly nitrogen molecules (green in the above diagram) ...

  20. NOx sensor development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sensor development NOx sensor development pm005_glass_2012_o.pdf (835.92 KB) More Documents & Publications NOxsensor development NOx Sensor Development Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report

  1. NOx adsorber and method of regenerating same

    DOE Patents [OSTI]

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  2. EERE Success Story—Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

  3. Method And Apparatus For Regenerating Nox Adsorbers

    DOE Patents [OSTI]

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  4. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  5. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  6. Accelerated Extraction of Diesel Particulate Matter SOF

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Method for immobilizing particulate materials in a packed bed

    DOE Patents [OSTI]

    Even, W.R. Jr.; Guthrie, S.E.; Raber, T.N.; Wally, K.; Whinnery, L.L.; Zifer, T.

    1999-02-02

    The present invention pertains generally to immobilizing particulate matter contained in a packed bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that (a) the particulate retains its essential chemical nature, (b) the local movement of the particulate particles is not unduly restricted, (c) bulk powder migration and is prevented, (d) physical and chemical access to the particulate is unchanged over time, and (e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of an individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport. 4 figs.

  8. Method for immobilizing particulate materials in a packed bed

    DOE Patents [OSTI]

    Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas

    1999-01-01

    The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

  9. Pitch based foam with particulate

    DOE Patents [OSTI]

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  10. Airborne particulate discriminator

    DOE Patents [OSTI]

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  11. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect (OSTI)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial

  12. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  13. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect (OSTI)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  14. Detailed Characterization of Particulates Emitted by Pre-Commercial Single-Cylinder Gasoline Compression Ignition Engine

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.; Imre, D.; Loeper, Paul; Adams, Cory; Andrie, Michael; Rothamer, David; Foster, David E.; Narayanaswamy, Kushal; Najt, Paul M.; Solomon, Arun S.

    2014-08-01

    Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from a single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.

  15. Face crack reduction strategy for particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-01-31

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  16. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Linehaul Platform Project Update Effect of Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap Pt-free, Perovskite-based Lean NOx Trap Catalysts

  17. Worker exposure to chemical agents in the manufacture of rubber tires and tubes: particulates

    SciTech Connect (OSTI)

    Williams, T.M.; Harris, R.L.; Arp, E.W.; Symons, M.J.; Van Ert, M.D.

    1980-03-01

    The Occupational Health Studies Group industrial hygiene studies at a group of 14 tire and tube manufacturing plants chosen to represent a cross-section of the industry include numerous evaluations of potential exposure to airborne particulate matter. Results of these environmental particulate sampling studies are reported by plant and by occupational groups within plants. High volume, open face and cyclone samplers were employed to evaluate both personnel and area particulate concentrations. The concentrations of particulates yielded by high volume and open face total particulate samplers are compared with those of comparison samples of respirable material. Personnel samples of particulates are compared with general air samples taken in the same work area. An overall review and comparison is given of particulate exposures to workers in various occupational title groups where particulate materials are released to the air from processes or operations.

  18. Method of feeding particulate material to a fluidized bed

    DOE Patents [OSTI]

    Borio, Richard W. (Somers, CT); Goodstine, Stephen L. (Windsor, CT)

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  19. Fluidizing device for solid particulates

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  20. Radiant zone heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  1. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor ...

  2. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  3. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

  4. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2015: Cummins-ORNLFEERC Emissions CRADA: NOx ...

  5. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and ...

  6. The Impact of Lubricant Formulation on the Performance of NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation on the Performance of NOx Adsorber Catalysts The Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts PDF icon 2005deerwhitacre.pdf More ...

  7. Development of Materials Analysis Tools for Studying NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studying NOx Adsorber Catalysts A cooperative research and development agreement with Cummins Engine Company Development of Materials Analysis Tools for Studying NOx Adsorber ...

  8. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  9. Fuel Processor Enabled NOx Adsorber Aftertreatment System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions ...

  10. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA: NOx ...

  11. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration ... More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary ...

  12. Parametric Study of NOx Adsorber Regeneration in Transient Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge ...

  13. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th ...

  14. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  15. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slip catalyst enabling highly efficient NOx removal requirements of the future Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future A ...

  16. Development on simultaneous reduction system of NOx and PM from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on simultaneous reduction system of NOx and PM from a diesel engine Development on simultaneous reduction system of NOx and PM from a diesel engine 2003 DEER Converence ...

  17. Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between ... More Documents & Publications Spatiotemporal Distribution of NOx Storage: a Factor ...

  18. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CLEERS Coordination & Development of Catalyst Process Kinetic Data CumminsORNL-FEERC CRADA: NOx Control ...

  19. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite...

    Office of Scientific and Technical Information (OSTI)

    Book: Understanding NOx SCR Mechanism and Activity on CuChabazite Structures throughout the Catalyst Life Cycle Citation Details In-Document Search Title: Understanding NOx SCR...

  20. Deactivation mechanisms of NOx storage materials arising from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning Presents the reliationship between Pt particle size and NOx storage performance ...

  1. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control &...

  2. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for ...

  3. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents ...

  4. Passive Catalytic Approach to Low Temperature NOx Emission Abatement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed ...

  5. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of ...

  6. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation ...

  7. Functionality of Commercial NOx Storage-Reduction Catalysts and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Pre-Competitive Catalysis Research: Fundamental SulfationDesulfation Studies of Lean NOx Traps Spatiotemporal Distribution of NOx Storage: a Factor ...

  8. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, G.S.

    1998-12-15

    Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

  9. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, Gary S.

    1998-01-01

    Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

  10. Reduce NOx and Improve Energy Efficiency

    SciTech Connect (OSTI)

    2005-05-01

    The U.S. Department of Energy's NOx and Energy Assessment Tool (NxEAT) is available at no charge to help the petroleum refining and chemicals industries develop a cost-effective, plant-wide strategy for NOx reduction and energy efficiency improvements.

  11. UREA INFRASTRUCTURE FOR UREA SCR NOX REDUCTION

    SciTech Connect (OSTI)

    Bunting, Bruce G.

    2000-08-20

    Urea SCR is currently the only proven NOX aftertreatment for diesel engines - high NOX reduction possible - some SCR catalyst systems are robust against fuel sulfur - durability has been demonstrated - many systems in the field - long history in other markets - Major limitations to acceptance - distribution of urea solution to end user - ensuring that urea solution is added to vehicle.

  12. Advanced Fine Particulate Characterization Methods

    SciTech Connect (OSTI)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  13. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Lean-NOx Catalyst Development for Diesel Engine Applications Lean-NOx Catalyst Development for Diesel Engine Applications 2002 DEER Conference Presentation: Caterpillar Inc. 2002_deer_park.pdf (302.37 KB) More Documents & Publications Lean NOx Catalysis Research and Development Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  14. Void/particulate detector

    DOE Patents [OSTI]

    Claytor, Thomas N.; Karplus, Henry B.

    1985-01-01

    Voids and particulates are detected in a flowing stream of fluid contained in a pipe by a detector which includes three transducers spaced about the pipe. A first transducer at a first location on the pipe transmits an ultrasonic signal into the stream. A second transducer detects the through-transmission of the signal at a second location and a third transducer at a third location upstream from the first location detects the back-scattering of the signal from any voids or particulates. To differentiate between voids and particulates a fourth transducer is positioned at a fourth location which is also upstream from the first location. The back-scattered signals are normalized with the through-transmission signal to minimize temperature fluctuations.

  15. Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts

    SciTech Connect (OSTI)

    Ji, Yaying; Choi, Jae-Soon; Toops, Todd J; Crocker, Dr. Mark; Naseri, Mojghan

    2008-01-01

    The effect of La2O3-stabilized ceria incorporation on the functioning of fully formulated lean NOx trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO2/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce0.7Zr0.3O2). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NOx storage/reduction cycles. NOx storage efficiency in the temperature range 150-350 C was observed to increase with ceria loading, resulting in higher NOx conversion levels. At 150 C, high rich phase NOx slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NOx reduction. Optimal NOx conversion was obtained in the range 250-350 C for all the catalysts, while at 450 C high rich phase NOx slip from the most highly loaded ceria-containing catalyst resulted in lower NOx conversion than for the ceria-free formulation. N2O was the major NOx reduction product at 150 C over all of the catalysts, although low NOx conversion levels limited the N2O yield. At higher temperatures N2 was the main product of NOx reduction, although NH3 formation was also observed. Selectivity to NH3 decreased with increasing ceria loading, indicating that NH3 is consumed by reaction with stored oxygen in the rear of the catalyst.

  16. Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts

    SciTech Connect (OSTI)

    Wang, Xianqin; Kim, Do Heui; Kwak, Ja Hun; Wang, Chong M.; Szanyi, Janos; Peden, Charles HF

    2011-10-01

    Lean NOx trap (LNT) catalysts represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and particle size, are known to be important factors in determining NOx uptake performance, since Pt provides active sites for NO oxidation to NO2 necessary for storing NOx as nitrates, and for the reduction of nitrates to N2. In this work, the physicochemical properties of Pt in Pt-BaO/Al2O3 LNT catalysts, such as the Pt accessible surface area and particle size, were investigated by using various tools, such as irreversible volumetric H2 chemisorption, high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), following successive reductive treatments at elevated temperatures. NOx uptake activities were also measured to establish a relationship between the properties of Pt and NOx storage following identical high-temperature reductive treatments. We find that the reductive treatments of Pt-BaO/Al2O3 lean NOx trap catalysts at temperatures up to 500 ºC promote a significant increase in NOx uptake explained, in part, by an induced close interaction between Pt and BaO phases in the catalyst, thus enabling facilitation of the NOx storage process.

  17. Retrofit Diesel Emissions Control System Providing 50% NOxControl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_yee.pdf (660.21 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions

  18. Parametric Study of NOx Adsorber Regeneration in Transient Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002_deer_west.pdf (1.07 MB) More Documents & Publications Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Measurement and Characterization of NOx Adsorber Regeneration and Desulfation Measurement

  19. Durability of NOx Absorbers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cleaner Vehicles, Cleaner Fuel & Cleaner Air APBF-DEC Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update LNT + SCR Aftertreatment for Medium-Heavy ...

  20. Ammonia-Free NOx Control System

    SciTech Connect (OSTI)

    Zhen Fan; Song Wu; Richard G. Herman

    2004-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

  1. NOX: An Object-Oriented Nonlinear Solver

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    NOX is a C++ object-oriented library for the solving nonlinear equations. It can be used with an linear algebra package and includes interfaces to Epetra and PETSc.

  2. Electrochemical NOx Sensors for Monitoring Diesel Emissions

    Broader source: Energy.gov [DOE]

    A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs

  3. Fluidizing device for solid particulates

    DOE Patents [OSTI]

    Diebold, James P.; Scahill, John W.

    1986-01-01

    A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  4. Fluidizing device for solid particulates

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1984-06-27

    A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  5. JV Task 95-Particulate Control Consulting for Minnesota Ore Operations

    SciTech Connect (OSTI)

    Stanley Miller

    2008-10-31

    The purpose of the project was to assist U.S. Steel in the evaluation, selection, planning, design, and testing of potential approaches to help meet U.S. Steel's goal for low-particulate matter emissions and regulatory compliance. The energy-intensive process for producing iron pellets includes treating the pellets in high-temperature kilns in which the iron is converted from magnetite to hematite. The kilns can be fired with either natural gas or a combination of gas and coal or biomass fuel and are equipped with wet venturi scrubbers for particulate control. Particulate measurements at the inlet and outlet of the scrubbers and analysis of size-fractionated particulate samples led to an understanding of the effect of process variables on the measured emissions and an approach to meet regulatory compliance.

  6. Monitoring and Control of Alkali Volatilization and Batch Carryover for Minimization of Particulates and Crown Corrosion

    SciTech Connect (OSTI)

    2001-01-01

    New Technology will Allow Glass Manufacturers to Optimize Furnace Conditions. Laser-induced breakdown spectroscopy is a continuous monitoring technique that glass manufacturers can use to reduce particulate matter emissions and extend furnace life.

  7. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  8. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  9. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing

  10. Electrically heated particulate filter with reduced stress

    DOE Patents [OSTI]

    Gonze, Eugene V.

    2013-03-05

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  11. Void/particulate detector

    DOE Patents [OSTI]

    Claytor, T.N.; Karplus, H.B.

    1983-09-26

    Apparatus for detecting voids and particulates in a flowing stream of fluid contained in a pipe may comprise: (a) a transducer for transmitting an ultrasonic signal into the stream, coupled to the pipe at a first location; (b) a second transducer for detecting the through-transmission of said signal, coupled to the pipe at a second location; (c) a third transducer for detecting the back-scattering of said signal, coupled to the pipe at a third location, said third location being upstream from said first location; (d) circuit means for normalizing the back-scattered signal from said third transducer to the through-transmitted signal from said second transducer; which normalized signal provides a measure of the voids and particulates flowing past said first location.

  12. Regenerable particulate filter

    DOE Patents [OSTI]

    Stuecker, John N.; Cesarano, III, Joseph; Miller, James E.

    2009-05-05

    A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

  13. System and method for diagnosing EGR performance using NOx sensor

    DOE Patents [OSTI]

    Mazur, Christopher John

    2003-12-23

    A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.

  14. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  15. A Systematic Investigation of Parameters Affecting Diesel NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber ...

  16. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  17. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control | Department of Energy Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems 2004_deer_catalytica.pdf (331 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  18. A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Performance | Department of Energy A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance 2002 DEER Conference Presentation: Dephi Corporation 2002_deer_dou.pdf (121.2 KB) More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems

  19. Measurement and Characterization of NOx Adsorber Regeneration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfation | Department of Energy Characterization of NOx Adsorber Regeneration and Desulfation Measurement and Characterization of NOx Adsorber Regeneration and Desulfation 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_huff.pdf (894.29 KB) More Documents & Publications Exploring Advanced Combustion Regimes for Efficiency and Emissions Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels

  20. Compact Potentiometric O2/NOx Sensor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm043_singh_2012_o.pdf (1.97 MB) More Documents & Publications Compact Potentiometric NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  1. Lean NOx Catalysis Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Catalysis Research and Development Lean NOx Catalysis Research and Development 2003 DEER Conference Presentation: Caterpillar, Inc. 2003_deer_park.pdf (588.44 KB) More Documents & Publications Lean-NOx Catalyst Development for Diesel Engine Applications Fuel Effects on Emissions Control Technologies

  2. Plasma Assisted Catalysis System for NOx Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma Assisted Catalysis System for NOx Reduction Plasma Assisted Catalysis System for NOx Reduction 2002 DEER Conference Presentation: Noxtech, Inc. 2002_deer_slone.pdf (595.6 KB) More Documents & Publications Noxtechs PAC System Development and Demonstration Lean NOx Catalysis Research and Development

  3. In-use performance of Daimler-Benz light-duty diesel particulate-trap oxidizers. Technical report

    SciTech Connect (OSTI)

    Baines, T.M.; Carlson, P.N.

    1988-02-01

    Ten in-use 1985 Mercedes-Benz light-duty diesel vehicles equiped with particulate trap oxidizer systems and with mileages between 30,000 and 50,000 miles were tested for particulate (PM) and gaseous exhaust (HC,CO, CO/sub 2/, and NOx) emissions. Seven out of ten vehicles had a first-test particulate emission level lower than a predetermined cutoff point of 0.35 g/mi. (The California PM certification standard for 1985 light-duty diesel vehicles is 0.4 g/mi.) Attempts were made to regenerate the particulate-trap oxidizers on the three vehicles that exceeded the 0.35 g/mi PM level and the vehicles were retested. Two of three retested vehicles passed the PM cutoff level.

  4. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  5. NOx Sensor for Direct Injection Emission Control

    SciTech Connect (OSTI)

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the

  6. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  7. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration Durability of ...

  8. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Biofuels Impact ...

  9. Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea SCR NOx Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  10. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Catalysis | Department of Energy NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis 2003 DEER Conference Presentation: Pacific Northwest National Laboratory 2003_deer_aardahl.pdf (962.36 KB) More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with

  11. Microwave mode shifting antenna system for regenerating particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  12. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  13. Particulate Generation in Tritium Systems

    Office of Environmental Management (EM)

    Analysis SEM Photomicrograph X-ray Spectrum C Cu F Si 6 Analysis of Particulates ... Analysis X-Ray Spectrum O F 13 SEM images of lint free cloth used to collect particles. ...

  14. Overlap zoned electrically heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  15. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect (OSTI)

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  16. The Wheels on the Bus Go Round and Round... | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the plume of black smoke from its tailpipe is both unpleasant and unhealthy. That smelly cloud contains high amounts of particulate matter and oxides of nitrogen (NOx), especially...

  17. Performance of the Low-Efficiency Diesel Particulate Filter for Diesel PM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction | Department of Energy the Low-Efficiency Diesel Particulate Filter for Diesel PM Reduction Performance of the Low-Efficiency Diesel Particulate Filter for Diesel PM Reduction Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-15_wei.pdf (220.05 KB) More Documents & Publications On-Road PM Mass Emission Measured with OBS-TRPM Investigation of Direct Injection Vehicle Particulate Matter

  18. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration Phenomena In Heavy Duty Applications 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_west.pdf (197.06 KB) More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project

  19. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents latest progress in the development of a new type of lean NOx trapping catalyst based on heterogenous composite nanowires, which could potentially be used in gasoline and diesel engines. deer11_gao.pdf (4.18 MB) More Documents & Publications Three-Dimensional Composite

  20. Super Duty Diesel Truck with NOx Aftertreatment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Super Duty Diesel Truck with NOx Aftertreatment Super Duty Diesel Truck with NOx Aftertreatment A profile of a Ford-Energy Department program to develop a three-stage aftertreatment technology, which cleans the vehicle exhaust emissions. This profile is part of the U.S. Drive 2011 Accomplishment Report. U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment (246.82 KB) More Documents & Publications Development of the 2011MY Ford Super Duty

  1. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_li.pdf (1.68 MB) More Documents & Publications Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between H2, CO and C3H6

  2. Passive Catalytic Approach to Low Temperature NOx Emission Abatement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce NOx released during vehicle cold start portion of the FTP-75 cycle deer11_henry.pdf (1.27 MB) More Documents & Publications Advanced Technology Light Duty Diesel Aftertreatment System Cummins' Next Generation Tier 2, Bin 2 Light

  3. Investigations of release phenomenon of volatile organic compounds and particulates from residual storage chip piles

    SciTech Connect (OSTI)

    Mohan, S.; Nagarkatti, M.

    1996-12-31

    This paper outlines the method for estimating Particulate Matter and Volatile Organic Compounds (VOCs) emissions from wood handling and storage operations at a pulp mill. Fugitive particulate matter emissions from wood handling and storage operations are due to material load/dropout operations, wind erosion from storage piles and vehicular traffic on paved roads. The particulate matter emissions are a function of a number of variables like windspeed, surface moisture content, material silt content, and number of days of precipitation. Literature review attributes VOC emissions to biological, microbiological, chemical, and physical processes occurring in wood material storage pile. The VOC emissions are from the surface of these piles and the VOC released during retrieval of chips from the pile. VOC emissions are based on the chip throughput, number of turnovers, moisture content and surface area of the pile. The emission factors with the requisite calculation methodology to be utilized for quantifying VOC emissions from chip piles has been discussed in this paper.

  4. Electrical diesel particulate filter (DPF) regeneration

    DOE Patents [OSTI]

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  5. Enhanced High and Low Temperature Performance of NOx Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Low Temperature Performance of NOx Reduction Materials 2014 DOE AMR Review This presentation does not contain any proprietary, confidential, or otherwise restricted information. ...

  6. Selective reduction of NOx in oxygen rich environments with plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: ...

  7. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Broader source: Energy.gov (indexed) [DOE]

    Composite Nanostructures for Lean NOx Emission Control Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

  8. DeNOx characteristics using two staged radical injection techniques

    SciTech Connect (OSTI)

    Kambara, S.; Kumano, Y.; Yukimura, K.

    2009-06-15

    Ammonia radical injection using pulsed dielectric barrier discharge (DBD) plasma has been investigated as a means to control NOx emissions from combustors. When DBD plasma-generated radicals (NH{sub 2}, NH, N, and H) are injected into a flue gas containing nitrogen oxide (NOx), NOx is removed efficiently by chain reactions in the gas phase. However, because the percentage of NOx removal gradually decreases with increasing oxygen concentrations beyond 1% O{sub 2}, improvement of the DeNOx (removal of nitrogen oxide) characteristics at high O{sub 2} concentrations was necessary for commercial combustors. A two-staged injection of the DeNOx agent was developed based on the detailed mechanisms of electron impact reactions and gas phase reactions. A concentration of H radical was observed to play an important role in NOx formation and removal. The effects of applied voltages, oxygen concentrations, and reaction temperatures on NOx removal were investigated under normal and staged injection. NOx removal was improved by approximately 20% using staged injection at O{sub 2} concentrations of 1 to 4%.

  9. NOx Abatement Research and Development CRADA with Navistar Incorporate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abatement Research and Development CRADA with Navistar Incorporated NOx Abatement Research and Development CRADA with Navistar Incorporated 2009 DOE Hydrogen Program and Vehicle ...

  10. Two Catalyst Formulations - One Solution for NOx After-treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-temperature SCR catalyst formulation in one system ... Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Advanced Technology Light Duty Diesel ...

  11. Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  12. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  13. Durability Evaluation of an Integrated Diesel NOx Adsorber A...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Desulfurization Fuel Filter Update on Diesel Exhaust Emission Control ...

  14. Lean NOx Traps - Microstructural Studies of Real World and Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB) More Documents & Publications Low Temperature Emission Control Pre-Competitive Catalysis Research: Fundamental SulfationDesulfation Studies of Lean NOx Traps Investigation ...

  15. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LNT) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction...

  16. Novel Application of Air Separation Membranes Reduces NOx Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted ...

  17. H2-Assisted NOx Traps: Test Cell Results Vehicle Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor 2003deercrane.pdf (630.37 KB) More Documents & Publications ...

  18. Ultra-Low NOx Premixed Industrial Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution Reduction and Energy Efficiency Typically reduces NOx to less than 10 ppm without compromising energy efficiency. Contact Information Curtis Taylor (765) 254-1141 ...

  19. Lower Freezing DEF For Higher NOx Reduction Attainment

    Broader source: Energy.gov [DOE]

    NOx emissions data from bench-scale experiments and Class III truck operated using a low freezing point diesel exhaust fluid

  20. An Experimental Investigation of the Origin of Increased NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Soy Biodiesel An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Optical ...

  1. NOx Aftertreatment Using Ethanol as Reductant | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment Using Ethanol as Reductant NOx Aftertreatment Using Ethanol as Reductant The hydrocarbon-SCR that was developed using ethanol and E85 as the reductant showed high ...

  2. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  3. Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for ...

  4. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline ...

  5. AMMONIA-FREE NOx CONTROL SYSTEM (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: AMMONIA-FREE NOx CONTROL SYSTEM Citation Details In-Document Search Title: AMMONIA-FREE NOx CONTROL SYSTEM This report describes a novel NOx control system that ...

  6. OTC NOx baseline emission inventory, 1990

    SciTech Connect (OSTI)

    1995-07-01

    The objective of this effort was to compile and quality assure a data base of NOx emissions from fossil fuel-fired boilers and indirect heat exchanges greater than or equal to 250 million British thermal units per hour (MMBtu/hr) capacity and electric generating units greater than or equal to 15 megawatts (MW) in the Northeast Ozone Transport Region (OTR). Emissions for the period May 1 through September 30, 1990 (referred to as the 5-month summer season) were compiled and will be used as a basis for emission reduction targeting and trading.

  7. Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Processor for Enhanced NOx Control | Department of Energy Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_dallabetta.pdf (875.17 KB) More Documents & Publications Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

  8. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced Diesel Particulate Filtration (DPF) Systems 2011 DOE Hydrogen and ... Development of Advanced Particulate Filters Development of Advanced Diesel Particulate ...

  9. Electrically heated particulate filter with zoned exhaust flow...

    Office of Scientific and Technical Information (OSTI)

    Electrically heated particulate filter with zoned exhaust flow control Title: Electrically heated particulate filter with zoned exhaust flow control A system includes a particulate ...

  10. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with plasma-assiste...